1
|
Sharma P, Kumari P, Sharma M, Sharma R, Paliwal A, Srivastava S, Ashique S, Bhowmick M, Adnan M, Mir RH. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: behavioural, biochemical and histopathological evidence. J Microencapsul 2024; 41:403-418. [PMID: 39007845 DOI: 10.1080/02652048.2024.2373715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy. METHODS The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several in-vivo assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model. RESULTS The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days. CONCLUSION The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Pooja Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Mansi Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Reyaz Hassan Mir
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
2
|
Behl T, Dahim MA, Aleya L. Revisiting the focal role of endostatin and environmental factors in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44511-44517. [PMID: 38951391 DOI: 10.1007/s11356-024-34113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a condition initiated by the assimilation of β-amyloid plaques (Aβ) and tau tangles, leading to neurodegeneration. It involves frequently cognitive decline as well as memory impairment in patients. Efforts in therapeutic interventions are currently facing challenges in identifying targets within this scaffold that can significantly alter the clinical course for individuals with AD. Moreover, in AD, neurons release a protein called endostatin, which accumulates in Aβ plaques and enhances AD. This accumulation of Aβ in the triggers a cascade of events leading to synaptic dysfunction, neuroinflammation, and ultimately neuronal death. Environmental factors nowadays increase the risk of AD with prolonged exposure of heavy metals such as copper (Cu), lead (Pb), mercury (Hg), cadmium (Cd), and other pesticides. It has been observed that these factors can cause the aggregation of Aβ and tau which initiates the plaque formation and hence leads to enhanced pathogenesis of AD. This review summarizes the interlinking between heavy metals, environmental factors, pesticides, endostatin, and progression of AD has been deliberated with recent findings.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mohammed Abdullah Dahim
- Department of Civil Engineering, King Khalid University, Guraiger, Abha, 62529, Kingdom of Saudi Arabia
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besancon Cedex, France.
| |
Collapse
|
3
|
Dhapola R, Sharma P, Kumari S, Bhatti JS, HariKrishnaReddy D. Environmental Toxins and Alzheimer's Disease: a Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol Neurobiol 2024; 61:3657-3677. [PMID: 38006469 DOI: 10.1007/s12035-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease is a leading cause of mortality worldwide. Inorganic and organic hazards, susceptibility to harmful metals, pesticides, agrochemicals, and air pollution are major environmental concerns. As merely 5% of AD cases are directly inherited indicating that these environmental factors play a major role in disease development. Long-term exposure to environmental toxins is believed to progress neuropathology, which leads to the development of AD. Numerous in-vitro and in-vivo studies have suggested the harmful impact of environmental toxins at cellular and molecular level. Common mechanisms involved in the toxicity of these environmental pollutants include oxidative stress, neuroinflammation, mitochondrial dysfunction, abnormal tau, and APP processing. Increased expression of GSK-3β, BACE-1, TNF-α, and pro-apoptotic molecules like caspases is observed upon exposure to these environmental toxins. In addition, the expression of neurotrophins like BDNF and GAP-43 have been found to be reduced as a result of toxicity. Further, modulation of signaling pathways involving PARP-1, PGC-1α, and MAPK/ERK induced by toxins have been reported to contribute in AD pathogenesis. These pathways are a promising target for developing novel AD therapeutics. Drugs like epigallocatechin-gallate, neflamapimod, salsalate, dexmedetomidine, and atabecestat are in different phases of clinical trials targeting the pathways for possible treatment of AD. This review aims to culminate the correlation between environmental toxicants and AD development. We emphasized upon the signaling pathways involved in the progression of the disease and the therapeutics under clinical trial targeting the altered pathways for possible treatment of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151 401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India.
| |
Collapse
|
4
|
Huang Z, Peng C, Rong Z, Jiang L, Li Y, Feng Y, Chen S, Xie C, Jiang C. Longitudinal Mapping of Personal Biotic and Abiotic Exposomes and Transcriptome in Underwater Confined Space Using Wearable Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5229-5243. [PMID: 38466915 DOI: 10.1021/acs.est.3c09379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Silicone-based passive samplers, commonly paired with gas chromatography-mass spectrometry (GC-MS) analysis, are increasingly utilized for personal exposure assessments. However, its compatibility with the biotic exposome remains underexplored. In this study, we introduce the wearable silicone-based AirPie passive sampler, coupled with nontargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS), GC-HRMS, and metagenomic shotgun sequencing methods, offering a comprehensive view of personalized airborne biotic and abiotic exposomes. We applied the AirPie samplers to 19 participants in a unique deep underwater confined environment, annotating 4,390 chemical and 2,955 microbial exposures, integrated with corresponding transcriptomic data. We observed significant shifts in environmental exposure and gene expression upon entering this unique environment. We noted increased exposure to pollutants, such as benzenoids, polycyclic aromatic hydrocarbons (PAHs), opportunistic pathogens, and associated antibiotic-resistance genes (ARGs). Transcriptomic analyses revealed the activation of neurodegenerative disease-related pathways, mostly related to chemical exposure, and the repression of immune-related pathways, linked to both biological and chemical exposures. In summary, we provided a comprehensive, longitudinal exposome map of the unique environment and underscored the intricate linkages between external exposures and human health. We believe that the AirPie sampler and associated analytical methods will have broad applications in exposome and precision medicine.
Collapse
Affiliation(s)
- Zinuo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zixin Rong
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yueer Li
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yue Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | | | | | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
5
|
Petit P, Gondard E, Gandon G, Moreaud O, Sauvée M, Bonneterre V. Agricultural activities and risk of Alzheimer's disease: the TRACTOR project, a nationwide retrospective cohort study. Eur J Epidemiol 2024; 39:271-287. [PMID: 38195954 PMCID: PMC10995077 DOI: 10.1007/s10654-023-01079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/02/2023] [Indexed: 01/11/2024]
Abstract
Data regarding Alzheimer's disease (AD) occurrence in farming populations is lacking. This study aimed to investigate whether, among the entire French farm manager (FM) workforce, certain agricultural activities are more strongly associated with AD than others, using nationwide data from the TRACTOR (Tracking and monitoring occupational risks in agriculture) project. Administrative health insurance data (digital electronic health/medical records and insurance claims) for the entire French agricultural workforce, over the period 2002-2016, on the entire mainland France were used to estimate the risk of AD for 26 agricultural activities with Cox proportional hazards model. For each analysis (one for each activity), the exposed group included all FMs that performed the activity of interest (e.g. crop farming), while the reference group included all FMs who did not carry out the activity of interest (e.g. FMs that never farmed crops between 2002 and 2016). There were 5067 cases among 1,036,069 FMs who worked at least one year between 2002 and 2016. Analyses showed higher risks of AD for crop farming (hazard ratio (HR) = 3.72 [3.47-3.98]), viticulture (HR = 1.29 [1.18-1.42]), and fruit arboriculture (HR = 1.36 [1.15-1.62]). By contrast, lower risks of AD were found for several animal farming types, in particular for poultry and rabbit farming (HR = 0.29 [0.20-0.44]), ovine and caprine farming (HR = 0.50 [0.41-0.61]), mixed dairy and cow farming (HR = 0.46 [0.37-0.57]), dairy farming (HR = 0.67 [0.61-0.73]), and pig farming (HR = 0.30 [0.18-0.52]). This study shed some light on the association between a wide range of agricultural activities and AD in the entire French FMs population.
Collapse
Affiliation(s)
- Pascal Petit
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France.
- AGEIS, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Elise Gondard
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gérald Gandon
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Olivier Moreaud
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Mathilde Sauvée
- Centre Mémoire de Ressources et de Recherche, CHU Grenoble Alpes, 38000, Grenoble, France
- Laboratoire de Psychologie et Neurocognition, UMR 5105, CNRS, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
| | - Vincent Bonneterre
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
- Centre Régional de Pathologies Professionnelles et Environnementales, CHU Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
6
|
Ruczaj A, Brzóska MM, Rogalska J. The Protective Impact of Aronia melanocarpa L. Berries Extract against Prooxidative Cadmium Action in the Brain-A Study in an In Vivo Model of Current Environmental Human Exposure to This Harmful Element. Nutrients 2024; 16:502. [PMID: 38398826 PMCID: PMC10891719 DOI: 10.3390/nu16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Cadmium (Cd) is a prooxidant that adversely affects human health, including the nervous system. As exposure of the general population to this heavy metal is inevitable, it is crucial to look for agents that can prevent the effects of its toxic action. An experimental model on female rats of current lifetime human exposure to cadmium (3-24-months' treatment with 1 or 5 mg Cd/kg diet) was used to test whether low-level and moderate intoxication can exert a prooxidative impact in the brain and whether supplementation with a 0.1% extract from the berries of Aronia melanocarpa L. (Michx.) Elliott (AE; chokeberry extract) can protect against this action. Numerous parameters of the non-enzymatic and enzymatic antioxidative barrier, as well as total antioxidative and oxidative status (TAS and TOS, respectively), were determined and the index of oxidative stress (OSI) was calculated. Moreover, chosen prooxidants (myeloperoxidase, xanthine oxidase, and hydrogen peroxide) and biomarkers of oxidative modifications of lipids, proteins, and deoxyribonucleic acid were assayed. Cadmium dysregulated the balance between oxidants and antioxidants in the brain and led to oxidative stress and oxidative injury of the cellular macromolecules, whereas the co-administration of AE alleviated these effects. To summarize, long-term, even low-level, cadmium exposure can pose a risk of failure of the nervous system by the induction of oxidative stress in the brain, whereas supplementation with products based on aronia berries seems to be an effective protective strategy.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
7
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
8
|
Asen ND, Udenigwe CC, Aluko RE. Quantitative Structure-Activity Relationship Modeling of Pea Protein-Derived Acetylcholinesterase and Butyrylcholinesterase Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16323-16330. [PMID: 37856319 DOI: 10.1021/acs.jafc.3c04880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The aim of this work was to determine the structural requirements for peptides that inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. The data set used consisted of 19 oligopeptides that had been identified through mass spectrometry analysis of enzymatic digests of yellow field pea protein. The structure-function relationship was analyzed by partial least squares regression using the 5z scores. A nine-component model was created from 16 peptides for AChE inhibitory peptides (Q2 = 67.2% and R2 = 0.9974), while three data sets were prepared for BuChE inhibitory peptides to improve the quality of the models (Q2 = 26.7-46.4% and R2 = 0.9577-0.9958). The most active peptides from the PLS models have threonine, leucine, alanine, and valine at the N terminal, asparagine, histidine, proline, and arginine at the second position, with aspartic acid and serine at the third, and arginine at the C terminal.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chibuike C Udenigwe
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
9
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
10
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
11
|
Nikmanesh Y, Mohammadi MJ, Yousefi H, Mansourimoghadam S, Taherian M. The effect of long-term exposure to toxic air pollutants on the increased risk of malignant brain tumors. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:519-530. [PMID: 35767733 DOI: 10.1515/reveh-2022-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Toxic air pollutants are one of the most agent that have many acute, chronic and non-communicable diseases (NCDs) on human health under long or short-term exposure has been raised from the past to the present. The aim of this study was investigation effect of long-term exposure to toxic air pollutants on the increased risk of malignant brain tumors. Databases used to for searched were the PubMed, Web of Science, Springer and Science Direct (Scopus) and Google Scholar. 71 papers based on abstract and article text filtered. In the end after sieve we selected 7 papers. Identify all relevant studies published 1970-2022. The literature showed that exposure to toxic air pollutants and their respiration can cause disorders in different parts of the brain by transmission through the circulatory system and other mechanisms. Various unpleasant abnormalities are caused by the inhalation of toxic air pollutants in the human body that some of the most common of them include chronic lung disease, coronary heart disease and heart attacks, strokes and brain diseases (Parkinson's, Alzheimer's and multiple Sclerosis), cancers (liver, blood, prostate and brain) and eventually death. According to the finding brain health and proper functioning can be easily disrupted by various genetic or external factors such as air pollution, causing a wide range of abnormalities in the brain and malignant brain tumors. The results of this study showed that reducing the concentration of toxic pollutants in the air, that exposure to them play an increasing role in the development of brain diseases can slow down the process of abnormalities in the brain and will have significant impacts on reducing the number of people affected by them.
Collapse
Affiliation(s)
- Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Homayon Yousefi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Masoume Taherian
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Torres-Sánchez ED, Ortiz GG, Reyes-Uribe E, Torres-Jasso JH, Salazar-Flores J. Effect of pesticides on phosphorylation of tau protein, and its influence on Alzheimer's disease. World J Clin Cases 2023; 11:5628-5642. [PMID: 37727721 PMCID: PMC10506003 DOI: 10.12998/wjcc.v11.i24.5628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and neurodegenerative illness which results in alterations in cognitive development. It is characterized by loss/dysfunction of cholinergic neurons, and formation of amyloid plaques, and formation of neurofibrillary tangles, among other changes, due to hyperphosphorylation of tau-protein. Exposure to pesticides in humans occurs frequently due to contact with contaminated food, water, or particles. Organochlorines, organophosphates, carbamates, pyrethroids and neonicotinoids are associated with the most diagnosed incidents of severe cognitive impairment. The aim of this study was to determine the effects of these pesticides on the phosphorylation of tau protein, and its cognitive implications in the development of AD. It was found that exposure to pesticides increased the phosphorylation of tau protein at sites Ser198, Ser199, Ser202, Thr205, Ser396 and Ser404. Contact with these chemicals altered the enzymatic activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta, and protein phosphatase-2A. Moreover, it altered the expression of the microtubule associated protein tau gene, and changed levels of intracellular calcium. These changes affected tau protein phosphorylation and neuroinflammation, and also increased oxidative stress. In addition, the exposed subjects had poor level of performance in tests that involved evaluation of novelty, as test on verbal, non-verbal, spatial memory, attention, and problem-solving skills.
Collapse
Affiliation(s)
- Erandis D Torres-Sánchez
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| | - Genaro G Ortiz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in Medicine Hospital Civil, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Emmanuel Reyes-Uribe
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| | - Juan H Torres-Jasso
- Department of Biological Sciences, CUCOSTA, University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico
| | - Joel Salazar-Flores
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| |
Collapse
|
13
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
14
|
Li N, Wen L, Shen Y, Li T, Wang T, Qiao M, Song L, Huang X. Differential expression of SLC30A10 and RAGE in mouse pups by early life lead exposure. J Trace Elem Med Biol 2023; 79:127233. [PMID: 37315391 DOI: 10.1016/j.jtemb.2023.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND SLC30A10 and RAGE are widely recognized as pivotal regulators of Aβ plaque transport and accumulation. Prior investigations have established a link between early lead exposure and cerebral harm in offspring, attributable to Aβ buildup and amyloid plaque deposition. However, the impact of lead on the protein expression of SLC30A10 and RAGE has yet to be elucidated. This study seeks to confirm the influence of maternal lead exposure during pregnancy, specifically through lead-containing drinking water, on the protein expression of SLC30A10 and RAGE in mice offspring. Furthermore, this research aims to provide further evidence of lead-induced neurotoxicity. METHODS Four cohorts of mice were subjected to lead exposure at concentrations of 0 mM, 0.25 mM, 0.5 mM, and 1 mM over a period of 42 uninterrupted days, spanning from pregnancy to the weaning phase. On postnatal day 21, the offspring mice underwent assessments. The levels of lead in the blood, hippocampus, and cerebral cortex were scrutinized, while the mice's cognitive abilities pertaining to learning and memory were probed through the utilization of the Morris water maze. Furthermore, Western blotting and immunofluorescence techniques were employed to analyze the expression levels of SLC30A10 and RAGE in the hippocampus and cerebral cortex. RESULTS The findings revealed a significant elevation in lead concentration within the brains and bloodstreams of mice, mirroring the increased lead exposure experienced by their mothers during the designated period (P < 0.05). Notably, in the Morris water maze assessment, the lead-exposed group exhibited noticeably diminished spatial memory compared to the control group (P < 0.05). Both immunofluorescence and Western blot analyses effectively demonstrated the concomitant impact of varying lead exposure levels on the hippocampal and cerebral cortex regions of the offspring. The expression levels of SLC30A10 displayed a negative correlation with lead doses (P < 0.05). Surprisingly, under identical circumstances, the expression of RAGE in the hippocampus and cortex of the offspring exhibited a positive correlation with lead doses (P < 0.05). CONCLUSION SLC30A10 potentially exerts distinct influence on exacerbated Aβ accumulation and transportation in contrast to RAGE. Disparities in brain expression of RAGE and SLC30A10 may contribute to the neurotoxic effects induced by lead.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Yue Shen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
15
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
16
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
17
|
Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. J Appl Toxicol 2023; 43:66-88. [PMID: 35304765 PMCID: PMC10084305 DOI: 10.1002/jat.4322] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, more and more attention has been focused on the risk of the neurotoxic action of cadmium (Cd) under environmental exposure. Due to the growing incidence of nervous system diseases, including neurodegenerative changes, and suggested involvement of Cd in their aetiopathogenesis, this review aimed to discuss critically this element neurotoxicity. Attempts have been made to recognize at which concentrations in the blood and urine Cd may increase the risk of damage to the nervous system and compare it to the risk of injury of other organs and systems. The performed overview of the available literature shows that Cd may have an unfavourable impact on the human's nervous system at the concentration >0.8 μg Cd/L in the urine and >0.6 μg Cd/L in the blood. Because such concentrations are currently noted in the general population of industrialized countries, it can be concluded that environmental exposure to this xenobiotic may create a risk of damage to the nervous system and be involved in the aetiopathogenesis of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as worsening cognitive and behavioural functions. The potential mechanism of Cd neurotoxicity consists in inducing oxidative stress, disrupting the activity of enzymes essential to the proper functioning of the nervous system and destroying the homoeostasis of bioelements in the brain. Thus, further studies are necessary to recognize accurately both the risk of nervous system damage in the general population due to environmental exposure to Cd and the mechanism of this action.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of ToxicologyMedical University of BialystokBialystokPoland
| | | |
Collapse
|
18
|
Liu J, Xie Y, Lu Y, Zhao Z, Zhuang Z, Yang L, Huang H, Li H, Mao Z, Pi S, Chen F, He Y. APP/PS1 Gene-Environmental Cadmium Interaction Aggravates the Progression of Alzheimer's Disease in Mice via the Blood-Brain Barrier, Amyloid-β, and Inflammation. J Alzheimers Dis 2023; 94:115-136. [PMID: 37248897 DOI: 10.3233/jad-221205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND There is limited information about gene-environment interaction on the occurrence and the progression of Alzheimer's disease. OBJECTIVE To explore the effect of environmental low-dose cadmium (Cd) exposure on the progress of Alzheimer's disease and the underlining mechanism. METHODS We administered 1 mg/L, 10 mg/L cadmium chloride (treated groups), and water (control group) to C57BL/6J and APP/PS1 mice through drinking water, from one week before mating, until the offspring were sacrificed at 6 months of age. The behaviors, Cd level, blood-brain barrier (BBB) leakage, Aβ1-42 deposition, and inflammation expression were evaluated in these mice. RESULTS Mice of both genotypes had similar blood Cd levels after exposure to the same dose of Cd. The toxic effects of Cd on the two genotypes differed little in terms of neuronal histomorphology and BBB permeability. Cd caused a series of pathological morphological changes in the mouse brains and more fluorescent dye leakage at higher doses. Furthermore, the APP/PS1 mice had more severe damage than the C57BL/6J mice, based on the following five criteria. They were increasing anxiety-like behavior and chaos movement, spatial reference memory damage, Aβ plaque deposition in mouse brains, increasing microglia expression in the brain, and IL-6 higher expression in the cortex and in the serum. CONCLUSION Low-dose Cd exposure for 6 months increases Aβ plaque deposition and BBB permeability, exacerbates inflammatory responses, and activates microglia, in APP/PS1 mice. APP/PS1 gene-environmental Cd interaction aggravates the progression of Alzheimer's disease in mice.
Collapse
Affiliation(s)
- Jieyi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yirong Xie
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao Lu
- Office of Academic Affairs, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Zhao
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Zhixiong Zhuang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Haiyan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongya Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiyi Mao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shurong Pi
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fubin Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Yang L, Wan W, Yu C, Xuan C, Zheng P, Yan J. Associations between PM 2.5 exposure and Alzheimer's Disease prevalence Among elderly in eastern China. Environ Health 2022; 21:119. [PMID: 36447194 PMCID: PMC9706836 DOI: 10.1186/s12940-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies showed that PM2.5 might be associated with various neurogenic diseases such as Alzheimer's Disease (AD). However, this topic had been little studied in Zhejiang province of China. METHODS: In 2018, we established a cohort of AD high-risk population with 1,742 elderly aged 60 and above. In 2020, the cohort was followed up, a total of 1,545 people participated the 2 surveys. Data collection included questionnaires and basic physical examinations. The average residential exposure to PM2.5 for each participant, that in a 5-years period prior to the first survey, was estimated using a satellite-based spatial statistical model. We determined the association between PM2.5 and AD prevalence by cox proportional hazards regression model. RESULTS: This study showed that an increase in the PM2.5 level was an important associated risk factor that contributed to AD. The average PM2.5 exposure levels among the study population ranged from 32.69 μg/m3 to 39.67 μg/m3 from 2013 to 2017, which were much higher than 5 μg/m3 that specified in the WHO air quality guidelines. There was an association between PM2.5 exposure and AD, and the correlations between PM2.5 and Mini-Mental State Examination, Montreal cognitive assessment scale scores were statistically significant. An increase in the PM2.5 level by 10 μg/m3 elevated the risk of AD among residents by 2%-5% (HR model 2-model 4 = 1.02 to 1.05, CI model 2-model 4 = 1.01-1.10). The subgroups of male, with old age, with low education levels, used to work as farmers or blue-collar workers before retirement, overweight and obese were associated with a higher effect of PM2.5. CONCLUSIONS Reducing PM2.5 exposure might be a good way to prevent AD.
Collapse
Affiliation(s)
- Li Yang
- Zhejiang Hospital, No.12 Ling Yin Road, Hangzhou, 310013, China
- Key Laboratory of Public Health Safety, Ministry of Education, Health Communication Institute, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Wenjie Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Caiyan Yu
- Zhuji Second People's Hospital, No. 15 Fengbei Road, Fengqiao Town, Zhuji, 311811, China
| | - Cheng Xuan
- Zhuji Second People's Hospital, No. 15 Fengbei Road, Fengqiao Town, Zhuji, 311811, China
| | - Pinpin Zheng
- Key Laboratory of Public Health Safety, Ministry of Education, Health Communication Institute, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jing Yan
- Zhejiang Hospital, No.12 Ling Yin Road, Hangzhou, 310013, China.
| |
Collapse
|
21
|
Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, Pino JD. Neuroprotective mechanisms of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced amyloid proteins generation and aggregation. Food Chem Toxicol 2022; 167:113264. [PMID: 35781037 DOI: 10.1016/j.fct.2022.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aβ), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10-100 μM) chemical ability to prevent metal-induced Aβ proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aβ formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aβ proteins (1 μM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aβ proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aβ proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aβ proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins.
Collapse
Affiliation(s)
- Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain.
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Esfandiari M, Hakimzadeh MA. Assessment of environmental pollution of heavy metals deposited on the leaves of trees at Yazd bus terminals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32867-32881. [PMID: 35020146 DOI: 10.1007/s11356-021-18274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
There is a lack of information on the effect of urban transport activities in emitting heavy elements into the environment. This research assesses the concentrations of some heavy elements in the deposited atmospheric dust at Yazd bus terminals in Yazd, Iran. So, 34 falling dust samples were collected from the leaves of trees planted near the bus terminals. Following the digestion by nitric acid, the total concentrations of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), chromium (Cr), and manganese (Mn) were determined in the dust by atomic absorption spectrometry. The map representing the spatial distribution of the metals was plotted, and their sources were identified using Pearson's correlation coefficient, principal component analysis, and cluster analysis. The results indicated that the mean concentrations of the heavy metals in the dust deposited on the tree leaves were in the order of Cd < Co < Ni < Pb < Cu < Zn < Cr < Mn. The map representing the spatial distribution of the heavy metal concentrations illustrated that the abundance of metals in different stations varied with their location. Two main sources were detected for the heavy metals in the deposited dust. Co, Cd, Mn, and Ni had anthropogenic and lithogenic sources while Pb, Zn, Cr, and Cu were emitted by traffic and industrial activities. Enrichment factor, contamination factor, integrated pollution index, and risk index were estimated at low to extremely high levels of pollution in residential, commercial, green space, and environmental uses. Based on the results, the growth of industrialization and human activities contribute to the heavy metal contamination of the environment emitted into the atmosphere in Yazd.
Collapse
|
23
|
Patten KT, Valenzuela AE, Wallis C, Harvey DJ, Bein KJ, Wexler AS, Gorin FA, Lein PJ. Hippocampal but Not Serum Cytokine Levels Are Altered by Traffic-Related Air Pollution in TgF344-AD and Wildtype Fischer 344 Rats in a Sex- and Age-Dependent Manner. Front Cell Neurosci 2022; 16:861733. [PMID: 35530180 PMCID: PMC9072828 DOI: 10.3389/fncel.2022.861733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Epidemiological studies have demonstrated that air pollution is a significant risk factor for age-related dementia, including Alzheimer's disease (AD). It has been posited that traffic-related air pollution (TRAP) promotes AD neuropathology by exacerbating neuroinflammation. To test this hypothesis, serum and hippocampal cytokines were quantified in male and female TgF344-AD rats and wildtype (WT) Fischer 344 littermates exposed to TRAP or filtered air (FA) from 1 to 15 months of age. Luminex™ rat 23-cytokine panel assays were used to measure the levels of hippocampal and serum cytokines in 3-, 6-, 10-, and 15-month-old rats (corresponding to 2, 5, 9, and 14 months of exposure, respectively). Age had a pronounced effect on both serum and hippocampal cytokines; however, age-related changes in hippocampus were not mirrored in the serum and vice versa. Age-related changes in serum cytokine levels were not influenced by sex, genotype, or TRAP exposure. However, in the hippocampus, in 3-month-old TgF344-AD and WT animals, TRAP increased IL-1ß in females while increasing TNF ɑin males. In 6-month-old animals, TRAP increased hippocampal levels of M-CSF in TgF344-AD and WT females but had no significant effect in males. At 10 and 15 months of age, there were minimal effects of TRAP, genotype or sex on hippocampal cytokines. These observations demonstrate that TRAP triggers an early inflammatory response in the hippocampus that differs with sex and age and is not reflected in the serum cytokine profile. The relationship of TRAP effects on cytokines to disease progression remains to be determined.
Collapse
Affiliation(s)
- Kelley T. Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher Wallis
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Anthony S. Wexler
- Air Quality Research Center, University of California, Davis, Davis, CA, United States
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, College of Engineering, University of California, Davis, Davis, CA, United States
- Land, Air and Water Resources, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Neurology, Davis School of Medicine, University of California, Sacramento, Sacramento, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Saeedi M, Mehranfar F. Challenges and approaches of drugs such as Memantine, Donepezil, Rivastigmine and Aducanumab in the treatment, control and management of Alzheimer's disease. Recent Pat Biotechnol 2022; 16:102-121. [PMID: 35236274 DOI: 10.2174/1872208316666220302115901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a kinds of neuropsychiatric illnesses that affect the central nervous system. In this disease, the accumulation of amyloid-beta increases, and phosphorylated tau (P-tau) protein, one of the ways to treat this disease is to reduce the accumulation of amyloid-beta. Various studies have demonstrated that pharmacological approaches have considerable effects in the treatment of AD, despite the side effects and challenges. Cholinesterase inhibitors and the NMDA receptor antagonist memantine are presently authorized therapies for AD. Memantine and Donepezil are the most common drugs for the prevention and therapy of AD with mechanisms such as lessened β-amyloid plaque, effect on N-Methyl-D-aspartate (NMDA) receptors. Diminution glutamate and elevated acetylcholine are some of the influences of medications administrated to treat AD, and drugs can also play a role in slowing the progression of cognitive and memory impairment. A new pharmacological approach and strategy is required to control the future of AD. This review appraises the effects of memantine, donepezil, rivastigmine, and aducanumab in clinical trials, in vitro and animal model studies that have explored how these drugs versus AD development and also discuss possible mechanisms of influence on the brain. Research in clinical trials has substantial findings that support the role of these medications in AD treatment and ameliorate the safety and efficacy of AD therapy, although more clinical trials are required to prove their effectiveness.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
25
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
26
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, del Pino J. Neuroprotective Action of Multitarget 7-Aminophenanthridin-6( 5H)-one Derivatives against Metal-Induced Cell Death and Oxidative Stress in SN56 Cells. ACS Chem Neurosci 2021; 12:3358-3372. [PMID: 34460227 PMCID: PMC8478279 DOI: 10.1021/acschemneuro.1c00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
![]()
Neurodegenerative
diseases have been associated with brain metal
accumulation, which produces oxidative stress (OS), matrix metalloproteinases
(MMPs) induction, and neuronal cell death. Several metals have been
reported to downregulate both the nuclear factor erythroid 2-related
factor 2 (Nrf2) pathway and the antioxidant enzymes regulated by it,
mediating OS induction and neurodegeneration. Among a recently discovered
family of multitarget 7-amino-phenanthridin-6-one derivatives (APH) the most promising compounds were tested against metal-induced
cell death and OS in SN56 cells. These compounds, designed to have
chelating activity, are known to inhibit some MMPs and to present
antioxidant and neuroprotective effects against hydrogen peroxide
treatment to SN56 neuronal cells. However, the mechanisms that mediate
this protective effect are not fully understood. The obtained results
show that compounds APH1, APH2, APH3, APH4, and APH5 were only able to chelate
iron and copper ions among all metals studied and that APH3, APH4, and APH5 were also able to chelate
mercury ion. However, none of them was able to chelate zinc, cadmium,
and aluminum, thus exhibiting selective chelating activity that can
be partly responsible for their neuroprotective action. Otherwise,
our results indicate that their antioxidant effect is mediated through
induction of the Nrf2 pathway that leads to overexpression of antioxidant
enzymes. Finally, these compounds exhibited neuroprotective effects,
reversing partially or completely the cytotoxic effects induced by
the metals studied depending on the compound used. APH4 was the most effective and safe compound.
Collapse
Affiliation(s)
- Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Juan F. González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Javier del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
28
|
Falcón C, Gascon M, Molinuevo JL, Operto G, Cirach M, Gotsens X, Fauria K, Arenaza‐Urquijo EM, Pujol J, Sunyer J, Nieuwenhuijsen MJ, Gispert JD, Crous‐Bou M. Brain correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk for Alzheimer's disease: A study on Barcelona's population. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12205. [PMID: 34258378 PMCID: PMC8256622 DOI: 10.1002/dad2.12205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Urban environmental exposures might contribute to the incidence of Alzheimer's disease (AD). Our aim was to identify structural brain imaging correlates of urban environmental exposures in cognitively unimpaired individuals at increased risk of AD. METHODS Two hundred twelve participants with brain scans and residing in Barcelona, Spain, were included. Land use regression models were used to estimate residential exposure to air pollutants. The daily average noise level was obtained from noise maps. Residential green exposure indicators were also generated. A cerebral 3D-T1 was acquired to obtain information on brain morphology. Voxel-based morphometry statistical analyses were conducted to determine the areas of the brain in which regional gray matter (GM) and white matter (WM) volumes were associated with environmental exposures. RESULTS Exposure to nitrogen dioxide was associated with lower GM volume in the precuneus and greater WM volume in the splenium of the corpus callosum and inferior longitudinal fasciculus. In contrast, exposure to fine particulate matter was associated with greater GM in cerebellum and WM in the splenium of corpus callosum, the superior longitudinal fasciculus, and cingulum cingulate gyrus. Noise was positively associated with WM volume in the body of the corpus callosum. Exposure to greenness was associated with greater GM volume in the middle frontal, precentral, and the temporal pole. DISCUSSION In cognitively unimpaired adults with increased risk of AD, exposure to air pollution, noise, and green areas are associated with GM and WM volumes of specific brain areas known to be affected in AD, thus potentially conferring a higher vulnerability to the disease.
Collapse
Affiliation(s)
- Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Mireia Gascon
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Marta Cirach
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Xavier Gotsens
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Jesús Pujol
- MRI Research Unit, Department of RadiologyHospital del MarBarcelonaSpain
- CIBER Salud Mental (CIBERSAM G21)MadridSpain
| | - Jordi Sunyer
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Mark J. Nieuwenhuijsen
- ISGlobalBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marta Crous‐Bou
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research ProgramCatalan Institute of Oncology (ICO)–Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | |
Collapse
|
29
|
Das S, Akbar S, Ahmed B, Dewangan RP, Iqubal MK, Iqubal A, Chawla P, Pottoo FH, Joseph A. Recent Advancement of Pyrazole Scaffold Based Neuroprotective Agents: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:940-951. [PMID: 34080970 DOI: 10.2174/1871527320666210602152308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
As a source of therapeutic agents, heterocyclic nitrogen-containing compounds and their derivatives are still interesting and essential. Pyrazole, a five-member heteroaromatic ring with two nitrogen atoms, has a major impact on chemical industries as well as pharmaceutical industries. Due to its wide range of biological activities against various diseases, it has been identified as a biologically important heterocyclic scaffold. The treatment of neurological disorders has always been a difficult task. Therefore, identifying therapeutically effective molecules for neurological conditions remains an open challenge in biomedical research and development. For developing novel entities as neuroprotective agents, recently, pyrazole scaffold has attracted medicinal chemists worldwide. The major focus of research in this area is to discover novel molecules as neuroprotective agents with minimal adverse effects and better effectiveness in improving the neurological condition. This review mainly covers recent developments in the neuropharmacological role of pyrazole incorporated compounds, including their structural-activity relationship (SAR), which also further includes IC50 values (in mM as well as in μM), recent patents, and a brief history as neuroprotective agents.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Rikeshwar Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab-142001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 2835 King Faisal Road, Dammam 31441. Saudi Arabia
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
30
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
31
|
Luo Z, Lv H, Chen Y, Xu X, Liu K, Li X, Deng Y, Zhou Y. Years of Life Lost Due to Premature Death and Their Trends in People With Selected Neurological Disorders in Shanghai, China, 1995-2018: A Population-Based Study. Front Neurol 2021; 12:625042. [PMID: 33746880 PMCID: PMC7973274 DOI: 10.3389/fneur.2021.625042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Neurological disorders are the leading cause of long-term disability and the second leading cause of death in the world. We aimed to characterize the long-term trends in mortality and disease burden of selected neurological disorders and quantitatively analyze the contributions of demographic and non-demographic factors on the mortality of selected neurological disorders in Shanghai, China, 1995–2018. Methods: Mortality data were derived from the Vital Statistics System of Pudong New Area, Shanghai, China, during 1995–2018. Temporal trends for the mortality rates and burden of selected neurological disorders were analyzed by Joinpoint Regression Program. Years of life lost (YLL) was used to analyze the burden of disease. The increasing mortality rates related to demographic and non-demographic factors were estimated by the decomposition method. Results: A total of 4432 deaths from selected neurological disorders occurred during 1995–2018, accounting for 0.98% of total deaths. The crude mortality rates (CMR) and age-standardized mortality rates (ASMRW) of neurological disorders were 7.14/105 person–years and 4.08/105 person–years, respectively. Extrapyramidal and movement disorders, other degenerative diseases of the nervous system, and episodic and paroxysmal disorders were the three leading causes of mortality and YLL of selected neurological disorders. The CMR, ASMRW, and rate of YLL for deaths from selected neurological disorders showed significantly increasing trends in males, females, and the total population during 1995–2018 (all P < 0.001). The contribution rates of increased values of CMR related to demographic factors were more evident than non-demographic factors. Conclusion: The mortality rate and rate of YLL for death from selected neurological disorders increased significantly during 1995–2018 in Pudong New Area, Shanghai. The demographic factors, particularly aging, might be related to an increase in the mortality of neurological disorders. More effective prevention strategies are needed to prevent the aging-related death and burden from neurological disorders in the future.
Collapse
Affiliation(s)
- Zheng Luo
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Huihui Lv
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichen Chen
- Center for Disease Control and Prevention of Pudong New Area, Shanghai, China.,Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Xiaoyun Xu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiaopan Li
- Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yi Zhou
- Center for Disease Control and Prevention of Pudong New Area, Shanghai, China.,Office of Scientific Research and Information Management, Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| |
Collapse
|
32
|
Brzóska MM, Kozłowska M, Rogalska J, Gałażyn-Sidorczuk M, Roszczenko A, Smereczański NM. Enhanced Zinc Intake Protects against Oxidative Stress and Its Consequences in the Brain: A Study in an In Vivo Rat Model of Cadmium Exposure. Nutrients 2021; 13:nu13020478. [PMID: 33572579 PMCID: PMC7911633 DOI: 10.3390/nu13020478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023] Open
Abstract
We examined, in a rat model of moderate environmental human exposure to cadmium (Cd), whether the enhanced intake of zinc (Zn) may protect against Cd-caused destroying the oxidative/antioxidative balance and its consequences in the brain. The intoxication with Cd (5 mg/L, 6 months) weakened the enzymatic (superoxide dismutase, glutathione peroxidase, catalase) and non-enzymatic (total thiol groups, reduced glutathione) antioxidative barrier decreasing the total antioxidative status and increased the concentrations of pro-oxidants (hydrogen peroxide, myeloperoxidase) in this organ and its total oxidative status. These resulted in the development of oxidative stress and oxidative modifications of lipids and proteins. The co-administration of Zn (30 and 60 mg/L enhancing this element intake by 79% and 151%, respectively) importantly protected against Cd accumulation in the brain tissue and this xenobiotic-induced development of oxidative stress and oxidative damage to lipids and proteins. Moreover, this bioelement also prevented Cd-mediated oxidative stress evaluated in the serum. The favorable effect of Zn was caused by its independent action and interaction with Cd. Concluding, the enhancement of Zn intake under oral exposure to Cd may prevent the oxidative/antioxidative imbalance and oxidative stress in the brain and thus protect against injury of cellular macromolecules in the nervous system.
Collapse
Affiliation(s)
- Małgorzata M. Brzóska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | - Magdalena Kozłowska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | | | | | | | | |
Collapse
|
33
|
Aleya L, Uddin MS. Environmental pollutants and the risk of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44657-44658. [PMID: 33095901 DOI: 10.1007/s11356-020-11272-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France.
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
34
|
Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci 2020; 21:ijms21196996. [PMID: 32977499 PMCID: PMC7583016 DOI: 10.3390/ijms21196996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis is a complex and intricate process that aims to replenish blood components in a constant fashion. It is orchestrated mostly by hematopoietic progenitor cells (hematopoietic stem cells (HSCs)) that are capable of self-renewal and differentiation. These cells can originate other cell subtypes that are responsible for maintaining vital functions, mediate innate and adaptive immune responses, provide tissues with oxygen, and control coagulation. Hematopoiesis in adults takes place in the bone marrow, which is endowed with an extensive vasculature conferring an intense flow of cells. A myriad of cell subtypes can be found in the bone marrow at different levels of activation, being also under constant action of an extensive amount of diverse chemical mediators and enzymatic systems. Bone marrow platelets, mature erythrocytes and leukocytes are delivered into the bloodstream readily available to meet body demands. Leukocytes circulate and reach different tissues, returning or not returning to the bloodstream. Senescent leukocytes, specially granulocytes, return to the bone marrow to be phagocytized by macrophages, restarting granulopoiesis. The constant high production and delivery of cells into the bloodstream, alongside the fact that blood cells can also circulate between tissues, makes the hematopoietic system a prime target for toxic agents to act upon, making the understanding of the bone marrow microenvironment vital for both toxicological sciences and risk assessment. Environmental and occupational pollutants, therapeutic molecules, drugs of abuse, and even nutritional status can directly affect progenitor cells at their differentiation and maturation stages, altering behavior and function of blood compounds and resulting in impaired immune responses, anemias, leukemias, and blood coagulation disturbances. This review aims to describe the most recently investigated molecular and cellular toxicity mechanisms of current major environmental pollutants on hematopoiesis in the bone marrow.
Collapse
|