1
|
Alsabbagh R, LaVerde L, Chufar E, Willows JW, Townsend KL, Peters SB. Characterization of craniofacial tissue aging in genetically diverse HET3 male mice with longevity treatment of 17-alpha estradiol. Arch Oral Biol 2024; 171:106170. [PMID: 39742550 DOI: 10.1016/j.archoralbio.2024.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
OBJECTIVE The objective of our study was to 1) characterize craniofacial tissue aging in the new, genetically diverse HET3 mouse model; and 2) ascertain whether increased longevity with 17-alpha estradiol (17αE2) treatment in male mice also improved the health of these tissues. The HET3 mice are a four-strain cross preferred and recommended by the National Institute of Aging to identify longevity treatments and test their ability to reduce age-related pathologies. Previous reports demonstrated increased longevity in male, but not female, HET3 mice with 17αE2 administration. DESIGN Male mice were raised to approximately 8 months (young), 16 months (middle-aged), and 25 months (old). Middle-aged and old mice were administered a diet supplemented with 17αE2 for 19 weeks. We quantified craniofacial tissue volume and density changes with micro-computed tomography followed by histology. RESULTS Micro-CT showed that the alveolar bone volume and density did not change with age or treatment. Enamel volume and density changed with age but not treatment. Histology revealed region-specific degeneration of periodontal ligaments (PDLs) with age. Cellular cementum demonstrated age-related density decreases but no change in volume. However, cementum volume and density increased with 17αE2 treatment. Dentin volume increased with age whereas density decreased with age, which were attenuated by 17αE2 treatment. CONCLUSIONS The HET3 mice present an excellent model with which to study the heterogeneous nature of tooth aging and the effects of longevity interventions. We provide novel data on how 17αE2 improves healthspan by modifying age-related changes in the molar dentin and cementum of male mice.
Collapse
Affiliation(s)
- Rami Alsabbagh
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Leah LaVerde
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Emma Chufar
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Jake W Willows
- Department of Neurological Surgery, College of Medicine, Pelotonia Research Center, The Ohio State University, 2255 Kenny Road, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, Pelotonia Research Center, The Ohio State University, 2255 Kenny Road, Columbus, OH, USA
| | - Sarah B Peters
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
3
|
Nomura M, Murad NF, Madhavan SS, Mu WC, Eap B, Garcia TY, Aguirre CG, Verdin E, Ellerby L, Furman D, Newman JC. Ketogenic Diet Reduces Age-Induced Chronic Neuroinflammation in Mice. AGING BIOLOGY 2024; 2:20240038. [PMID: 39697898 PMCID: PMC11654834 DOI: 10.59368/agingbio.20240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The ketone body beta-hydroxybutyrate (BHB) is an acidic energy metabolite that is synthesized during periods of fasting or exercise. Our previous study demonstrated that an every other week cyclic ketogenic diet (Cyclic KD), which induces blood BHB levels similar to those observed during fasting, reduces midlife mortality and improves memory in aging mice. In addition to its canonical role as an energy metabolite, BHB regulates gene expression and inflammatory activation through non-energetic signaling pathways. The precise mechanisms by which BHB or KD affects brain function during aging remain incompletely understood. Using bulk RNA-sequencing (RNA-Seq), we examined whole brain gene expression of 12-month-old C57BL/6JN male mice fed KD for either one week or 14 months. While one-week KD increases some inflammatory gene expression, the 14-month Cyclic KD largely reduces age-induced neuroinflammatory gene expression. Next, a gene expression analysis of human primary brain cells (microglia, astrocytes, and neurons) using RNA-Seq revealed that BHB alone induces a mild level of inflammation in all three cell types. However, BHB inhibits the more pronounced inflammatory gene expression induced by lipopolysaccharide (LPS) in microglia. BHB exhibits a comparable inhibitory effect on LPS-induced inflammation in mouse primary microglia, which we used as an in vitro model to test and exclude known mechanisms by which BHB regulates inflammation and gene expression as responsible for this modulation of LPS-induced inflammatory gene expression. An acidic milieu resulting from BHB may be required for or contribute to the effect. Overall, we observe that BHB has the potential to attenuate the microglial response to inflammatory stimuli, such as LPS. This may contribute to an observed reduction in chronic inflammation in the brain following long-term Cyclic KD treatment in aging mice.
Collapse
Affiliation(s)
| | | | - Sidharth S. Madhavan
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wei-Chieh Mu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Brenda Eap
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Carlos Galicia Aguirre
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Lisa Ellerby
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, 1629, Pilar, Argentina
| | - John C. Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Division of Geriatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
5
|
Landis GN, Baybutt B, Das S, Fan Y, Olsen K, Yan K, Tower J. Mifepristone and rapamycin have non-additive benefits for life span in mated female Drosophila. Fly (Austin) 2024; 18:2419151. [PMID: 39440794 PMCID: PMC11514543 DOI: 10.1080/19336934.2024.2419151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The drugs mifepristone and rapamycin were compared for their relative ability to increase the life span of mated female Drosophila melanogaster. Titration of rapamycin indicated an optimal concentration of approximately 50 μM, which increased median life span here by average +81%. Meta-analysis of previous mifepristone titrations indicated an optimal concentration of approximately 466 μM, which increased median life span here by average +114%. Combining mifepristone with various concentrations of rapamycin did not produce further increases in life span, and instead reduced life span relative to either drug alone. Assay of maximum midgut diameter indicated that rapamycin was equally efficacious as mifepristone in reducing mating-induced midgut hypertrophy. The mito-QC mitophagy reporter is a previously described green fluorescent protein (GFP)-mCherry fusion protein targeted to the outer mitochondrial membrane. Inhibition of GFP fluorescence by the acidic environment of the autophagolysosome yields an increased red/green fluorescence ratio indicative of increased mitophagy. Creation of a multi-copy mito-QC reporter strain facilitated assay in live adult flies, as well as in dissected midgut tissue. Mifepristone was equally efficacious as rapamycin in activating the mito-QC mitophagy reporter in the adult female fat-body and midgut. The data suggest that mifepristone and rapamycin act through a common pathway to increase mated female Drosophila life span, and implicate increased mitophagy and decreased midgut hypertrophy in that pathway.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Britta Baybutt
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shoham Das
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yijie Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kate Olsen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karissa Yan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Moka MK, George M, Sriram DK. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res 2024; 27:220-233. [PMID: 39162996 DOI: 10.1089/rej.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging is an inevitable biological process that significantly impacts human health, leading to a decline in cellular function and an increase in cellular damage. This study elucidates the burgeoning potential of antiaging pharmaceuticals in mitigating the thriving burden of chronic conditions linked to advancing age. It underscores the pivotal role of these pharmacotherapeutic agents in fostering longevity free from debilitating age-related afflictions, notably cardiovascular disorders, neoplastic processes, and neurodegenerative pathologies. While commendable strides have been made evident in preclinical models, it is crucial to thoroughly investigate their effectiveness and safety in human groups. In addition, ethical concerns about fair access, societal impacts, and careful resource distribution are significant in discussions about developing and using antiaging medications. By approaching the development and utilization of antiaging medications with diligence and foresight, we can strive toward a future where individuals can enjoy extended lifespans free from the debilitating effects of age-related ailments.
Collapse
Affiliation(s)
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, India
| |
Collapse
|
7
|
Zaidalkilani AT, Al-Kuraishy HM, Fahad EH, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, Al-Farga A, Batiha GES. Autophagy modulators in type 2 diabetes: A new perspective. J Diabetes 2024; 16:e70010. [PMID: 39676616 DOI: 10.1111/1753-0407.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder caused by defective insulin signaling, insulin resistance, and impairment of insulin secretion. Autophagy is a conserved lysosomal-dependent catabolic cellular pathway involved in the pathogenesis of T2D and its complications. Basal autophagy regulates pancreatic β-cell function by enhancing insulin release and peripheral insulin sensitivity. Therefore, defective autophagy is associated with impairment of pancreatic β-cell function and the development of insulin rersistance (IR). However, over-activated autophagy increases apoptosis of pancreatic β-cells leading to pancreatic β-cell dysfunction. Hence, autophagy plays a double-edged sword role in T2D. Therefore, the use of autophagy modulators including inhibitors and activators may affect the pathogenesis of T2D. Hence, this review aims to clarify the potential role of autophagy inhibitors and activators in T2D.
Collapse
Affiliation(s)
- Ayah Talal Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Esraa H Fahad
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Wuppertal, Germany
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science University of Jeddah, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira, Egypt
| |
Collapse
|
8
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Marín Penella G. The Epistemic Policies of Anti-Ageing Medicines in the European Union. HEALTH CARE ANALYSIS 2024:10.1007/s10728-024-00497-9. [PMID: 39560904 DOI: 10.1007/s10728-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Anti-ageing medicines are products intended to extend lifespan and healthspan in humans that have a good potential use in public health policies. In the European Union, their development, production and consumption are dependent on regulatory science performed by the European Medicines Agency and its associated epistemic policies. They impose, among other things, an unfavourable burden of proof, a strict standard of proof and meta-methodological constrictions related to some theoretical issues. This results in a distribution of errors that tends to reduce false positives while increasing false negatives, leading to a set of social consequences that are generally accepted when the focus is placed on conventional medicines. However, when the same epistemic policies are applied to anti-ageing medicines, the distribution of errors is imbalanced, and undesirable outcomes like research discouragement and waiting time extensions appear. Three possible strategies that policymakers could implement to unblock the situation are presented for future reflection: the consideration of ageing as a disease, the application of methodological asymmetry and the use of biomarkers during clinical research.
Collapse
Affiliation(s)
- Guillermo Marín Penella
- Department of Philosophy and Social Work, Faculty of Philosophy and Letters, University of the Balearic Islands, Carretera de Valldemossa Km. 7, 5, Palma de Mallorca, 07071, Spain.
| |
Collapse
|
11
|
Selvarani R, Nguyen HM, Pazhanivel N, Raman M, Lee S, Wolf RF, Deepa SS, Richardson A. The role of inflammation induced by necroptosis in the development of fibrosis and liver cancer in novel knockin mouse models fed a western diet. GeroScience 2024:10.1007/s11357-024-01418-3. [PMID: 39514172 DOI: 10.1007/s11357-024-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Non-resolving, chronic inflammation (inflammaging) is believed to play an important role in aging and age-related diseases. The goal of this study was to determine if inflammation induced by necroptosis arising from the liver plays a role in chronic liver disease (CLD) and liver cancer in mice fed a western diet (WD). Necroptosis was induced in liver using two knockin (KI) mouse models that overexpress genes involved in necroptosis (Ripk3 or Mlkl) specifically in liver (i.e., hRipk3-KI and hMlkl-KI mice). These mice and control mice (not overexpressing Ripk3 or Mlkl) were fed a WD (high in fat, sucrose, and cholesterol) starting at 2 months of age for 3, 6, and 12 months. Feeding the WD induced necroptosis in the control mice, which was further elevated in the hRipk3-KI and hMlkl-KI mice and was associated with a significant increase in inflammation in the livers of the hRipk3-KI and hMlkl-KI mice compared to control mice fed the WD. Overexpressing Ripk3 or Mlkl significantly increased steatosis and fibrosis compared to control mice fed the WD. Mice fed the WD for 12 months developed liver tumors (hepatocellular adenomas): 28% of the control mice developing tumors compared to 62% of the hRipk3-KI and hMlkl-KI mice. The hRipk3-KI and hMlkl-KI mice showed significantly more and larger tumor nodules. Our study provides the first direct evidence that inflammation induced by necroptosis arising from hepatocytes can lead to the progression of hepatic steatosis to fibrosis in obese mice that eventually results in an increased incidence in hepatocellular adenomas.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Natesan Pazhanivel
- Department of Veterinary Pathology, TANUVAS, Chennai City, Tamilnadu, India
| | | | - Sunho Lee
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roman F Wolf
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Nunkoo VS, Cristian A, Jurcau A, Diaconu RG, Jurcau MC. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024; 12:2540. [PMID: 39595108 PMCID: PMC11591597 DOI: 10.3390/biomedicines12112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The impressive achievements made in the last century in extending the lifespan have led to a significant growth rate of elderly individuals in populations across the world and an exponential increase in the incidence of age-related conditions such as cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. To date, geroscientists have identified 12 hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, impaired nutrient sensing, cellular senescence, stem cell exhaustion, defective intercellular communication, chronic inflammation, and gut dysbiosis), intricately linked among each other, which can be targeted with senolytic or senomorphic drugs, as well as with more aggressive approaches such as cell-based therapies. To date, side effects seriously limit the use of these drugs. However, since rejuvenation is a dream of mankind, future research is expected to improve the tolerability of the available drugs and highlight novel strategies. In the meantime, the medical community, healthcare providers, and society should decide when to start these treatments and how to tailor them individually.
Collapse
Affiliation(s)
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
13
|
Brouwers SJ, Janssens GE, Spiegel T. Attitudes towards geroprotection: measuring willingness, from lifestyle changes to drug use. FRONTIERS IN AGING 2024; 5:1440661. [PMID: 39564522 PMCID: PMC11573782 DOI: 10.3389/fragi.2024.1440661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024]
Abstract
Introduction Geroprotection is an emerging field of research focused on devising strategies for combating the mechanisms of ageing. This study held three aims: 1) to explore the willingness to utilise five different geroprotective measures (i.e., exercise, supplements, intermittent fasting, metformin, and rapamycin use), 2) to explore whether the willingness differs based on respondents' sociodemographic characteristics and 3) to explore the association between trust in medical institutions and willingness to utilise different geroprotective measures. Methods A questionnaire was used to assess the attitudes of a sample of the Dutch population by way of both convenience and snowball sampling (final N = 178). Descriptive data and bivariate correlations were used in the analyses. Results Relatively high social acceptance of both exercise (66%) and supplements (82%) was found, whereas intermittent fasting (30%), metformin (26%), and rapamycin (10%) were less supported. Males were significantly more likely to be open to exercise and women to supplement use. Trust in medical institutions correlated significantly with the willingness to start metformin. Discussion Exploratory research can only provide a first step in understanding the social acceptance of geroprotection measures. Nevertheless, this study clearly illustrates more well-known measures promoted by public health policy are also more accepted and used. Public health campaigns could consider the sex differences in the uptake of exercise and supplements, and future research may want to delve deeper into the role of facilitating trust relations between medical institutions and the public in promoting the use of geroprotective drugs.
Collapse
Affiliation(s)
- Sam J Brouwers
- Department of Sociology, Utrecht University, Utrecht, Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tali Spiegel
- Department of Sociology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Pabis K, Barardo D, Gruber J, Sirbu O, Malavolta M, Selvarajoo K, Kaeberlein M, Kennedy BK. The impact of short-lived controls on the interpretation of lifespan experiments and progress in geroscience - Through the lens of the "900-day rule". Ageing Res Rev 2024; 101:102512. [PMID: 39332712 DOI: 10.1016/j.arr.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Although lifespan extension remains the gold standard for assessing interventions proposed to impact the biology of aging, there are important limitations to this approach. Our reanalysis of lifespan studies from multiple sources suggests that short lifespans in the control group exaggerate the relative efficacy of putative longevity interventions. Results may be exaggerated due to statistical effects (e.g. regression to the mean) or other factors. Moreover, due to the high cost and long timeframes of mouse studies, it is rare that a particular longevity intervention will be independently replicated by multiple groups. To facilitate identification of successful interventions, we propose an alternative approach particularly suitable for well-characterized inbred and HET3 mice. In our opinion, the level of confidence we can have in an intervention is proportional to the degree of lifespan extension above the strain- and species-specific upper limit of lifespan, which we can estimate from comparison to historical controls. In the absence of independent replication, a putative mouse longevity intervention should only be considered with high confidence when control median lifespans are close to 900 days or if the final lifespan of the treated group is considerably above 900 days. Using this "900-day rule" we identified several candidate interventions from the literature that merit follow-up studies.
Collapse
Affiliation(s)
- Kamil Pabis
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Diogo Barardo
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; NOVOS Labs, 100 Park Avenue, 16th Fl, New York, NY 10017, USA
| | - Jan Gruber
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Science Divisions, Yale-NUS College, Singapore 138527, Singapore
| | - Olga Sirbu
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona 60121, Italy
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore; Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore 117456, Singapore; School of Biological Sciences, Nanyang Technological University (NTU), 639798, Singapore
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
16
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Huang Y, Zhu S, Yao S, Zhai H, Liu C, Han JDJ. Unraveling aging from transcriptomics. Trends Genet 2024:S0168-9525(24)00214-2. [PMID: 39424502 DOI: 10.1016/j.tig.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.
Collapse
Affiliation(s)
- Yuanfang Huang
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shouxuan Zhu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuai Yao
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyang Liu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
18
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Casado-Hernandez I, Villegas-Valverde CA, Ventura-Carmenate Y, Rivero-Jimenez RA. Aging: Disease or "natural" process? A glimpse from regenerative medicine. Rev Esp Geriatr Gerontol 2024; 60:101543. [PMID: 39369641 DOI: 10.1016/j.regg.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 10/08/2024]
Abstract
We explore aging as a global phenomenon, questioning whether it constitutes a treatable condition or follows a natural course. Acknowledging its multifactorial nature, we delve into the challenges and opportunities inherent in this intricate biological process. The inclusion of old age in the 11th International Classification of Diseases sparks debate, categorizing it as a disease based on mechanistic explanations, blood-based biomarkers, and anti-aging products. Ethical dilemmas arise, emphasizing the difficulty of defining the transition from normal to pathological states during this process. We suggest that aging should be regarded as a treatable condition without necessarily labeling it a 'disease.' While anti-aging research unveils promising interventions like Metformin, Rapamycin, and cellular therapy, achieving biological immortality remains a formidable challenge. The future promises to prolong life and enhance quality by comprehensively understanding aging's implications for human health.
Collapse
Affiliation(s)
| | | | | | | | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; Yas Clinic Khalifa City Hospital, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates
| | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Tang Y, Yang S, Qiu Z, Guan L, Wang Y, Li G, Tu Y, Guo L. Rapamycin Attenuates H 2O 2-Induced Oxidative Stress-Related Senescence in Human Skin Fibroblasts. Tissue Eng Regen Med 2024; 21:1049-1059. [PMID: 39093548 PMCID: PMC11416443 DOI: 10.1007/s13770-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Oxidative stress plays an important role in the skin aging process. Rapamycin has been shown to have anti-aging effects, but its role in oxidative senescence of skin cells remains unclear. The aim of this study was to explore the effect of rapamycin on oxidative stress-induced skin cell senescence and to illustrate the mechanism. METHODS Primary human skin fibroblasts (HSFs) were extracted and a model of H2O2-induced oxidative senescence was constructed, and the effects of rapamycin on their value-added and migratory capacities were detected by CCK-8 and scratch assays. SA-β-gal was utilized to detect senescence, oxidatively closely related factors were also assessed. Gene and protein expressions of senescence, oxidative, and autophagy were detected by western blotting and quantitative-PCR. The data were analyzed by one-way analysis of variance. RESULTS Rapamycin (0.1 nmol/L for 48 h) promoted the proliferative and migration of H2O2-treated HSFs (p < 0.05), decreased senescent phenotypes SA-β-gal staining and the expression of P53, and MMP-1 proteins, and increased the expression level of COL1A-1 (p < 0.001). Rapamycin also enhanced the activities of SOD and HO-1, and effectively removed intracellular ROS, MDA levels (p < 0.05), in addition, autophagy-related proteins and genes were significantly elevated after rapamycin pretreatment (p < 0.001). Rapamycin upregulated the autophagy pathway to exert its protective effects. CONCLUSION Our findings indicate that rapamycin shields HSFs from H2O2-induced oxidative damage, the mechanism is related to the reduction of intracellular peroxidation and upregulation of autophagy pathway. Therefore, rapamycin has the potential to be useful in the investigation and prevention of signs of aging and oxidative stress.
Collapse
Affiliation(s)
- Yuyang Tang
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Sen Yang
- Department of Stomatology, Suining Central Hospital, Suining, China
| | - Zhen Qiu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Li Guan
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Yigui Wang
- Nursing School, Zunyi Medical University, Zunyi, China
| | - Guixin Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yuanyu Tu
- Department of Stomatology, Suining Central Hospital, Suining, China
| | - Lijuan Guo
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Department of Stomatology, Suining Central Hospital, Suining, China.
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Medical Cosmetology, Suining Central Hospital, Chuanshan District, No.127, West Desheng RD, Suining, 629000, Sichuan Province, China.
| |
Collapse
|
20
|
Wölfel EM, Fernandez-Guerra P, Nørgård MØ, Jeromdesella S, Kjær PK, Elkjær AS, Kassem M, Figeac F. Senescence of skeletal stem cells and their contribution to age-related bone loss. Mech Ageing Dev 2024; 221:111976. [PMID: 39111640 DOI: 10.1016/j.mad.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/18/2024]
Abstract
Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment. Furthermore, this review discusses potential strategies to target cellular senescence as an emerging approach to treat age-related bone loss.
Collapse
Affiliation(s)
- Eva M Wölfel
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Mikkel Ørnfeldt Nørgård
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Shakespeare Jeromdesella
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Pernille Kirkegaard Kjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Anna Sofie Elkjær
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| | - Moustapha Kassem
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark; Institute of Cellular and Molecular Medicine (ICMM), Panum Institute, University of Copenhagen, 3B Blegdamsvej, Copenhagen N 2200, Denmark.
| | - Florence Figeac
- Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Winsløws Vej 4, Odense C 5000, Denmark.
| |
Collapse
|
21
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2024:10.1038/s41433-024-03341-5. [PMID: 39289517 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
22
|
Zhang Z, Yang R, Zi Z, Liu B. A new clinical age of aging research. Trends Endocrinol Metab 2024:S1043-2760(24)00223-6. [PMID: 39227191 DOI: 10.1016/j.tem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Aging is a major risk factor for a variety of diseases, thus, translation of aging research into practical applications is driven by the unmet need for existing clinical therapeutic options. Basic and translational research efforts are converging at a critical stage, yielding insights into how fundamental aging mechanisms are used to identify promising geroprotectors or therapeutics. This review highlights several research areas from a clinical perspective, including senescent cell targeting, alleviation of inflammaging, and optimization of metabolism with endogenous metabolites or precursors. Refining our understanding of these key areas, especially from the clinical angle, may help us to better understand and attenuate aging processes and improve overall health outcomes.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhike Zi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China.
| |
Collapse
|
23
|
Liu XL, Hou YY, Su SH, Wu X, Wang ZF. Investigating TIP30-Mediated regulation of mTORC1 signaling as a therapeutic strategy for coxsackievirus B3-Induced viral myocarditis. Virology 2024; 597:110156. [PMID: 38981316 DOI: 10.1016/j.virol.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
This study aims to elucidate the role of TIP30 (30 KDa HIV-1 TAT-Interacting Protein) in the progression of coxsackievirus B3 (CVB3)-induced viral myocarditis. TIP30 knockout and wildtype mice were intraperitoneally infected with CVB3 and evaluated at day 7 post-infection. HeLa cells were transfected with TIP30 lentiviral particles and subsequently infected with CVB3 to evaluate viral replication, cellular pathogenesis, and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Deletion of the TIP30 gene heightened heart virus titers and mortality rates in mice with CVB3-induced myocarditis, exacerbating cardiac damage and fibrosis, and elevating pro-inflammatory factors level. In vitro experiments demonstrated the modulation of mTORC1 signaling by TIP30 during CVB3 infection in HeLa cells. TIP30 overexpression mitigated CVB3-induced cellular pathogenesis and VP1 expression, with rapamycin, an mTOR1 inhibitor, reversing these effects. These findings suggest TIP30 plays a critical protective role against CVB3-induced myocarditis by regulating mTORC1 signaling.
Collapse
Affiliation(s)
- Xi-Lei Liu
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Yu-Yan Hou
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Shu-Hong Su
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Xiao Wu
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China
| | - Zhi-Fang Wang
- Cardiovascular Medicine, Xinxiang Central Hospital, Xinxiang, 453000, Henan, China.
| |
Collapse
|
24
|
Dhokia V, Albati A, Smith H, Thomas G, Macip S. A second generation of senotherapies: the development of targeted senolytics, senoblockers and senoreversers for healthy ageing. Biochem Soc Trans 2024; 52:1661-1671. [PMID: 38940746 DOI: 10.1042/bst20231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Cellular senescence, a form of terminal cell cycle arrest, is as a key driver of organismal ageing and an important factor in age-related diseases. Insights into the senescent phenotype have led to the development of novel therapeutic strategies, collectively known as senotherapies, that aim to ameliorate the detrimental effects of senescent cell accumulation in tissues. The senotherapeutic field has rapidly evolved over the past decade, with clinical translation of the first drugs discovered currently underway. What began as the straightforward removal of senescent cells using repurposed compounds, which were given the name of senolytics, has grown into an expanding field that uses different state of the art approaches to achieve the goal of preventing the build-up of senescent cells in the body. Here, we summarize the emergence of a new generation of senotherapies, based on improving the efficacy and safety of the original senolytics by making them targeted, but also branching out into drugs that prevent senescence (senoblockers) or revert it (senoreversers).The use of nanotechnology, specific antibodies, cell-based approaches and restored immunosurveillance is likely to revolutionize the field of senotherapies in the near future, hopefully allowing it to realize its full clinical potential.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Amal Albati
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Hannah Smith
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Gethin Thomas
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| |
Collapse
|
25
|
Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst 2024; 15:738-752.e5. [PMID: 39173586 PMCID: PMC11380573 DOI: 10.1016/j.cels.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity-the creation of a stable fixed point in the "healthy" state of the cell and the "dynamic stabilization" of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Hetian Su
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
de la Cruz L, Bui D, Moreno CM, Vivas O. Sympathetic Motor Neuron Dysfunction is a Missing Link in Age-Associated Sympathetic Overactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559800. [PMID: 37808870 PMCID: PMC10557755 DOI: 10.1101/2023.09.27.559800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Derek Bui
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Claudia M. Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Howard Hughes Medical Institute
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Department of Pharmacology, University of Washington, Seattle, WA
| |
Collapse
|
27
|
Unfried M. Advancing longevity research through decentralized science. FRONTIERS IN AGING 2024; 5:1353272. [PMID: 39136005 PMCID: PMC11317406 DOI: 10.3389/fragi.2024.1353272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/26/2024] [Indexed: 08/15/2024]
Abstract
In an era marked by scientific stagnation, Decentralized Science (DeSci) challenges the inefficiencies of traditional funding and publishing systems. DeSci employs blockchain technology to address the misalignment of incentives in academic research, emphasizing transparency, rapid funding, and open-source principles. Centralized institutions have been linked to a deceleration of progress, which is acutely felt in the field of longevity science-a critical discipline as aging is the #1 risk factor for most diseases. DeSci proposes a transformative model where decentralized autonomous organizations (DAOs) facilitate community-driven funding, promoting high-risk, high-reward research. DeSci, particularly within longevity research, could catalyze a paradigm shift towards an equitable, efficient, and progressive scientific future.
Collapse
Affiliation(s)
- Maximilian Unfried
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Wang H, Divaris K, Pan B, Li X, Lim JH, Saha G, Barovic M, Giannakou D, Korostoff JM, Bing Y, Sen S, Moss K, Wu D, Beck JD, Ballantyne CM, Natarajan P, North KE, Netea MG, Chavakis T, Hajishengallis G. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 2024; 187:3690-3711.e19. [PMID: 38838669 PMCID: PMC11246233 DOI: 10.1016/j.cell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Sheng Yushou Center of Cell Biology and Immunology, Shanghai 200240, China
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gundappa Saha
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Danai Giannakou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jonathan M Korostoff
- Department of Periodontics, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Bing
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Souvik Sen
- Department of Neurology, University of South Carolina, Columbia, SC 29209, USA; Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29209, USA
| | - Kevin Moss
- Department of Biostatistics and Health Data Sciences, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D Beck
- Division of Comprehensive Oral Health-Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, LIMES, University of Bonn, 53115 Bonn, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Mahmoudi A, Meidany P, Almahmeed W, Jamialahmadi T, Sahebkar A. Stem Cell Therapy as a Potential Treatment of Non-Alcoholic Steatohepatitis-Related End-Stage Liver Disease: A Narrative Review. CURRENT STEM CELL REPORTS 2024; 10:85-107. [DOI: 10.1007/s40778-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 01/04/2025]
|
30
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
31
|
Onisiforou A, Zanos P, Georgiou P. Molecular signatures of premature aging in Major Depression and Substance Use Disorders. Sci Data 2024; 11:698. [PMID: 38926475 PMCID: PMC11208564 DOI: 10.1038/s41597-024-03538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Major depressive disorder (MDD) and substance-use disorders (SUDs) often lead to premature aging, increasing vulnerability to cognitive decline and other forms of dementia. This study utilized advanced systems bioinformatics to identify aging "signatures" in MDD and SUDs and evaluated the potential for known lifespan-extending drugs to target and reverse these signatures. The results suggest that inhibiting the transcriptional activation of FOS gene family members holds promise in mitigating premature aging in MDD and SUDs. Conversely, antidepressant drugs activating the PI3K/Akt/mTOR pathway, a common mechanism in rapid-acting antidepressants, may accelerate aging in MDD patients, making them unsuitable for those with comorbid aging-related conditions like dementia and Alzheimer's disease. Additionally, this innovative approach identifies potential anti-aging interventions for MDD patients, such as Deferoxamine, Resveratrol, Estradiol valerate, and natural compounds like zinc acetate, genistein, and ascorbic acid, regardless of comorbid anxiety disorders. These findings illuminate the premature aging effects of MDD and SUDs and offer insights into treatment strategies for patients with comorbid aging-related conditions, including dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus.
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
- Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
32
|
Li W, McIntyre RL, Schomakers BV, Kamble R, Luesink AH, van Weeghel M, Houtkooper RH, Gao AW, Janssens GE. Low-dose naltrexone extends healthspan and lifespan in C. elegans via SKN-1 activation. iScience 2024; 27:109949. [PMID: 38799567 PMCID: PMC11126937 DOI: 10.1016/j.isci.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.
Collapse
Affiliation(s)
- Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rebecca L. McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne H.G. Luesink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Jiménez-Loygorri JI, Viedma-Poyatos Á, Gómez-Sintes R, Boya P. Urolithin A promotes p62-dependent lysophagy to prevent acute retinal neurodegeneration. Mol Neurodegener 2024; 19:49. [PMID: 38890703 PMCID: PMC11186080 DOI: 10.1186/s13024-024-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
34
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
35
|
Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med 2024; 14:a041197. [PMID: 38052484 PMCID: PMC11146314 DOI: 10.1101/cshperspect.a041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
36
|
Farrelly C. Aging, Equality and the Human Healthspan. HEC Forum 2024; 36:187-205. [PMID: 36348214 PMCID: PMC9644010 DOI: 10.1007/s10730-022-09499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
John Davis (New Methuselahs: The Ethics of Life Extension, The MIT Press, Cambridge, 2018) advances a novel ethical analysis of longevity science that employs a three-fold methodology of examining the impact of life extension technologies on three distinct groups: the "Haves", the "Have-nots" and the "Will-nots". In this essay, I critically examine the egalitarian analysis Davis deploys with respect to its ability to help us theorize about the moral significance of an applied gerontological intervention. Rather than focusing on futuristic scenarios of radical life extension, I offer a rival egalitarian analysis that takes seriously (1) the health vulnerabilities of today's aging populations, (2) the health inequalities of the "aging status quo" and, (3) the prospects for the fair diffusion of an aging intervention over the not-so-distant future. Despite my reservations about Davis's focus on "life-extension" vs. increasing the human "healthspan", I agree with his central conclusion that an aging intervention would be, on balance, a good thing and that we should fund such research aggressively. But, I make an even stronger case and conjecture that an intervention that slows down the rate of molecular and cellular decline from the inborn aging process will likely be one of the most important public health advancements of the twenty-first century. This is so because aging is the most prevalent risk factor for chronic disease, frailty and disability, and it is estimated that there will be over 2 billion persons age > 60 by the year 2050.
Collapse
Affiliation(s)
- Colin Farrelly
- Department of Political Studies, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
37
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Alfatah M, Lim JJJ, Zhang Y, Naaz A, Cheng TYN, Yogasundaram S, Faidzinn NA, Lin JJ, Eisenhaber B, Eisenhaber F. Uncharacterized yeast gene YBR238C, an effector of TORC1 signaling in a mitochondrial feedback loop, accelerates cellular aging via HAP4- and RMD9-dependent mechanisms. eLife 2024; 12:RP92178. [PMID: 38713053 PMCID: PMC11076046 DOI: 10.7554/elife.92178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jolyn Jia Jia Lim
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sonia Yogasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nashrul Afiq Faidzinn
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- LASA – Lausitz Advanced Scientific Applications gGmbHWeißwasserGermany
- School of Biological Sciences (SBS), Nanyang Technological University (NTU)SingaporeSingapore
| |
Collapse
|
39
|
Jabbehdari S, Oganov AC, Rezagholi F, Mohammadi S, Harandi H, Yazdanpanah G, Arevalo JF. Age-related macular degeneration and neurodegenerative disorders: Shared pathways in complex interactions. Surv Ophthalmol 2024; 69:303-310. [PMID: 38000700 DOI: 10.1016/j.survophthal.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the elderly, and neurodegenerative disorders such as Alzheimer disease and Parkinson disease are debilitating conditions that affect millions worldwide. Despite the different clinical manifestations of these diseases, growing evidence suggests that they share common pathways in their pathogenesis including inflammation, oxidative stress, and impaired autophagy. In this review, we explore the complex interactions between AMD and neurodegenerative disorders, focusing on their shared mechanisms and potential therapeutic targets. We also discuss the current opportunities and challenges for developing effective treatments that can target these pathways to prevent or slow down disease progression in AMD. Some of the promising strategies that we explore include modulating the immune response, reducing oxidative stress, enhancing autophagy and lysosomal function, and targeting specific protein aggregates or pathways. Ultimately, a better understanding of the shared pathways between AMD and neurodegenerative disorders may pave the way for novel and more efficacious treatments.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Fateme Rezagholi
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Banse SA, Sedore CA, Johnson E, Coleman-Hulbert AL, Onken B, Hall D, Jackson EG, Huynh P, Foulger AC, Guo S, Garrett T, Xue J, Inman D, Morshead ML, Plummer WT, Chen E, Bhaumik D, Chen MK, Harinath G, Chamoli M, Quinn RP, Falkowski R, Edgar D, Schmidt MO, Lucanic M, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain-specific lifespan and health effects in Caenorhabditis nematodes. GeroScience 2024; 46:2239-2251. [PMID: 37923874 PMCID: PMC10828308 DOI: 10.1007/s11357-023-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
Collapse
Affiliation(s)
- Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | | | - Brian Onken
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - David Hall
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - E Grace Jackson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Phu Huynh
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anna C Foulger
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Suzhen Guo
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theo Garrett
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jian Xue
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Delaney Inman
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | | | - W Todd Plummer
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Michelle K Chen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Manish Chamoli
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Rose P Quinn
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Ron Falkowski
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Edgar
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Madeline O Schmidt
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Lucanic
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute On Aging, Bethesda, MD, 20892-9205, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
42
|
Kang HG, Park H, Myong GE, Kim WJ, Mun CE, Kim CR, You CY, Kim SK, Park MS, Park SI. Beneficial Effect of Rapamycin on Liver Fibrosis in a Mouse Model (C57bl/6 Mouse). Transplant Proc 2024; 56:701-704. [PMID: 38548510 DOI: 10.1016/j.transproceed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Liver fibrosis is a chronic inflammatory disease that progresses and has a high mortality rate. This study was performed to investigate the protective effect of rapamycin on experimentally induced chronic liver injury in mice models using both biochemical parameters of liver function enzymes. METHODS Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF with the treatment of rapamycin group, n = 6; [4] the LF with the treatment of silimaryn, n = 6. RESULTS In the group receiving oral administration of rapamycin, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine were found to significantly decrease compared to the liver fibrosis group. Rapamycin, in the orally administered group, demonstrated a statistically significant decrease in the expression of interleukin (IL) 10, IL-1B, inducible nitric oxide synthase, and tumor necrosis factor alpha compared to the liver fibrosis group. CONCLUSIONS In this study, we explored the potential therapeutic effects of rapamycin on liver fibrosis in an animal model.
Collapse
Affiliation(s)
- Hyun Goo Kang
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Heesun Park
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Ga Eun Myong
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Woo Jeong Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Eun Mun
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Rin Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chae Yeon You
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Min Su Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang-Il Park
- Department of Optometry, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
43
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
45
|
Farrelly C. "Post-Protean" Public Health and the Geroscience Hypothesis. Aging Dis 2024; 15:449-458. [PMID: 37548942 PMCID: PMC10917532 DOI: 10.14336/ad.2023.0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023] Open
Abstract
Despite unprecedented investments in public health and biomedical research, improvements in life expectancy and healthy life expectancy have stagnated in the United States. Part of the reason for this development can be traced back to the influence of "Protean" over "Post-Protean" public health, the names that can be given to two contrasting visions of public health advanced in the early twentieth century. Protean public health prescribes "waging a war" against disease and was successful in reducing the early-life mortality risks from infectious disease. But Protean public health has proven less effective in improving the quality of life of older persons. Post-Protean public health prioritizes the experimental method and research into the indirect methods of improving health. It articulated a vision of public heath that was given a more concrete specification by Alex Comfort in what is now referred to as the Geroscience Hypothesis. To improve the health prospects of aging populations the dominance of Protean public health must be relaxed, to enable the benefits of Post-Protean public health to be realized. Doing so means shifting public health's aspirations towards increasing the healthspan vs "saving lives" by extending the duration of time older persons can survive by managing the multi-morbidities of late life.
Collapse
Affiliation(s)
- Colin Farrelly
- Department of Political Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
46
|
Lu K, Ye X, Chen Y, Wang P, Gong M, Xuan B, Tang Z, Li M, Hou J, Peng K, Pei H. Research progress of drug eluting balloon in arterial circulatory system. Front Cardiovasc Med 2024; 11:1287852. [PMID: 38601040 PMCID: PMC11005962 DOI: 10.3389/fcvm.2024.1287852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
The arterial circulatory system diseases are common in clinical practice, and their treatment options have been of great interest due to their high morbidity and mortality. Drug-eluting balloons, as a new type of endovascular interventional treatment option, can avoid the long-term implantation of metal stents and is a new type of angioplasty without stents, so drug-eluting balloons have better therapeutic effects in some arterial circulatory diseases and have been initially used in clinical practice. In this review, we first describe the development, process, and mechanism of drug-eluting balloons. Then we summarize the current studies on the application of drug-eluting balloons in coronary artery lesions, in-stent restenosis, and peripheral vascular disease. As well as the technical difficulties and complications in the application of drug-eluting balloons and possible management options, in order to provide ideas and help for future in-depth studies and provide new strategies for the treatment of more arterial system diseases.
Collapse
Affiliation(s)
- Keji Lu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Xianglin Ye
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yaoxuan Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Meiting Gong
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Bing Xuan
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhaobing Tang
- Department of Rehabilitation, The General Hospital of Western Theater Command, Chengdu, China
| | - Meiling Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Chengdu, China
| | - Ke Peng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
47
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
48
|
Zheng L, He S, Wang H, Li J, Liu Y, Liu S. Targeting Cellular Senescence in Aging and Age-Related Diseases: Challenges, Considerations, and the Emerging Role of Senolytic and Senomorphic Therapies. Aging Dis 2024; 15:2554-2594. [PMID: 38421832 PMCID: PMC11567261 DOI: 10.14336/ad.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cellular senescence is characterized by the permanent arrest of cell proliferation and is a response to endogenous and exogenous stress. The continuous accumulation of senescent cells (SnCs) in the body leads to the development of aging and age-related diseases (such as neurodegenerative diseases, cancer, metabolic diseases, cardiovascular diseases, and osteoarthritis). In the face of the growing challenge of aging and age-related diseases, several compounds have received widespread attention for their potential to target SnCs. As a result, senolytics (compounds that selectively eliminate SnCs) and senomorphics (compounds that alter intercellular communication and modulate the behavior of SnCs) have become hot research topics in the field of anti-aging. In addition, strategies such as combination therapies and immune-based approaches have also made significant progress in the field of anti-aging therapy. In this article, we discuss the latest research on anti-aging targeting SnCs and gain a deeper understanding of the mechanism of action and impact of different anti-aging strategies on aging and age-related diseases, with the aim of providing more effective references and therapeutic ideas for clinical anti-aging treatment in the face of the ever-grave challenges of aging and age-related diseases.
Collapse
Affiliation(s)
- Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
49
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
50
|
Wezeman J, Darvas M, Postupna N, Klug J, Mangalindan RS, Keely A, Nguyen K, Johnson C, Rosenfeld M, Ladiges W. A drug cocktail of rapamycin, acarbose, and phenylbutyrate enhances resilience to features of early-stage Alzheimer's disease in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577437. [PMID: 38352353 PMCID: PMC10862773 DOI: 10.1101/2024.01.26.577437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The process of aging is defined by the breakdown of critical maintenance pathways leading to an accumulation of damage and its associated phenotypes. Aging affects many systems and is considered the greatest risk factor for a number of diseases. Therefore, interventions aimed at establishing resilience to aging should delay or prevent the onset of age-related diseases. Recent studies have shown a three-drug cocktail consisting of rapamycin, acarbose, and phenylbutyrate delayed the onset of physical, cognitive, and biological aging phenotypes in old mice. To test the ability of this drug cocktail to impact Alzheimer's disease (AD), an adeno-associated-viral vector model of AD was created. Mice were fed the drug cocktail 2 months prior to injection and allowed 3 months for phenotypic development. Cognitive phenotypes were evaluated through a spatial navigation learning task. To quantify neuropathology, immunohistochemistry was performed for AD proteins and pathways of aging. Results suggested the drug cocktail was able to increase resilience to cognitive impairment, inflammation, and AD protein aggregation while enhancing autophagy and synaptic integrity, preferentially in female cohorts. In conclusion, female mice were more susceptible to the development of early stage AD neuropathology and learning impairment, and more responsive to treatment with the drug cocktail in comparison to male mice. Translationally, a model of AD where females are more susceptible would have greater value as women have a greater burden and incidence of disease compared to men. These findings validate past results and provide the rationale for further investigations into enhancing resilience to early-stage AD by enhancing resilience to aging.
Collapse
Affiliation(s)
- Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA
| | - Jenna Klug
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Ruby Sue Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Addison Keely
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Kathryn Nguyen
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Chloe Johnson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|