1
|
Cong Y, Cui X, Shi Y, Pan X, Huang K, Geng Z, Xu P, Ge L, Zhu J, Xu J, Jia X. Tripartite-motif 3 represses ovarian cancer progression by downregulating lactate dehydrogenase A and inhibiting AKT signaling. Mol Cell Biochem 2024; 479:3405-3424. [PMID: 38367118 DOI: 10.1007/s11010-023-04920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/19/2023] [Indexed: 02/19/2024]
Abstract
The E3 ubiquitin ligase Tripartite-motif 3 (TRIM3) is known to play a crucial role in tumor suppression in various tumors through different mechanisms. However, its function and mechanism in ovarian cancer have yet to be elucidated. Our study aims to investigate the expression of TRIM3 in ovarian cancer and evaluate its role in the development of the disease. Our findings revealed a significant decrease in TRIM3 mRNA and protein levels in ovarian cancer tissues and cells when compared to normal ovarian epithelial tissues and cells. Furthermore, we observed a negative correlation between the protein level of TRIM3 and the FIGO stage, as well as a positive correlation with the survival of ovarian cancer patients. Using gain and loss of function experiments, we demonstrated that TRIM3 can inhibit cell proliferation, migration and invasion of the ovarian cancer cells in vitro, as well as suppress tumor growth in vivo. Mechanistic studies showed that TRIM3 interacts with lactate dehydrogenase A, a key enzyme in the glycolytic pathway, through its B-box and coiled-coil domains and induces its ubiquitination and proteasomal degradation, leading to the inhibition of glycolytic ability in ovarian cancer cells. RNA-sequencing analysis revealed significant alterations in the phosphatidylinositol signaling pathways upon TRIM3 overexpression. Additionally, overexpression of TRIM3 inhibited the phosphorylation of AKT. In conclusion, our study demonstrated that TRIM3 exerts a tumor-suppressive effect in ovarian cancer, at least partially, by downregulating LDHA and inhibiting the AKT signaling pathway, and thus leading to the inhibition of glycolysis and limiting the growth of ovarian cancer cells.
Collapse
Affiliation(s)
- Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xin Cui
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, 210004, Jiangsu, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China
| | - Jin Zhu
- Department of Epidemiology and Microbiology, Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123 Mochou Rd, Nanjing, 210004, Jiangsu, China.
| |
Collapse
|
2
|
Ma Q, Liu Y, Zhao H, Guo Y, Sun W, Hu R. Variation characteristics and clinical significance of TP53 in patients with myeloid neoplasms. Hematology 2024; 29:2387878. [PMID: 39140716 DOI: 10.1080/16078454.2024.2387878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives: MDS and AML characterized by TP53 variations have a poor prognosis in general. However, specifically, differences in prognosis have also been observed in patients with different TP53 variants and VAFs.Methods: Here, we retrospectively analyzed datasets of patients with MDS, MPN, and AML who underwent targeted DNA sequencing from February 2018 to December 2023, and patients with reportable TP53 variations were screened. Demographic data and clinical data were collected, and the relationship between TP53 alterations and patient prognosis (AML/MDS) was analyzed using the cBioPortal and Kaplan-Meier Plotter databases. The relationship between the VAFs of TP53 variations and prognoses was analyzed using data from the present study.Results: Sixty-two variants of TP53 were identified in 58 patients. We mainly identified single mutations (79.31%, 46/58), followed by double (17.24%, 10/58) and triple (3.45%, 2/58) mutations. The variations were mainly enriched in exon4-exon8 of TP53. Missense (72.58%, 45/62) mutations were the main type of variations, followed by splice-site (9.68%, 6/62), nonsense (9.68%, 6/62), frameshift (6.45%, 4/62), and indel (1.61%, 1/62) mutations. In this study, p.Arg175His and p.Arg273His were high-frequency TP53 mutations, and DNMT3A and TET2 were commonly co-mutated genes in the three types of myeloid neoplasms; However, we reported some new TP53 variants in MPN that have not been found in the public database. Moreover, MDS or AML characterized by altered TP53 had a shorter OS than patients in the unaltered group (P<0.01), low TP53 mRNA levels were associated with shorter OS in patients with AML (P<0.01). Data from our center further found higher VAF (≥10%) associated with shorter OS in patients with MDS (median 2.75 vs. 24 months) (P<0.01).Conclusion: TP53 mutations are mainly enriched in exon4-exon8, are missense and single mutations in myeloid neoplasms, and are associated with poor prognosis of MDS/AML, and higher VAF (≥10%) of TP53 mutations associated with a shorter OS in patients with MDS.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan Liu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong Zhao
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yixian Guo
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ronghua Hu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Hu Q, Cao Y, Yao L, Liu H, Wen Y, Bao Y, Zhang S, Lv C, Zhao GS. FOSL1 promotes stem cell‑like characteristics and anoikis resistance to facilitate tumorigenesis and metastasis in osteosarcoma by targeting SOX2. Int J Mol Med 2024; 54:94. [PMID: 39219279 PMCID: PMC11374145 DOI: 10.3892/ijmm.2024.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer‑related death in osteosarcoma (OS). OS stem cells (OSCs) and anoikis resistance are considered to be essential for tumor metastasis formation. However, the underlying mechanisms involved in the maintenance of a stem‑cell phenotype and anoikis resistance in OS are mostly unknown. Fos‑like antigen 1 (FOSL1) is important in maintaining a stem‑like phenotype in various cancers; however, its role in OSCs and anoikis resistance remains unclear. In the present study, the dynamic expression patterns of FOSL1 were investigated during the acquisition of cancer stem‑like properties using RNA sequencing, PCR, western blotting and immunofluorescence. Flow cytometry, tumor‑sphere formation, clone formation assays, anoikis assays, western blotting and in vivo xenograft and metastasis models were used to further investigate the responses of the stem‑cell phenotype and anoikis resistance to FOSL1 overexpression or silencing in OS cell lines. The underlying molecular mechanisms were evaluated, focusing on whether SOX2 is crucially involved in FOSL1‑mediated stemness and anoikis in OS. FOSL1 expression was observed to be upregulated in OSCs and promoted tumor‑sphere formation, clone formation and tumorigenesis in OS cells. FOSL1 expression correlated positively with the expression of stemness‑related factors (SOX2, NANOG, CD117 and Stro1). Moreover, FOSL1 facilitated OS cell anoikis resistance and promoted metastases by regulating the expression of apoptosis related proteins BCL2 and BAX. Mechanistically, FOSL1 upregulated SOX2 expression by interacting with the SOX2 promoter and activating its transcription. The results also showed that SOX2 is critical for FOSL1‑mediated stem‑like properties and anoikis resistance. The current findings indicated that FOSL1 is an important regulator that promotes a stem cell‑like phenotype and anoikis resistance to facilitate tumorigenesis and metastasis in OS by regulating the transcription of SOX2. Thus, FOSL1 might represent an attractive target for therapeutic interventions in OS.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Qin Hu
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Haoran Liu
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Yafeng Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shun Zhang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Guo-Sheng Zhao
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
4
|
Limones-Gonzalez JE, Aguilar Esquivel P, Vazquez-Santillan K, Castro-Oropeza R, Lizarraga F, Maldonado V, Melendez-Zajgla J, Piña-Sanchez P, Mendoza-Almanza G. Changes in the molecular nodes of the Notch and NRF2 pathways in cervical cancer tissues from the precursor stages to invasive carcinoma. Oncol Lett 2024; 28:522. [PMID: 39268158 PMCID: PMC11391250 DOI: 10.3892/ol.2024.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is a multifactorial disease characterized by the loss of control in the expression of genes known as cancer driver genes. Cancer driver genes trigger uncontrolled cell replication, which leads to the development of malignant tumors. A cluster of signal transduction pathways that contain cancer driver genes involved in cellular processes, such as cell proliferation, differentiation, apoptosis and dysregulated organ growth, are associated with cancer initiation and progression. In the present study, three signal transduction pathways involved in cervical cancer (CC) development were analyzed: The Hippo pathway (FAT atypical cadherin, yes-associated protein 1, SMAD4 and TEA domain family member 2), the Notch pathway [cellular-MYC, cAMP response element-binding binding protein (CREBBP), E1A-associated cellular p300 transcriptional co-activator protein and F-Box and WD repeat domain containing 7] and the nuclear factor erythroid 2-related factor 2 (NRF2) pathway [NRF2, kelch-like ECH-associated protein 1 (KEAP1), AKT and PIK3-catalytic subunit α]. Tumor samples from patients diagnosed with various stages of CC, including cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, in situ CC and invasive CC, were analyzed. The mRNA expression levels were analyzed using reverse transcription-quantitative PCR assays, whereas protein expression levels were assessed through immunohistochemical tissue microarrays. High mRNA expression levels of c-MYC and AKT and low expression levels of NRF2 and KEAP1 were associated with a decreased survival time of patients with CC. Additionally, increased expression levels of c-MYC were detected in the invasive CC stage. At the protein level, increased NRF2 expression levels were observed in all five stages of CC samples compared with those in the cancer-free control samples. AKT1 was found to be dysregulated in the CIN 1 and CIN 2 stages, PI3K in the in situ and invasive stages, and CREBBP in the CIN 3 and in situ stages. In summary, the present study demonstrated significant changes in proteins of the Notch and NRF2 pathways in CC. NRF2 was overexpressed in all cervical cancer stages (cervical intraepithelial neoplasia, in situ CC and invasive CC). The present study makes an important contribution to the possible biomarker proteins to be analyzed for the presence of premalignant and malignant lesions in the cervix.
Collapse
Affiliation(s)
| | - Perla Aguilar Esquivel
- Department of Pathology, Zacatecas General Hospital Luz González Cosío, Zacatecas 98160, Mexico
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Rosario Castro-Oropeza
- Molecular Oncology Laboratory, Oncology Research Unit, XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Floria Lizarraga
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Patricia Piña-Sanchez
- Molecular Oncology Laboratory, Oncology Research Unit, XXI Century National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Gretel Mendoza-Almanza
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
5
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, Tangudu NK, Uboveja A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. Mol Metab 2024; 89:102031. [PMID: 39304063 PMCID: PMC11462069 DOI: 10.1016/j.molmet.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Amanda J Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naveen Kumar Tangudu
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Apoorva Uboveja
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Katherine M Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Carron J, Coser LDO, Lima CSP, Lourenço GJ. The impact of ERP29 on the progression of pharyngeal squamous cell carcinoma. Sci Rep 2024; 14:25681. [PMID: 39465248 PMCID: PMC11514305 DOI: 10.1038/s41598-024-76210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
ERP29 gene encodes a chaperone protein critical for protein folding and secretion. Previous study linked ERP29 inhibition to an elevated risk of pharynx squamous cell carcinoma (PSCC) and reduced patients' survival. However, ERP29 role in PSCC progression remains unknown. Here, we investigated ERP29 impact on PSCC progression in cisplatin (CDDP)-sensitive (FaDu and LAU-2063), CDDP-treated (FaDu-CDDP), and CDDP-resistant (FaDu-R) cells. ERP29 silencing decreased necrosis and increased migration in CDDP-sensitive, treated, and resistant cells; and reduced E-cadherin and increased vimentin immunoexpression in CDDP-sensitive 3D-spheroids. During CDDP treatment, ERP29 silencing enhanced proliferation. In CDDP-sensitive cells, ERP29 silencing upregulated genes associated with WNT, MAPK, and PI3K/AKT signaling pathways while downregulating CASP9 expression. During CDDP treatment, ERP29 silencing downregulated MDM2 and CASP9 expression. In CDDP-resistant cells, ERP29 silencing upregulated SOS1, MAPK1, AKT1, ITGAV, and CCNE1, while downregulating KRAS, JUN, MDM2, and CASP9 expression. In addition, inhibition of microRNA miR-4421 increased ERP29 expression and decreased MAPK1, AKT1, and JUN expression in CDDP-sensitive cells, as well as SOS1, MAPK1, AKT1, and ITGAV in CDDP-resistant cells. Lower ERP29 and higher miR-4421 expressions were predictive of poor survival, suggesting a potential therapeutic use for miR-4421 inhibitors. Upon validation, these findings may contribute to targeted therapies for PSCC based on ensuring ERP29 expression.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil
| | - Lilian de Oliveira Coser
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil
- Department of Anesthesiology, Oncology and Radiology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, 50 Vital Brasil Street, Barão Geraldo, Campinas, São Paulo, 13083-888, Brazil.
| |
Collapse
|
7
|
Kozłowska-Tomczyk K, Borski N, Głód P, Gogola-Mruk J, Ptak A. PGRMC1 and PAQR4 are promising molecular targets for a rare subtype of ovarian cancer. Open Life Sci 2024; 19:20220982. [PMID: 39464509 PMCID: PMC11512499 DOI: 10.1515/biol-2022-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The heterogeneity of ovarian cancer (OC) has made developing effective treatments difficult. Nowadays, hormone therapy plays a growing role in the treatment of OC; however, hormone modulators have had only limited success so far. To provide a more rigorous foundation for hormonal therapy for different OC subtypes, the current study used a series of bioinformatics approaches to analyse the expression profiles of genes encoding membrane progesterone (PGRMC1, progestins and the adipoQ receptor [PAQR] family), and androgen (zinc transporter member 9 [ZIP9], OXER1) receptors. Our work investigated also their prognostic value in the context of OC. We found differences in expression of ZIP9 and OXER1 between different OC subtypes, as well as between patient tumour and normal tissues. Expression of mRNA encoding PAQR7 and PAQR8 in a panel of OC cell lines was below the qPCR detection limit and was downregulated in tumour tissue samples, whereas high expression of PGRMC1 and PAQR4 mRNA was observed in rare subtypes of OC cell lines. In addition, chemical inhibition of PGRMC1 reduced the viability of rare OCs represented by COV434 cells. In conclusion, PGRMC1 and PAQR4 are promising targets for anticancer therapy, particularly for rare subtypes of OC. These findings may reflect differences in the observed responses of various OC subtypes to hormone therapy.
Collapse
Affiliation(s)
- Kamila Kozłowska-Tomczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
8
|
Ungvari Z, Ungvari A, Fekete M, Kiss C, Győrffy B. Senescence-related genes as prognostic indicators in breast cancer survival. GeroScience 2024:10.1007/s11357-024-01384-w. [PMID: 39432147 DOI: 10.1007/s11357-024-01384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women worldwide, particularly affecting those in their later years. As the incidence of breast cancer increases with age, understanding the biological mechanisms that link aging and cancer becomes crucial. Cellular senescence, a hallmark of aging, plays a dual role in cancer by inhibiting tumorigenesis while also contributing to tumor progression through the senescence-associated secretory phenotype (SASP). This study aims to investigate the prognostic significance of senescence-related genes in breast cancer. We utilized the SenMayo gene list, a comprehensive set of senescence-related genes, to analyze gene expression data from a large cohort of breast cancer samples. The data was sourced from the Kaplan-Meier plotter, an integrated database that compiles gene expression information from multiple independent cohorts. Cox proportional hazards regression and false discovery rate (FDR) corrections were employed to evaluate the correlation between gene expression and survival outcomes, aiming to establish a prognostic signature. Our findings demonstrate that higher expression levels of senescence-related genes are significantly associated with improved survival, while lower expression levels correlate with shorter survival outcomes. These results suggest that senescence-related pathways play a protective role in breast cancer, potentially serving as valuable prognostic indicators. The identification of a prognostic signature based on senescence-related genes underscores the importance of cellular senescence in breast cancer progression and survival. Our study highlights the potential of senescence-related biomarkers in enhancing patient stratification and informing treatment strategies, contributing to the growing body of literature on the intersection of aging and cancer.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Monika Fekete
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Csaba Kiss
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
9
|
Dixcy Jaba Sheeba JM, Hegde S, Tamboli N, Nadig N, Keshavamurthy R, Ranganathan P. Gene expression signature of castrate resistant prostate cancer. Gene 2024; 925:148603. [PMID: 38788815 DOI: 10.1016/j.gene.2024.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Prostate gland is a highly androgen dependent gland and hence the first line of treatment for metastatic prostate cancer happens to be androgen ablation. This is achieved by multiple non-surgical methods. However, most of these cancers although respond well initially, become resistant to androgen ablation sooner or later. These cancers then become extremely aggressive and difficult to treat, thereby drastically affect the patient prognosis. Identification of a gene expression signature for castrate resistant prostate cancer may aid in identification of mechanisms responsible for castrate resistance, which in turn would help in better management of the disease. METHODS: Patient samples belonging to a. Control group; b. Castrate Sensitive group and c. Castrate Resistant group were collected. Gene expression profiling was performed on these samples using RNA-seq. Differentially expressed genes between control and castrate sensitive as well as control and castrate resistant groups were identified. This data was compared with data from The Cancer Genome Atlas (TCGA) in order to get relevance in prognosis. RESULTS: We have identified 481 differentially expressed genes between control and castrate sensitive groups; and 446 genes differentially expressed between control and castrate resistant groups. We have also identified 364 genes which are expressed in the castrate resistant group alone, which is of interest since these may have an implication in evolution of castrate resistance and also prognosis. When compared to prostate cancer data from TCGA, 763 genes were found in common to our dataset. With this, a CaS and CaR signature was defined. Using criteria such as overall survival, disease-free survival, progression-free survival and biochemical recurrence, we have identified genes that may have relevance in progression to castrate resistance and in prognosis. Functional annotation of these genes may give an insight into the mechanism of development of castrate resistance.
Collapse
Affiliation(s)
| | - Shraddha Hegde
- Centre for Human Genetics, Electronic City, Bengaluru, India
| | | | - Namratha Nadig
- Centre for Human Genetics, Electronic City, Bengaluru, India
| | | | | |
Collapse
|
10
|
Gaurav I, Thakur A, Zhang K, Thakur S, Hu X, Xu Z, Kumar G, Jaganathan R, Iyaswamy A, Li M, Zhang G, Yang Z. Peptide-Conjugated Vascular Endothelial Extracellular Vesicles Encapsulating Vinorelbine for Lung Cancer Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1669. [PMID: 39453005 PMCID: PMC11510406 DOI: 10.3390/nano14201669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is one of the major cancer types and poses challenges in its treatment, including lack of specificity and harm to healthy cells. Nanoparticle-based drug delivery systems (NDDSs) show promise in overcoming these challenges. While conventional NDDSs have drawbacks, such as immune response and capture by the reticuloendothelial system (RES), extracellular vesicles (EVs) present a potential solution. EVs, which are naturally released from cells, can evade the RES without surface modification and with minimal toxicity to healthy cells. This makes them a promising candidate for developing a lung-cancer-targeting drug delivery system. EVs isolated from vascular endothelial cells, such as human umbilical endothelial-cell-derived EVs (HUVEC-EVs), have shown anti-angiogenic activity in a lung cancer mouse model; therefore, in this study, HUVEC-EVs were chosen as a carrier for drug delivery. To achieve lung-cancer-specific targeting, HUVEC-EVs were engineered to be decorated with GE11 peptides (GE11-HUVEC-EVs) via a postinsertional technique to target the epidermal growth factor receptor (EGFR) that is overexpressed on the surface of lung cancer cells. The GE11-HUVEC-EVs were loaded with vinorelbine (GE11-HUVEC-EVs-Vin), and then characterized and evaluated in in vitro and in vivo lung cancer models. Further, we examined the binding affinity of ABCB1, encoding P-glycoprotein, which plays a crucial role in chemoresistance via the efflux of the drug. Our results indicate that GE11-HUVEC-EVs-Vin effectively showed tumoricidal effects against cell and mouse models of lung cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
| | - Abhimanyu Thakur
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi 110017, India
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410017, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410017, China
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Ravindran Jaganathan
- Preclinical Department, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh 30450, Malaysia
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China; (I.G.)
| |
Collapse
|
11
|
Fang H, Shi X, Gao J, Yan Z, Wang Y, Chen Y, Zhang J, Guo W. TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization. Cell Death Discov 2024; 10:438. [PMID: 39414762 PMCID: PMC11484822 DOI: 10.1038/s41420-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Sahebnasagh R, Deli H, Shadboorestan A, Vakili-Ghartavol Z, Salehi N, Komeili-Movahhed T, Azizi Z, Ghahremani MH. Identification of key lncRNAs associated with oxaliplatin resistance in colorectal cancer cells and isolated exosomes: From In-Silico prediction to In-Vitro validation. PLoS One 2024; 19:e0311680. [PMID: 39401197 PMCID: PMC11472961 DOI: 10.1371/journal.pone.0311680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
One of the critical challenges in managing colorectal cancer (CRC) is the development of oxaliplatin (OXP) resistance. Long non-coding RNAs (lncRNAs) have a crucial role in CRC progression and chemotherapy resistance, with exosomal lncRNAs emerging as potential biomarkers. This study aimed to predict key lncRNAs involved in OXP-resistance using in-silico methods and validate them using RT-qPCR methods in CRC cells and their isolated exosomes. Two public datasets, GSE42387 and GSE119481, were downloaded from the GEO database to identify differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) associated with OXP-resistance in the HCT116 cell line. The analysis of GSE42387 revealed 210 DEGs, and GSE119481 identified 73 DEmiRNAs. A protein-protein interaction (PPI) network analysis of the DEGs identified 133 interconnected genes, from which the top ten genes with the highest degree scores were selected. By intersecting predicted miRNAs targeting these genes with the DEmiRNAs, 38 common miRNAs were found. Subsequently, 224 lncRNAs targeting these common miRNAs were predicted. LncRNA-miRNA-mRNA network were constructed and the top five lncRNAs with the highest degree scores were identified. Analysis using the Kaplan-Meier plotter database revealed that the key lncRNAs NEAT1, OIP5-AS1, and MALAT1 are significantly associated with the overall survival of CRC patients. To validate these lncRNAs, OXP-resistant HCT116 sub-cell line (HCT116/OXR) was developed by exposing parental HCT116 cells to gradually increasing concentrations of OXP. Exosomes derived from both HCT116 and HCT116/OXR cells were isolated and characterized utilizing dynamic light scattering (DLS), transmission electron microscopy (TEM), and Western blotting. RT-qPCR confirmed elevated levels of NEAT1, OIP5-AS1, and MALAT1 in HCT116/OXR cells and their exosomes compared to parental HCT116 cells and their exosomes. This study concludes that NEAT1, OIP5-AS1, and MALAT1 are associated with the OXP-resistance in CRC. The high levels of these lncRNAs in exosomes of resistant cells suggest their involvement in intercellular communication and resistance propagation. This positioning makes them promising biomarkers for OXP-resistance in CRC.
Collapse
Affiliation(s)
- Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Deli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeynab Vakili-Ghartavol
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Salehi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Chen JL, Peng PH, Wu HT, Chen DR, Hsieh CY, Chang JS, Lin J, Lin HY, Hsu KW. ALKBH4 functions as a hypoxia-responsive tumor suppressor and inhibits metastasis and tumorigenesis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01004-x. [PMID: 39400679 DOI: 10.1007/s13402-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE The human AlkB homolog (ALKBH) dioxygenase superfamily plays a crucial role in gene regulation and is implicated in cancer progression. Under hypoxic conditions, hypoxia-inducible factors (HIFs) dynamically regulate methylation by controlling various dioxygenases, thereby modulating gene expression. However, the role of hypoxia-responsive AlkB dioxygenase remains unclear. METHODS The molecular events were examined using real-time PCR and Western blot analysis. Tumor cell aggressiveness was evaluated through migration, invasion, MTT, trypan blue exclusion, and colony formation assays. In vivo metastatic models and xenograft experiments were conducted to evaluate tumor progression. RESULTS Here, we examined the expression of the ALKBH superfamily under hypoxic conditions and found that ALKBH4 expression was negatively regulated by hypoxia. Knockdown of ALKBH4 enhanced the epithelial-mesenchymal transition (EMT), cell migration, invasion, and growth in vitro. The silencing of ALKBH4 enhanced metastatic ability and tumor growth in vivo. Conversely, overexpression of ALLKBH4 reversed these observations. Furthermore, overexpression of ALKBH4 significantly reversed hypoxia/HIF-1α-induced EMT, cell migration, invasion, tumor metastasis, and tumorigenicity. Notably, high expression of ALKBH4 was associated with better outcomes in head and neck cancer and breast cancer patients. Enrichment analysis also revealed that ALKBH4 was negatively enriched in hypoxia-related pathways. Clinically, a negative correlation between ALKBH4 and HIF-1α protein expression has been observed in tissues from both head and neck cancers and breast cancers. CONCLUSION These findings collectively suggest that ALKBH4 acts as a tumor suppressor and holds therapeutic potential for hypoxic tumors.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Hua Peng
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Han-Tsang Wu
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Dar-Ren Chen
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung City, Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Joseph Lin
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Huan-Yu Lin
- Cheng Ching Hospital Chung Kang Cheng Ching Hospital Branch, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Wen Hsu
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung City, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
14
|
Wang X, Li Z, Zhang C. Integrated Analysis of Serum and Tissue microRNA Transcriptome for Biomarker Discovery in Gastric Cancer. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39400980 DOI: 10.1002/tox.24430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, demanding a detailed exploration of its molecular landscape. Studies suggest that exposure to environmental pollutants can lead to changes in microRNA (miRNA) expression patterns, which may contribute to the development and progression of GC. MiRNAs have emerged as crucial regulators implicated in GC pathogenesis. The largest GC serum miRNA dataset to date, comprising 1417 non-cancer controls and 1417 GC samples was used. We conducted a comprehensive analysis of miRNA expression profiles. Differential expression analysis, co-expression network construction, and machine learning models were employed to identify key serum miRNAs and their association with clinical parameters. Weighted Gene Co-expression Network Analysis (WGCNA) and immune infiltration analysis were used to validate the importance of the key miRNA. A total of 1766 differentially expressed miRNAs were identified, with miR-1290, miR-1246, and miR-451a among the top up-regulated, and miR-6875-5p, miR-6784-5p, miR-1228-5p, and miR-6765-5p among the top down-regulated. WGCNA revealed that modules M1 and M5 were significantly associated with GC subtypes and disease status. MiRNA-target gene network analysis identified prognostically significant genes TP53, EMCN, CBX8, and ALDH1A3. Machine learning models LASSO, SVM, randomforest, and XGBOOST demonstrated the diagnostic potential of miRNA profiles. Tissue and serum miR-187 emerged as an independent prognostic factor, influencing patient survival across clinical parameters. Gene expression and immune cell infiltration were different in tissues stratified by miR-187 expression. In summary, the integration of differential gene expression, co-expression analysis, and immune cell profiling provided insights into the molecular intricacies of GC progression.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhuoran Li
- Department of Optometry, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Chengyan Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Wu H, Sun C, Cao W, Teng Q, Ma X, Schiöth HB, Dong R, Zhang Q, Kong B. Blockade of the lncRNA-PART1-PHB2 axis confers resistance to PARP inhibitor and promotes cellular senescence in ovarian cancer. Cancer Lett 2024; 602:217192. [PMID: 39181433 DOI: 10.1016/j.canlet.2024.217192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Qiuli Teng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China; Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, 250012, PR China.
| |
Collapse
|
16
|
MacFawn IP, Magnon G, Gorecki G, Kunning S, Rashid R, Kaiza ME, Atiya H, Ruffin AT, Taylor S, Soong TR, Bao R, Coffman LG, Bruno TC. The activity of tertiary lymphoid structures in high grade serous ovarian cancer is governed by site, stroma, and cellular interactions. Cancer Cell 2024:S1535-6108(24)00355-6. [PMID: 39393357 DOI: 10.1016/j.ccell.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Most high grade serous ovarian cancers (HGSOC) originate in the fallopian tube but spread to the ovary and peritoneal cavity, highlighting the need to understand antitumor immunity across HGSOC sites. Using spatial analyses, we discover that tertiary lymphoid structures (TLSs) within ovarian tumors are less developed compared with TLSs in fallopian tube or omental tumors. We reveal transcriptional differences across a spectrum of lymphoid structures, demonstrating that immune cell activity increases when residing in more developed TLSs and produce a prognostic, spatially derived TLS signature from HGSOC tumors. We interrogate TLS-adjacent stroma and assess how normal mesenchymal stem cells MSCs (nMSCs) may support B cell function and TLS, contrary to cancer-educated MSCs (CA-MSCs) which negate the prognostic benefit of our TLS signature, suggesting that pro-tumorigenic stroma could limit TLS formation.
Collapse
Affiliation(s)
- Ian P MacFawn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grant Magnon
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grace Gorecki
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Rufiaat Rashid
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Medard Ernest Kaiza
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Huda Atiya
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ayana T Ruffin
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Rinda Soong
- Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Riyue Bao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
17
|
Emmanuelli A, Salvagno C, Hwang SM, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. Oncoimmunology 2024; 13:2411070. [PMID: 39364290 PMCID: PMC11448341 DOI: 10.1080/2162402x.2024.2411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ~ 50% of the treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
Affiliation(s)
- Alexander Emmanuelli
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jin-Gyu Cheong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Juan R. Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Murmu A, Győrffy B. Artificial intelligence methods available for cancer research. Front Med 2024; 18:778-797. [PMID: 39115792 DOI: 10.1007/s11684-024-1085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 11/01/2024]
Abstract
Cancer is a heterogeneous and multifaceted disease with a significant global footprint. Despite substantial technological advancements for battling cancer, early diagnosis and selection of effective treatment remains a challenge. With the convenience of large-scale datasets including multiple levels of data, new bioinformatic tools are needed to transform this wealth of information into clinically useful decision-support tools. In this field, artificial intelligence (AI) technologies with their highly diverse applications are rapidly gaining ground. Machine learning methods, such as Bayesian networks, support vector machines, decision trees, random forests, gradient boosting, and K-nearest neighbors, including neural network models like deep learning, have proven valuable in predictive, prognostic, and diagnostic studies. Researchers have recently employed large language models to tackle new dimensions of problems. However, leveraging the opportunity to utilize AI in clinical settings will require surpassing significant obstacles-a major issue is the lack of use of the available reporting guidelines obstructing the reproducibility of published studies. In this review, we discuss the applications of AI methods and explore their benefits and limitations. We summarize the available guidelines for AI in healthcare and highlight the potential role and impact of AI models on future directions in cancer research.
Collapse
Affiliation(s)
- Ankita Murmu
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary
| | - Balázs Győrffy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary.
- Department of Biophysics, University of Pecs, Pecs, 7624, Hungary.
| |
Collapse
|
19
|
Chen Y, Johnson JD, Jayamohan S, He Y, Venkata PP, Jamwal D, Alejo S, Zou Y, Lai Z, Viswanadhapalli S, Vadlamudi RK, Kost E, Sareddy GR. KDM1A/LSD1 inhibition enhances chemotherapy response in ovarian cancer. Mol Carcinog 2024; 63:2026-2039. [PMID: 38990091 PMCID: PMC11421967 DOI: 10.1002/mc.23792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi He
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Diksha Jamwal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Edward Kost
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
Li H, Wang J, Zhang B, Guo Y. Preliminary exploration of the anti-ovarian cancer activity of peptides derived from bovine bone collagen hydrolysate and its related mechanisms. Int J Biol Macromol 2024; 277:134198. [PMID: 39084419 DOI: 10.1016/j.ijbiomac.2024.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Ovarian cancer, a malignant tumor that poses a significant threat to women's health, has seen a rise in incidence, prompting the urgent need for more effective treatment. This study primarily aimed to explore the potential of bovine collagen peptides in inhibiting ovarian cancer. The investigation in this study began with the identification of 268 peptide sequences through LC-MS/MS, followed by a screening process using molecular docking techniques to identify potential peptides capable of binding to EGFR. Subsequently, a series of experiments were performed, demonstrating the inhibitory effects of the peptide GPAGADGDRGEAGPAGPAGPAGPR on the proliferation of ovarian cancer cells. Transcriptomic analysis further revealed that this peptide can regulate cholesterol metabolism in ovarian cancer cells. Finally, a combination of time-resolved fluorescence resonance energy transfer, isothermal titration calorimetry, molecular docking, and molecular dynamics simulations were utilized to validate the ability of this peptide to bind to the epidermal growth factor receptor (EGFR) and impede the binding of epidermal growth factor (EGF) and EGFR.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
21
|
Zhang H, Liu X, Li J, Meng J, Huang W, Su X, Zhang X, Gao G, Wang X, Su H, Zhang F, Zhang T. ING5 inhibits aerobic glycolysis of lung cancer cells by promoting TIE1-mediated phosphorylation of pyruvate dehydrogenase kinase 1 at Y163. Front Med 2024; 18:878-895. [PMID: 39269568 DOI: 10.1007/s11684-024-1057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 09/15/2024]
Abstract
Aerobic glycolysis is critical for tumor growth and metastasis. Previously, we have found that the overexpression of the inhibitor of growth 5 (ING5) inhibits lung cancer aggressiveness and epithelial-mesenchymal transition (EMT). However, whether ING5 regulates lung cancer metabolism reprogramming remains unknown. Here, by quantitative proteomics, we showed that ING5 differentially regulates protein phosphorylation and identified a new site (Y163) of the key glycolytic enzyme PDK1 whose phosphorylation was upregulated 13.847-fold. By clinical study, decreased p-PDK1Y163 was observed in lung cancer tissues and correlated with poor survival. p-PDK1Y163 represents the negative regulatory mechanism of PDK1 by causing PDHA1 dephosphorylation and activation, leading to switching from glycolysis to oxidative phosphorylation, with increasing oxygen consumption and decreasing lactate production. These effects could be impaired by PDK1Y163F mutation, which also impaired the inhibitory effects of ING5 on cancer cell EMT and invasiveness. Mouse xenograft models confirmed the indispensable role of p-PDK1Y163 in ING5-inhibited tumor growth and metastasis. By siRNA screening, ING5-upregulated TIE1 was identified as the upstream tyrosine protein kinase targeting PDK1Y163. TIE1 knockdown induced the dephosphorylation of PDK1Y163 and increased the migration and invasion of lung cancer cells. Collectively, ING5 overexpression-upregulated TIE1 phosphorylates PDK1Y163, which is critical for the inhibition of aerobic glycolysis and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Haihua Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xinli Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jin Meng
- Department of Pharmacy, the Medical Security Centre, Chinese PLA General Hospital, Beijing, 100091, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710038, China
| | - Xuan Su
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xutao Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710038, China
| | - Guizhou Gao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaodong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710038, China.
| | - Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
22
|
Farkas AM, Youssef D, Tran MA, Balan S, Newman JH, Audenet F, Anastos H, Velazquez LG, Peros A, Ananthanarayanan A, Daza J, Gonzalez-Gugel E, Sadanala K, Theorell J, Galsky MD, Horowitz A, Sfakianos JP, Bhardwaj N. Natural Killer Cell Dysfunction In Human Bladder Cancer Is Caused By Tissue-Specific Suppression of SLAMF6 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591366. [PMID: 38746459 PMCID: PMC11092609 DOI: 10.1101/2024.04.30.591366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
NK cells are innate lymphocytes critical for surveillance of viruses and tumors, however the mechanisms underlying NK cell dysfunction in cancer are incompletely understood. We assessed the effector function of NK cells from bladder cancer patients and found severe dysfunction in NK cells derived from tumors versus peripheral blood. While both peripheral and tumor-infiltrating NK cells exhibited conserved patterns of inhibitory receptor over-expression, this did not explain the observed defects in NK surveillance in bladder tumors. Rather, TME-specific TGF-β and metabolic perturbations such as hypoxia directly suppressed NK cell function. Specifically, an oxygen-dependent reduction in signaling through SLAMF6 was mechanistically responsible for poor NK cell function, as tumor-infiltrating NK cells cultured ex vivo under normoxic conditions exhibited complete restoration of function, while deletion of SLAMF6 abrogated NK cell cytolytic function even under normoxic conditions. Collectively, this work highlights the role of tissue-specific factors in dictating NK cell function, and implicates SLAMF6 signaling as a rational target for immuno-modulation to improve NK cell function in bladder cancer.
Collapse
|
23
|
Wang Y, Li S, Ren T, Zhang Y, Li B, Geng X. Mechanism of emodin in treating hepatitis B virus-associated hepatocellular carcinoma: network pharmacology and cell experiments. Front Cell Infect Microbiol 2024; 14:1458913. [PMID: 39346898 PMCID: PMC11427391 DOI: 10.3389/fcimb.2024.1458913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a pressing global issue, with Hepatitis B virus (HBV) infection remaining the primary. Emodin, an anthraquinone compound extracted from the natural plant's. This study investigates the molecular targets and possible mechanisms of emodin in treating HBV-related HCC based on network pharmacology and molecular docking and validates the screened molecular targets through in vitro experiments. Methods Potential targets related to emodin were obtained through PubChem, CTD, PharmMapper, SuperPred, and TargetNet databases. Potential disease targets for HBV and HCC were identified using the DisGeNET, GeneCards, OMIM, and TTD databases. A Venn diagram was used to determine overlapping genes between the drug and the diseases. Enrichment analysis of these genes was performed using GO and KEGG via bioinformatics websites. The overlapping genes were imported into STRING to construct a protein-protein interaction network. Cytoscape 3.9.1 software was used for visualizing and analyzing the core targets. Molecular docking analysis of the drug and core targets was performed using Schrodinger. The regulatory effects of emodin on these core targets were validate through in vitro experiments. Results A total of 43 overlapping genes were identified. GO analysis recognized 926 entries, and KEGG analysis identified 135 entries. The main pathways involved in the KEGG analysis included cancer, human cytomegalovirus infection and prostate cancer. The binding energies of emodin with HSP90AA1, PTGS2, GSTP1, SOD2, MAPK3, and PCNA were all less than -5 kcal/mol. Compared to normal liver tissue, the mRNA levels of XRCC1, MAPK3, and PCNA were significantly elevated in liver cancer tissue. The expression levels of XRCC1, HIF1A, MAPK3, and PCNA genes were closely related to HCC progression. High expressions of HSP90AA1, TGFB1, HIF1A, MAPK3, and PCNA were all closely associated with poor prognosis in HCC. In vitro experiments demonstrated that emodin significantly downregulated the expression of HSP90AA1, MAPK3, XRCC1, PCNA, and SOD2, while significantly upregulating the expression of PTGS2 and GSTP1. Conclusion This study, based on network pharmacology and molecular docking validation, suggests that emodin may exert therapeutic effects on HBV-related HCC by downregulating the expression of XRCC1, MAPK3, PCNA, HSP90AA1, and SOD2, and upregulating the expression of PTGS2 and GSTP1.
Collapse
Affiliation(s)
- Yupeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangxing Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Tianqi Ren
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yikun Zhang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
24
|
Yakushi A, Sugimoto M, Sasaki T. Co-expression network and survival analysis of breast cancer inflammation and immune system hallmark genes. Comput Biol Chem 2024; 113:108204. [PMID: 39270542 DOI: 10.1016/j.compbiolchem.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The tertiary lymphoid structure (TLS) plays a central role in cancer immune response, and its gene expression pattern, called the TLS signature, has shown prognostic value in breast cancer. The formation of TLS and tumor-associated high endothelial venules (TA-HEVs), responsible for lymphocytic infiltration within the TLS, is associated with the expression of cancer hallmark genes (CHGs) related to immunity and inflammation. In this study, we performed co-expression network analysis of immune- and inflammation-related CHGs to identify predictive genes for breast cancer. In total, 382 immune- and inflammation-related CHGs with high expression variance were extracted from the GSE86166 microarray dataset of patients with breast cancer. CHGs were classified into five modules by applying weighted gene co-expression network analysis. The survival analysis results for each module showed that one module comprising 45 genes was statistically significant for relapse-free and overall survival. Four network properties identified key genes in this module with high prognostic prediction abilities: CD34, CXCL12, F2RL2, JAM2, PROS1, RAPGEF3, and SELP. The prognostic accuracy of the seven genes in breast cancer was synergistic and exceeded that of other predictors in both small and large public datasets. Enrichment analysis predicted that these genes had functions related to leukocyte infiltration of TA-HEVs. There was a positive correlation between key gene expression and the TLS signature, suggesting that gene expression levels are associated with TLS density. Co-expression network analysis of inflammation- and immune-related CHGs allowed us to identify genes that share a standard function in cancer immunity and have a high prognostic predictive value. This analytical approach may contribute to the identification of prognostic genes in TLS.
Collapse
Affiliation(s)
- Ayaka Yakushi
- Meiji University, Graduate School of Advanced Mathematical and Science, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Masahiro Sugimoto
- Keio University, Institute for Advanced Biosciences, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; Institute of Medical Science, Research and Development Center for Minimally Invasive Therapies Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takanori Sasaki
- Meiji University, Graduate School of Advanced Mathematical and Science, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan.
| |
Collapse
|
25
|
Lonare A, Raychaudhuri K, Shah S, Madhu G, Sachdeva A, Basu S, Thorat R, Gupta S, Dalal SN. 14-3-3σ restricts YY1 to the cytoplasm, promoting therapy resistance, and tumor progression in colorectal cancer. Int J Cancer 2024. [PMID: 39239852 DOI: 10.1002/ijc.35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
14-3-3σ functions as an oncogene in colorectal cancer and is associated with therapy resistance. However, the mechanisms underlying these observations are not clear. The results in this report demonstrate that loss of 14-3-3σ in colorectal cancer cells leads to a decrease in tumor formation and increased sensitivity to chemotherapy. The increased sensitivity to chemotherapy is due to a decrease in the expression of UPR pathway genes in the absence of 14-3-3σ. 14-3-3σ promotes expression of the UPR pathway genes by binding to the transcription factor YY1 and preventing the nuclear localization of YY1. YY1, in the absence of 14-3-3σ, shows increased nuclear localization and binds to the promoter of the UPR pathway genes, resulting in decreased gene expression. Similarly, a YY1 mutant that cannot bind to 14-3-3σ also shows increased nuclear localization and is enriched on the promoter of the UPR pathway genes. Finally, inhibition of the UPR pathway with genetic or pharmacological approaches sensitizes colon cancer cells to chemotherapy. Our results identify a novel mechanism by which 14-3-3σ promotes tumor progression and therapy resistance in colorectal cancer by maintaining UPR gene expression.
Collapse
Affiliation(s)
- Amol Lonare
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Kumarkrishna Raychaudhuri
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanket Shah
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Gifty Madhu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Anoushka Sachdeva
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sneha Basu
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sanjay Gupta
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sorab N Dalal
- Cell and Tumour Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
26
|
Gogola-Mruk J, Pietrus M, Piechowicz M, Milian-Ciesielska K, Głód P, Wolnicka-Glubisz A, Szpor J, Ptak A. Low androgen/progesterone or high oestrogen/androgen receptors ratio in serous ovarian cancer predicts longer survival. Reprod Biol 2024; 24:100917. [PMID: 38970978 DOI: 10.1016/j.repbio.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-501, Poland
| | - Maryla Piechowicz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Katarzyna Milian-Ciesielska
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kracow 30-348, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-531, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland.
| |
Collapse
|
27
|
Ren H, Huang L, Zhang H, Huang M, Meng J, Luo D. Unveiling the role of RARs in stomach adenocarcinoma: clinical implications and prognostic biomarkers. Transl Cancer Res 2024; 13:3974-3995. [PMID: 39262490 PMCID: PMC11384927 DOI: 10.21037/tcr-23-2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/10/2024] [Indexed: 09/13/2024]
Abstract
Background Retinoic acid receptors (RARs) family are known to play a significant role in the occurrence and development of tumors. However, the relationship between RARs and stomach adenocarcinoma (STAD) has not yet been clearly identified. The aim of this study is to evaluate the expression profile and clinical value of the RARs family in STAD. Methods The expression level, clinical characteristics, prognostic value, immunity-related evaluations, genetic alteration and methylation site of RARs in STAD were explored using a series of online databases including gene expression profiling interactive analysis (GEPIA), tumor immune estimation resource (TIMER), University of Alabama at Birmingham cancer data (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter, gene set cancer analysis (GSCA), cBioPortal, MethSurv, GeneMANIA, LinkedOmics, Metascape, Search tool for the retrieval of interacting genes (STRING), tumor immune single-cell hub (TISCH) and cancer cell line encyclopedia (CCLE). Results We discovered dramatically increased expression of RARA and decreased expression of RARB in STAD tissues, and many clinical variables were closely related to RARs. Notably, higher expressions of RARA and RARB as well as lower expression of RARG correlated with worse overall survival (OS) for STAD patients. The clinical value of prognostic model indicated that RARs were identified to be potential prognostic biomarkers for STAD patients. Moreover, RARB was closely related to immune cell infiltration, which had effect on the role of RARB in STAD prognosis. And the genetic alteration of RARB was significantly associated with the longer disease-free survival (DFS) of STAD patients. Additionally, some CpG sites of the RARs family were related with the prognosis of STAD patients. Functional enrichment analyses indicated that several pathways in STAD might be pivotal pathways regulated by RARs. At the single-cell level, there was some extent of infiltration of tumor microenvironment-related cells in the RARs expression in STAD. Conclusions Our results evaluated the expression profile and clinical values of RARs in patients with STAD, which provided a basis for future in-depth exploration of the specific mechanisms of each member of RARs in STAD.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Lifeng Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Haiyan Zhang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Meirong Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Jiarong Meng
- Department of Pathology, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, China
| |
Collapse
|
28
|
Xie F, Hua S, Guo Y, Wang T, Shan C, Zhang L, He T. Identification of TAT as a Biomarker Involved in Cell Cycle and DNA Repair in Breast Cancer. Biomolecules 2024; 14:1088. [PMID: 39334853 PMCID: PMC11430390 DOI: 10.3390/biom14091088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and the primary cause of cancer-related mortality in women. Treatment of triple-negative breast cancer (TNBC) remains particularly challenging due to its resistance to chemotherapy and poor prognosis. Extensive research efforts in BC screening and therapy have improved clinical outcomes for BC patients. Therefore, identifying reliable biomarkers for TNBC is of great clinical importance. Here, we found that tyrosine aminotransferase (TAT) expression was significantly reduced in BC and strongly correlated with the poor prognosis of BC patients, which distinguished BC patients from normal individuals, indicating that TAT is a valuable biomarker for early BC diagnosis. Mechanistically, we uncovered that methylation of the TAT promoter was significantly increased by DNA methyltransferase 3 (DNMT3A/3B). In addition, reduced TAT contributes to DNA replication and cell cycle activation by regulating homologous recombination repair and mismatch repair to ensure genomic stability, which may be one of the reasons for TNBC resistance to chemotherapy. Furthermore, we demonstrated that Diazinon increases TAT expression as an inhibitor of DNMT3A/3B and inhibits the growth of BC by blocking downstream pathways. Taken together, we revealed that TAT is silenced by DNMT3A/3B in BC, especially in TNBC, which promotes the proliferation of tumor cells by supporting DNA replication, activating cell cycle, and enhancing DNA damage repair. These results provide fresh insights and a theoretical foundation for the clinical diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Saiwei Hua
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Yajuan Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Taoyuan Wang
- Cardiothoracic Surgery Department, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin 300162, China;
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (F.X.); (S.H.); (Y.G.); (C.S.)
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People’s Armed Police Force, Tianjin 300162, China
| |
Collapse
|
29
|
Gong J, Feng R, Fu X, Lin Q, Wu B. Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39207251 DOI: 10.1080/09205063.2024.2387949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeLa cells in an in vitro model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.
Collapse
Affiliation(s)
- Jianming Gong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renqian Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Jiang X, Chen N, Wei Q, Luo X, Liu X, Xie L, Yi P, Xu J. Single-cell RNA sequencing and cell-cell communication analysis reveal tumor microenvironment associated with chemotherapy responsiveness in ovarian cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03655-6. [PMID: 39122983 DOI: 10.1007/s12094-024-03655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND To investigate the impact of the tumor microenvironment (TME) on the responsiveness to chemotherapy in ovarian cancer (OV). METHODS We integrated single cell RNA-seq datasets of OV containing chemo-response information, and characterize their clusters based on different TME sections. We focus on analyzing cell-cell communication to elaborate on the mechanisms by which different components of the TME directly influence the chemo-response of tumor cells. RESULTS scRNA-seq datasets were annotated according to specific markers for different cell types. Differential analysis of malignant epithelial cells revealed that chemoresistance was associated with the TME. Notably, distinct TME components exhibited varying effects on chemoresistance. Enriched SPP1+ tumor-associated macrophages in chemo-resistant patients could promote chemoresistance through SPP1 binding to CD44 on tumor cells. Additionally, the overexpression of THBS2 in stromal cells could promote chemoresistance through binding with CD47 on tumor cells. In contrast, GZMA in the lymphocytes could downregulate the expression of PARD3 through direct interaction with PARD3, thereby attenuating chemoresistance in tumor cells. CONCLUSION Our study indicates that the non-tumor cell components of the TME (e.g. SPP1+ TAMs, stromal cells and lymphocytes) can directly impact the chemo-response of OV and targeting the TME was potentially crucial in chemotherapy of OV.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qinglv Wei
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
31
|
Yamauchi T, Okano Y, Terada D, Yasukochi S, Tsuruta A, Tsurudome Y, Ushijima K, Matsunaga N, Koyanagi S, Ohdo S. Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT. Cancer Metab 2024; 12:23. [PMID: 39113116 PMCID: PMC11304919 DOI: 10.1186/s40170-024-00352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells. METHODS RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma. RESULTS Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice. CONCLUSIONS Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.
Collapse
Affiliation(s)
- Tomoaki Yamauchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumi Okano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daishu Terada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
32
|
Emmanuelli A, Salvagno C, Min-Hwang S, Awasthi D, Sandoval TA, Chae CS, Cheong JG, Tan C, Iwawaki T, Cubillos-Ruiz JR. High-grade serous ovarian cancer development and anti-PD-1 resistance is driven by IRE1α activity in neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606646. [PMID: 39211073 PMCID: PMC11361179 DOI: 10.1101/2024.08.05.606646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α. We found that intratumoral neutrophils exhibited overactivation of ER stress response markers compared with their counterparts at non-tumor sites. Selective deletion of IRE1α in neutrophils delayed primary ovarian tumor growth and extended the survival of mice with HGSOC by enabling early T cell-mediated tumor control. Notably, loss of IRE1α in neutrophils sensitized tumor-bearing mice to PD-1 blockade, inducing HGSOC regression and long-term survival in ∼50% of treated hosts. Hence, neutrophil-intrinsic IRE1α facilitates early adaptive immune escape in HGSOC and targeting this ER stress sensor might be used to unleash endogenous and immunotherapy-elicited immunity that controls metastatic disease.
Collapse
|
33
|
Muñoz JP, Soto-Jiménez D, Calaf GM. DCTPP1 Expression as a Predictor of Chemotherapy Response in Luminal A Breast Cancer Patients. Biomedicines 2024; 12:1732. [PMID: 39200195 PMCID: PMC11351553 DOI: 10.3390/biomedicines12081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Breast cancer (BRCA) remains a significant global health challenge due to its prevalence and lethality, exacerbated by the development of resistance to conventional therapies. Therefore, understanding the molecular mechanisms underpinning chemoresistance is crucial for improving therapeutic outcomes. Human deoxycytidine triphosphate pyrophosphatase 1 (DCTPP1) has emerged as a key player in various cancers, including BRCA. DCTPP1, involved in nucleotide metabolism and maintenance of genomic stability, has been linked to cancer cell proliferation, survival, and drug resistance. This study evaluates the role of DCTPP1 in BRCA prognosis and chemotherapy response. Data from the Cancer Genome Atlas Program (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) repositories, analyzed using GEPIA and Kaplan-Meier Plotter, indicate that high DCTPP1 expression correlates with poorer overall survival and increased resistance to chemotherapy in BRCA patients. Further analysis reveals that DCTPP1 gene expression is up-regulated in non-responders to chemotherapy, particularly in estrogen receptor (ER)-positive, luminal A subtype patients, with significant predictive power. Additionally, in vitro studies show that DCTPP1 gene expression increases in response to 5-fluorouracil and doxorubicin treatments in luminal A BRCA cell lines, suggesting a hypothetical role in chemoresistance. These findings highlight DCTPP1 as a potential biomarker for predicting chemotherapy response and as a therapeutic target to enhance chemotherapy efficacy in BRCA patients.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Diego Soto-Jiménez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
34
|
Zhang T, Li Z, He A, Zhou W, Zhu X, Song Y. Clinical Significance and Potential Function of Complement Factor D in Acute Myeloid Leukemia. Cureus 2024; 16:e67260. [PMID: 39310420 PMCID: PMC11414840 DOI: 10.7759/cureus.67260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematologic malignancy characterized by aggressive proliferation and a poor prognosis. The objective of this study is to elucidate the specific role of complement factor D (CFD) in AML, with the aim of identifying robust prognostic markers for the disease. METHODS We performed a systematic investigation on clinical significance and potential function of CFD in AML by using the R Programming Language with The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The Human Protein Atlas (HPA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, Cancer Cell Line Encyclopedia (CCLE) database, and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer (CAMOIP) database. The expression of CFD in AML patients was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression of CFD was the highest in AML cells than in other tumor cell lines. The expression of CFD was also higher in AML patients than in the matched normal group. Compared with the low expression of the CFD group, high expression of CFD predicted better overall survival (OS) and lower tumor mutational burden (TMB) in AML patients. Moreover, a nomogram model based on CFD was successfully constructed to predict the OS of AML patients. Notably, the expression of CFD was associated with drug sensitivity and monocyte cell infiltration. CONCLUSION CFD could serve as a potential OS prognostic biomarker and guide clinical treatment for AML.
Collapse
Affiliation(s)
- Taigang Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, CHN
| | - Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Aoyu He
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Wenjuan Zhou
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, CHN
| | - Yanfang Song
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, CHN
| |
Collapse
|
35
|
Marolt N, Pavlič R, Kreft T, Gjogorska M, Rižner TL. Targeting estrogen metabolism in high-grade serous ovarian cancer shows promise to overcome platinum resistance. Biomed Pharmacother 2024; 177:117069. [PMID: 38968802 DOI: 10.1016/j.biopha.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.
Collapse
Affiliation(s)
- Nika Marolt
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tinkara Kreft
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marija Gjogorska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
36
|
Leung Y, Lee S, Wang J, Guruvaiah P, Rusch NJ, Ho S, Park C, Kim K. The Loss of an Orphan Nuclear Receptor NR2E3 Augments Wnt/β-catenin Signaling via Epigenetic Dysregulation that Enhances Sp1-β catenin-p300 Interactions in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308539. [PMID: 38790135 PMCID: PMC11304255 DOI: 10.1002/advs.202308539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/02/2024] [Indexed: 05/26/2024]
Abstract
The orphan nuclear receptor NR2E3 (Nuclear receptor subfamily 2 group E, Member 3) is an epigenetic player that modulates chromatin accessibility to activate p53 during liver injury. Nonetheless, a precise tumor suppressive and epigenetic role of NR2E3 in hepatocellular carcinoma (HCC) development remains unclear. HCC patients expressing low NR2E3 exhibit unfavorable clinical outcomes, aligning with heightened activation of the Wnt/β-catenin signaling pathway. The murine HCC models utilizing NR2E3 knockout mice consistently exhibits accelerated liver tumor formation accompanied by enhanced activation of Wnt/β-catenin signaling pathway and inactivation of p53 signaling. At cellular level, the loss of NR2E3 increases the acquisition of aggressive cancer cell phenotype and tumorigenicity and upregulates key genes in the WNT/β-catenin pathway with increased chromatin accessibility. This event is mediated through increased formation of active transcription complex involving Sp1, β-catenin, and p300, a histone acetyltransferase, on the promoters of target genes. These findings demonstrate that the loss of NR2E3 activates Wnt/β-catenin signaling at cellular and organism levels and this dysregulation is associated with aggressive HCC development and poor clinical outcomes. In summary, NR2E3 is a novel tumor suppressor with a significant prognostic value, maintaining epigenetic homeostasis to suppress the Wnt/β-catenin signaling pathway that promotes HCC development.
Collapse
Affiliation(s)
- Yuet‐Kin Leung
- Department of Pharmacology and ToxicologyCollege of MedicineUniversity of Arkansas Medical SciencesLittle RockAR72205USA
| | - Sung‐Gwon Lee
- School of Biological Sciences and TechnologyChonnam National UniversityGwangju500‐757Republic of Korea
| | - Jiang Wang
- Department of Pathology and Laboratory MedicineCollege of MedicineUniversity of Cincinnati231 Albert Sabin WayCincinnatiOH45267USA
| | - Ponmari Guruvaiah
- Department of Pharmacology and ToxicologyCollege of MedicineUniversity of Arkansas Medical SciencesLittle RockAR72205USA
| | - Nancy J Rusch
- Department of Pharmacology and ToxicologyCollege of MedicineUniversity of Arkansas Medical SciencesLittle RockAR72205USA
| | - Shuk‐Mei Ho
- Department of Pharmacology and ToxicologyCollege of MedicineUniversity of Arkansas Medical SciencesLittle RockAR72205USA
| | - Chungoo Park
- School of Biological Sciences and TechnologyChonnam National UniversityGwangju500‐757Republic of Korea
| | - Kyounghyun Kim
- Department of Pharmacology and ToxicologyCollege of MedicineUniversity of Arkansas Medical SciencesLittle RockAR72205USA
| |
Collapse
|
37
|
Kong D, Wu Y, Tong B, Liang Y, Xu F, Chi X, Ni L, Tian G, Zhang G, Xu Z. CHES1 modulated tumorigenesis and senescence of pancreas cancer cells through repressing AKR1B10. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167214. [PMID: 38718846 DOI: 10.1016/j.bbadis.2024.167214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/24/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), is characteristic by a heterogeneous tumor microenvironment and gene mutations, conveys a dismal prognosis and low response to chemotherapy and immunotherapy. Here, we found that checkpoint suppressor 1 (CHES1) served as a tumor repressor in PDAC and was associated with patient prognosis. Functional experiments indicated that CHES1 suppressed the proliferation and invasion of PDAC by modulating cellular senescence. To further identify the downstream factor of CHES1 in PDAC, label-free quantitative proteomics analysis was conducted, which showed that the oncogenic Aldo-keto reductase 1B10 (AKR1B10) was transcriptionally repressed by CHES1 in PDAC. And AKR1B10 facilitated the malignant activity and repressed senescent phenotype of PDAC cells. Moreover, pharmaceutical inhibition of AKR1B10 with Oleanolic acid (OA) significantly induced tumor regression and sensitized PDAC cells to gemcitabine, and this combined therapy did not cause obvious side effects. Rescued experiments revealed that CHES1 regulated the tumorigenesis and gemcitabine sensitivity through AKR1B10-mediated senescence in PDAC. In summary, this study revealed that the CHES1/AKR1B10 axis modulated the progression and cellular senescence in PDAC, which might provide revenues for drug-targeting and senescence-inducing therapies for PDAC.
Collapse
Affiliation(s)
- Demin Kong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China; The Second Medical College, Binzhou Medical University, Yantai, China
| | - Binghua Tong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yonghui Liang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lei Ni
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
38
|
Cai B, Qi M, Zhang X, Zhang D. Integrating Network Pharmacology with in vitro Experiments to Validate the Efficacy of Celastrol Against Hepatocellular Carcinoma Through Ferroptosis. Drug Des Devel Ther 2024; 18:3121-3141. [PMID: 39071814 PMCID: PMC11278150 DOI: 10.2147/dddt.s450324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Background As a traditional Chinese medicine monomer derived from Tripterygium wilfordii Hook.f. with potential anticancer activity, celastrol can induce ferroptosis in hepatic stellate cells and inhibit their activation to alleviate liver fibrosis. Activation of ferroptosis can effectively inhibit Hepatocellular carcinoma (HCC). Whether celastrol inhibits HCC by inducing ferroptosis remains to be studied. Purpose To explore the potential targets of celastrol against HCC through ferroptosis based on network pharmacology and to verify the anticancer effect of celastrol on HepG2 cells. Methods We collected celastrol targets, HCC, and ferroptosis-related genes through online databases, and got their intersection targets. Subsequently, we obtained a protein-protein interaction (PPI) network, and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to gain key genes for further study. They were verified in vitro and were performed molecular docking. The changes in cell proliferation and ferroptosis characteristics of HepG2 cells after celastrol treatment were detected. Results 31 core target genes were screened for PPI network and enrichment analysis. The most significantly related KEGG pathway was chemical carcinogenesis-reactive oxygen species. The mRNA and protein levels of GSTM1 were significantly decreased after celastrol treatment. Molecular docking demonstrated the interaction between celastrol and GSTM1. Ferroptosis was induced and cell proliferation was inhibited by celastrol in HCC cells. Conclusion Celastrol induces ferroptosis in HCC via regulating GSTM1 expression and may serve as a novel therapeutic compound with clinical potential in HCC treatment.
Collapse
Affiliation(s)
- Banglan Cai
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Shanghai Health Commission Key Laboratory of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Shanghai Pudong Gongli Hospital, Shanghai, People’s Republic of China
| | - Manman Qi
- Shanghai Health Commission Key Laboratory of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Shanghai Pudong Gongli Hospital, Shanghai, People’s Republic of China
- School of Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Xue Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Shanghai Health Commission Key Laboratory of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Shanghai Pudong Gongli Hospital, Shanghai, People’s Republic of China
| | - Denghai Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Shanghai Health Commission Key Laboratory of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Shanghai Pudong Gongli Hospital, Shanghai, People’s Republic of China
- School of Medicine, Shanghai University, Shanghai, People’s Republic of China
| |
Collapse
|
39
|
Li K, Wang R, Liu GW, Peng ZY, Wang JC, Xiao GD, Tang SC, Du N, Zhang J, Zhang J, Ren H, Sun X, Yang YP, Liu DP. Refining the optimal CAF cluster marker for predicting TME-dependent survival expectancy and treatment benefits in NSCLC patients. Sci Rep 2024; 14:16766. [PMID: 39034310 PMCID: PMC11271481 DOI: 10.1038/s41598-024-55375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/22/2024] [Indexed: 07/23/2024] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the onset, progression, and treatment response of cancer. Among the various components of the TME, cancer-associated fibroblasts (CAFs) are key regulators of both immune and non-immune cellular functions. Leveraging single-cell RNA sequencing (scRNA) data, we have uncovered previously hidden and promising roles within this specific CAF subgroup, paving the way for its clinical application. However, several critical questions persist, primarily stemming from the heterogeneous nature of CAFs and the use of different fibroblast markers in various sample analyses, causing confusion and hindrance in their clinical implementation. In this groundbreaking study, we have systematically screened multiple databases to identify the most robust marker for distinguishing CAFs in lung cancer, with a particular focus on their potential use in early diagnosis, staging, and treatment response evaluation. Our investigation revealed that COL1A1, COL1A2, FAP, and PDGFRA are effective markers for characterizing CAF subgroups in most lung adenocarcinoma datasets. Through comprehensive analysis of treatment responses, we determined that COL1A1 stands out as the most effective indicator among all CAF markers. COL1A1 not only deciphers the TME signatures related to CAFs but also demonstrates a highly sensitive and specific correlation with treatment responses and multiple survival outcomes. For the first time, we have unveiled the distinct roles played by clusters of CAF markers in differentiating various TME groups. Our findings confirm the sensitive and unique contributions of CAFs to the responses of multiple lung cancer therapies. These insights significantly enhance our understanding of TME functions and drive the translational application of extensive scRNA sequence results. COL1A1 emerges as the most sensitive and specific marker for defining CAF subgroups in scRNA analysis. The CAF ratios represented by COL1A1 can potentially serve as a reliable predictor of treatment responses in clinical practice, thus providing valuable insights into the influential roles of TME components. This research marks a crucial step forward in revolutionizing our approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Otorhinolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui Wang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guo-Wei Liu
- Department of Thoracic Surgery, Qinghai Provincial People's Hospital, Gonghe Road No. 2, Chengdong District, Xining, 810007, Qinghai, China
| | - Zi-Yang Peng
- School of Future Technology, National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guo-Dong Xiao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, 450052, Henan, China
| | - Shou-Ching Tang
- Section of Hematology Oncology, Department of Internal Medicine, LSUHSC Cancer Center, School of Medicine, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ning Du
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yi-Ping Yang
- Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, 309 Yanta W Rd, Yanta District, Xi'an, 710063, Shaanxi, China.
| | - Da-Peng Liu
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
40
|
Gao F, Liu S, Wang J, Wei G, Yu C, Zheng L, Sun L, Wang G, Sun Y, Bao Y, Song Z. TSP50 facilitates breast cancer stem cell-like properties maintenance and epithelial-mesenchymal transition via PI3K p110α mediated activation of AKT signaling pathway. J Exp Clin Cancer Res 2024; 43:201. [PMID: 39030572 PMCID: PMC11264956 DOI: 10.1186/s13046-024-03118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Studies have confirmed that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties are conducive to cancer metastasis. In recent years, testes-specific protease 50 (TSP50) has been identified as a prognostic factor and is involved in tumorigenesis regulation. However, the role and molecular mechanisms of TSP50 in EMT and CSC-like properties maintenance remain unclear. METHODS The expression and prognostic value of TSP50 in breast cancer were excavated from public databases and explored using bioinformatics analysis. Then the expression of TSP50 and related genes was further validated by quantitative RT-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC). In order to investigate the function of TSP50 in breast cancer, loss- and gain-of-function experiments were conducted, both in vitro and in vivo. Furthermore, immunofluorescence (IF) and immunoprecipitation (IP) assays were performed to explore the potential molecular mechanisms of TSP50. Finally, the correlation between the expression of TSP50 and related genes in breast cancer tissue microarray and clinicopathological characteristics was analyzed by IHC. RESULTS TSP50 was negatively correlated with the prognosis of patients with breast cancer. TSP50 promoted CSC-like traits and EMT in both breast cancer cells and mouse xenograft tumor tissues. Additionally, inhibition of PI3K/AKT partly reversed TSP50-induced activation of CSC-like properties, EMT and tumorigenesis. Mechanistically, TSP50 and PI3K p85α regulatory subunit could competitively interact with the PI3K p110α catalytic subunit to promote p110α enzymatic activity, thereby activating the PI3K/AKT signaling pathway for CSC-like phenotypes maintenance and EMT promotion. Moreover, IHC analysis of human breast cancer specimens revealed that TSP50 expression was positively correlated with p-AKT and ALDH1 protein levels. Notably, breast cancer clinicopathological characteristics, such as patient survival time, tumor size, Ki67, pathologic stage, N stage, estrogen receptor (ER) and progesterone receptor (PR) levels, correlated well with TSP50/p-AKT/ALDH1 expression status. CONCLUSION The effects of TSP50 on EMT and CSC-like properties promotion were verified to be dependent on PI3K p110α. Together, our study revealed a novel mechanism by which TSP50 facilitates the progression of breast cancer, which can provide new insights into TSP50-based breast cancer treatment strategies.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Sichen Liu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jing Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Gang Wei
- Department of Breast Surgery, Jilin Province Cancer Hospital, Changchun, 130012, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Lihua Zheng
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Guannan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| |
Collapse
|
41
|
Shan L, Wang W, Du L, Li D, Wang Y, Xie Y, Li H, Wang J, Shi Z, Zhou Y, Zhu D, Sui G, Liu F. SP1 undergoes phase separation and activates RGS20 expression through super-enhancers to promote lung adenocarcinoma progression. Proc Natl Acad Sci U S A 2024; 121:e2401834121. [PMID: 38976739 PMCID: PMC11260144 DOI: 10.1073/pnas.2401834121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.
Collapse
Affiliation(s)
- Liying Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin150040, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Yuyan Xie
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Hongyan Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Zhihao Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Yang Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University (Daqing), Daqing163319, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin150040, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin150081, China
| |
Collapse
|
42
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603313. [PMID: 39026889 PMCID: PMC11257583 DOI: 10.1101/2024.07.12.603313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C. Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Amanda J. Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, Department of Medicine University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Ronald J. Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
43
|
Zhang G, Zhang Y, Zhang J, Yang X, Sun W, Liu Y, Liu Y. Immune cell landscapes are associated with high-grade serous ovarian cancer survival. Sci Rep 2024; 14:16140. [PMID: 38997411 PMCID: PMC11245545 DOI: 10.1038/s41598-024-67213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease known to develop resistance to chemotherapy. We investigated the prognostic significance of tumor cell states and potential mechanisms underlying chemotherapy resistance in HGSOC. Transcriptome deconvolution was performed to address cellular heterogeneity. Kaplan-Meier survival curves were plotted to illustrate the outcomes of patients with varying cellular abundances. The association between gene expression and chemotherapy response was tested. After adjusting for surgery status and grading, several cell states exhibited a significant correlation with patient survival. Cell states can organize into carcinoma ecotypes (CE). CE9 and CE10 were proinflammatory, characterized by higher immunoreactivity, and were associated with favorable survival outcomes. Ratios of cell states and ecotypes had better prognostic abilities than a single cell state or ecotype. A total of 1265 differentially expressed genes were identified between samples with high and low levels of C9 or CE10. These genes were partitioned into three co-expressed modules, which were associated with tumor cells and immune cells. Pogz was identified to be linked with immune cell genes and the chemotherapy response of paclitaxel. Collectively, the survival of HGSOC patients is correlated with specific cell states and ecotypes.
Collapse
Affiliation(s)
- Guoan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jingjing Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Xiaohui Yang
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Wenjie Sun
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, 061001, People's Republic of China
| | - Ying Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
| | - Yingfu Liu
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China.
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, 061001, People's Republic of China.
| |
Collapse
|
44
|
Tran DH, Kim D, Kesavan R, Brown H, Dey T, Soflaee MH, Vu HS, Tasdogan A, Guo J, Bezwada D, Al Saad H, Cai F, Solmonson A, Rion H, Chabatya R, Merchant S, Manales NJ, Tcheuyap VT, Mulkey M, Mathews TP, Brugarolas J, Morrison SJ, Zhu H, DeBerardinis RJ, Hoxhaj G. De novo and salvage purine synthesis pathways across tissues and tumors. Cell 2024; 187:3602-3618.e20. [PMID: 38823389 PMCID: PMC11246224 DOI: 10.1016/j.cell.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
Collapse
Affiliation(s)
- Diem H Tran
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Dohun Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rushendhiran Kesavan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Harrison Brown
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Trishna Dey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mona Hoseini Soflaee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Jason Guo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Houssam Al Saad
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Halie Rion
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rawand Chabatya
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nathan J Manales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Megan Mulkey
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Gerta Hoxhaj
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Witalisz-Siepracka A, Denk CM, Zdársky B, Hofmann L, Edtmayer S, Harm T, Weiss S, Heindl K, Hessenberger M, Summer S, Dutta S, Casanova E, Obermair GJ, Győrffy B, Putz EM, Sill H, Stoiber D. STAT3 in acute myeloid leukemia facilitates natural killer cell-mediated surveillance. Front Immunol 2024; 15:1374068. [PMID: 39034990 PMCID: PMC11257888 DOI: 10.3389/fimmu.2024.1374068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease characterized by the clonal expansion of myeloid progenitor cells. Despite recent advancements in the treatment of AML, relapse still remains a significant challenge, necessitating the development of innovative therapies to eliminate minimal residual disease. One promising approach to address these unmet clinical needs is natural killer (NK) cell immunotherapy. To implement such treatments effectively, it is vital to comprehend how AML cells escape the NK-cell surveillance. Signal transducer and activator of transcription 3 (STAT3), a component of the Janus kinase (JAK)-STAT signaling pathway, is well-known for its role in driving immune evasion in various cancer types. Nevertheless, the specific function of STAT3 in AML cell escape from NK cells has not been deeply investigated. In this study, we unravel a novel role of STAT3 in sensitizing AML cells to NK-cell surveillance. We demonstrate that STAT3-deficient AML cell lines are inefficiently eliminated by NK cells. Mechanistically, AML cells lacking STAT3 fail to form an immune synapse as efficiently as their wild-type counterparts due to significantly reduced surface expression of intercellular adhesion molecule 1 (ICAM-1). The impaired killing of STAT3-deficient cells can be rescued by ICAM-1 overexpression proving its central role in the observed phenotype. Importantly, analysis of our AML patient cohort revealed a positive correlation between ICAM1 and STAT3 expression suggesting a predominant role of STAT3 in ICAM-1 regulation in this disease. In line, high ICAM1 expression correlates with better survival of AML patients underscoring the translational relevance of our findings. Taken together, our data unveil a novel role of STAT3 in preventing AML cells from escaping NK-cell surveillance and highlight the STAT3/ICAM-1 axis as a potential biomarker for NK-cell therapies in AML.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Clio-Melina Denk
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Lorenz Hofmann
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Theresa Harm
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Manuel Hessenberger
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabrina Summer
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | | | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Gerald J. Obermair
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Eva Maria Putz
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
47
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
48
|
Gao H, Wei L, Indulkar S, Nguyen TTL, Liu D, Ho MF, Zhang C, Li H, Weinshilboum RM, Ingle JN, Wang L. Androgen receptor-mediated pharmacogenomic expression quantitative trait loci: implications for breast cancer response to AR-targeting therapy. Breast Cancer Res 2024; 26:111. [PMID: 38965614 PMCID: PMC11225427 DOI: 10.1186/s13058-024-01861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Shreya Indulkar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Thanh Thanh L Nguyen
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Ming-Fen Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
50
|
Zhou W, Halder S, Herwald S, Ghijsen M, Shafi G, Uttarwar M, Rosen E, Franc B, Kishore S. Frequent Amplification and Overexpression of PSMA in Basallike Breast Cancer from Analysis of The Cancer Genome Atlas. J Nucl Med 2024; 65:1004-1006. [PMID: 38664014 DOI: 10.2967/jnumed.123.266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/26/2024] [Indexed: 07/03/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is frequently overexpressed in nonprostate malignancies. This preclinical study investigated the molecular basis of the application of PMSA-targeting radiopharmaceuticals in breast cancer subtypes. Methods: The somatic copy number status and the transcriptomic and protein expressions of FOLH1 (gene name of PSMA) were analyzed across breast cancer subtypes in 998 patients from The Cancer Genome Atlas dataset. Results: FOLH1 was frequently amplified in basallike breast cancer (BLBC) (32%) compared with luminal and human epidermal growth factor receptor 2-positive subtypes (16% and 17%, respectively; P < 0.01). FOLH1 expression was higher in BLBC (P < 0.001) and was negatively correlated with estrogen-receptor and progesterone-receptor expressions. Consistently, the PSMA protein level was higher in BLBC (P < 0.05). Interestingly, FOLH1 expression was associated with relapse-free and distant metastasis-free survival in patients with BLBC. Conclusion: The BLBC subtype exhibited frequent amplification and overexpression of PSMA, supporting the exploration of PSMA-targeting radiopharmaceuticals in this aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Wenhui Zhou
- Department of Radiology, Stanford University Medical Center, Stanford, California;
| | | | - Sanna Herwald
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Michael Ghijsen
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | | | | | - Eric Rosen
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Benjamin Franc
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Sirish Kishore
- Department of Radiology, Stanford University Medical Center, Stanford, California
- Department of Radiology, Palo Alto Veterans Affairs Healthcare System, Palo Alto, California
| |
Collapse
|