1
|
Zhang Y, Deng J, Chen T, Liu S, Tang Y, Zhao JR, Guo Z, Zhang W, Chen T. Formononetin alleviates no reflow after myocardial ischemia-reperfusion via modulation of gut microbiota to inhibit inflammation. Life Sci 2024; 358:123110. [PMID: 39374772 DOI: 10.1016/j.lfs.2024.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Gut microflora plays an important role in relieving myocardial no-reflow (NR), formononetin (FMN) has potential effects on NR, however, the relationship between this effect and gut microflora remains unclear. This study aimed to evaluate the role of FMN in alleviating NR by regulating gut microflora. We used a myocardial NR rat model to confirm the effect and mechanism of action of FMN in alleviating NR. The rats were randomly divided into sham operation group (Sham), NR group, FMN group and sodium nitroprusside (SNP) group. Thioflavin S staining, Hematoxylin Eosin (HE), myocardial enzyme activity, ultrasonic cardiogram and RT-PCR detection showed that FMN could effectively reduce inflammatory cell infiltration, NR and ischemic area, improve cardiac structure and function and reduce TNF-α and NF-κB gene expression in NR rats. The results of 16S rRNA high-throughput sequencing showed that FMN could increase the abundance of anti-inflammatory bacteria such as Ligilactobacillus, Coprococcus, Blautia and Muribaculaceae and decrease the abundance of pro-inflammatory bacteria such as Treponema in Spirochaetota and Campylobacterota. The correlation between the differential bacteria in the gut microflora(anti-inflammatory bacteria and pro-inflammatory bacteria) and TNF-α and NF-κB, showed that they had a strong correlation. Therefore, the anti-NR mechanism of FMN may be related to increasing the abundance of anti-inflammatory bacteria and reducing the abundance of pro-inflammatory bacteria to inhibit inflammation. This study provides innovative mechanistic insights into the relationship between gut microbiota and myocardial protection, suggesting potential strategy for future treatment of NR.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China
| | - Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Chen
- The College of Acupuncture & Moxibustion and Tuina, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siqi Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Tang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ji Rui Zhao
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Zheng X, Qian Y, Wang L. Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1406132. [PMID: 39386166 PMCID: PMC11463061 DOI: 10.3389/fcimb.2024.1406132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background The causal relationship between gut microbiota and insulin-like growth factor 1 (IGF-1) remains unclear. The purpose of this study was to explore the causal relationship between gut microbiota and IGF-1 in men and women. Methods Single-nucleotide polymorphisms (SNPs) related to gut microbiota were derived from pooled statistics from large genome-wide association studies (GWASs) published by the MiBioGen consortium. Pooled data for IGF-1 were obtained from a large published GWAS. We conducted Mendelian randomization (MR) analysis, primarily using the inverse variance weighted (IVW) method. Additionally, we performed sensitivity analyses to enhance the robustness of our results, focusing on assessing heterogeneity and pleiotropy. Results In forward MR analysis, 11 bacterial taxa were found to have a causal effect on IGF-1 in men; 14 bacterial taxa were found to have a causal effect on IGF-1 in women (IVW, all P < 0.05). After false discovery rate (FDR) correction, all bacterial traits failed to pass the FDR correction. In reverse MR analysis, IGF-1 had a causal effect on nine bacterial taxa in men and two bacterial taxa in women respectively (IVW, all P < 0.05). After FDR correction, the causal effect of IGF-1 on order Actinomycetales (PFDR = 0.049) remains in men. The robustness of the IVW results was further confirmed after heterogeneity and pleiotropy analysis. Conclusion Our study demonstrates a bidirectional causal link between the gut microbiota and IGF-1, in both men and women.
Collapse
Affiliation(s)
- Xuejie Zheng
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuping Qian
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Lili Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Li J, Li J, Liu Y, Zeng J, Liu Y, Wu Y. Large-scale bidirectional Mendelian randomization study identifies new gut microbiome significantly associated with immune thrombocytopenic purpura. Front Microbiol 2024; 15:1423951. [PMID: 39027091 PMCID: PMC11257036 DOI: 10.3389/fmicb.2024.1423951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction A variety of studies have shown a link between the gut microbiota and autoimmune diseases, but the causal relationship with Henoch-Schönlein purpura (HSP) and immune thrombocytopenic purpura (ITP) is unknown. Methods This study investigated the bidirectional causality between gut microbiota and HSP and ITP using Mendelian randomization (MR). Large-scale genetic data of gut microbiota at phylum to species level from the MiBioGen consortium and the Dutch Microbiome Project were utilized. Genome-wide association studies (GWAS) summary statistics for HSP and ITP came from FinnGen R10. Various MR methods were applied to infer causal relationships, including inverse variance weighted (IVW), maximum likelihood (ML), cML-MA, MR-Egger, weighted median, weighted model, and MR-PRESSO. Multiple sensitivity analyses and Bonferroni correction were conducted to enhance robustness and reliability. Results Based on the IVW estimates, 23 bacterial taxa were identified to have suggestive associations with HSP and ITP. Remarkably, after Bonferroni correction, family Alcaligenaceae (OR = 2.86, 95% CI = 1.52-5.37; IVW, p = 1.10 × 10-3, ML, p = 1.40 × 10-3) was significantly associated with ITP as a risk factor, while family Bacteroidales S24 7group (OR = 0.46, 95% CI = 0.29-0.74; IVW, p = 1.40 × 10-3) was significantly associated with ITP as a protective factor. No significant associations between HSP and ITP and gut microbiota were found in reverse analyses. Conclusion Our study provides evidence of causal effects of gut microbiota on HSP and ITP, highlighting the importance of further research to clarify the underlying mechanisms and develop targeted therapeutic interventions for these autoimmune diseases.
Collapse
Affiliation(s)
- Jiawei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxiao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juanhuan Zeng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Hernandez AR, Parker E, Babar M, Banerjee A, Ding S, Simley A, Buford TW. Microbiome-driven alterations in metabolic pathways and impaired cognition in aged female TgF344-AD rats. AGING BRAIN 2024; 5:100119. [PMID: 38881651 PMCID: PMC11179252 DOI: 10.1016/j.nbas.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) not only affects cognition and neuropathology, but several other facets capable of negatively impacting quality of life and potentially driving impairments, including altered gut microbiome (GMB) composition and metabolism. Aged (20 + mo) female TgF344-AD and wildtype rats were cognitively characterized on several tasks incorporating several cognitive domains, including task acquisition, object recognition memory, anxiety-like behaviors, and spatial navigation. Additionally, metabolic phenotyping, GMB sequencing throughout the intestinal tract (duodenum, jejunum, ileum, colon, and feces), neuropathological burden assessment and marker gene functional abundance predictions (PICRUSt2) were conducted. TgF344-AD rats demonstrated significant cognitive impairment in multiple domains, as well as regionally specific GMB dysbiosis. Relationships between peripheral factors were investigated using Canonical Correspondence Analysis (CCA), revealing correlations between GMB changes and both cognitive and metabolic factors. Moreover, communities of gut microbes contributing to essential metabolic pathways were significantly altered in TgF344-AD rats. These data indicate dysbiosis may affect cognitive outcomes in AD through alterations in metabolism-related enzymatic pathways that are necessary for proper brain function. Moreover, these changes were mostly observed in intestinal segments required for carbohydrate digestion, not fecal samples. These data support the targeting of intestinal and microbiome health for the treatment of AD.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Maham Babar
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Anisha Banerjee
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Sarah Ding
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Alexis Simley
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Thomas W Buford
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL 35244, USA
| |
Collapse
|
7
|
Chen R, Ye Y, Ding Y, Wan Z, Ye X, Liu J. Potential biomarkers of acute myocardial infarction based on the composition of the blood microbiome. Clin Chim Acta 2024; 556:117843. [PMID: 38387830 DOI: 10.1016/j.cca.2024.117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND It is difficult to distinguish between acute myocardial infarction (AMI) and unstable angina (UA) due to their similar clinical features. In recent years, studies have shown that microbiomes have great potential in distinguishing diseases. The purpose of this study is to describe the composition of serum microbiome in the AMI and UA by 16S rDNA sequencing. METHODS Based on the high-throughput detection platform and 16S rDNA amplification sequencing technology, this study detected the blood microbial composition of 55 patients with AMI and 62 patients with UA. Alpha diversity and Beta diversity analysis were used to compare the differences in microbial composition and bacterial colony structure between AMI and UA groups. We perform PCoA (Principal Co-ordinates Analysis) based on Unweighted Unifrac distance. In addition, various statistical methods were employed to examine the significance of differences in microbial composition and genus between the two groups. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was employed to predict KEGG (Kyoto Encyclopedia of Genes and Genomes) function from 16S sequencing data. Random forest was applied to identify biomarkers and construct the diagnostic model. Subsequently, the stability of the model was verified by 10-fold cross and the diagnostic effectiveness was evaluated through ROC (Receiver Operating Characteristic). RESULTS In this study, we found that alpha diversity index of serum microbiome in AMI group was significantly higher than in UA group. T-test analysis demonstrated that the UA group presented a higher abundance of Ralstonia, Faecalibaculum and Gammaproteobacteria, while Bacteroides, Sphingomonas, Faecalibaculum, Haemophilus, Serratia, Bifidobacterium and Chloroplast were more abundant in the AMI group. The LefSe (LDA Effect Size) analysis showed that the Gammaproteobacteria, Proteobacteria, Ralstonia pickettli, Ralstonia, Burkholderiaceae and Burkholderiales were enriched in UA group, and Bacteroidales, Bacteroidia, Bacteroidota, Clostridia and Firmicutes were more abundant in the AMI group. Ten bacterial diagnostic models were constructed in the random forest. The area under the curve (AUC) in the training set was 88.01%, and the AUC value in the test set was 95.04%. CONCLUSION In this study, the composition of blood microorganisms in the groups of patients with AMI and UA has been analyzed, providing novel insights for understanding the pathogenesis of AMI; Blood microbiome may serve as novel diagnostic biomarkers of AMI.
Collapse
Affiliation(s)
- Rishou Chen
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Yonglong Ye
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Yali Ding
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Zhidong Wan
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Xinyu Ye
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China
| | - Jun Liu
- Department of Laboratory Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523127, China.
| |
Collapse
|
8
|
Chaudhari DS, Jain S, Yata VK, Mishra SP, Kumar A, Fraser A, Kociolek J, Dangiolo M, Smith A, Golden A, Masternak MM, Holland P, Agronin M, White-Williams C, Arikawa AY, Labyak CA, Yadav H. Unique trans-kingdom microbiome structural and functional signatures predict cognitive decline in older adults. GeroScience 2023; 45:2819-2834. [PMID: 37213047 PMCID: PMC10643725 DOI: 10.1007/s11357-023-00799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
The prevalence of age-related cognitive disorders/dementia is increasing, and effective prevention and treatment interventions are lacking due to an incomplete understanding of aging neuropathophysiology. Emerging evidence suggests that abnormalities in gut microbiome are linked with age-related cognitive decline and getting acceptance as one of the pillars of the Geroscience hypothesis. However, the potential clinical importance of gut microbiome abnormalities in predicting the risk of cognitive decline in older adults is unclear. Till now the majority of clinical studies were done using 16S rRNA sequencing which only accounts for analyzing bacterial abundance, while lacking an understanding of other crucial microbial kingdoms, such as viruses, fungi, archaea, and the functional profiling of the microbiome community. Utilizing data and samples of older adults with mild cognitive impairment (MCI; n = 23) and cognitively healthy controls (n = 25). Our whole-genome metagenomic sequencing revealed that the gut of older adults with MCI harbors a less diverse microbiome with a specific increase in total viruses and a decrease in bacterial abundance compared with controls. The virome, bacteriome, and microbial metabolic signatures were significantly distinct in subjects with MCI versus controls. Selected bacteriome signatures show high predictive potential of cognitive dysfunction than virome signatures while combining virome and metabolic signatures with bacteriome boosts the prediction power. Altogether, the results from our pilot study indicate that trans-kingdom microbiome signatures are significantly distinct in MCI gut compared with controls and may have utility for predicting the risk of developing cognitive decline and dementia- debilitating public health problems in older adults.
Collapse
Affiliation(s)
- Diptaraj S Chaudhari
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vinod K Yata
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ambuj Kumar
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Research Methodology and Biostatistics Core, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Amoy Fraser
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Judyta Kociolek
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Mariana Dangiolo
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Amanda Smith
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Adam Golden
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- University of Central Florida College of Medicine, FL, Orlando, United States
| | - Michal M Masternak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Peter Holland
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Neuroscience, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Marc Agronin
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Behavioral Health, MIND Institute, Miami Jewish Health, Miami, FL, USA
| | - Cynthia White-Williams
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
- School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
| | - Andrea Y Arikawa
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Corinne A Labyak
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Institute for Microbiomes, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Microbiome in aging Gut and Brain (MiaGB) Consortium Team, FL, Tampa, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Byrd Alzheimer Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
9
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
10
|
Li S, Ren S, Long L, Zhao H, Shen L. Evaluation of the Efficiency of TIMP-2 as a Biomarker for Acute Kidney Injury in Sepsis. Bull Exp Biol Med 2023; 174:790-796. [PMID: 37160599 DOI: 10.1007/s10517-023-05791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 05/11/2023]
Abstract
The aim of this study was to evaluate the biomarker potential of TIMP-2 in septic-induced acute kidney injury (AKI). Healthy male rats (n=56, age 8-10 weeks, body weight 250-300 g) were randomized into 3 groups: controls (intact rats, n=6), sham-operated (SO, n=24), and sepsis model (cecum ligation and perforation, CLP, n=24). Thirty minutes before and 6, 12, 24, and 48 h after surgery, blood samples were collected to measure serum creatinine, blood urea nitrogen (BUN), and TIMP-2 and the kidneys were isolated for histopathological analysis and Western blotting. The key sepsis-related genes were screened through bioinformatics analysis. In 24 and 48 h after surgery, 2 rats in the SO group reached the diagnostic criteria of AKI (increased levels of serum creatinine and BUN). In the CLP group, serum creatinine in 6 h after the surgery was slightly higher than 30 min before the surgery, but this change did not meet the diagnostic criteria for AKI. In the CLP group, BUN was normal 6 h after the surgery, but increased after 12 h. In more than 50% rats of the CLP group, serum creatinine and BUN significantly increased 12 h after operation, so this can be diagnosed as AKI. In rats of the CLP group, plasma TIMP-2 was elevated 6 h after surgery and increased with time, suggesting that plasma TIMP-2 can be used as an early marker of AKI. Histological examination of the kidneys in this group revealed destruction of the renal tubular structure, swelling of renal tubular epithelium, the disappearance of brush edge and collapse of necrotic epithelial cells, etc., and the degree of damage increased with time. Immunohistochemistry showed that TIMP-2 was expressed in rats of the CLP group at all terms of the experiment. The expression of TIMP-2 and pyroptosis-related proteins (NLRP3, IL-1β, caspase-1, and GSDMD) in the CLP group was higher than in the SO group (p<0.05) and increased with time, suggesting that pyroptosis is involved in AKI. Thus, plasma TIMP-2 is sensitive indicator for the early detection of kidney injury and can be used as an early biomarker of AKI.
Collapse
Affiliation(s)
- S Li
- The North China University of Science and Technology, Tangshan, China
- Intensive Care Unit of Hebei General Hospital, Shijiazhuang, China
| | - S Ren
- Intensive Care Unit of Hebei General Hospital, Shijiazhuang, China
| | - L Long
- Intensive Care Unit of Hebei General Hospital, Shijiazhuang, China
| | - H Zhao
- Intensive Care Unit of Hebei General Hospital, Shijiazhuang, China
| | - L Shen
- Intensive Care Unit of Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
11
|
Baptista LC, Zumbro EL, Graham ZA, Hernandez AR, Buchanan T, Sun Y, Yang Y, Banerjee A, Verma A, Li Q, Carter CS, Buford TW. Multiomics profiling of the impact of an angiotensin (1-7)-expressing probiotic combined with exercise training in aged male rats. J Appl Physiol (1985) 2023; 134:1135-1153. [PMID: 36892893 PMCID: PMC10125028 DOI: 10.1152/japplphysiol.00508.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Angiotensin (1-7) [Ang (1-7)] is an active heptapeptide of the noncanonical arm of the renin-angiotensin system that modulates molecular signaling pathways associated with vascular and cellular inflammation, vasoconstriction, and fibrosis. Preclinical evidence suggests that Ang (1-7) is a promising therapeutic target that may ameliorate physical and cognitive function in late life. However, treatment pharmacodynamics limits its clinical applicability. Therefore, this study explored the underlying mechanisms altered by a genetically modified probiotic (GMP) that expresses Ang (1-7) combined with and without exercise training in an aging male rat model as a potential adjunct strategy to exercise training to counteract the decline of physical and cognitive function. We evaluated cross-tissue (prefrontal cortex, hippocampus, colon, liver, and skeletal muscle) multi-omics responses. After 12 wk of intervention, the 16S mRNA microbiome analysis revealed a main effect of probiotic treatment within- and between groups. The probiotic treatment enhanced α diversity (Inverse Simpson (F[2,56] = 4.44; P = 0.02); Shannon-Wiener (F[2,56] = 4.27; P = 0.02)) and β-diversity (F[2,56] = 2.66; P = 0.01) among rats receiving our GMP. The analysis of microbes' composition revealed three genera altered by our GMP (Enterorhabdus, Muribaculaceae unclassified, and Faecalitalea). The mRNA multi-tissue data analysis showed that our combined intervention upregulated neuroremodeling pathways on prefrontal cortex (i.e., 140 genes), inflammation gene expression in the liver (i.e., 63 genes), and circadian rhythm signaling on skeletal muscle. Finally, the integrative network analysis detected different communities of tightly (|r| > 0.8 and P < 0.05) correlated metabolites, genera, and genes in these tissues.NEW & NOTEWORTHY This manuscript uses a multiomics approach (i.e., microbiome, metabolomics, and transcriptomics) to explore the underlying mechanisms driven by a genetically modified probiotic (GMP) designed to express angiotensin (1-7) combined with moderate exercise training in an aged male rat model. After 12 wk of intervention, our findings suggest that our GMP enhanced gut microbial diversity while exercise training altered the transcriptional response in relevant neuroremodeling genes, inflammation, and circadian rhythm signaling pathways in an aging animal model.
Collapse
Affiliation(s)
- Liliana C Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Research Center for Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Emily L Zumbro
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Research Service, Birmingham Veterans Affair Medical Center, Birmingham, Alabama, United States
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Taylor Buchanan
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - YouFeng Yang
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amrisha Verma
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
12
|
Ullah Goraya M, Li R, Gu L, Deng H, Wang G. Blood Stream Microbiota Dysbiosis Establishing New Research Standards in Cardio-Metabolic Diseases, A Meta-Analysis Study. Microorganisms 2023; 11:microorganisms11030777. [PMID: 36985350 PMCID: PMC10052040 DOI: 10.3390/microorganisms11030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
AIMS Scientists have recently discovered a link between the circulating microbiome and homeostasis, as well as the pathogenesis of a number of metabolic diseases. It has been demonstrated that low-grade chronic inflammation is one of the primary mechanisms that has long been implicated in the risk of cardio-metabolic disease (CMDs) and its progression. Currently, the dysbiosis of circulating bacteria is considered as a key regulator for chronic inflammation in CMDs, which is why we have conducted this systemic review focused on circulating bacterial dysbiosis. METHODS A systemic review of clinical and research-based studies was conducted via PubMed, Scopus, Medline, and Web of Science. Literature was considered for risk of bias and patterns of intervention effects. A randomized effect model was used to evaluate the dysbiosis of circulating microbiota and clinical outcomes. We conducted a meta-analysis considering the circulating bacteria in both healthy people and people with cardio-metabolic disorders, in reports published mainly from 2008 to 2022, according to the PRISMA guidelines. RESULTS We searched 627 studies and, after completing the risk of bias and selection, 31 studies comprising of 11,132 human samples were considered. This meta-analysis found that dysbiosis of phyla Proteobacteria, Firmicutes, and Bacteroidetes was associated with metabolic diseases. CONCLUSIONS In most instances, metabolic diseases are linked to higher diversity and elevated bacterial DNA levels. Bacteroides abundance was higher in healthy people than with metabolic disorders. However, more rigorous studies are required to determine the role of bacterial dysbiosis in cardio-metabolic diseases. Understanding the relationship between dysbiosis and cardio-metabolic diseases, we can use the bacteria as therapeutics for the reversal of dysbiosis and targets for therapeutics use in cardio-metabolic diseases. In the future, circulating bacterial signatures can be used as biomarkers for the early detection of metabolic diseases.
Collapse
Affiliation(s)
| | - Rui Li
- Correspondence: (R.L.); (G.W.)
| | | | | | | |
Collapse
|
13
|
Wan Y, Wang S, Niu Y, Duo B, Liu Y, Lu Z, Zhu R. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol 2023; 13:1139436. [PMID: 36968119 PMCID: PMC10034768 DOI: 10.3389/fcimb.2023.1139436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundRecent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI.MethodsAged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on.ResultsThis study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues.ConclusionsOur findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.
Collapse
Affiliation(s)
- Youdong Wan
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuya Wang
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yifan Niu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Boyang Duo
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yinshuang Liu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Lu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhu
- Department of Health Management, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Ruixue Zhu,
| |
Collapse
|
14
|
A pilot study characterizing longitudinal changes in fecal microbiota of patients with Hirschsprung-associated enterocolitis. Pediatr Surg Int 2022; 38:1541-1553. [PMID: 35951092 DOI: 10.1007/s00383-022-05191-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Hirschsprung disease is a neurointestinal disease that occurs due to failure of enteric neural crest-derived cells to complete their rostrocaudal migration along the gut mesenchyme, resulting in aganglionosis along variable lengths of the distal bowel. Despite the effective surgery that removes the aganglionic segment, children with Hirschsprung disease remain at high risk for developing a potentially life-threatening enterocolitis (Hirschsprung-associated enterocolitis). Although the etiology of this enterocolitis remains poorly understood, several recent studies in both mouse models and in human subjects suggest potential involvement of gastrointestinal microbiota in the underlying pathogenesis of Hirschsprung-associated enterocolitis. METHODS We present the first study to exploit the Illumina MiSeq next-generation sequencing platform within a longitudinal framework focused on microbiomes of Hirschsprung-associated enterocolitis in five patients. We analyzed bacterial communities from fecal samples collected at different timepoints starting from active enterocolitis and progressing into remission. RESULTS We observed compositional differences between patients largely attributable to variability in age at the time of sample collection. Remission samples across patients exhibited compositional similarity, including enrichment of Blautia, while active enterocolitis samples showed substantial variability in composition. CONCLUSIONS Overall, our findings provide continued support for the role of GI microbiota in the pathogenesis of Hirschsprung-associated enterocolitis.
Collapse
|
15
|
Hernandez AR, Watson C, Federico QP, Fletcher R, Brotgandel A, Buford TW, Carter CS, Burke SN. Twelve Months of Time-Restricted Feeding Improves Cognition and Alters Microbiome Composition Independent of Macronutrient Composition. Nutrients 2022; 14:3977. [PMID: 36235630 PMCID: PMC9572159 DOI: 10.3390/nu14193977] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023] Open
Abstract
Declining health, gut dysbiosis, and cognitive impairments are hallmarks of advanced age. While caloric restriction is known to robustly extend the healthspan and alter gut microbiome composition, it is difficult maintain. Time-restricted feeding or changes in dietary macronutrient composition could be feasible alternatives for enhancing late life cognitive and physical health that are easier to comply with for extended periods of time. To investigate this possibility, 8-month-old rats were placed on time-restricted feeding with a ketogenic or micronutrient- and calorically matched control diet for 13 months. A third group of rats was permitted to eat standard chow ad libitum during this time. At 22 months, all rats were tested on a biconditional association task and fecal samples were collected for microbiome composition analysis. Regardless of dietary composition, time-restricted-fed rats had better cognitive performance than ad libitum-fed rats. This observation could not be accounted for by differences in motivation, procedural or sensorimotor impairments. Additionally, there were significant differences in gut microbiome diversity and composition between all diet conditions. Allobaculum abundance was associated with cognitive task performance, indicating a link between gut health and cognitive outcomes in aged subjects. Overall, time restricted feeding had the largest influence on cognitive performance in aged rats.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Cory Watson
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Quinten P. Federico
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Fletcher
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Armen Brotgandel
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Thomas W. Buford
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Birmingham/Atlanta Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, AL 35205, USA
| | - Christy S. Carter
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Sara N. Burke
- Department of Neuroscience and McKnight, Brain Institute College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Exp Gerontol 2022; 167:111927. [PMID: 35981616 DOI: 10.1016/j.exger.2022.111927] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Sarcopenia is a prognostic indicator of negative consequences in older adults, including physical disability, frailty, and mortality. Few studies have investigated the associations between sarcopenia and the gut microbiota. We sought such associations in community-dwelling older adults aged ≥60 years. Sarcopenia was defined as low muscle mass, plus reduced physical performance, and/or low skeletal muscle strength. 16S rRNA next-generation sequencing was used to identify the components of the gut microbiota in fecal samples from 27 older adults with sarcopenia and 33 without sarcopenia. Relationships between sarcopenia and the diversity and composition of the gut microbiota were analyzed. Diversities at the species level were detected between the sarcopenia and control groups (P = 0.049). The abundance of Prevotella and Prevotella copri was significantly lower (P = 0.021 and P = 0.018 respectively) and that of Parabacteroides sp. higher in the sarcopenia than the control group (P = 0.010). Linear discriminant analysis of effect size revealed differences in the microbiota composition between the two groups. Sarcopenia was related with the presence of Anaerotruncus and Phascolarctobacterium sp. and the absence of Prevotella sp. and Prevotella copri. Further research is warranted to clarify whether changes in the gut microbiota cause sarcopenia onset or development.
Collapse
|
17
|
Prasad R, Patton MJ, Floyd JL, Fortmann S, DuPont M, Harbour A, Wright J, Lamendella R, Stevens BR, Oudit GY, Grant MB. Plasma Microbiome in COVID-19 Subjects: An Indicator of Gut Barrier Defects and Dysbiosis. Int J Mol Sci 2022; 23:9141. [PMID: 36012406 PMCID: PMC9409329 DOI: 10.3390/ijms23169141] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) complications. We aimed to investigate whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n = 146) and healthy individuals (n = 47) were collected during hospitalization and routine visits. Plasma microbiome was analyzed using 16S rRNA sequencing and gut permeability markers including fatty acid binding protein 2 (FABP2), peptidoglycan (PGN), and lipopolysaccharide (LPS) in both patient cohorts. Plasma samples of both cohorts contained predominately Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria. COVID-19 subjects exhibit significant dysbiosis (p = 0.001) of the plasma microbiome with increased abundance of Actinobacteria spp. (p = 0.0332), decreased abundance of Bacteroides spp. (p = 0.0003), and an increased Firmicutes:Bacteroidetes ratio (p = 0.0003) compared to healthy subjects. The concentration of the plasma gut permeability marker FABP2 (p = 0.0013) and the gut microbial antigens PGN (p < 0.0001) and LPS (p = 0.0049) were significantly elevated in COVID-19 patients compared to healthy subjects. These findings support the notion that the intestine may represent a source for bacteremia and contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Michael John Patton
- Hugh Kaul Precision Medicine Institute, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason Levi. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Seth Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | - Angela Harbour
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| | | | | | - Bruce R. Stevens
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Gavin Y. Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, AB T6G 2B7, Canada
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University BLVD, VH490, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Giacconi R, D’Aquila P, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Gradinaru D, Grubeck-Loebenstein B, Sikora E, Stuetz W, Weber D, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Duncan T, Passarino G, Bellizzi D, Provinciali M. Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association With Redox Biomarkers: Results From MARK-AGE Study. J Gerontol A Biol Sci Med Sci 2022; 78:42-50. [PMID: 35914804 PMCID: PMC9879758 DOI: 10.1093/gerona/glac154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 02/02/2023] Open
Abstract
Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI ≥ 2 compared with those with CCI ≤ 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants.
Collapse
Affiliation(s)
- Robertina Giacconi
- Address correspondence to: Robertina Giacconi, Advanced Technology Center for Aging Research, IRCCS INRCA, via birarelli 8 Ancona, 60121 Ancona, Italy. E-mail:
| | | | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany,Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy,Interdepartmental Center—Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Daniela Gradinaru
- Ana Aslan National Institute of Gerontology and Geriatrics, Bucharest, Romania,Faculty of Pharmacy, Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Stuttgart, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | | | | | - Antti Hervonen
- The Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Hurme
- The Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | | |
Collapse
|
19
|
Jensen EA, Young JA, Jackson Z, Busken J, Kuhn J, Onusko M, Carroll RK, List EO, Brown JM, Kopchick JJ, Murphy ER, Berryman DE. Excess Growth Hormone Alters the Male Mouse Gut Microbiome in an Age-dependent Manner. Endocrinology 2022; 163:bqac074. [PMID: 35617141 PMCID: PMC9167039 DOI: 10.1210/endocr/bqac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/19/2022]
Abstract
The gut microbiome has an important role in host development, metabolism, growth, and aging. Recent research points toward potential crosstalk between the gut microbiota and the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis. Our laboratory previously showed that GH excess and deficiency are associated with an altered gut microbial composition in adult mice. Yet, no study to date has examined the influence of GH on the gut microbiome over time. Our study thus tracked the effect of excess GH action on the longitudinal changes in the gut microbial profile (ie, abundance, diversity/maturity, predictive metabolic function, and short-chain fatty acid [SCFA] levels) of bovine GH (bGH) transgenic mice at age 3, 6, and 12 months compared to littermate controls in the context of metabolism, intestinal phenotype, and premature aging. The bGH mice displayed age-dependent changes in microbial abundance, richness, and evenness. Microbial maturity was significantly explained by genotype and age. Moreover, several bacteria (ie, Lactobacillus, Lachnospiraceae, Bifidobacterium, and Faecalibaculum), predictive metabolic pathways (such as SCFA, vitamin B12, folate, menaquinol, peptidoglycan, and heme B biosynthesis), and SCFA levels (acetate, butyrate, lactate, and propionate) were consistently altered across all 3 time points, differentiating the longitudinal bGH microbiome from controls. Of note, the bGH mice also had significantly impaired intestinal fat absorption with increased fecal output. Collectively, these findings suggest that excess GH alters the gut microbiome in an age-dependent manner with distinct longitudinal microbial and predicted metabolic pathway signatures.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
| | - Zachary Jackson
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
| | - Joshua Busken
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
| | - Jaycie Kuhn
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
- The Diabetes Institute, Parks Hall, Ohio University, Athens, Ohio 45701, USA
| | - Maria Onusko
- The Diabetes Institute, Parks Hall, Ohio University, Athens, Ohio 45701, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio 45701, USA
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, USA
- Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, Ohio 45701, USA
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
- The Diabetes Institute, Parks Hall, Ohio University, Athens, Ohio 45701, USA
| | - J Mark Brown
- Department of Cardiovascular & Metabolic Sciences, and The Center for Microbiome & Human Health, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | - John J Kopchick
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
- The Diabetes Institute, Parks Hall, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701USA
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, USA
- Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701USA
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Athens, Ohio 45701, USA
- The Diabetes Institute, Parks Hall, Ohio University, Athens, Ohio 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701USA
| |
Collapse
|
20
|
Human Blood Bacteriome: Eubiotic and Dysbiotic States in Health and Diseases. Cells 2022; 11:cells11132015. [PMID: 35805098 PMCID: PMC9265464 DOI: 10.3390/cells11132015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiome is acknowledged as being associated with homeostasis and the pathogenesis of several diseases. Conventional culture techniques are limited in that they cannot culture the commensals; however, next-generation sequencing has facilitated the discovery of the diverse and delicate microbial relationship in body sites and blood. Increasing evidence regarding the blood microbiome has revolutionized the concept of sterility and germ theory in circulation. Among the types of microbial communities in the blood, bacteriomes associated with many health conditions have been thoroughly investigated. Blood bacterial profiles in healthy subjects are identified as the eubiotic blood bacteriome, whereas the dysbiotic blood bacteriome represents the change in bacterial characteristics in subjects with diseases showing deviations from the eubiotic profiles. The blood bacterial characteristics in each study are heterogeneous; thus, the association between eubiotic and dysbiotic blood bacteriomes and health and disease is still debatable. Thereby, this review aims to summarize and discuss the evidence concerning eubiotic and dysbiotic blood bacteriomes characterized by next-generation sequencing in human studies. Knowledge pertaining to the blood bacteriome will transform the concepts around health and disease in humans, facilitating clinical implementation in the near future.
Collapse
|
21
|
Hernandez AR, Kemp KM, Burke SN, Buford TW, Carter CS. Influence of Aging, Macronutrient Composition and Time-Restricted Feeding on the Fischer344 x Brown Norway Rat Gut Microbiota. Nutrients 2022; 14:nu14091758. [PMID: 35565725 PMCID: PMC9105022 DOI: 10.3390/nu14091758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Both ketogenic diets (KD) and time-restricted feeding (TRF) regimens have the ability to influence several parameters of physical health, including gut microbiome composition and circulating cytokine concentration. Moreover, both of these dietary interventions prevent common impairments associated with the aging process. However, significantly altering macronutrient intake, which is required for a KD, may be unappealing to individuals and decrease compliance to dietary treatments. In contrast to a KD, TRF allows individuals to continue eating the foods they are used to, and only requires a change in the time of day at which they eat. Therefore, we investigated both a KD and a diet with a more Western-like macronutrient profile in the context of TRF, and compared both diets to animals allowed access to standard chow ad libitum in young adult and aged rats. While limited effects on cytokine levels were observed, both methods of microbiome analysis (16S sequencing and metagenomics) indicate that TRF and KDs significantly altered the gut microbiome in aged rats. These changes were largely dependent on changes to feeding paradigm (TRF vs. ad libitum) alone regardless of macronutrient content for many gut microbiota, but there were also macronutrient-specific changes. Specifically, functional analysis indicates significant differences in several pathways, including those involved in the tricarboxylic acid (TCA) cycle, carbohydrate metabolism and neurodegenerative disease. These data indicate that age- and disease-related gut dysbiosis may be ameliorated through the use of TRF with both standard diets and KDs.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - Keri M. Kemp
- CardioRenal Physiology and Medicine Section, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Sara N. Burke
- Center for Cognitive Aging and Memory, Department of Neuroscience and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.W.B.); (C.S.C.)
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Abstract
Prior study has demonstrated that gut microbiota at the genus level is significantly altered in patients with growth hormone (GH)-secreting pituitary adenoma (GHPA). Yet, no studies exist describing the state of gut microbiota at species level in GHPA. We performed a study using 16S rRNA amplicon sequencing in a cohort of patients with GH-secreting pituitary adenoma (GHPA, n = 28) and healthy controls (n = 67). Among them, 9 patients and 10 healthy controls were randomly chosen and enrolled in metagenomics shotgun sequencing, generating 280,426,512 reads after aligning to NCBI GenBank DataBase to acquire taxa information at the species level. Weighted UniFrac analysis revealed that microbial diversity was notably decreased in patients with GHPA, consistent with a previous study. With 16S rRNA sequencing, after correction for false-discovery rate (FDR), rank-sum test at the genus level revealed that the relative abundance of Oscillibacter and Enterobacter was remarkably increased in patients and Blautia and Romboutsia genera predominated in the controls, augmented by additional LEfSe (linear discriminant analysis effect size) analysis. As for further comparison at the species level with metagenomics sequencing, rank-sum test together with LEfSe analysis confirmed the enrichment of Alistipes shahii and Odoribacter splanchnicus in the patient group. Notably, LEfSe analysis with metagenomics also demonstrated that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND, derived from Enterobacter, were both significantly enriched in patients. Functional analysis showed that amino acid metabolism pathway was remarkably enriched in GHPA, while carbohydrate metabolism pathway was notably enriched in controls. Further, significant positive correlations were observed between Enterobacter and baseline insulin-like growth factor 1 (IGF-1), indicating that Enterobacter may be strongly associated with GH/IGF-1 axis in GHPA. Our data extend our insight into the GHPA microbiome, which may shed further light on GHPA pathogenesis and facilitate the exploration of novel therapeutic targets based on microbiota manipulation. IMPORTANCE Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extraintestinal diseases. Growth hormone-secreting pituitary adenoma (GHPA) is an insidious disease with persistent hypersecretion of GH and IGF-1, causing increased morbidity and mortality. Researches have reported that the GH/IGF-1 axis exerts its own influence on the intestinal microflora. Here, the results showed that compared with healthy controls, GHPA patients not only decreased the alpha diversity of the intestinal flora but also significantly changed their beta diversity. Further, metagenomics shotgun sequencing in the present study exhibited that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND were enriched in patients. Also, we were pleasantly surprised to find that the Enterobacter genus was strongly positively correlated with baseline IGF-1 levels. Collectively, our work provides the first glimpse of the dysbiosis of the gut microbiota at species level, providing a better understanding of the pathophysiological process of GHPA.
Collapse
|
23
|
Liang H, Song H, Zhang X, Song G, Wang Y, Ding X, Duan X, Li L, Sun T, Kan Q. Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerg Microbes Infect 2022; 11:815-828. [PMID: 35191819 PMCID: PMC8928825 DOI: 10.1080/22221751.2022.2045876] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased evidence shows that gut microbiota acts as the primary regulator of the liver; however, its role in sepsis-related liver injury (SLI) in the elderly is unclear. This study assessed whether metformin could attenuate SLI by modulating gut microbiota in septic-aged rats. Cecal ligation and puncture (CLP) was used to induce SLI in aged rats. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. The composition of gut microbiota was analysed by 16S rRNA sequencing. Moreover, the liver and colon tissues were analysed by histopathology, immunofluorescence, immunohistochemistry, and reverse transcription polymerase chain reaction (RT–PCR). Metformin improved liver damage, colon barrier dysfunction in aged SLI rats. Moreover, metformin improved sepsis-induced liver inflammation and damage under gut microbiota. Importantly, FMT assay showed that rats gavaged with faeces from metformin-treated SLI rats displayed less severe liver damage and colon barrier dysfunctions than those gavaged with faeces from SLI rats. The gut microbiota composition among the sham-operated, CLP-operated and metformin-treated SLI rats was different. In particular, the proportion of Klebsiella and Escherichia_Shigella was higher in SLI rats than sham-operated and metformin-treated SLI rats; while metformin could increase the proportion of Bifidobacterium, Muribaculaceae, Parabacteroides_distasonis and Alloprevitella in aged SLI rats. Additionally, Klebsiella and Escherichia_Shigella correlated positively with the inflammatory factors in the liver. Our findings suggest that metformin may improve liver injury by regulating the gut microbiota and alleviating colon barrier dysfunction in septic-aged rats, which may be an effective therapy for SLI.
Collapse
Affiliation(s)
- Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Heng Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China.
| | - Gaofei Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Yuze Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China.
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China.
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China.
| | - Lifeng Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou 450052, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Carter CS. A "Gut Feeling" to Create a 10th Hallmark of Aging. J Gerontol A Biol Sci Med Sci 2021; 76:1891-1894. [PMID: 34245264 DOI: 10.1093/gerona/glab191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, USA
| |
Collapse
|
25
|
Hanslik KL, Marino KM, Ulland TK. Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Front Cell Neurosci 2021; 15:718324. [PMID: 34531726 PMCID: PMC8439422 DOI: 10.3389/fncel.2021.718324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
In the central nervous system (CNS), glial cells, such as microglia and astrocytes, are normally associated with support roles including contributions to energy metabolism, synaptic plasticity, and ion homeostasis. In addition to providing support for neurons, microglia and astrocytes function as the resident immune cells in the brain. The glial function is impacted by multiple aspects including aging and local CNS changes caused by neurodegeneration. During aging, microglia and astrocytes display alterations in their homeostatic functions. For example, aged microglia and astrocytes exhibit impairments in the lysosome and mitochondrial function as well as in their regulation of synaptic plasticity. Recent evidence suggests that glia can also alter the pathology associated with many neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). Shifts in the microbiome can impact glial function as well. Disruptions in the microbiome can lead to aberrant microglial and astrocytic reactivity, which can contribute to an exacerbation of disease and neuronal dysfunction. In this review, we will discuss the normal physiological functions of microglia and astrocytes, summarize novel findings highlighting the role of glia in aging and neurodegenerative diseases, and examine the contribution of microglia and astrocytes to disease progression.
Collapse
Affiliation(s)
- Kendra L. Hanslik
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Kaitlyn M. Marino
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Tyler K. Ulland
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
26
|
Conway J, A Duggal N. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev 2021; 68:101323. [PMID: 33771720 DOI: 10.1016/j.arr.2021.101323] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Advancing age is accompanied by changes in the gut microbiota characterised by a loss of beneficial commensal microbes that is driven by intrinsic and extrinsic factors such as diet, medications, sedentary behaviour and chronic health conditions. Concurrently, ageing is accompanied by an impaired ability to mount a robust immune response, termed immunesenescence, and age-associated inflammation, termed inflammaging. The microbiome has been proposed to impact the immune system and is a potential determinant of healthy aging. In this review we summarise the knowledge on the impact of ageing on microbial dysbiosis, intestinal permeability, inflammaging, and the immune system and investigate whether dysbiosis of the gut microbiota could be a potential mechanism underlying the decline in immune function, overall health and longevity with advancing age. Furthermore, we examine the potential of altering the gut microbiome composition as a novel intervention strategy to reverse the immune ageing clock and possibly support overall good health during old age.
Collapse
|
27
|
de Marco Castro E, Murphy CH, Roche HM. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front Nutr 2021; 8:656730. [PMID: 34235167 PMCID: PMC8256992 DOI: 10.3389/fnut.2021.656730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.
Collapse
Affiliation(s)
- Elena de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Caoileann H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021; 10:1412. [PMID: 34204163 PMCID: PMC8227274 DOI: 10.3390/cells10061412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.
Collapse
Affiliation(s)
- Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| |
Collapse
|
29
|
A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clin Sci (Lond) 2021; 135:1251-1272. [PMID: 34037207 DOI: 10.1042/cs20201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The worldwide landscape of an ageing population and age-related disease brings with it huge socio-economic and public healthcare concerns across nations. Correspondingly, monumental human and financial resources have been invested in biomedical research, with a mission to decode the mechanisms of ageing and how these contribute to age-related disease. Multiple hallmarks of ageing have been identified that are common across taxa, highlighting their fundamental importance. These include dysregulated mitochondrial metabolism and telomeres biology, epigenetic modifications, cell-matrix interactions, proteostasis, dysregulated nutrient sensing, stem cell exhaustion, inflammageing and immuno-senescence. While our understanding of the molecular basis of ageing is improving, it remains a complex and multifactorial process that remains to be fully understood. A key aspect of the shortfall in our understanding of the ageing process lies in translating data from standard animal models to humans. Consequently, we suggest that a 'biomimetic' and comparative approach, integrating knowledge from species in the wild, as opposed to inbred genetically homogenous laboratory animals, can provide powerful insights into human ageing processes. Here we discuss some particularities and comparative patterns among several species from the animal kingdom, endowed with longevity or short lifespans and unique metabolic profiles that could be potentially exploited to the understanding of ageing and age-related diseases. Based upon lessons from nature, we also highlight several avenues for renewed focus in the pathophysiology of ageing and age-related disease (i.e. diet-microbiome-health axis, oxidative protein damage, adaptive homoeostasis and planetary health). We propose that a biomimetic alliance with collaborative research from different disciplines can improve our understanding of ageing and age-related diseases with long-term sustainable utility.
Collapse
|
30
|
Prasad R, Patton MJ, Floyd JL, Vieira CP, Fortmann S, DuPont M, Harbour A, Jeremy CS, Wright J, Lamendella R, Stevens BR, Grant MB. Plasma microbiome in COVID-19 subjects: an indicator of gut barrier defects and dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851159 DOI: 10.1101/2021.04.06.438634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal ( GI ) symptoms. We asked whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n=30) and healthy control (n=16) were collected during hospitalization. Plasma microbiome was analyzed using 16S rRNA sequencing, metatranscriptomic analysis, and gut permeability markers including FABP-2, PGN and LPS in both patient cohorts. Almost 65% (9 out 14) COVID-19 patients showed abnormal presence of gut microbes in their bloodstream. Plasma samples contained predominately Proteobacteria, Firmicutes, and Actinobacteria . The abundance of gram-negative bacteria ( Acinetobacter, Nitrospirillum, Cupriavidus, Pseudomonas, Aquabacterium, Burkholderia, Caballeronia, Parabhurkholderia, Bravibacterium, and Sphingomonas ) was higher than the gram-positive bacteria ( Staphylococcus and Lactobacillus ) in COVID-19 subjects. The levels of plasma gut permeability markers FABP2 (1282±199.6 vs 838.1±91.33; p=0.0757), PGN (34.64±3.178 vs 17.53±2.12; p<0.0001), and LPS (405.5±48.37 vs 249.6±17.06; p=0.0049) were higher in COVID-19 patients compared to healthy subjects. These findings support that the intestine may represent a source for bacteremia and may contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.
Collapse
|
31
|
Baumann A, Hernández-Arriaga A, Brandt A, Sánchez V, Nier A, Jung F, Kehm R, Höhn A, Grune T, Frahm C, Witte OW, Camarinha-Silva A, Bergheim I. Microbiota profiling in aging-associated inflammation and liver degeneration. Int J Med Microbiol 2021; 311:151500. [PMID: 33813306 DOI: 10.1016/j.ijmm.2021.151500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The number of people above the age of 60 years is raising world-wide being associated with an increase in the prevalence of aging-associated impairments and even diseases. Recent studies suggest that aging is associated with alterations in bacterial endotoxin levels and that these changes may add to low-grade inflammation, the so-called 'inflammaging', and aging-associated liver degeneration. However, mechanisms involved, and especially, the interaction of intestinal microbiota and barrier in the development of aging-associated inflammation and liver degeneration have not been fully understood. OBJECTIVE The aim of the present study was to determine if intestinal microbiota composition changes with age and if these alterations are associated with changes of markers of intestinal barrier function and the development of inflammation and liver degeneration. METHODS Blood, liver, small and large intestinal tissue of male 2-, 15-, 24- and 30-months old C57BL/6 mice fed standard chow were obtained. Intestinal microbiota composition, expression levels of antimicrobial peptides in small intestine and markers of intestinal barrier function were measured. Furthermore, indices of liver damage, inflammation and expression levels of lipopolysaccharide binding protein (Lbp) as well as of toll-like receptors (Tlr) 1-9 in liver tissue were assessed. RESULTS Pairwise comparisons of the microbial community in the small intestine showed differences between 2- and 24-, 15- and 24-, as well as 15- and 30-months old animals while Shannon's diversity, species richness and evenness indexes did not differ in both small and large intestine, respectively, between age groups. Concentrations of nitric oxide were significantly lower in small intestine of 15-, 24- and 30-months old mice compared to 2-months old mice while mRNA expression of the antimicrobial peptides defensin alpha 1 and lysozyme 1 was unchanged. In contrast, in liver tissue, older age of animals was associated with increasing inflammation and the development of fibrosis in 24- and 30-months old mice. Numbers of inflammatory foci and neutrophils in livers of 24- and 30-months old mice were significantly higher compared to 2-months old mice. These alterations were also associated with higher endotoxin levels in plasma as well as an increased mRNA expression of Lbp and Tlr1, Tlr2, Tlr4, Tlr6 and Tlr9 in livers in older mice. CONCLUSION Despite no consistent and robust changes of microbiota composition in small and/or large intestine of mice of different age were observed, our data suggest that alterations of markers of intestinal barrier function in small intestine are associated with an induction of several Tlrs and beginning hepatic inflammation in older mice and increase with age.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | | | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Richard Kehm
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Annika Höhn
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany; German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany; Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Christiane Frahm
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Otto Wilhelm Witte
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | | | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Pedreañez A, Mosquera-Sulbaran J, Muñoz N. SARS-CoV-2 infection represents a high risk for the elderly: analysis of pathogenesis. Arch Virol 2021; 166:1565-1574. [PMID: 33751241 PMCID: PMC7982908 DOI: 10.1007/s00705-021-05042-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023]
Abstract
As people get older, age-related alterations occur that lead to increased susceptibility to disease. In the current COVID-19 pandemic, older people are particularly susceptible to a SARS-CoV-2 infection developing into severe disease. The objective of this review was to examine the literature regarding factors that may explain the tendency of this population to develop severe COVID-19. Research articles considered in this review were searched for in EMBASE, PubMed, and Web of Science from December 2019 to December 2020. Citations were screened by two independent reviewers. Studies of the immune system in older individuals found alterations in both the adaptive and innate immune systems. The adaptive system is depressed in its functions, and the innate system is in a pro-inflammatory state that can lead to chronic disease. This pro-inflammatory state may be related to a severe course of disease in COVID-19. This review shows that the level of evidence supporting an association between immune alterations in the elderly and susceptibly to severe progression of SARS-CoV-2 infection is generally consistent. Preventive measures such as early antiviral treatment are of key importance for prevention of severe progression of COVID19.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Escuela de Bioanálisis, Departamento de Microbiología, Cátedra de Inmunología, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Jesus Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia,, Maracaibo, Venezuela
| | - Nelson Muñoz
- Facultad de Ciencias de la Salud, Universidad Nacional del Chimborazo, Riobamba, Ecuador
| |
Collapse
|
33
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
34
|
Lu W, He F, Lin Z, Liu S, Tang L, Huang Y, Hu Z. Dysbiosis of the endometrial microbiota and its association with inflammatory cytokines in endometrial cancer. Int J Cancer 2020; 148:1708-1716. [PMID: 33285000 DOI: 10.1002/ijc.33428] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
The underlying molecular mechanisms involved in the pathogenesis of endometrial cancer (EC) are still not well understood. Our goal was to investigate the composition of the endometrial microbiota and the association with inflammatory cytokines in EC. Endometrial microbiota profiles of women with EC (n = 25) and benign uterine lesions (BUL, n = 25) were assessed by 16S ribosomal RNA gene amplicon sequencing. The expression levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-17 (IL-17) mRNA and protein in the endometrial tissues of the two groups were determined by real-time quantitative polymerase chain reaction and Western blot, respectively. There were significant differences in alpha diversity based on the observed operational taxonomic units (P = .002), Pielou evenness (P = .001), and Shannon index (P < .001) between EC and BUL groups. Significant differences were also found in Bray-Curtis (P = .001) and unweighted UniFrac (P = .001) beta diversity measures between the two groups. At the genus level, Micrococcus was more abundant in the EC group. Pseudoramibacter_Eubacterium, Rhodobacter, Vogesella, Bilophila, Rheinheimera, and Megamonas were enriched in the BUL group. There were no differences in IL-8 and IL-17 protein levels between the two groups, except IL-6 protein levels. However, the mRNA expression levels of IL-6, IL-8, and IL-17 were significantly different. Moreover, the relative abundances of Micrococcus was positively correlated with IL-6, and IL-17 mRNA levels. In conclusion, our results suggested that dysbiosis of endometrial microbiota and the inflammatory cytokines were associated with Micrococcus in EC patients, which might be useful for exploration of the mechanism between the endometrial microbiota and inflammatory responses in future studies.
Collapse
Affiliation(s)
- Wanting Lu
- Department of Hospital Infection Control, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China.,Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fei He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Shuang Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Li Tang
- Department of Hospital Infection Control, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yuxiu Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
He W, Luo Y, Liu JP, Sun N, Guo D, Cui LL, Zheng PP, Yao SM, Yang JF, Wang H. Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite, is Associated with Frailty in Older Adults with Cardiovascular Disease. Clin Interv Aging 2020; 15:1809-1820. [PMID: 33061331 PMCID: PMC7534046 DOI: 10.2147/cia.s270887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Our study aimed to explore the association between trimethylamine N-oxide and frailty in older adults with cardiovascular disease. Patients and Methods This cross-sectional study analyzed a total of 451 people aged 65 years or older who underwent comprehensive geriatric assessments. Frailty status was determined using a frailty index constructed with 48 variables according to the cumulative deficits model. Physical frailty and cognitive frailty were also assessed in detail. Fasting plasma TMAO was measured by mass spectrometry. Results The proportion of frail subjects was 29.9% (135/451). Plasma TMAO levels were significantly higher in frail patients than in nonfrail individuals (4.04 [2.84–7.01] vs 3.21 [2.13–5.03] µM; p<0.001). Elevated plasma TMAO levels were independently associated with the likelihood of frailty (OR 2.12, 95% CI 1.01–4.38, p=0.046). Dose–response analysis revealed a linear association between the TMAO concentration and the OR for frailty. A 2-unit increase in TMAO was independently correlated with physical frailty (OR 1.23, 95% CI 1.08–1.41, p for trend 0.002) and cognitive frailty (OR 1.21, 95% CI 1.01–1.45, p for trend 0.04). Conclusion Elevated circulating TMAO levels are independently associated with frailty among older adults with cardiovascular disease.
Collapse
Affiliation(s)
- Wei He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Yao Luo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jun-Peng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Ning Sun
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Di Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Ling-Ling Cui
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Pei-Pei Zheng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Si-Min Yao
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
36
|
Parks EE, Logan S, Yeganeh A, Farley JA, Owen DB, Sonntag WE. Interleukin 6 reduces allopregnanolone synthesis in the brain and contributes to age-related cognitive decline in mice. J Lipid Res 2020; 61:1308-1319. [PMID: 32669383 PMCID: PMC7529050 DOI: 10.1194/jlr.ra119000479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cognitive decline with age is a harmful process that can reduce quality of life. Multiple factors have been established to contribute to cognitive decline, but the overall etiology remains unknown. Here, we hypothesized that cognitive dysfunction is mediated, in part, by increased levels of inflammatory cytokines that alter allopregnanolone (AlloP) levels, an important neurosteroid in the brain. We assessed the levels and regulation of AlloP and the effects of AlloP supplementation on cognitive function in 4-month-old and 24-month-old male C57BL/6 mice. With age, the expression of enzymes involved in the AlloP synthetic pathway was decreased and corticosterone (CORT) synthesis increased. Supplementation of AlloP improved cognitive function. Interestingly, interleukin 6 (IL-6) infusion in young animals significantly reduced the production of AlloP compared with controls. It is notable that inhibition of IL-6 with its natural inhibitor, soluble membrane glycoprotein 130, significantly improved spatial memory in aged mice. These findings were supported by in vitro experiments in primary murine astrocyte cultures, indicating that IL-6 decreases production of AlloP and increases CORT levels. Our results indicate that age-related increases in IL-6 levels reduce progesterone substrate availability, resulting in a decline in AlloP levels and an increase in CORT. Furthermore, our results indicate that AlloP is a critical link between inflammatory cytokines and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Eileen E Parks
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Julie A Farley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel B Owen
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
37
|
Jensen EA, Young JA, Mathes SC, List EO, Carroll RK, Kuhn J, Onusko M, Kopchick JJ, Murphy ER, Berryman DE. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm IGF Res 2020; 53-54:101333. [PMID: 32717585 PMCID: PMC7938704 DOI: 10.1016/j.ghir.2020.101333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Samuel C Mathes
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America
| | - Jaycie Kuhn
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Maria Onusko
- The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America
| | - John J Kopchick
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America; Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, OH, United States of America
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America.
| |
Collapse
|
38
|
Sári Z, Kovács T, Csonka T, Török M, Sebő É, Toth J, Tóth D, Mikó E, Kiss B, Szeőcs D, Uray K, Karányi Z, Kovács I, Méhes G, Árkosy P, Bai P. Fecal expression of Escherichia coli lysine decarboxylase (LdcC) is downregulated in E-cadherin negative lobular breast carcinoma. Physiol Int 2020; 107:349-358. [PMID: 32692716 DOI: 10.1556/2060.2020.00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
Abstract
Breast cancer is characterized by oncobiosis, the abnormal composition of the microbiome in neoplastic diseases. The biosynthetic capacity of the oncobiotic flora in breast cancer is suppressed, as suggested by metagenomic studies. The microbiome synthesizes a set of cytostatic and antimetastatic metabolites that are downregulated in breast cancer, including cadaverine, a microbiome metabolite with cytostatic properties. We set out to assess how the protein expression of constitutive lysine decarboxylase (LdcC), a key enzyme for cadaverine production, changes in the feces of human breast cancer patients (n = 35). We found that the fecal expression of Escherichia coli LdcC is downregulated in lobular cases as compared to invasive carcinoma of no special type (NST) cases. Lobular breast carcinoma is characterized by low or absent expression of E-cadherin. Fecal E. coli LdcC protein expression is downregulated in E-cadherin negative breast cancer cases as compared to positive ones. Receiver operating characteristic (ROC) analysis of LdcC expression in lobular and NST cases revealed that fecal E. coli LdcC protein expression might have predictive values. These data suggest that the oncobiotic transformation of the microbiome indeed leads to the downregulation of the production of cytostatic and antimetastatic metabolites. In E-cadherin negative lobular carcinoma that has a higher potential for metastasis formation, the protein levels of enzymes producing antimetastatic metabolites are downregulated. This finding represents a new route that renders lobular cases permissive for metastasis formation. Furthermore, our findings underline the role of oncobiosis in regulating metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Zs Sári
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - T Kovács
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - T Csonka
- 2Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - M Török
- 3Department of Pathology, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - É Sebő
- 4Kenézy Breast Center, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - J Toth
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - D Tóth
- 6Department of Surgery, Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc, 3526, Hungary
| | - E Mikó
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - B Kiss
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - D Szeőcs
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - K Uray
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zs Karányi
- 7Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - I Kovács
- 3Department of Pathology, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - G Méhes
- 2Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - P Árkosy
- 5Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - P Bai
- 1Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,8MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.,9Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
39
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Ahmadi S, Razazan A, Nagpal R, Jain S, Wang B, Mishra SP, Wang S, Justice J, Ding J, McClain DA, Kritchevsky SB, Kitzman D, Yadav H. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J Gerontol A Biol Sci Med Sci 2020; 75:e9-e21. [PMID: 32129462 PMCID: PMC7302182 DOI: 10.1093/gerona/glaa056] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aging-related illnesses are increasing and effective strategies to prevent and/or treat them are lacking. This is because of a poor understanding of therapeutic targets. Low-grade inflammation is often higher in older adults and remains a key risk factor of aging-related morbidities and mortalities. Emerging evidence indicates that abnormal (dysbiotic) gut microbiome and dysfunctional gut permeability (leaky gut) are linked with increased inflammation in older adults. However, currently available drugs do not treat aging-related microbiome dysbiosis and leaky gut, and little is known about the cellular and molecular processes that can be targeted to reduce leaky gut in older adults. Here, we demonstrated that metformin, a safe Food and Drug Administration-approved antidiabetic drug, decreased leaky gut and inflammation in high-fat diet-fed older obese mice, by beneficially modulating the gut microbiota. In addition, metformin increased goblet cell mass and mucin production in the obese older gut, thereby decreasing leaky gut and inflammation. Mechanistically, metformin increased the goblet cell differentiation markers by suppressing Wnt signaling. Our results suggest that metformin can be used as a regimen to prevent and treat aging-related leaky gut and inflammation, especially in obese individuals and people with western-style high-fat dietary lifestyle, by beneficially modulating gut microbiome/goblet cell/mucin biology.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Atefeh Razazan
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shalini Jain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jamie Justice
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jingzhong Ding
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen B Kritchevsky
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dalane Kitzman
- Department of Internal Medicine – Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
41
|
Sun Y, Baptista LC, Roberts LM, Jumbo-Lucioni P, McMahon LL, Buford TW, Carter CS. The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. J Gerontol A Biol Sci Med Sci 2020; 75:1242-1250. [PMID: 31811292 PMCID: PMC7302188 DOI: 10.1093/gerona/glz281] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Declining cognitive functions in older individuals have enormous emotional, clinical, and public health consequences. Thus, therapeutics for preserving function and keeping older adults living independently are imperative. Aging is associated dysbiosis, defined as a loss of number and diversity in gut microbiota, which has been linked with various aspects of cognitive functions. Therefore, the gut microbiome has the potential to be an important therapeutic target for symptoms of cognitive impairment. In this review, we summarize the current literature regarding the potential for gut-targeted therapeutic strategies for prevention/treatment of the symptoms of cognitive impairment. Specifically, we discuss four primary therapeutic strategies: wild-type and genetically modified probiotics, fecal microbiota transplantation, physical exercise, and high-fiber diets and specifically link these therapies to reducing inflammation. These strategies may hold promise as treatment paradigm symptoms related to cognitive impairment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liliana C Baptista
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa M Roberts
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patricia Jumbo-Lucioni
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Homewood, Alabama
| | - Lori L McMahon
- Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental, and Integrative Biology, School of Medicine.,Comprehensive Neuroscience Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas W Buford
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine.,Integrative Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
42
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 590] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
43
|
Buford TW, Sun Y, Roberts LM, Banerjee A, Peramsetty S, Knighton A, Verma A, Morgan D, Torres GE, Li Q, Carter CS. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. GeroScience 2020; 42:1307-1321. [PMID: 32451847 PMCID: PMC7525634 DOI: 10.1007/s11357-020-00196-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
To (1) investigate the efficacy of multiple doses of an orally delivered probiotic bacteria Lactobacillus paracasei (LP) modified to express angiotensin (1-7) (LP-A) in altering physiologic parameters relevant to the gut-brain axis in older rats and to (2) compare this strategy with subcutaneous delivery of synthetic Ang(1-7) peptide on circulating Ang(1-7) concentrations and these gut-brain axis parameters. Male 24-month-old F344BN rats received oral gavage of LP-A, or subcutaneous injection of Ang(1-7) for 0×, 1×, 3×, or 7×/week over 4 weeks. Circulating RAS analytes, inflammatory cytokines, and tryptophan and its downstream metabolites were measured by ELISA, electrochemiluminescence, and LC-MS respectively. Microbiome taxonomic analysis of fecal samples was performed via 16S-based PCR. Inflammatory and tryptophan-related mRNA expression was measured in colon and pre-frontal cortex. All dosing regimens of LP-A induced beneficial changes in fecal microbiome including overall microbiota community structure and α-diversity, while the 3×/week also significantly increased expression of the anti-inflammatory species Akkermansia muciniphila. The 3×/week also increased serum serotonin and the neuroprotective analyte 2-picolinic acid. In the colon, LP-A increased quinolinate phosphoribosyltransferase expression (1×/week) and increased kynurenine aminotransferase II (1× and 3×/week) mRNA expression. LP-A also significantly reduced neuro-inflammatory gene expression in the pre-frontal cortex (3×/week: COX2, IL-1β, and TNFα; 7×/week: COX2 and IL-1β). Subcutaneous delivery of Ang(1-7) increased circulating Ang(1-7) and reduced angiotensin II, but most gut-brain parameters were unchanged in response. Oral-but not subcutaneous-Ang(1-7) altered physiologic parameters related to gut-brain axis, with the most effects observed in 3×/week oral dosing regimen in older rats.
Collapse
Affiliation(s)
- Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Yi Sun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Lisa M. Roberts
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Anisha Banerjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sujitha Peramsetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Anthony Knighton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Amrisha Verma
- Department of Ophthalmology, University of Florida, Gainesville, FL USA
| | - Drake Morgan
- Department of Psychiatry, University of Florida, Gainesville, FL USA
| | - Gonzalo E. Torres
- Department of Molecular, Cellular, and Biomedical Sciences, City College of New York, New York, NY USA
| | - Qiuhong Li
- Department of Ophthalmology, University of Florida, Gainesville, FL USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
44
|
Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, Mishra SP, Zhu X, Wang Z, Kavanagh K, Yadav H. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight 2020; 5:132055. [PMID: 32302292 DOI: 10.1172/jci.insight.132055] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a major risk factor of morbidity and mortality in older adults. Although its precise etiology is unknown, low-grade inflammation in older adults is commonly associated with increased intestinal epithelial permeability (leaky gut) and abnormal (dysbiotic) gut microbiota. The increasing older population and lack of treatments to reduce aging-related microbiota dysbiosis, leaky gut, and inflammation culminates in a rise in aging-related comorbidities, constituting a significant public health concern. Here, we demonstrate that a human-origin probiotic cocktail containing 5 Lactobacillus and 5 Enterococcus strains isolated from healthy infant gut prevented high-fat diet-induced (HFD-induced) microbiota dysbiosis, leaky gut, inflammation, metabolic dysfunctions, and physical function decline in older mice. Probiotic-modulated gut microbiota primarily reduced leaky gut by increasing tight junctions, which in turn reduced inflammation. Mechanistically, probiotics modulated microbiota in a way to increase bile salt hydrolase activity, which in turn increased taurine abundance in the gut that stimulated tight junctions and suppressed gut leakiness. Furthermore, in Caenorhabditis elegans, taurine increased life span, reduced adiposity and leaky gut, and enhanced physical function. The results suggest that such probiotic therapies could prevent or treat aging-related leaky gut and inflammation in the elderly.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bo Wang
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Shalini Jain
- Department of Internal Medicine-Endocrinology and Metabolism.,Mouse Metabolic Phenotyping Core
| | - Atefeh Razazan
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Xuewei Zhu
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, and
| | - Zhan Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kylie Kavanagh
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Sciences, University of Tasmania, Hobart, Australia
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Microbiology and Immunology, and
| |
Collapse
|
45
|
Comparison of serum microbiome composition in bipolar and major depressive disorders. J Psychiatr Res 2020; 123:31-38. [PMID: 32028208 DOI: 10.1016/j.jpsychires.2020.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
Bipolar disorder and major depressive disorder are debilitating psychiatric conditions which can be difficult to differentiate; however, recent studies have suggested that microbiome composition may be a potential tool in distinguishing between these two disorders. This study aimed to compare the serum microbiome composition of patients with bipolar disorder, major depressive disorder, and healthy controls. Serum samples were collected from 42 subjects with bipolar disorder, 30 with major depressive disorder, and 36 healthy controls. Bacterial DNA was isolated from bacteria-derived extracellular vesicles in the serum and then amplified and quantified with primers specific to the V3-V4 hypervariable region of the 16S rDNA gene. Sequence reads were clustered into operational taxonomic units and classified using the SILVA database. Alpha and beta diversity, individual taxa analysis based on phylum and genus, and functional pathways were compared. There was no statistical difference between alpha or beta diversity in patients with bipolar disorder and major depressive disorder; however, the Prevotella 2 and Ruminococcaceae UCG-002 genera were significantly more prevalent in patients with major depressive disorder than in either those with bipolar disorder or in healthy controls. Functional analysis of pathways revealed that the apoptosis function differed between all three groups. In conclusion, the Prevotella 2 and Ruminococcaceae UCG-002 genera were identified as potential candidates for distinguishing bipolar disorder and major depressive disorder. Further studies with larger sample sizes, longitudinal designs, and control for other various confounders are warranted.
Collapse
|
46
|
Baptista LC, Sun Y, Carter CS, Buford TW. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front Nutr 2020; 7:17. [PMID: 32219095 PMCID: PMC7078157 DOI: 10.3389/fnut.2020.00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive frailty is a geriatric condition defined by the coexistence of cognitive impairment and physical frailty. This "composite" aging phenotype is associated with a higher risk of several adverse health-related outcomes, including dementia. In the last decade, cognitive frailty has gained increased attention from the scientific community that has focused on understanding the clinical impact and the physiological and pathological mechanisms of development and on identifying preventive and/or rehabilitative therapeutic interventions. The emergence of gut microbiome in neural signaling increased the interest in targeting the gut-brain axis as a modulation strategy. Multiple studies on gastroenteric, metabolic, and neurodegenerative diseases support the existence of a wide bidirectional communication network of signaling mediators, e.g., bioactive lipids, that can modulate inflammation, gut permeability, microbiota composition, and the gut-brain axis. This crosstalk between the gut-brain axis, microbiome, and bioactive lipids may emerge as the basis of a promising therapeutic strategy to counteract cognitive frailty. In this review, we summarize the evidence in the literature regarding the link between the gut microbiome, brain, and several families of bioactive lipids. In addition, we also explore the applicability of several bioactive lipid members as a potential routes for therapeutic interventions to combat cognitive frailty.
Collapse
Affiliation(s)
- Liliana C. Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Christy S. Carter
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,Thomas W. Buford ; Twitter: @twbuford
| |
Collapse
|
47
|
Diaz-Castro J, Moreno-Fernandez J, Chirosa I, Chirosa LJ, Guisado R, Ochoa JJ. Beneficial Effect of Ubiquinol on Hematological and Inflammatory Signaling during Exercise. Nutrients 2020; 12:nu12020424. [PMID: 32041223 PMCID: PMC7071169 DOI: 10.3390/nu12020424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023] Open
Abstract
Strenuous exercise (any activity that expends six metabolic equivalents per minute or more causing sensations of fatigue and exhaustion to occur, inducing deleterious effects, affecting negatively different cells), induces muscle damage and hematological changes associated with high production of pro-inflammatory mediators related to muscle damage and sports anemia. The objective of this study was to determine whether short-term oral ubiquinol supplementation can prevent accumulation of inflammatory mediators and hematological impairment associated to strenuous exercise. For this purpose, 100 healthy and well-trained firemen were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol was two identical strenuous exercise tests with rest period between tests of 24 h. Blood samples were collected before supplementation (basal value) (T1), after supplementation (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5). Hematological parameters, pro- and anti-inflammatory cytokines and growth factors were measured. Red blood cells (RBC), hematocrit, hemoglobin, VEGF, NO, EGF, IL-1ra, and IL-10 increased in the ubiquinol group while IL-1, IL-8, and MCP-1 decreased. Ubiquinol supplementation during high intensity exercise could modulate inflammatory signaling, expression of pro-inflammatory, and increasing some anti-inflammatory cytokines. During exercise, RBC, hemoglobin, hematocrit, VEGF, and EGF increased in ubiquinol group, revealing a possible pro-angiogenic effect, improving oxygen supply and exerting a possible protective effect on other physiological alterations.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Biomedical Research Centre, Health-Sciencies Technological Park, Avenida del Conocimiento s/n, Armilla, E-18071 Granada, Spain; (J.M.-F.); (J.J.O.)
- Department of Physiology, University of Granada, E-18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-10-00 (ext. 20303)
| | - Jorge Moreno-Fernandez
- Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Biomedical Research Centre, Health-Sciencies Technological Park, Avenida del Conocimiento s/n, Armilla, E-18071 Granada, Spain; (J.M.-F.); (J.J.O.)
- Department of Physiology, University of Granada, E-18071 Granada, Spain
| | - Ignacio Chirosa
- Departament of Physical Education, University of Granada, E-18071 Granada, Spain; (I.C.); (L.J.C.)
| | - Luis Javier Chirosa
- Departament of Physical Education, University of Granada, E-18071 Granada, Spain; (I.C.); (L.J.C.)
| | - Rafael Guisado
- Faculty of Health Sciences, University of Granada, E-18071 Granada, Spain;
| | - Julio J. Ochoa
- Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Biomedical Research Centre, Health-Sciencies Technological Park, Avenida del Conocimiento s/n, Armilla, E-18071 Granada, Spain; (J.M.-F.); (J.J.O.)
- Department of Physiology, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
48
|
Abstract
In December 2019, in Wuhan, China, the novel coronavirus ‘severe acute respiratory syndrome 2’ (SARS-CoV-2) was discovered as the cause of a pneumonia-like illness and subsequently named coronavirus disease 2019 (COVID-19). COVID-19 spread and is now a global pandemic. With few exceptions, countries in the Northern hemisphere have higher mortality rates from COVID-19. This may be due to an increased prevalence of older people in Northern Europe at higher risk of having cardio-pulmonary and metabolic comorbidities as well as hypovitaminosis D. With increasing age, immunosenescence and ‘inflammaging’ lead to impaired and maladaptive immune responses to SARS-CoV-2 infections, contributing to the enhanced prevalence of severe COVID-19 in older patients. The association of ageing with increased vitamin D deficiency, which is associated with cardiovascular risk factors and disease and worse prognosis in COVID-19 infection, is discussed. Considerable experimental evidence demonstrates the immuno-modulatory properties of vitamin D, in particular, its role in regulating and suppressing the inflammatory cytokine response to viral respiratory infections links the importance of vitamin D sufficiency as a potential protective factor in COVID-19. There is an urgent need for prospective randomised studies to examine whether hypovitaminosis D correlates with severity of COVID-19 disease and the actual benefit of repletion. Moreover, given what has been described as a ‘pandemic of vitamin D deficiency’, especially in Europe, and in the context of the SARS-CoV-2 contagion, the authors support the call for public health doctors and physicians, with support from Governments, to prioritise and strengthen recommendations on vitamin D intake and supplementation.
Collapse
|
49
|
Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol 2019; 10:1245. [PMID: 31920905 PMCID: PMC6915094 DOI: 10.3389/fneur.2019.01245] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Parkinson's disease (PD) is the most common movement disorder affecting up to 1% of the population above the age of 60 and 4–5% of those above the age of 85. Little progress has been made on efforts to prevent disease development or halt disease progression. Diet has emerged as a potential factor that may prevent the development or slow the progression of PD. In this review, we discuss evidence for a role for the intestinal microbiome in PD and how diet-associated changes in the microbiome may be a viable approach to prevent or modify disease progression. Methods: We reviewed studies demonstrating that dietary components/foods were related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome in PD patients including abnormal shifts in the intestinal microbiota composition (i.e., dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms by which the microbiota can influence PD including the NLRP3 inflammasome, insulin resistance, mitochondrial function, vagal nerve signaling. Results: The PD-associated microbiome is associated with decreased production of SCFA and increased LPS and it is believed that these changes may contribute to the development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and the Western diet is associated with increased risk for PD whereas the Mediterranean diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may be the consequence of changes in the relative abundance of SCFA-producing or LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin resistance, and mitochondrial dysfunction, and the production of factors such as glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well as intestinal gluconeogenesis. Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation of neuroinflammation in PD including several new mechanisms. We conclude with the need for clinical trials in PD patients to test this model for beneficial effects of Mediterranean based high fiber diets.
Collapse
Affiliation(s)
- Aeja Jackson
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Maliha Shaikh
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Phillip A Engen
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Vivian Ramirez
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Graduate College of Rush University, Chicago, IL, United States
| |
Collapse
|
50
|
Lim MY, Song EJ, Kang KS, Nam YD. Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience 2019; 41:935-944. [PMID: 31659582 DOI: 10.1007/s11357-019-00121-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022] Open
Abstract
Age-related changes in human gut microbiota composition have been reported, and such changes might be influenced by the intake of nutrients or diets. To investigate the effects of aging on the gut microbiota independent of nutrient effects, we analyzed the gut microbiomes of 126 micro-pigs at a wide range of ages from newborns to 10 years old. The micro-pigs were reared in a constantly controlled environment. The diversity of the gut microbiome was found to continuously change with age. We also found associations between age and specific members and functions of the gut microbiome. Consistent with previous studies on the human gut microbiome, beneficial microbes including probiotic bacteria and short-chain fatty acid-producers decreased in older pigs, whereas Bacteroides increased with age. Based on the correlation network, Bacteroides seemed to have an important role in determining the relative abundances of other beneficial microbes. Our results suggest that maintaining beneficial gut microbes at a specific ratio corresponding to a certain age might contribute to a younger gut microbiome-age. Furthermore, due to similarities with the human system, micro-pigs are a useful animal model to elucidate the links between aging and the microbiome.
Collapse
Affiliation(s)
- Mi Young Lim
- Research Group of Healthcare, Korea Food Research Institute, Wanju, South Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju, South Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, South Korea
| | - Kyung Soo Kang
- Bio resource business unit, Apures Co., Ltd., Pyeongtaek, South Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, South Korea. .,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|