1
|
Liu P, Shao L, Guo Z, Zhang Y, Cao Y, Ma X, Morawska L. Physicochemical characteristics of airborne microplastics of a typical coastal city in the Yangtze River Delta Region, China. J Environ Sci (China) 2025; 148:602-613. [PMID: 39095193 DOI: 10.1016/j.jes.2023.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 08/04/2024]
Abstract
Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Ziyu Guo
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxing Zhang
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Al-Tarshi M, Husband J, Dobretsov S. Evaluating microplastic contamination in Omani mangrove habitats using large mud snails (Terebralia palustris). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107220. [PMID: 39736165 DOI: 10.1016/j.aquatox.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons. Snails from the polluted Shinas lagoon exhibited higher levels of microplastics compared to those from the lowest polluted Al-Qurum Natural Reserve (MPA). The most prevalent type of microplastic in snail tissues was fibers, making up 75.7 % of the total. Fragments constituted about 24.2 %. Using portable Raman spectrometry, Polyurethane (PU) was identified as the predominant polymer, accounting for 50 % of the total. This was followed by Acrylic and Polyethylene, each representing 18.75 %, and Polyethylene Vynil Acetate (PEVA) at 12.50 %. Overall, it is clear that while snails do reflect the presence of microplastics (MPs) in their environment, their physical attributes do not strongly correlate with the levels or types of MPs they contain. Additionally, the significant difference between the abundance of MPs in sediment and in snails illustrates that, while snails may serve as general indicators of microplastic pollution, they may not be reliable as precise bioindicators or sentinel species for quantifying the extent of this pollution. Further studies are needed to explore other potential bioindicators in mangrove habitats.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Environment Authority, DG of Nature Conservation, Marine Conservation Department P.O.Box: 323, Muscat, Oman; Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman.
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khoud 123, PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman.
| |
Collapse
|
3
|
Bae S, Kim HM, Jung Y, Park JW, Moon HG, Kim S. Assessment of potential ecological risk for microplastics in freshwater ecosystems. CHEMOSPHERE 2024; 370:143995. [PMID: 39706495 DOI: 10.1016/j.chemosphere.2024.143995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Microplastics (MPs) are one of the most widespread environmental pollutants, but their risk assessment to freshwater ecosystems has not been clearly investigated. Risk assessment has been constrained by the absence of MP concentration in some environment, the diverse types and shapes of MPs, and limitations of polystyrene (PS)-biased toxicity studies. This study examined exposure to MPs in rivers and lakes worldwide, including China (the Three Gorges Dam & Yangtze River (TGD & YR) and the lakes of Wuhan city (WL)), Vietnam (seven lakes of Da Nang city (7UL)), Europe (the Rhine River (RR)), Finland (Kallavesi Lake (KL)), Argentina (nine lakes in the Patagonia region (9LP)), Brazil (Guaiba Lake (GL)), and South Korea (Nakdong River (NR), Han River (HR), and Anyang Stream (AS)), and assessed the risks to aquatic ecosystems based on the toxicity information and morphology of MPs. We also examine the limitations of the traditional risk quotient (RQ)-based risk assessment method for PS-biased toxicity studies. Potential ecological risks were assessed using pollution load index (PLI) and potential ecological risk index (PERI) considering the hazard scores of MP types. RQ was approximately 10-6 to 10-4, indicating negligible risk to aquatic organisms. In contrast, the calculated PLI (>30: extreme danger) and PERI (>1200: extreme danger) values suggest that MPs represent serious ecological threats at all the study locations. Furthermore, principal component analysis (PCA) indicated that MP fibers and fragments have a significant impact on the risks for freshwater systems. These MP morphologies derive from surrounding fishing and agricultural activities, and household and clothing industries. The areas surrounding these rivers and lakes are expected to become more densely populated, potentially leading to increased MP emissions and higher risks, suggesting a need to expand wastewater treatment facilities, reduce consumption of single-use plastics, and raise societal awareness of waste plastics.
Collapse
Affiliation(s)
- Seonhee Bae
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hyung-Min Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea; Institute of Agriculture Chemistry, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Youngmo Jung
- BigData Engineering 1 Team, D&A Division, LG CNS, Seoul 07795, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Hi Gyu Moon
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sooyeon Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
4
|
Del Piano F, Mateu B, Coretti L, Borrelli L, Piccolo G, Addeo NF, Esposito S, Mercogliano R, Turco L, Meli R, Lembo F, Ferrante MC. Polystyrene microplastic exposure modulates gut microbiota and gut-liver axis in gilthead seabream (Sparus aurata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177857. [PMID: 39631330 DOI: 10.1016/j.scitotenv.2024.177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs) are a threat of growing concern for living organisms as they exist in all ecosystems. The bidirectional communication between the gut, its microbiota, and the liver, has been conceptualized as gut-liver axis and may be influenced by environmental factors. MPs can cause intestinal and hepatic injuries, but there is still limited research exploring their impact on gut-liver axis. The aim of this study was to assess the effects of MP ingestion on gut-liver axis balance in gilthead seabream (Sparus aurata) fed with a diet enriched with polystyrene (PS)-MPs (0, 25, or 250 mg/kg b.w./day) for 21 days. PS-MPs affected the composition of gut microbiota, enhancing the evenness of gut microbial species. We also observed the impoverishment of core microbiota, suggesting reduced stability and permanence of microbiota members. Furthermore, PS-MPs reduced predominant bacteria in the gut of gilthead seabreams, increasing low-abundance species, including potential harmful taxa. On the other hand, PS-MPs increased the gene expression of immune and inflammatory mediators (i.e., TLR2, TLR5, and COX-2) in the liver. PS-MP exposure also increased serum triglycerides and bile acids (BAs) without modifying cholesterol. Moreover, the hepatic BA metabolism was impacted by PS-MPs which increased the expression of genes involved in primary BA kinetic (i.e., CYP27A1 and LXRa), which in turn can modulate intestinal microbial community. Indeed, PICRUSt2 mapping of BA-related functions predicted the increase of factors involved in BA metabolism. Specifically, K01442 (choloylglycine hydrolase) and K00076 (7α-hydroxysteroid dehydrogenase) were augmented by PS-MPs, suggesting a possible adaptation or co-evolution of gut microbiota to the modified hepatic BA metabolism. Thus, the obtained results showed that ingested PS-MPs impact the gut microbiota architecture and functions, the hepatic innate immunity, and the BA metabolism, suggesting the involvement of the gut-liver axis in MP-induced toxicity.
Collapse
Affiliation(s)
- Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Sergio Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
5
|
Sundaram BP, Kulandaisamy P, Velmayil P, Thangaraj K, Senapathi V, Karthikeyan S, Venu UA, Arumugam M. An Investigation on Microplastics at Wastewater Confluence Points in the Southern Coastal Regions of Tamil Nadu, India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:10. [PMID: 39676080 DOI: 10.1007/s00128-024-03984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
This study investigates microplastic prevalence in wastewater mixing point from major coastal cities in Tamil Nadu, India, highlighting a significant environmental challenge. In January 2023, 16 wastewater samples revealed microplastics (< 5 mm) ranging from 20 to 51 items per litre. Predominant colours were pink, black, brown, white, green, blue, red, and yellow, with orange being the least common. Microplastic sizes mostly varied from 0.05 to 0.5 mm. Fiber shaped MPs are the predominant, followed by fragments, foam, film and pellets. Predominant polymer types were polyethylene (45%), polystyrene (18%), and polypropylene (15%). These results emphasize wastewater's significant role in introducing microplastics into coastal ecosystems from domestic and industrial sources. Addressing this issue requires effective management plans, including advanced wastewater treatment, public awareness campaigns and regulatory measures. Further research is essential to comprehensively assess ecological impacts and inform sustainable management strategies.
Collapse
Affiliation(s)
- Bangaru Priyanga Sundaram
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Prabakaran Kulandaisamy
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Perumal Velmayil
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India.
| | - Kongeswaran Thangaraj
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Venkatramanan Senapathi
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Sivakumar Karthikeyan
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | | | - Muruganantham Arumugam
- Department of Geology, Faculty of Sciences, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| |
Collapse
|
6
|
Kanak K, Ahmed MK, Islam MS, Hasan M, Chowdhury KMA, Hossain KB. Microplastic pollution along the coastal island shorelines of Bangladesh: Distribution, patterns, and abundance. Heliyon 2024; 10:e40723. [PMID: 39687134 PMCID: PMC11648902 DOI: 10.1016/j.heliyon.2024.e40723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Microplastics (MPs), less than 5 mm in length, have become a major environmental issue due to their hazardous physical and chemical properties. The research investigated 54 sediment samples collected from three different zones of the beaches, namely the wrack line, beach face, and swash zone. This study aims to enumerate the number and polymeric variety of microplastics found in beach sediments from coastal islands of Bangladesh, including Sandwip, Kutubdia, and Saint Martin's Island in the northeastern Bay of Bengal. NaCl solution with the density of 1.2 g/cm3 was used as a density-separating solvent. Microplastics were extracted using conventional protocols, yielding an average of 193 ± 68.9, 175.5 ± 63.1, and 266.3 ± 232 particles per kg from the collected samples of Sandwip, Kutubdia, and Saint Martin's Island respectively, with five morphotypes: fiber, film, fragment, foam, and pellet, where fiber dominated each island. White microplastics were most spread in both Sandwip and Saint Martin's Island, whereas translucent and blue were most abundant in Kutubdia. Moreover, polypropylene (PP) was shown to be the greatest number of polymer groups among those analyzed microplastic particles using ATR-FTIR (Attenuated total reflectance-Fourier transform infrared) spectrometer. Using scanning electron microscopy (SEM), it was also possible to detect surface degradation, rupture, or fracture that was probably caused by the environment. The study emphasizes the critical need for continued research and monitoring to better understand the dynamics of microplastic pollution and its long-term impacts. By tackling the underlying causes and implementing effective management practices, we can achieve a cleaner and more sustainable future for coastal communities and marine ecosystems.
Collapse
Affiliation(s)
- Kamrunnahar Kanak
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Mahmudul Hasan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | |
Collapse
|
7
|
Ceylan L, Arı H, Erdoğan Ş. The role of habitat preference and feeding strategy on exposure to microplastic pollution in freshwater fish species. CHEMOSPHERE 2024; 370:143921. [PMID: 39653191 DOI: 10.1016/j.chemosphere.2024.143921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Microplastic (MP) pollution has been observed in a variety of ecosystems, but there is a limited number of studies on reservoir ecosystems. The aim of this study was to determine the levels of MP contamination in sediment, water and commercially important fish species (Cyprinus carpio, Perca fluviatilis, Atherina boyeri and Sander lucioperca) collected from the Yamula Reservoir in Türkiye. Water samples were collectes at five stations. Four sediment samples were collected from the lake. As sediments from the lake represent a vital element of the lake ecosystem, they function as a historical archive that reflects alterations in land use and the characteristics of the lake over time. The average amounts of MPs observed in sediment and water samples were 0.12 MP/g and 0.58 MP/m3 respectively. The digestive systems of 30 individuals of each fish species were examined. The highest amount of MP was observed for C. carpio (6 ± 5.9 MP/individual), while the lowest amount of MP was observed for A. boyeri (1.8 ± 1.7 MP/individual). MP abundance in S. lucioperca and P. fluviatilis was 2 ± 2.8 and 4.6 ± 6.3 MP per individual. The most commonly observed polymer types were polypropylene (67%), polyvinyl alcohol (13%), polyethylene resin (13%) and high-density polyethylene (7%). The pollution load indexes determined for each fish species from the highest to the lowest were as follows: 1.83 (C. carpio) 1.6 (S. lucioperca) 1.05 (P. fluviatilis) and, 1 (A. boyeri). The findings of the study indicate that all sampling stations, including both sediment and water, are contaminated with MPs. Furthermore, the results demonstrate that all examined fish species ingest MPs. Additionally, the results indicate that fish inhabiting a wide range of habitats and consuming diverse diets are more susceptible to MP contamination.
Collapse
Affiliation(s)
- Levent Ceylan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye.
| |
Collapse
|
8
|
Chen G, Zou Y, Xiong G, Wang Y, Zhao W, Xu X, Zhu X, Wu J, Song F, Yu H. Microplastic transport and ecological risk in coastal intruded aquifers based on a coupled seawater intrusion and microplastic risk assessment model. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135996. [PMID: 39383699 DOI: 10.1016/j.jhazmat.2024.135996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Seawater-groundwater interactions can enhance the migration process of microplastics to coastal aquifers, posing increased associated environmental risks. Here, we aim to analyze the relationship between seawater intrusion (SWI) and groundwater microplastic pollution in Laizhou Bay (LZB), which is a typical area of sea-land interactions. The results showed that modern seawater intrusion was the main process controlling the migration of microplastics. The detected microplastics in the study area showed a migration pattern from nearshore marine areas to groundwater aquifers along the SWI direction. In addition, the microplastics also reached the brine formed by palaeo-saltwater intrusion through hydraulic exchange between aquifers. By comparing the spatial distributions of different microplastic parameters, we found that nearshore fisheries, commercial, tourism, textile, and agricultural activities were the main sources of microplastics in groundwater in the study area. A risk assessment model of microplastics associated with SWI was further optimized in this study using a three-level classification system by assigning appropriate weights to different potential influencing factors. The results showed moderate comprehensive ecological risks associated with microplastics from seawater intrusion in the study area, with high microplastic enrichment risks. This study provides a scientific basis for future research on seawater-groundwater interactions and microplastic pollution in coastal regions.
Collapse
Affiliation(s)
- Guangquan Chen
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yinqiao Zou
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guiyao Xiong
- Key Laboratory of Coastal Science and Integrated Management, Ministry of Natural Resources, Qingdao, Shandong Province 266061, China; Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yancheng Wang
- Four Institute of Oceanography, Ministry of Natural Resources, Beihai 536009, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wenqing Zhao
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xingyong Xu
- Four Institute of Oceanography, Ministry of Natural Resources, Beihai 536009, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Song
- Information Center (Hydrology and Water Resources Monitoring and Forecasting Center), The Ministry of Water Resources of the People's Republic of China, Beijing 100053, China
| | - Hongjun Yu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
9
|
Akbulut G, Kılıç E. Determination of Seasonal Microplastic pollutıon Variation in Aquatic Environments: Case Study from İskenderun Technical University Pond. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:3. [PMID: 39633090 DOI: 10.1007/s00128-024-03979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Although microplastic (MP) pollution in aquatic ecosystems has been a critical issue, a significant portion of previous studies has been limited to marine environments. Few studies have evaluated MP abundance in inland waters, and those that exist often ignore seasonal variations. This study aimed to assess the seasonal variations in microplastic (MP) abundance in the İskenderun Technical University (İSTE) Pond. MP abundance ranged from 0.5 MPs/L to 10.8 MPs/L, with a mean of 3.7 MPs/L. Fiber-shaped, black-colored, small-sized (< 1000 μm) MPs were commonly found on the surface water. Statistical analysis confirmed significant variations in MP abundance across seasons. The abundance of MPs in the surface water correlated with the mean annual precipitation. Atmospheric deposition and storm water runoff were major contributors to microplastic pollution in the pond. PP and PET particles were identified. The findings of this study contains preliminary results that can be used in the development of future legislations and regulations.
Collapse
Affiliation(s)
- Gülşen Akbulut
- Faculty of Marine Science and Technology, İskenderun Technical University, İskenderun, Türkiye
| | - Ece Kılıç
- Faculty of Marine Science and Technology, İskenderun Technical University, İskenderun, Türkiye.
| |
Collapse
|
10
|
Serranti S, Capobianco G, Cucuzza P, Bonifazi G. Efficient microplastic identification by hyperspectral imaging: A comparative study of spatial resolutions, spectral ranges and classification models to define an optimal analytical protocol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176630. [PMID: 39362544 DOI: 10.1016/j.scitotenv.2024.176630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MPs) pollution is a global and challenging issue, necessitating the development of efficient analytical strategies for their detection to monitor their environmental impact. This study aims to define an optimal analytical protocol for characterizing MPs by hyperspectral imaging (HSI), comparing different setups based on spatial resolution, spectral range and classification models. The investigated MPs include polymers commonly found in the environment, such as polystyrene (PS), polypropylene (PP) and high-density polyethylene (HDPE), subdivided in three size classes (1000-2000 μm, 500-1000 μm, 250-500 μm). Furthermore, MP particles with diameters ranging from 30 to 250 μm were assessed to determine the limit of detection (LOD) in the different configurations. Hyperspectral images were acquired with two spatial resolutions, 150 and 30 μm/pixel, and two spectral ranges, 1000-1700 nm (NIR) and 1000-2500 nm (SWIR). Three classification models, Partial Least Square-Discriminant Analysis (PLS-DA), Error Correction Output Coding-Support Vector Machine (ECOC-SVM) and Neural Network Pattern Recognition (NNPR) were tested on the acquired images. The correctness of these models was evaluated by prediction maps and statistical parameters (Recall, Specificity and Accuracy). The results demonstrated that for MP particles larger than 250 μm, the optimal setup is a spatial resolution of 150 μm/pixel and a spectral range of 1000-1700 nm, utilizing a linear classification model like PLS-DA. This approach offers accurate predictions while being time- and cost-efficient. For MPs smaller than 250 μm, a higher spatial resolution of 30 μm/pixel with a spectral range of 1000-2500 nm and a non-linear classification method like ECOC-SVM is preferable. The LOD is 250 μm for the 150 μm/pixel resolution and ranges from 100 to 200 μm for the 30 μm/pixel resolution. These findings provide a valuable guide for selecting the appropriate HSI acquisition conditions and data processing methods to optimally characterize MPs of different sizes.
Collapse
Affiliation(s)
- Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Paola Cucuzza
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
11
|
Lu T, Yuan X, Sui C, Yang C, Li D, Liu H, Zhang G, Li G, Li S, Zhang J, Zhou L, Xu M. Exposure to Polypropylene Microplastics Causes Cardiomyocyte Apoptosis Through Oxidative Stress and Activation of the MAPK-Nrf2 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:5371-5381. [PMID: 39248137 DOI: 10.1002/tox.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Microplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP-MPs) are not well understood. This study aimed to investigate the effects of PP-MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP-MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub-chronic exposure to 5 and 50 mg/L PP-MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP-MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl-2, poly(ADP-ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved-PARP, and cleaved-caspase 3 in PP-MPs-treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP-MPs. Moreover, PP-MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP-MPs significantly reduced the expression levels of Nrf2 and p-ERK proteins associated with MAPK-Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP-MPs can induce cardiomyocyte apoptosis through MAPK-Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP-MPs on cardiotoxicity and their underlying mechanisms.
Collapse
Affiliation(s)
- Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Changbai Sui
- Department of Neurology, Yantaishan Hospital, Affiliated to Binzhou Medical University, YanTai, ShanDong, China
| | - Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guozhi Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Song Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| |
Collapse
|
12
|
Vengatesh BT, Chandrasekaran N, Mukherjee A. Effect of seasonal dynamics on microplastic pollution and its vectorization of heavy metals: An in-vitro toxicity assessment in Artemia franciscana. MARINE POLLUTION BULLETIN 2024; 209:117294. [PMID: 39566146 DOI: 10.1016/j.marpolbul.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
This study extensively investigated the abundance of microplastics in Thiruvottiyur coastal area of Chennai, India, before and after Cyclone Michaung. The results demonstrated a significant correlation between microplastic distribution and aftermath rainfall. The concentration of microplastics in sediments increased from 150 ± 48 particles kg-1 to 186 ± 21 particles kg-1 after the cyclone. In seawater, the concentration rose from 1.28 particles L-1 to 3.65 particles L-1, respectively. Heavy metals such as Al, Mg, Zn, Cr, Pb, Cu, Cd, Co, and As were detected on the surface of microplastics, demonstrating their vectorization potential for co-contaminants. After exposure, these microplastics induced oxidative stress in Artemia franciscana with increased superoxide dismutase (SOD), catalase, and reactive oxygen species (ROS). Fluctuations in weather conditions lead to heterogeneous changes in microplastic distribution, revealing the seasonal dynamics of microplastics. This study will provide background information to devise strategies for mitigating microplastic pollution in the marine environment.
Collapse
Affiliation(s)
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Tamil Nadu 632014, India
| |
Collapse
|
13
|
Dai L, Dou R, Jiang C, Xu Q, Li Y, Tian F, Li J, Li H, Guo Z, Zou X, Chang C, Guo Z. Driving factors of the distribution of microplastics in the surface soil of the typical uninhabited and habited areas in the Qinghai-Tibet plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125033. [PMID: 39341411 DOI: 10.1016/j.envpol.2024.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are widely detected in the soil of the Qinghai-Tibet Plateau with increasing economic activities. However, studies concerning the driving factors affecting the presence of these surface soil MPs for the typical regions with different geographic conditions are still lacking. Here we chose three representative regions (Ali, Yushu, and Haixi) from east to west across the plateau to investigate the distribution and further explore the contributing factors of surface soil MPs. The Spearman rank correlation, Geodetector, Random Forest Regression and Principal Component Analysis were used to unveil how the driving factors influence MPs distribution across the plateau. The results revealed that the MPs abundance, type, size, color and polymer across the Ali, Yushu, and Haixi were different. Microplastic abundance was inversely correlated with the distance from roads and residential areas, but was positively related to precipitation. Moreover, traffic elements were the primary source of MPs pollution in the Ali and Yushu but residential activities were the leading source of MPs contamination in the Haixi. Besides, backward trajectory simulations suggested that atmospheric transport may also contribute to the presence of soil MPs in the representative regions. These results further indicated that different regions may require different measures for controlling MPs pollution in surface soil. This study provides new insights into the distribution and source of MPs and further offers valuable methodology for future research aimed at uncover driving factors contributing MPs pollution across different regions with various geographical conditions.
Collapse
Affiliation(s)
- Linyue Dai
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Ruiqi Dou
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chunlong Jiang
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qinghai Xu
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yuecong Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Fang Tian
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 10089, China
| | - Jifeng Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Huiru Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zixiao Guo
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xueyong Zou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chunping Chang
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhongling Guo
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
14
|
Russo G, Scocca P, Gelosia M, Fabbrizi G, Giannoni T, Urbani S, Esposto S, Nicolini A. Poly(3-hydroxybutyrate) production for food packaging from biomass derived carbohydrates by cupriavidus necator DSM 545. Enzyme Microb Technol 2024; 181:110516. [PMID: 39303458 DOI: 10.1016/j.enzmictec.2024.110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The extensive utilization of conventional plastics has resulted in a concerning surge in waste. A potential solution lies in biodegradable polymers mostly derived from renewable sources. Cupriavidus necator DSM 545 is a microorganism capable, under stress conditions, of intracellularly accumulating Poly(3-hydroxybutyrate) (PHB), a bio-polyester. This study aimed to identify optimal conditions to maximize the intracellular accumulation of PHB and its global production using natural media obtained by processing lignocellulosic residues of cardoon, a low-cost feedstock. An intracellular PHB accumulation was observed in all of the tested media, indicating a metabolic stress induced by the lack of macronutrients. Increasing C/N ratios led to a significant decrease in cellular biomass and PHB production. Furthermore C. necator DSM 545 was incapable of consuming more than 25 g/L of supplied monosaccharides. Surprisingly, in the samples supplied with 60 % of the pentose-rich liquid fraction, complete consumption of xylose was observed. This result was also confirmed by subsequent tests using Medium 1 growth media containing xylose as the sole carbon source. Using a diluted medium with a C/N ratio of 5, a PHB production of 5.84 g/L and intracellular PHB accumulation of 77 % w/w were respectively achieved. Finally, comparative shelf-life tests conducted against conventional pre-packaging materials in PP suggested that PHB films performed similarly in preserve ready-to-eat products.
Collapse
Affiliation(s)
- Gianfrancesco Russo
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Paola Scocca
- University of Perugia, Piazza Università 1, Perugia 06123, Italy
| | - Mattia Gelosia
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy.
| | - Giacomo Fabbrizi
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Tommaso Giannoni
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| | - Stefania Urbani
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Sonia Esposto
- Department of the Science of Agriculture, Food and Environment, University of Perugia, Via S. Costanzo, Perugia 06126, Italy
| | - Andrea Nicolini
- CIRIAF, Interuniversity Research Centre on Pollution and Environment "M.Felli", University of Perugia, Via G. Duranti 67, Perugia 06125, Italy
| |
Collapse
|
15
|
Najibzadeh M, Kazemi A, Hassan HU, Esmaeilbeigi M. Hazard assessment of microplastics and heavy metals contamination in Levant frogs (Pelophylax bedriagae): A bioindicator in Western Iran. ENVIRONMENTAL RESEARCH 2024; 262:119774. [PMID: 39151558 DOI: 10.1016/j.envres.2024.119774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The increasing pollution of aquatic ecosystems caused by microplastics (MPs) and heavy metal ions worldwide threatens the life of aquatic organisms, including amphibians. In this study, we investigated the presence and accumulation of MPs and heavy metal ions in the upper gastrointestinal tract (GIT) of the Levant frog (Pelophylax bedriagae) as a bioindicator in contaminated sites of Western Iran. A total of 192 adult frogs from 16 locations in the west and northwest of Iran were collected. We measured the accumulation of MPs and heavy metal ions in the collected frogs and determined the characteristics of MPs in the samples. Our findings revealed widespread MPs and heavy metal ions contamination in the frog GIT across all sampled stations. We found 742 MP particles in the digestive system of frogs, with the highest (7.09 MP/individual) and lowest (2.37 MP/individual) number observed in stations 10 and 9, respectively. Fibers were the most common MPs and polyester (PES) (42.5%) and polyethylene terephthalate (PET) (17.2%) were found to be the most common polymers in the GIT of frogs. The average accumulation of heavy metal ions showed significant differences (P < 0.05) among 16 sampling stations, and zinc (II) and mercury (II) showed the highest and lowest concentrations in frogs. We also found moderate to strong positive correlations between the detected MPs and heavy metal ions in the frog samples across all sampling stations. Our findings confirm the contamination of frogs by MPs and heavy metal ions and the potential capacity of MPs to increase the toxicity of heavy metals in P. bedriagae as a bioindicator in contaminated sites.
Collapse
Affiliation(s)
- Masoumeh Najibzadeh
- Department of Biology, Faculty of Science, Arak University, Arak, 384817758, Iran.
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran.
| | - Habib Ul Hassan
- Department of Zoology, University of Karachi, Karachi, 75270, Pakistan.
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
16
|
Hamed M, Mazi W, Alatawi IS, Omer N, Jame R, Abdelaziz MA, Khaled MA. Characterization, surface deformation analysis and sources of small plastic fragments collected in diverse environments of Egypt. MARINE POLLUTION BULLETIN 2024; 209:117222. [PMID: 39515279 DOI: 10.1016/j.marpolbul.2024.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the sources and morphological characteristics of plastic waste across diverse Egyptian environments-marine (Mediterranean and Red Seas), freshwater (River Nile), and terrestrial (urban streets). Predominant plastics found in various marine areas include polyethylene and polypropylene, originating from both maritime and urban sources. In the Mediterranean, these plastics show higher levels of UV-induced degradation, resulting in fragments measuring 18-22 mm in size and 1-1.2 mm in thickness. The River Nile exhibits polystyrene fragments, with average sizes of 20-26 mm and thicknesses of 0.7-0.9 mm influenced by urban and agricultural runoff. Urban streets display a mix (polypropylene, polyethylene, and polystyrene), with thicker fragments (averaging 1.8 mm) due to mechanical wear and pollution. Analysis shows varying surface loss: Mediterranean (29 %), Red Sea (20-23 %), freshwater (18 %), and urban streets (up to 30 %), indicate differential degradation influenced by environmental conditions and human activities. These findings underscore the need for targeted policies to mitigate plastic pollution across Egypt's landscapes, crucial for global conservation efforts.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mostafa A Khaled
- Marine Science Department, National Authority for Remote Sensing & Space Sciences (NARSS), Cairo, Egypt
| |
Collapse
|
17
|
Zhang FY, Fang Y, Zhang CX, Zhang HY, Dong M, Zhang KW, Wu CY, Song HD, Chen G. The effects of disturbance on hypothalamus-pituitary-thyroid axis in zebrafish larvae after exposure to polyvinyl alcohol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117396. [PMID: 39603223 DOI: 10.1016/j.ecoenv.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment. In this study, we investigated the effects of PVA on developmental toxicity and thyroid endocrine disruption using a zebrafish (Danio rerio) model. We treated zebrafish embryos with 10 g/L and 5 mg/L PVA for 96 h and found that the proportion of coagulated embryos significantly increased, resulting in a remarkable decrease in hatching rate and larval survival. The body length of zebrafish larvae in the exposed group was remarkably shorter than that of the control group (Control: 3.64 ± 0.03 mm vs. 10 g/L PVA: 3.46 ± 0.03 mm; p=0.001). Compared to the control group, the levels of T3 and T4 in embryos of the exposed group were significantly lower, while thyroid stimulating hormone (TSH) levels were significantly increased. Notable up-regulation of trh, tshβ, and tshr genes, as well as down-regulation of trα , tg, ttr, dio1, and dio2 genes, were observed in embryos of the exposed group. Collectively, these findings suggest that PVA negatively influences the development and function of the thyroid gland during zebrafish embryogenesis. These effects may be partly attributed to the disruption of hypothalamic-pituitary-thyroid (HPT) axis regulation. Therefore, raising awareness about the possible thyroid toxicity associated with PVA is crucial.
Collapse
Affiliation(s)
- Fei-Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Ya Fang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Cao-Xu Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China.
| | - Hai-Yang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai-Wen Zhang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
18
|
Dewika M, Markandan K, Ruwaida JN, Sara YY, Deb A, Irfan NA, Khalid M. Integrating the quintuple helix approach into atmospheric microplastics management policies for planetary health preservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176063. [PMID: 39245389 DOI: 10.1016/j.scitotenv.2024.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Microplastic pollution has become a major global environmental issue, negatively impacting terrestrial and aquatic ecosystems as well as human health. Tackling this complex problem necessitates a multidisciplinary approach and collaboration among diverse stakeholders. Within this context, the Quintuple Helix framework, which highlights the involvement of academia, government, industry, civil society, and the environment, provides a comprehensive and inclusive perspective for formulating effective policies to manage atmospheric microplastics. This paper discusses each helix's roles, challenges, and opportunities and proposes strategies for collaboration and knowledge exchange among them. Furthermore, the paper highlights the importance of interdisciplinary research, innovative technologies, public awareness campaigns, regulatory frameworks, and corporate responsibility in achieving sustainable and resilient microplastic management policies. The Quintuple Helix approach can mitigate microplastics, safeguard ecosystems, and preserve planetary health by fostering collaboration and coordination among diverse stakeholders.
Collapse
Affiliation(s)
- M Dewika
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Kalaimani Markandan
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - J Nor Ruwaida
- Air Resources Research Laboratory, Malaysia Japan International Institute of Technology, 54100 UTM Kuala Lumpur, Malaysia
| | - Y Y Sara
- Faculty of Civil Engineering & Technology, University Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, FI-00014, Finland
| | - N Ahmad Irfan
- School of American Education, Sunway University, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
19
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
20
|
Šaravanja A, Pušić T, Volmajer Valh J, Dekanić T. Aging and Modified Washing Process for Polyester Fabrics-Environmental Impact. Polymers (Basel) 2024; 16:3238. [PMID: 39683983 DOI: 10.3390/polym16233238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Aging and washing factors have a direct influence on changing the properties of textile products, e.g., causing a release of textile fragments in the washing process. In this study, polyester fabrics were exposed to artificial aging under controlled conditions. Using a modified washing process, polyester fabrics were subjected to 10 washing cycles before and after the aging process. To monitor the influence of aging and the modified washing process on the polyester fabrics, the physical, structural and morphological properties of the fabrics and the composition of the collected wastewater were analyzed. The results indicate a slight degradation and increased defragmentation of the polyester fabric due to the processes used. Aging caused the phenomenon of "annealing", photo-oxidative degradation, and the local thickening of the individual fibers. Aging and washing processes influence the change in tensile strength properties. An analysis of zeta potential and BET results confirmed that the aging process results in surface modifications that depend on the time of exposure. The physico-chemical characterization and microscopic analysis of the wastewater revealed various fragments and short, detached fibrils. The results confirmed that both aging and washing significantly affect the properties of polyester fabrics and the composition of the wastewater resulting from the washing process. The relevance of this research to environmental matters is emphasized through the parameters chosen, which reveal the influence of aging on polyester fabric characteristics and the contamination detected in wash wastewater. In conclusion, several avenues for future research have been identified, including lowering washing temperatures, choosing more appropriate detergents, and adjusting standard washing protocols.
Collapse
Affiliation(s)
- Ana Šaravanja
- Faculty of Textile Technology, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Tanja Pušić
- Faculty of Textile Technology, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Julija Volmajer Valh
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
| | - Tihana Dekanić
- Faculty of Textile Technology, University of Zagreb, HR-10000 Zagreb, Croatia
| |
Collapse
|
21
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
22
|
Graham PM, Pattinson NB, Bakir A, McGoran AR, Nel HA. Determination of microplastics in sediment, water, and fish across the Orange-Senqu River basin. WATER RESEARCH 2024; 266:122394. [PMID: 39265218 DOI: 10.1016/j.watres.2024.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Microplastics are increasingly recognised as posing a significant environmental threat across systems. Their pervasive presence in freshwater poses a serious concern, given the heavy reliance of both humans and biodiversity on healthy, functioning freshwater ecosystems. Acknowledgment of the potential risks led the transboundary Orange-Senqu River Commission (ORASECOM) to include sampling for microlitter (primarily microplastics) in riverine sediment, surface water, and fishes, across Southern Africa as part of the third Joint Basin Survey (JBS3) in 2021. The aim was to establish a first, basin-wide estimate of microlitter contamination across compartments, setting a baseline for further monitoring. The survey showed that the abundance of microlitter in riverine sediment (0 - 4000 particles.kg-1 dry weight (dw)) and riverine water (1.00 ± 0.71 - 69.75 ± 68.55 SD items.L-1) varied considerably between sample sites, with no correlation between the two. The abundance of microlitter in fishes was low (average of 0.7 ± 0.4 items.individual-1). Course resolution analyses suggested that microlitter concentrations in riverine sediment and riverine water at each site did not correlate with land use directly upstream, though variation in microlitter abundance did isolate some hotspots of contamination. Discharge data collected from nine gauging stations near sampling sites confirmed that low flows prevailed in the system during the study, with high flows occurring approximately 5 months prior during the summer months. There is some variation in river flow across the catchment which is a likely driver of microlitter transport. This was evident in the polymer composition for sediment and water samples. Based on the average discharge at each gauging station and microlitter concentrations measured in riverine water, the estimated microlitter load ranged from ∼889 particles.s-1 to ∼17.9 million particles.s-1, with a substantial amount ending likely up in the mudbelt adjacent to the Orange River mouth. This assessment provides a first insight into the characterisation and distribution of microlitter in multiple compartments across the Orange-Senqu River basin. Overall, the findings highlight the need for continued monitoring across compartments at catchment scales to improve our understanding of microplastic pathways into and within riverine systems.
Collapse
Affiliation(s)
- P M Graham
- GroundTruth, Hilton, Kwa-Zulu Natal 3245, South Africa; University of KwaZulu-Natal, Centre for Water Resources Research, Pietermaritzburg, KwaZulu-Natal 3201, South Africa.
| | - N B Pattinson
- GroundTruth, Hilton, Kwa-Zulu Natal 3245, South Africa
| | - A Bakir
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| | - A R McGoran
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| | - H A Nel
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| |
Collapse
|
23
|
Vairamuthu M, Nidheesh PV, Tangappan Sarasvathy AS. Microplastic pollution unveiled: the consequences of small unregulated dumping in villages, spanning from soil to water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1161. [PMID: 39496973 DOI: 10.1007/s10661-024-13296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Microplastic contamination in soil ecosystems is a major environmental concern in the world. The current study aims to explore the extent of microplastic pollution in unregulated village dumpsites in India, focusing on the movement of these pollutants from soil to aquatic environments. Soil samples from eight distinct sites (A to H) in six villages were analyzed for various properties, including pH, bulk density, porosity, water retention capacity, hydraulic conductivity, and particle size distribution. The attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) method was used to identify prevalent plastic types. The research classifies microplastics by their shape and color, identifying a wide range of particles such as sheets, fibers, foams, fragments, and films. The study also examines the presence and concentration of microplastics in both soil and sediment samples. It was found that PE and PP microplastics are significantly present across different size fractions. Sample A contains a variety of items in the 1-5 mm size range, mainly PE, while the 0.3-1 mm fraction is largely PP. Samples B to H are mostly composed of PE microplastics in different forms. Sample F is unique with a mix of PE, EPS, and a higher amount of red and blue foam particles in the 0.3-1 mm fraction. Microplastics were quantified using stereomicroscopy, revealing concentrations between 80 and 840 numbers per kilogram in soil and 20 to 60 numbers per kilogram in sediments. The findings emphasize the widespread nature of microplastic pollution across ecosystems and the importance of developing effective strategies for monitoring and mitigating their impact on environmental health and human well-being.
Collapse
Affiliation(s)
- Manivannan Vairamuthu
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Department of Civil Engineering, National Institute of Technology, Calicut, Kerala, India
| | | | | |
Collapse
|
24
|
Ribeiro VV, Casado-Coy N, Salaní S, De-la-Torre GE, Sanz-Lazaro C, Castro ÍB. Microplastics in marine sponges (Porifera) along a highly urbanized estuarine gradient in Santos, Brazil. MARINE POLLUTION BULLETIN 2024; 208:117044. [PMID: 39361994 DOI: 10.1016/j.marpolbul.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MPs) are ubiquitously found in environmental matrices, particularly affecting aquatic systems. While several marine species have been widely used to assess MP contamination, sponges (Porifera) are less used. The MPs contamination was assessed in the sun sponge (Hymeniacidon heliophila) along a gradient at the Santos Estuarine System (Brazil). A 14-fold difference between concentrations (particles g-1) was verified between the most (1.40 ± 0.81) and least (0.10 ± 0.12) contaminated sites, confirming the local contamination gradient. The MPs found were primarily polypropylene, small (1.2-1000 μm), fibrous, and colored. Considering total concentrations, sizes and shapes these spatial patterns were similar those previously detected in molluscs obtained in the same sites. On the other hand, they differed in polymeric composition and color categories. Such findings give important initial insights into the potential role of marine sponges as putative sentinels of MPs contamination.
Collapse
Affiliation(s)
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Sula Salaní
- Instituto Federal de Brasília, Campus São Sebastião, Brasília, Brazil
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain; Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
25
|
Chellaiah C, Anbalagan S, Swaminathan D, Chowdhury S, Kadhila T, Shopati AK, Shangdiar S, Sharma B, Amesho KTT. Integrating deep learning techniques for effective river water quality monitoring and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122477. [PMID: 39303600 DOI: 10.1016/j.jenvman.2024.122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Effective river water quality monitoring is essential for sustainable water resource management. In this study, we established a comprehensive monitoring system along the Kaveri River, capturing real-time data on multiple critical water quality parameters. The parameters collected encompassed water contamination levels, turbidity, pH measurements, temperature, and total dissolved solids (TDS), providing a holistic view of river water quality. The monitoring system was meticulously set up with strategically positioned sensors at various river locations, ensuring data collection at regular 5-min intervals. This data was then transmitted to a cloud-based web portal, facilitating storage and analysis. To assess water quality, we introduced a novel hybrid approach, combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. The proposed CNN-LSTM model achieved a validation accuracy of 98.40%, surpassing the performance of other state-of-the-art methods. Notably, the practical application of this system includes real-time alerts, promptly notifying stakeholders when water quality parameters exceed predefined thresholds. This feature aids in making informed decisions in water resource management. The study's contributions lie in its effective river water quality monitoring system, which encompassing various parameters, and its potential to positively impact environmental conservation efforts by providing a valuable tool for informed decision-making and timely interventions.
Collapse
Affiliation(s)
- Chellaswamy Chellaiah
- Department of Electronics and Communication Engineering, SRM TRP Engineering College, Tiruchirappalli, 621105, India
| | - Sriram Anbalagan
- Department of Electronics and Communication Engineering, SRM TRP Engineering College, Tiruchirappalli, 621105, India
| | | | - Subrata Chowdhury
- Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies[Autonomous], Chittoor, Andra Pradesh, 517127, India
| | - Timoteus Kadhila
- School of Education, Department of Higher Education and Lifelong Learning, University of Namibia, Private Bag 13301, Windhoek, Namibia
| | - Abner Kukeyinge Shopati
- Namibia Business School(NBS), Faculty of Commerce, Management and Law, University of Namibia, Private Bag 13301, Main Campus, Windhoek, Namibia
| | - Sumarlin Shangdiar
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Bhisham Sharma
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| |
Collapse
|
26
|
Potočić Matković VM, Salopek Čubrić I, Krstović K. The Impact of Chlorinated Water and Sun Exposure on the Durability and Performance of Swimwear Materials. Polymers (Basel) 2024; 16:3050. [PMID: 39518258 PMCID: PMC11548456 DOI: 10.3390/polym16213050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the factors that affect how materials age is essential for creating a durable product with long-lasting properties. It is also important to prioritize defining aging parameters that reflect the real-world conditions the materials will encounter. For this study, a range of swimwear materials were selected consisting of a blend of polymer (polyamide/polyester) and elastane in varying ratios. In order to simulate aging conditions, materials were immersed in chlorinated outdoor pool water during the summer season, either in shade or the sun, for 200 and 300 h. The materials were tested for mass per unit area, thickness, tensile properties, and moisture management. A slight mass per unit area increase was observed, rising from 1.0% after 200 h of chlorine and sunlight exposure to 3.7% after 300 h. Thickness increased by 1.7% after 200 h and 3.2% after 300 h of chlorine exposure, with no significant effect of sunlight. Breaking force dropped by 12.4% after 200 h in chlorine and 8.2% in chlorine and sunlight, becoming more pronounced after 300 h (65.7% in chlorine and 65.1% in chlorine and sunlight). The overall moisture management capability declined from 0.4888 to 0.3457 after 200 h in chlorine and 0.3393 with sunlight, dropping further after 300 h to 0.3838 and 0.3253, respectively.
Collapse
Affiliation(s)
- Vesna Marija Potočić Matković
- Department of Textile Design and Management, University of Zagreb Faculty of Textile Technology, 10000 Zagreb, Croatia; (I.S.Č.); (K.K.)
| | | | | |
Collapse
|
27
|
Chen J, Yan L, Zhang Y, Liu X, Wei Y, Zhao Y, Li K, Shi Y, Liu H, Lai W, Tian L, Lin B. Maternal exposure to nanopolystyrene induces neurotoxicity in offspring through P53-mediated ferritinophagy and ferroptosis in the rat hippocampus. J Nanobiotechnology 2024; 22:651. [PMID: 39438901 PMCID: PMC11520165 DOI: 10.1186/s12951-024-02911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
There are increasing concerns regarding the rapid expansion of polystyrene nanoplastics (PS-NPs), which could impact human health. Previous studies have shown that nanoplastics can be transferred from mothers to offspring through the placenta and breast milk, resulting in cognitive deficits in offspring. However, the neurotoxic effects of maternal exposure on offspring and its mechanisms remain unclear. In this study, PS-NPs (50 nm) were gavaged to female rats throughout gestation and lactation to establish an offspring exposure model to study the neurotoxicity and behavioral changes caused by PS-NPs on offspring. Neonatal rat hippocampal neuronal cells were used to investigate the pathways through which NPs induce neurodevelopmental toxicity in offspring rats, using iron inhibitors, autophagy inhibitors, reactive oxygen species (ROS) scroungers, P53 inhibitors, and NCOA4 inhibitors. We found that low PS-NPs dosages can cause ferroptosis in the hippocampus of the offspring, resulting in a decline in the cognitive, learning, and memory abilities of the offspring. PS-NPs induced NOCA4-mediated ferritinophagy and promoted ferroptosis by inciting ROS production to activate P53-mediated ferritinophagy. Furthermore, the levels of the antioxidant factors glutathione peroxidase 4 (GPX4) and glutathione (GSH), responsible for ferroptosis, were reduced. In summary, this study revealed that consumption of PS-NPs during gestation and lactation can cause ferroptosis and damage the hippocampus of offspring. Our results can serve as a basis for further research into the neurodevelopmental effects of nanoplastics in offspring.
Collapse
Affiliation(s)
- Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Licheng Yan
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Yaping Zhang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
- School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
28
|
Ndayishimiye JC, Nyirajana J, Nyirabuhoro P, Nacumuyiki PI, Coker AO, Akintayo FO, Mazei Y, Saldaev D, Nkinahamira F, Habumugisha T, Murwanashyaka T, Hishamunda V. Determinants of environmental changes in human-modified ecosystems: Effects of plastics on moisture gradients, nutrients, and clay properties. Heliyon 2024; 10:e38738. [PMID: 39430505 PMCID: PMC11490777 DOI: 10.1016/j.heliyon.2024.e38738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/07/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Plastic pollution poses a significant threat to ecosystem health worldwide. This study examines the determinants of environmental changes in human-modified ecosystems through a quantitative-qualitative system dynamics modeling approach: field experiments conducted on a 310 m2 unsaturated clay-rich bed and a 2.5 m2 clay-rich shore of a plastic-impacted pond in Shenzhen, China, and a 1.17 ha plastic-impacted clay pit in Musanze, Rwanda; laboratory experiments involving Modified Proctor (MP) and California Bearing Ratio (CBR) tests on natural clay reinforced with polyethylene terephthalate (PET) microplastics, with diameters ranging from 0.25 to 5 mm and at concentrations of 1.25 %, 2.5 %, 3.75 %, 5 %, and 10 % by weight of clay; and plastic dynamic flows analyzed by modeling the life cycle of PET. Field experiments showed that mulch type and thickness were critical factors influencing crack distribution in a plastic-impacted pond bed. Specifically, cracks were dominant in areas with pronounced desiccation and lacking filamentous green algae and PET-dominated plastic waste. Along the 2.5 m moisture gradient in a plastic-impacted pond bed, temperature and moisture significantly influenced nutrients, particularly in pronounced desiccation zones. Laboratory experiments showed that microplastics altered the structural properties of natural clay, decreasing moisture content while increasing dry density and load-bearing capacity. The plastic life cycle underscored the roles of industrial and consumer practices, environmental conditions, and waste management and recycling inefficiencies in driving environmental changes in human-modified ecosystems. The findings underscore the need for effective plastic waste management and recycling to mitigate the ecological impacts of plastic pollution in ecosystems.
Collapse
Affiliation(s)
- Jean Claude Ndayishimiye
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- The Center for Earth and Natural Resource Sciences, Kigali, P.O. Box 4285, Rwanda
| | - Jacqueline Nyirajana
- Department of Civil Engineering, Faculty of Engineering and Technology, Institute of Applied Sciences (INES Ruhengeri), Ruhengeri, P.O. Box 155, Rwanda
- Department of Civil Engineering, University of Ibadan, Ibadan, Nigeria
| | - Pascaline Nyirabuhoro
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- The Center for Earth and Natural Resource Sciences, Kigali, P.O. Box 4285, Rwanda
| | | | | | | | - Yuri Mazei
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Damir Saldaev
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | | | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | | |
Collapse
|
29
|
Iurk VB, Ingles M, Correa GS, Silva CR, Staichak G, Pileggi SAV, Christo SW, Domit C, Pileggi M. The potential influence of microplastics on the microbiome and disease susceptibility in sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174298. [PMID: 38944299 DOI: 10.1016/j.scitotenv.2024.174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.
Collapse
Affiliation(s)
- Vitória Bonfim Iurk
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil; Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Mariana Ingles
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil
| | - Giovana Sequinel Correa
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Caroline Rosa Silva
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Gabriel Staichak
- Instituto de Biociências da Universidade Federal de Mato Grosso, Universidade Federal do Mato Grosso, MT 79070-900, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| | - Susete Wambier Christo
- Laboratório de Zoologia, Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil.
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| |
Collapse
|
30
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
31
|
Kang X, Zhou Y, Liu Q, Liu M, Chen J, Zhang Y, Wei J, Wang Y. Characterization and Expression of the Cytochrome P450 Genes in Daphnia magna Exposed to Cerium Oxide Nanoparticles. Int J Mol Sci 2024; 25:10812. [PMID: 39409143 PMCID: PMC11476439 DOI: 10.3390/ijms251910812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
As cerium oxide nanoparticles (nCeO2) continue to infiltrate aquatic environments, the resulting health risks to exposed aquatic organisms are becoming evident. Cytochrome P450 (CYP) enzymes are integral to the detoxification processes in these species. Herein, we conducted a genomic analysis of CYPs in Daphnia magna, encompassing phylogenetic relationships, gene structure, and chromosomal localization. We identified twenty-six CYPs in D. magna, categorizing them into four clans and seven families, distributed across six chromosomes and one unanchored scaffold. The encoded CYP proteins varied in length from 99 to 585 amino acids, with molecular weights ranging from 11.6 kDa to 66.4 kDa. A quantitative real-time PCR analysis demonstrated a significant upregulation of CYP4C1.4, CYP4C1.5, CYP4C1.6, CYP4c3.3, and CYP4c3.6 in D. magna exposed to 150 mg/L nCeO2 for 24 h. The transcript levels of CYP4C1.3, CYP18a1, CYP4C1.1, and CYP4c3.9 were notably downregulated in D. magna exposed to 10 mg/L nCeO2 for 48 h. A further transcriptomic analysis identified differential expression patterns of eight CYP genes, including CYP4C1.3, in response to nCeO2 exposure. The differential regulation observed across most of the 26 CYPs highlights their potential role in xenobiotic detoxification in D. magna, thereby enhancing our understanding of CYP-mediated toxicological responses to metal nanoparticles in aquatic invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Wei
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian 116021, China; (X.K.); (Y.Z.); (Q.L.); (M.L.); (J.C.); (Y.Z.)
| | - Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian 116021, China; (X.K.); (Y.Z.); (Q.L.); (M.L.); (J.C.); (Y.Z.)
| |
Collapse
|
32
|
Motivarash YB, Bhatt AJ, Jaiswar RR, Makrani RA, Dabhi RM. Seasonal variability of microplastic contamination in marine fishes of the state of Gujarat, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59852-59865. [PMID: 39361207 DOI: 10.1007/s11356-024-35208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Seasonal variation in microplastics abundance, occurrence, and distribution in pelagic and demersal fishes was observed in this study during December 2021 to November 2022. One hundred percent presence of microplastic in inedible (gut and gills) tissue, while 82% and 54% in edible tissue (muscle) of pelagic and demersal fishes respectively were seen. Post-monsoon period showed high prevalence of microplastics followed by monsoon and the least during pre-monsoon in both pelagic and demersal fishes. In pelagic fishes, the edible tissue had microplastics abundance of 1.56 to 13.34 numbers per 10 g of tissue whereas inedible tissue had 3.36 to 16.67 numbers per 10 g of tissue. In demersal fishes, the edible tissue had microplastics abundance of 1.04 to 5.26 numbers per 10 g of tissue while it was 2.67 to 8.34 numbers per 10 g of inedible tissue. There was significant variation in abundance of microplastic in edible and inedible tissue of all the fishes (Mann-Whitney test, p < 0.05). The most dominant microplastics size was 0.005-0.05 mm followed by 0.05-0.5 mm and the least of greater than 0.5 mm in pelagic and demersal fishes respectively. Taking microplastic shape into consideration, the most dominant was fiber followed by fragment and the film in inedible tissue of all the fishes. The edible tissue of all the fishes had only fiber in them (100% occurrence). The dominance of blue color microplastics was observed followed by red, green, yellow, and orange at least in edible as well as inedible tissues of the fishes. More than 99% microplastics polymer observed in this study include polyethylene (PE), polypropylene (PP), and polystyrene (PS); only less than 1% was unidentified. This is the first study done on seasonal variation of microplastic in the marine fish population of Gujarat waters, Northeast Arabian Sea. The study highlights the nature of micro-pollutant in marine environments, emphasizing the need for comprehensive monitoring and management strategies.
Collapse
Affiliation(s)
- Yagnesh B Motivarash
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India.
| | - Ashishkumar J Bhatt
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rahul R Jaiswar
- Department of Fish Pharmacology and Toxicology, Institute of Fisheries Post Graduate Studies, TNJFU, Chennai, India
| | - Rehanavaz A Makrani
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rajkumar M Dabhi
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| |
Collapse
|
33
|
Lozano-Hernández EA, Ramírez-Álvarez N, Rios Mendoza LM, Macías-Zamora JV, Mejía-Trejo A, Beas-Luna R, Hernández-Guzmán FA. Kelp forest food webs as hot spots for the accumulation of microplastic and polybrominated diphenyl ether pollutants. ENVIRONMENTAL RESEARCH 2024; 257:119299. [PMID: 38824984 DOI: 10.1016/j.envres.2024.119299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (μ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.
Collapse
Affiliation(s)
- Eduardo Antonio Lozano-Hernández
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Nancy Ramírez-Álvarez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | | | - José Vinicio Macías-Zamora
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Adán Mejía-Trejo
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Rodrigo Beas-Luna
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Félix Augusto Hernández-Guzmán
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| |
Collapse
|
34
|
Yahaya T, Adewale MK, Fagbayi T, Salisu TF, Umar J, Nasir J. Concentration, characterization, and risk assessment of microplastics in two main rivers in Birnin Kebbi, Nigeria. ENVIRONMENTAL HEALTH ENGINEERING AND MANAGEMENT 2024; 11:315-325. [DOI: 10.34172/ehem.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/13/2024] [Indexed: 01/11/2025]
Abstract
Background: Dukku and Kalgo rivers in Kebbi, Nigeria, provide essential ecosystem services such as drinking and domestic water, fishing, and farming. However, the safety of these rivers in terms of microplastic pollution has not been investigated. This study aimed to characterize and determine the concentration and associated risks of microplastics in both rivers. Methods: Microplastics were extracted from water samples through filtration and analyzed using spectroscopy and microscopy. Results: Significant concentrations of microplastics were detected in both rivers. Dukku River samples showed concentrations ranging from 125.00 to 160.30 particles/liter, while Kalgo River ranged from 119.30 to 134.70 particles/liter. Both rivers predominantly contained microplastic fibers and fragments, with fibers comprising the highest percentages (61% in the Dukku River and 56% in the Kalgo River). Microplastics in Kalgo River were predominantly sized between 0 and 100 µm, whereas in Dukku River, sizes ranged from 500 to 1000 µm. Polyamide was the dominant polymer, constituting 50% in the Dukku River and 42.50% in the Kalgo River, followed by polyethylene (34% in the Kalgo River and 25.60% in Dukku River), and polyvinyl alcohol (24.40% in Dukku River and 23.50% in Kalgo River). The predominant risk level posed by these polymers was level III (moderate risk), although polyamide posed a level IV risk (high risk). The pollution load index (PLI) for both rivers exceeded one, indicating a high risk. Conclusion: Microplastic pollution in these rivers poses ecological and health risks. Identifying and mitigating sources of microplastic entry into the rivers is crucial to reducing exposure levels.
Collapse
Affiliation(s)
- Tajudeen Yahaya
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Mutiyat Kehinde Adewale
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Tawakalt Fagbayi
- Department of Cell Biology and Genetics, University of Lagos, Akoka, Nigeria
| | - Titilola Fausat Salisu
- Department of Zoology and Environmental Biology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Ja’afar Umar
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Junaidu Nasir
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| |
Collapse
|
35
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
36
|
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gonzalez P, Daffe G, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity of environmental and polystyrene plastic particles on the bivalve Corbicula fluminea: focus on the molecular responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:709-721. [PMID: 38990495 DOI: 10.1007/s10646-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Among aquatic organisms, filter feeders are particularly exposed to the ingestion of microplastics (MPs) and nanoplastics (NPs). The present study investigates the effect of environmental microplastics (ENV MPs) and nanoplastics (ENV NPs) generated from macro-sized plastic debris collected in the Garonne River (France), and polystyrene NPs (PS NPs) on the freshwater bivalve Corbicula fluminea. Organisms were exposed to plastic particles at three concentrations: 0.008, 10, and 100 μg L-1 for 21 days. Gene expression measurements were conducted in gills and visceral mass at 7 and 21 days to assess the effects of plastic particles on different functions. Our results revealed: (i) an up-regulation of genes, mainly involved in endocytosis, oxidative stress, immunity, apoptosis, and neurotoxicity, at 7 days of exposure for almost all environmental plastic particles and at 21 days of exposure for PS NPs in the gills, (ii) PS NPs at the three concentrations tested and ENV MPs at 0.008 μg L-1 induced strong down-regulation of genes involved in detoxication, oxidative stress, immunity, apoptosis, and neurotoxicity at 7 days of exposure in the visceral mass whereas ENV MPs at 10 and 100 μg L-1 and all ENV NPs induced less pronounced effects, (iii) overall, PS NPs and ENV MPs 0.008 μg L-1 did not trigger the same effects as ENV MPs 10 and 100 μg L-1 and all ENV NPs, either in the gills or the visceral mass at 7 and 21 days of exposure. This study highlighted the need to use MPs and NPs sampled in the environment for future studies as their properties induce different effects at the molecular level to living organisms.
Collapse
Affiliation(s)
- Oïhana Latchere
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France.
| | - Coraline Roman
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Isabelle Métais
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | | | - Mohammed Mouloud
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Didier Georges
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| | - Agnès Feurtet-Mazel
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Patrice Gonzalez
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Guillemine Daffe
- Observatoire Aquitain des Sciences de l'Univers, UAR 2567 POREA Université de Bordeaux, Pessac, France
| | - Julien Gigault
- Département de Biologie, Pavillon Alexandre-Vachon, Université Laval, Québec, QC, Canada
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes-UMR 6118, Rennes, France
- Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, France
| | - Magalie Baudrimont
- UMR EPOC 5805, Equipe Ecotoxicologie Aquatique, Station Marine d'Arcachon, Université de Bordeaux, Arcachon, France
| | - Amélie Châtel
- Université Catholique de l'Ouest, Laboratoire BIOSSE, Angers, France
| |
Collapse
|
37
|
Priyadharshini S, Jeyavani J, Al-Ghanim KA, Govindarajan M, Karthikeyan S, Vaseeharan B. Eco-toxicity assessment of polypropylene microplastics in juvenile zebrafish (Danio rerio). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104415. [PMID: 39173506 DOI: 10.1016/j.jconhyd.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 μm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.
Collapse
Affiliation(s)
- Suresh Priyadharshini
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology, Parasitology, Tropical Medicine and Ecotoxicology, Department of Zoology, Annamalai University, Annamalainagar 608 002, TamilNadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, TamilNadu, India
| | - Sivashanmugam Karthikeyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tami Nadu 632,014, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
38
|
de Moraes NG, Olivatto GP, Lourenço FMDO, Lourenço ALA, Garcia GM, Pimpinato RF, Tornisielo VL. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon 2024; 10:e36047. [PMID: 39224265 PMCID: PMC11367139 DOI: 10.1016/j.heliyon.2024.e36047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Microplastics (MPs) are particles between 1 μm and 5 mm in size, originating mainly from poor solid waste and effluent management, that can reach water bodies from various sources. In freshwater environments, the occurrence, distribution, and characterization of this new class of pollutants are still little explored, especially in Brazil. The aim of this study was to assess the occurrence of MPs, as well as the presence and concentration of polychlorinated biphenyls (PCBs) sorbed to these particles in the surface waters of the Tietê River - SP. Surface water samples were collected in duplicate during the dry and wet seasons. The identification and characterization of the MPs was carried out through visual inspection and the chemical identity of the particles was verified using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). For the analysis of PCBs adsorbed to the MPs, the sample extracts were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The MPs were found in concentrations ranging from 6.67 to 1530 particles m-3, with a predominance of the polymers polyethylene (PE, with 58.17 %) and polypropylene (PP, with 23.53 %). The main morphological categories identified were fragments (56.63 %), fibers (28.42 %), and transparent films (13.06 %). Higher abundances of PCBs were observed in the lower size range, between 0.106 and 0.35 mm. The total concentrations of PCBs in MPs ranged from 20.53 to 133.12 ng g-1. The results obtained here are relevant for understanding the dynamics and level of contamination of MPs and organic pollutants sorbed to these particles in the Tietê River, as well as helping with mitigation measures for the restoration and preservation of this ecosystem.
Collapse
Affiliation(s)
- Nicoli Gomes de Moraes
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Glaucia Peregrina Olivatto
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Felipe Machado de Oliveira Lourenço
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | | | - Gustavo Munhoz Garcia
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Rodrigo Floriano Pimpinato
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| | - Valdemar Luiz Tornisielo
- University of São Paulo (USP), Center for Nuclear Energy in Agriculture and the Environment (CENA), Ecotoxicology Laboratory, CEP, 13400-970, Piracicaba, SP, Brazil
| |
Collapse
|
39
|
Nabi D, Beck AJ, Achterberg EP. Assessing Aquatic Baseline Toxicity of Plastic-Associated Chemicals: Development and Validation of the Target Plastic Model. J Chem Inf Model 2024; 64:6492-6505. [PMID: 39119989 DOI: 10.1021/acs.jcim.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We developed a Target Plastic Model (TPM) to estimate the critical plastic burden of organic toxicants in five types of plastics, namely, polydimethylsiloxane (PDMS), polyoxymethylene (POM), polyacrylate (PA), low-density polyethylene (LDPE), and polyurethane ester (PU), following the Target Lipid Model (TLM) framework. By substituting the lipid-water partition coefficient in the TLM with plastic-water partition coefficients to create TPM, we demonstrated that the biomimetic nature of these plastic phases allows for the calculation of critical plastic burdens of toxicants, similar to the notion of critical lipid burdens in TLM. Following this approach, the critical plastic burdens of baseline (n = 115), less-inert (n = 73), and reactive (n = 75) toxicants ranged from 0.17 to 51.33, 0.04 to 26.62, and 1.00 × 10-6 to 6.78 × 10-4 mmol/kg of plastic, respectively. Our study showed that PDMS, PA, POM, PE, and PU are similar to biomembranes in mimicking the passive exchange of chemicals with the water phase. Using the TPM, median lethal concentration (LC50) values for fish exposed to baseline toxicants were predicted, and the results agreed with experimental values, with RMSE ranging from 0.311 to 0.538 log unit. Similarly, for the same data set of baseline toxicants, other widely used models, including the TLM (RMSE: 0.32-0.34), ECOSAR (RMSE: 0.35), and the Abraham Solvation Model (ASM; RMSE: 0.31), demonstrated comparable agreement between experimental and predicted values. For less inert chemicals, predictions were within a factor of 5 of experimental values. Comparatively, ASM and ECOSAR showed predictions within a factor of 2 and 3, respectively. The TLM based on phospholipid had predictions within a factor of 3 and octanol within a factor of 4, indicating that the TPM's performance for less inert chemicals is comparable to these established models. Unlike these methods, the TPM requires only the knowledge of plastic bound concentration for a given plastic phase to calculate baseline toxic units, bypassing the need for extensive LC50 and plastic-water partition coefficient data, which are often limited for emerging chemicals. Taken together, the TPM can provide valuable insights into the toxicities of chemicals associated with environmental plastic phases, assisting in selecting the best polymeric phase for passive sampling and designing better passive dosing techniques for toxicity experiments.
Collapse
Affiliation(s)
- Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel Wischhofstr. 1-3, 24148 Kiel, Germany
- Institute of Environmental Science and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel Wischhofstr. 1-3, 24148 Kiel, Germany
| |
Collapse
|
40
|
He W, Liu R, Fei F, Xi S, Du Z, Luan Z, Sun C, Zhang X. In situ real-time pathway to study the polyethylene long-term degradation process by a marine fungus through confocal Raman quantitative imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173582. [PMID: 38810744 DOI: 10.1016/j.scitotenv.2024.173582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/11/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Since plastic waste has become a worldwide pollution problem, studying the ability of marine microorganisms to degrade plastic waste is important. However, conventional methods are unable to in situ real-time study the ability of microorganisms to biodegrade plastics. In recent years, Raman spectroscopy has been widely used in the characterization of plastics as well as in the study of biological metabolism due to its low cost, rapidity, label-free, non-destructive, and water-independent features, which provides us with new ideas to address the above limitations. Here, we have established a method to study the degradation ability of microorganisms on plastics using confocal Raman imaging. Alternaria alternata FB1, a recently reported polyethylene (PE) degrading marine fungus, is used as a model to perform a long-term (up to 274 days) in situ real-time nondestructive inspection of its degradation process. We can prove the degradation of PE plastics from the following two aspects, visualization and analysis of the degradation process based on depth imaging and quantification of the degradation rate by crystallinity calculations. The findings also reveal unprecedented degradation details. The method is important for realizing high-throughput screening of microorganisms with potential to degrade plastics and studying the degradation process of plastics in the future.
Collapse
Affiliation(s)
- Wanying He
- Laoshan Laboratory, Qingdao, China; CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Fan Fei
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shichuan Xi
- Laoshan Laboratory, Qingdao, China; CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zengfeng Du
- Laoshan Laboratory, Qingdao, China; CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhendong Luan
- Laoshan Laboratory, Qingdao, China; CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Xin Zhang
- Laoshan Laboratory, Qingdao, China; CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Apicella A, Malafeev KV, Scarfato P, Incarnato L. Generation of Microplastics from Biodegradable Packaging Films Based on PLA, PBS and Their Blend in Freshwater and Seawater. Polymers (Basel) 2024; 16:2268. [PMID: 39204488 PMCID: PMC11360359 DOI: 10.3390/polym16162268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Biodegradable polymers and their blends have been advised as an eco-sustainable solution; however, the generation of microplastics (MPs) from their degradation in aquatic environments is still not fully grasped. In this study, we investigated the formation of bio-microplastics (BMPs) and the changes in the physicochemical properties of blown packaging films based on polylactic acid (PLA), polybutylene succinate (PBS) and a PBS/PLA 70/30 wt% blend after degradation in different aquatic media. The tests were carried out in two temperature/light conditions to simulate degradation in either warm water, under sunlight exposure (named Warm and Light-W&L), and cold deep water (named Cold and Dark-C&D). The pH changes in the aqueous environments were evaluated, while the formed BMPs were analyzed for their size and shape alongside with variations in polymer crystallinity, surface and mechanical properties. In W&L conditions, for all the films, the hydrolytic degradation led to the reorganization of the polymer crystalline phases, strong embrittlement and an increase in hydrophilicity. The PBS/PLA 70/30 blend exhibited increased resistance to degradation with respect to the neat PLA and PBS films. In C&D conditions, no microparticles were observed up to 12 weeks of degradation.
Collapse
Affiliation(s)
| | | | - Paola Scarfato
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy; (A.A.); (K.V.M.); (L.I.)
| | | |
Collapse
|
42
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
43
|
Harikrishnan T, Paramasivam P, Sankar A, Sakthivel M, Sanniyasi E, Raman T, Thangavelu M, Singaram G, Muthusamy G. Weathered polyethylene microplastics induced immunomodulation in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104478. [PMID: 38801845 DOI: 10.1016/j.etap.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Microplastics are pollutants of emerging concern and the aquatic biota consumes microplastics (MPs), which has a range of toxicological and environmental effects on aquatic organisms that are not the intended targets. The current study looked into how weathered polyethylene (wPE) MPs affected Danio albolineatus immunological and haematological markers. In this experiment, fish of both sexes were placed in control and exposure groups, and they were exposed for 40 d at the sublethal level (1 μg L-1) of fragmented wPE, which contained 1074 ± 52 MPs per litre. Similarly, fish exposed to wPE MPs showed significant modifications in lysozyme, antimicrobial, and antiprotease activity, as well as differential counts. Results of the present study show that the male fish were more susceptible than female fish after 40 d of chronic exposure. Further studies are needed to ascertain how the innate and humoral immune systems of the fish respond to MPs exposure.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Pandi Paramasivam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Anusuya Sankar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Madhavan Sakthivel
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Chennai 600 035, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech & Dept Polymer Nano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu 600106, India; INTI International University, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
44
|
Gan M, Zhang Y, Shi P, Cui L, Zhang C, Guo J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. MARINE POLLUTION BULLETIN 2024; 205:116656. [PMID: 38950516 DOI: 10.1016/j.marpolbul.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chengqian Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
45
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
46
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
47
|
Chen CF, Albarico FPJB, Wang MH, Lim YC, Chen CW, Dong CD. Potential risks of accumulated microplastics in shells and soft tissues of cultured hard clams (Meretrix taiwanica) and associated metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135088. [PMID: 39018596 DOI: 10.1016/j.jhazmat.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) pose risks to both aquatic ecosystems and human health. This study investigated MPs in the shells and soft tissues of hard clams (Meretrix taiwanica) cultured in the inland waters of Taiwan. This study further developed two novel risk indices for assessing the potential ecological and health consequences of MPs. Moreover, the metal concentrations in the clam's soft tissues and the associated consumption health risks were investigated. Clamshells contained significant amounts of MPs with an average abundance of 16.6 ± 6.9 MPs/ind., which was higher than in the soft tissues (2.7 ± 1.7 MPs/ind.). The distribution and sizes of MPs in shells and soft tissues were similar, primarily small-sized (<2 mm, >99 %), blue (>65 %), and fibrous (>99 %). Dominant MP polymer types included rayon (83.5 %), polyethylene terephthalate (11.8 %), and polyacrylonitrile (3.6 %). The proposed MP potential ecological risk index indicates a higher potential ecological MP risk in soft tissues (302-423) than in shells (270-278) of the clams. The MP potential hazard risk index showed that the risk of exposure to MP through shellfish consumption decreased with age. The total hazard index (THI) value suggested negligible health hazards from metal exposure through shellfish consumption. Moreover, there was no significant correlation between MPs and metal concentrations in soft tissues, suggesting that metals bound to MPs contribute minimally to the total accumulated metals in clam's soft tissues. This study confirms the presence of MPs in clam shells and provides a novel tool to assess the potential ecological and health risks associated with MPs in shellfish.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Center for the Study of Sediments, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
48
|
Das A, Terry LR, Sanders S, Yang L, Guo H. Confocal Surface-Enhanced Raman Imaging of the Intestinal Barrier Crossing Behavior of Model Nanoplastics in Daphnia Magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11615-11624. [PMID: 38887928 DOI: 10.1021/acs.est.3c10549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nanoplastics (nP) pose hazards to aquatic animals once they are ingested. Significant knowledge gaps exist regarding the nP translocation across the animal intestine, which is the first barrier between the ingested nP and the animal body. We examined the intestinal barrier crossing behavior of nP in an aquatic animal model (Daphnia magna) and determined the translocation mechanism with the help of model "core-shell" polystyrene nanoplastics (nPS) and confocal surface-enhanced Raman spectroscopy (SERS). The Raman reporter (4-mercaptobenzoic acid)-tagged gold "core" of the model nPS enables sensitive and reliable particle imaging by confocal SERS. This method detected SERS signals of model nPS concentration as low as 4.1 × 109 particles/L (equivalent to 0.27 μg/L PS "shell" concentration). The translocation was observed with the help of multilayer stacked Raman maps of SERS signals of the model nPS. With a higher concentration or longer exposure time of the model nPS, uptake and translocation of the plastic particles increased. In addition, we demonstrated that clathrin-dependent endocytosis and macropinocytosis were two major mechanisms underlying the translocation. This study contributes to a mechanistic understanding of nP translocation by using the pioneering model nPS and an analytical toolkit, which undergird further investigations into nP behavior and health effects in aquatic species.
Collapse
Affiliation(s)
- Anupam Das
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Department of Chemistry and Biochemistry, Hampton University, Hampton, Virginia 23669, United States
| | - Lynn R Terry
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Sage Sanders
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Leyao Yang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Huiyuan Guo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
49
|
Sabra MS, Sayed AEDH, Idriss SKA, Soliman HAM. Single and combined toxicity of tadalafil (Cilais) and microplastic in Tilapia fish (Oreochromis niloticus). Sci Rep 2024; 14:14576. [PMID: 38914580 PMCID: PMC11196265 DOI: 10.1038/s41598-024-64282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
The joint impact of tadalafil (Cilais) as a pharmaceutical residue and microplastics on fish is not well comprehended. The current study examined haematological, biochemical, and antioxidant parameters, along with immunohistochemical and histological indications in tilapia (Oreochromis niloticus) after being exposed to tadalafil, polyethylene microplastics (PE-MPs), and their mixtures for 15 days. The fish were distributed into 1st group control group (The fish was maintained in untreated water without any supplements); 2nd group exposed to 10 mg/L PE-MPs;3rd group exposed to 20 mg/l tadalafil (Cilais); 4th group exposed to 20 mg/l tadalafil (Cilais) + 10 mg/LPE-MPs (in triplicate). The levels of creatinine, uric acid, glucose, AST, ALT, and albumin in fish treated with tadalafil alone or in combination with PE-MPs were significantly higher than those in the control group. Fish exposed to PE-MPs, tadalafil, and tadalafil plus PE-MPs showed significantly lower levels of RBCs, Hb, Ht, neutrophils, and lymphocytes compared to the control group. Serum levels of total antioxidant capacity and reduced glutathione (GSH) were notably lowered in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations in comparison to the control group. Malondialdehyde (MDA) serum levels were notably elevated in fish groups subjected to PE-MPs, tadalafil, and tadalafil + PE-MPs combinations compared to the control group. The most severe impact was observed in the tadalafil + PE-MPs combination group. Interleukin-6 (IL-6) levels were significantly increased in liver tissues following exposure to both tadalafil and microplastics compared to tissues exposed to only one substance or the control group. Changes in the gills, liver, and renal tissues were seen following exposure to PE-MPs, tadalafil, and tadalafil + PE-MPs combination in comparison to the control group of fish. Ultimately, the mixture of tadalafil and PE-MPs resulted in the most detrimental outcomes. Tadalafil and PE-MPs exhibited showed greater adverse effects, likely due to tadalafil being absorbed onto PE-MPs.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Shaimaa K A Idriss
- Department of Fish Disease and Management, Faculty of Veterinary of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| |
Collapse
|
50
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|