1
|
Utpal BK, Roy SC, Zehravi M, Sweilam SH, Raja AD, Haque MA, Nayak C, Balakrishnan S, Singh LP, Panigrahi S, Alshehri MA, Rab SO, Minhaj NS, Emran TB. Polyphenols as Wnt/β-catenin pathway modulators: A promising strategy in clinical neurodegeneration. Animal Model Exp Med 2025. [PMID: 39808166 DOI: 10.1002/ame2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Polyphenols, a diverse group of naturally occurring compounds found in plants, have garnered significant attention for their potential therapeutic properties in treating neurodegenerative diseases (NDs). The Wnt/β-catenin (WβC) signaling pathway, a crucial player in neurogenesis, neuronal survival, and synaptic plasticity, is involved in several cellular mechanisms related to NDs. Dysregulation of this pathway is a hallmark in the development of various NDs. This study explores multiple polyphenolic compounds, such as flavonoids, stilbenes, lignans, and phenolic acids, and their potential to protect the nervous system. It provides a comprehensive analysis of their effects on the WβC pathway, elucidating their modes of action. The study highlights the dual function of polyphenols in regulating and protecting the nervous system, providing reassurance about the research benefits. This review provides a comprehensive analysis of the results obtained from both in vitro studies and in vivo research, shedding light on how these substances influence the various components of the pathway. The focus is mainly on the molecular mechanisms that allow polyphenols to reduce oxidative stress, inflammation, and apoptotic processes, ultimately improving the function and survival of neurons. This study aims to offer a thorough understanding of the potential of polyphenols in targeting the WβC signaling pathway, which could lead to the development of innovative therapeutic options for NDs.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - A Dinesh Raja
- Department of Pharmaceutics, KMCH College of Pharmacy, Coimbatore, India
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad, India
| | - Chandan Nayak
- Department of Pharmaceutics, School of Pharmacy, Arka Jain University, Jharkhand, India
| | - Senthilkumar Balakrishnan
- Department of Pharmaceutics, JKKMMRF-Annai JKK Sampoorani Ammal College of Pharmacy, Komarapalayam, Namakkal, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, India
| | - Saswati Panigrahi
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Vevoor, Palghar, India
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Najmus Sakib Minhaj
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Varshini MS, Reddy RA, Krishnamurthy PT, Wadhwani A. Harmony of Wnt pathway in Alzheimer's: Navigating the multidimensional progression from preclinical to clinical stages. Neurosci Biobehav Rev 2024; 165:105863. [PMID: 39179059 DOI: 10.1016/j.neubiorev.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The Wnt pathway stands out as a pivotal signal transduction pathway, operating through two distinct modes of signaling: the canonical/β-catenin pathway and the non-canonical pathway. Among these, the canonical pathway assumes a paramount role in various physiological and pathological processes within the human body. Particularly in the brain, Wnt exhibits involvement in fundamental physiological events including neuronal differentiation/survival, axonogenesis, neural stem cell regulation, synaptic plasticity, and cell cycle modulation. Notably, scientific evidence underscores the critical role of the Wnt pathway in the pathogenesis of Alzheimer's disease (AD), correlating with its involvement in key pathological features such as tau tangles, Amyloid-β plaques, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, cognitive impairments, and disruption of the blood-brain barrier integrity. This review aims to comprehensively explore the involvement and significance of Wnt signaling in Alzheimer's. Furthermore, it delves into recent advancements in research on Wnt signaling, spanning from preclinical investigations to clinical trials.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | | | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India; Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas 73304, Mauritius
| |
Collapse
|
3
|
Ke C, Shan S, Tan Y, Cao Y, Xie Z, Shi S, Pan J, Zhang W. Signaling pathways in the treatment of Alzheimer's disease with acupuncture: a narrative review. Acupunct Med 2024; 42:216-230. [PMID: 38859546 DOI: 10.1177/09645284241256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND To date, there is no effective treatment for Alzheimer's disease (AD), a progressive neurodegenerative disorder that is increasing in prevalence worldwide. The objective of this review was to summarize the core targets and signaling pathways involved in acupuncture treatment for AD. METHODS We reviewed numerous signaling pathways, including mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-protein kinase B (PI3 K/Akt), adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), nuclear factor (NF)-kB, p53, Wnt, nitric oxide (NO), Janus kinase / signal transducer and activator of transcription (JAK/ STAT), RhoA/ROCK (Rho-associated protein kinase) and Ca2+/ calmodulin-dependent protein kinase II (CaMKII) / cyclic adenosine monophosphate-response element-binding protein (CREB). The relevant data were obtained from PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang databases. RESULTS In summary, the effects of acupuncture are mediated by multiple targets and pathways. Furthermore, acupuncture can improve pathological changes associated with AD (such as abnormal deposition of amyloid (A)β, tau hyperphosphorylation, synaptic dysfunction and neuronal apoptosis) through multiple signaling pathways. CONCLUSION Overall, our findings provide a basis for future research into the effects of acupuncture on AD.
Collapse
Affiliation(s)
- Chao Ke
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shengtao Shan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Tan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zhengrong Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Shi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jiang Pan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Dutta A, Bhattacharya P, Chutia P, Borah A. Targeting of wnt signalling pathway by small bioactive molecules for the treatment of Alzheimer's disease. In Silico Pharmacol 2024; 12:50. [PMID: 38840665 PMCID: PMC11147993 DOI: 10.1007/s40203-024-00226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most occurring neurodegenerative disorder that destroys learning, memory, and thinking skills. Although the pathophysiology of the disease is least understood, the post-mortem brain of AD patients as well as animal models revealed the part of down regulated Wnt signalling in progression of the disease. The deficit in the Wnt signalling leads to the accumulation of amyloid beta peptides, phosphorylation of tau proteins, and synaptic dysfunctions, which are regarded as the major pathological features of AD. As the available drugs for AD are only able to mitigate the symptoms and are also associated with several side effects, the therapeutic potential of the bioactive compounds is being explored for their efficacies in managing the major pathologies. Consequently, a few bioactive compounds fundamentally isolated from Garcinia species are established as promising neuroprotective agents in AD, however; their potential to regulate the Wnt signalling pathway is yet to be discovered. Considering the neuroprotective properties, in the present study efficiency of six small bioactive compounds viz., amentoflavone, isovitexin, orientin, apigenin, kaempferol, and garcinol have been investigated in modulating the receptor proteins (LRP6, DKK1, WIF1 and GSK3β) of the Wnt signalling pathway by molecular docking technique. While all the bioactive compounds could efficiently interact with the target proteins, amentoflavone, orientin, and isovitexin interact with all the target proteins viz., LRP6, DKK1, WIF1, and GSK3β with higher free energy of binding, more number of interactions, and similar mode of binding in comparison to their known or reported modulators. Thus, the present study set forth the investigated small bioactive molecules as potential drug candidates in AD therapeutics.
Collapse
Affiliation(s)
- Ankumoni Dutta
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Behali, Biswanath, Assam 784184 India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355 India
| | - Pavitra Chutia
- Department of Life Sciences, Debraj Roy College, Golaghat, Assam 785621 India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
| |
Collapse
|
5
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Quiros-Guerrero LM, Marcourt L, Chaiwangrach N, Koval A, Ferreira Queiroz E, David B, Grondin A, Katanaev VL, Wolfender JL. Integration of Wnt-inhibitory activity and structural novelty scoring results to uncover novel bioactive natural products: new Bicyclo[3.3.1]non-3-ene-2,9-diones from the leaves of Hymenocardia punctata. Front Chem 2024; 12:1371982. [PMID: 38638877 PMCID: PMC11024435 DOI: 10.3389/fchem.2024.1371982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 μg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8-13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa's structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections.
Collapse
Affiliation(s)
- Luis-Manuel Quiros-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Laurence Marcourt
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Nathareen Chaiwangrach
- Centre of Excellence in Cannabis Research, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute, Toulouse, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
7
|
Zhang Q, Liu J, Liu H, Ao L, Xi Y, Chen D. Genome-wide epistasis analysis reveals gene-gene interaction network on an intermediate endophenotype P-tau/Aβ 42 ratio in ADNI cohort. Sci Rep 2024; 14:3984. [PMID: 38368488 PMCID: PMC10874417 DOI: 10.1038/s41598-024-54541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly worldwide. The exact etiology of AD, particularly its genetic mechanisms, remains incompletely understood. Traditional genome-wide association studies (GWAS), which primarily focus on single-nucleotide polymorphisms (SNPs) with main effects, provide limited explanations for the "missing heritability" of AD, while there is growing evidence supporting the important role of epistasis. In this study, we performed a genome-wide SNP-SNP interaction detection using a linear regression model and employed multiple GPUs for parallel computing, significantly enhancing the speed of whole-genome analysis. The cerebrospinal fluid (CSF) phosphorylated tau (P-tau)/amyloid-[Formula: see text] (A[Formula: see text]) ratio was used as a quantitative trait (QT) to enhance statistical power. Age, gender, and clinical diagnosis were included as covariates to control for potential non-genetic factors influencing AD. We identified 961 pairs of statistically significant SNP-SNP interactions, explaining a high-level variance of P-tau/A[Formula: see text] level, all of which exhibited marginal main effects. Additionally, we replicated 432 previously reported AD-related genes and found 11 gene-gene interaction pairs overlapping with the protein-protein interaction (PPI) network. Our findings may contribute to partially explain the "missing heritability" of AD. The identified subnetwork may be associated with synaptic dysfunction, Wnt signaling pathway, oligodendrocytes, inflammation, hippocampus, and neuronal cells.
Collapse
Affiliation(s)
- Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China
| | - Lang Ao
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China
| | - Dandan Chen
- School of Automation Engineering, Northeast Electric Power University, 169 Changchun Street, Jilin, 132012, China.
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, 145 Nantong Street, Harbin, China.
| |
Collapse
|
8
|
Yu S, Wang Z, Nan J, Li A, Yang X, Tang X. Potential Schizophrenia Disease-Related Genes Prediction Using Metagraph Representations Based on a Protein-Protein Interaction Keyword Network: Framework Development and Validation. JMIR Form Res 2023; 7:e50998. [PMID: 37966892 PMCID: PMC10687686 DOI: 10.2196/50998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental disease. With increased research funding for this disease, schizophrenia has become one of the key areas of focus in the medical field. Searching for associations between diseases and genes is an effective approach to study complex diseases, which may enhance research on schizophrenia pathology and lead to the identification of new treatment targets. OBJECTIVE The aim of this study was to identify potential schizophrenia risk genes by employing machine learning methods to extract topological characteristics of proteins and their functional roles in a protein-protein interaction (PPI)-keywords (PPIK) network and understand the complex disease-causing property. Consequently, a PPIK-based metagraph representation approach is proposed. METHODS To enrich the PPI network, we integrated keywords describing protein properties and constructed a PPIK network. We extracted features that describe the topology of this network through metagraphs. We further transformed these metagraphs into vectors and represented proteins with a series of vectors. We then trained and optimized our model using random forest (RF), extreme gradient boosting, light gradient boosting machine, and logistic regression models. RESULTS Comprehensive experiments demonstrated the good performance of our proposed method with an area under the receiver operating characteristic curve (AUC) value between 0.72 and 0.76. Our model also outperformed baseline methods for overall disease protein prediction, including the random walk with restart, average commute time, and Katz models. Compared with the PPI network constructed from the baseline models, complementation of keywords in the PPIK network improved the performance (AUC) by 0.08 on average, and the metagraph-based method improved the AUC by 0.30 on average compared with that of the baseline methods. According to the comprehensive performance of the four models, RF was selected as the best model for disease protein prediction, with precision, recall, F1-score, and AUC values of 0.76, 0.73, 0.72, and 0.76, respectively. We transformed these proteins to their encoding gene IDs and identified the top 20 genes as the most probable schizophrenia-risk genes, including the EYA3, CNTN4, HSPA8, LRRK2, and AFP genes. We further validated these outcomes against metagraph features and evidence from the literature, performed a features analysis, and exploited evidence from the literature to interpret the correlation between the predicted genes and diseases. CONCLUSIONS The metagraph representation based on the PPIK network framework was found to be effective for potential schizophrenia risk genes identification. The results are quite reliable as evidence can be found in the literature to support our prediction. Our approach can provide more biological insights into the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Shirui Yu
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyang Wang
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiale Nan
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Aihua Li
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Yang
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Tang
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
10
|
Wasser CR, Werthmann GC, Hall EM, Kuhbandner K, Wong CH, Durakoglugil MS, Herz J. Regulation of the hippocampal translatome by Apoer2-ICD release. Mol Neurodegener 2023; 18:62. [PMID: 37726747 PMCID: PMC10510282 DOI: 10.1186/s13024-023-00652-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the γ-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2-ICD release upon transcriptional regulation and its role in AD pathogenesis is unknown. METHODS To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. RESULTS Across all conditions, we observed ~4,700 altered translating transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. CONCLUSIONS Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous translating transcripts in mouse hippocampi in vivo. These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics.
Collapse
Affiliation(s)
- Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Eric M Hall
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Kristina Kuhbandner
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Connie H Wong
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Murat S Durakoglugil
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-9046, USA.
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics, UT Southwestern, 5323 Harry Hines Blvd, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
- Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Wasser C, Werthmann GC, Hall EM, Kuhbandner K, Wong CH, Durakoglugil MS, Herz J. Apoer2-ICD-dependent regulation of hippocampal ribosome mRNA loading. RESEARCH SQUARE 2023:rs.3.rs-3040567. [PMID: 37461529 PMCID: PMC10350194 DOI: 10.21203/rs.3.rs-3040567/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the g-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2 splicing for transcriptional regulation and its role in AD pathogenesis is unknown. Methods To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. Results Across all conditions, we observed ~ 4,700 altered ribosome-associated transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. Conclusions Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous ribosome-associated transcripts in mouse hippocampi in vivo . These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics.
Collapse
Affiliation(s)
- Catherine Wasser
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Eric M Hall
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Connie H Wong
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Joachim Herz
- UT Southwestern: The University of Texas Southwestern Medical Center
| |
Collapse
|
12
|
Yang J, Long Q, Zhang Y, Liu Y, Wu J, Zhao X, You X, Li X, Liu J, Teng Z, Zeng Y, Luo XJ. Whole transcriptome analysis reveals dysregulation of molecular networks in schizophrenia. Asian J Psychiatr 2023; 85:103649. [PMID: 37267675 DOI: 10.1016/j.ajp.2023.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
To characterize the regulatory relationships between different types of transcripts and the altered molecular networks in schizophrenia (SCZ), we performed a whole transcriptome study by quantifying mRNAs, long noncoding RNAs (lncRNAs), miRNAs, and circular RNAs (circRNAs) in the same individuals simultaneously. A total of 807 dysregulated genes showed differential expression in SCZ cases compared with controls. Network-based analysis revealed dysregulation of molecular networks in SCZ. Finally, integration of the transcriptome data with published data identified promising SCZ candidate genes. Our study reveals that dysregulated molecular networks and regulatory relationships between different types of transcript may have a role in SCZ.
Collapse
Affiliation(s)
- Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qing Long
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yunqiao Zhang
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China; Honghe Second People's Hospital, Honghe, Yunnan 654399, China; The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Yilin Liu
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Jie Wu
- The Affiliated Mental Health Center, Kunming Medical University, Kunming, Yunnan 650224, China
| | - Xinling Zhao
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China
| | - Xu You
- Honghe Second People's Hospital, Honghe, Yunnan 654399, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhaowei Teng
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China.
| | - Yong Zeng
- The Second Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650101, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Department of Neurology, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Helaly AMN, Ghorab DSED. Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 2023; 38:795-804. [PMID: 36656396 PMCID: PMC9849842 DOI: 10.1007/s11011-022-01147-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Helaly
- Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shame El Din Ghorab
- Basic Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int J Mol Sci 2022; 24:ijms24010708. [PMID: 36614149 PMCID: PMC9821221 DOI: 10.3390/ijms24010708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.
Collapse
Affiliation(s)
- Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (N.C.I.)
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (C.B.); (N.C.I.)
| |
Collapse
|
16
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
17
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
18
|
Integrative Analyses of Transcriptomes to Explore Common Molecular Effects of Antipsychotic Drugs. Int J Mol Sci 2022; 23:ijms23147508. [PMID: 35886854 PMCID: PMC9325239 DOI: 10.3390/ijms23147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
There is little understanding of the underlying molecular mechanism(s) involved in the clinical efficacy of antipsychotics for schizophrenia. This study integrated schizophrenia-associated transcriptional perturbations with antipsychotic-induced gene expression profiles to detect potentially relevant therapeutic targets shared by multiple antipsychotics. Human neuronal-like cells (NT2-N) were treated for 24 h with one of the following antipsychotic drugs: amisulpride, aripiprazole, clozapine, risperidone, or vehicle controls. Drug-induced gene expression patterns were compared to schizophrenia-associated transcriptional data in post-mortem brain tissues. Genes regulated by each of four antipsychotic drugs in the reverse direction to schizophrenia were identified as potential therapeutic-relevant genes. A total of 886 genes were reversely expressed between at least one drug treatment (versus vehicle) and schizophrenia (versus healthy control), in which 218 genes were commonly regulated by all four antipsychotic drugs. The most enriched biological pathways include Wnt signaling and action potential regulation. The protein-protein interaction (PPI) networks found two main clusters having schizophrenia expression quantitative trait loci (eQTL) genes such as PDCD10, ANK2, and AKT3, suggesting further investigation on these genes as potential novel treatment targets.
Collapse
|
19
|
WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Curr Hypertens Rep 2022; 24:465-475. [PMID: 35788966 DOI: 10.1007/s11906-022-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer's disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection? RECENT FINDINGS We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD. This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.
Collapse
|
20
|
Chen HH, Eteleeb A, Wang C, Fernandez MV, Budde JP, Bergmann K, Norton J, Wang F, Ebl C, Morris JC, Perrin RJ, Bateman RJ, McDade E, Xiong C, Goate A, Farlow M, Chhatwal J, Schofield PR, Chui H, Harari O, Cruchaga C, Ibanez L. Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer's disease. Acta Neuropathol Commun 2022; 10:29. [PMID: 35246267 PMCID: PMC8895634 DOI: 10.1186/s40478-022-01328-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. METHODS We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. RESULTS Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. CONCLUSIONS Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.
Collapse
Affiliation(s)
- Hsiang-Han Chen
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Fengxian Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Curtis Ebl
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Randall J. Bateman
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Eric McDade
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Helena Chui
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Dominantly Inherited Alzheimer Network
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| |
Collapse
|
21
|
Mahdipour R, Ebrahimi V, Hosseini M, Soukhtanloo M, Rastegar-Moghaddam SH, Malvandi AM, Mohammadipour A. Maternal exposure to silicon dioxide nanoparticles reduces hippocampal neurogenesis and synaptogenesis and induces neurodegeneration in rat offspring hippocampus. Toxicol Ind Health 2022; 38:41-52. [PMID: 35075925 DOI: 10.1177/07482337211058671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silicon dioxide nanoparticles (SiO2-NPs) are among the most widely used nanoparticles because of their chemical-physical properties. Since most brain maturation occurs in the neonatal period in humans and many mammals, it is important to understand how NPs may affect this process. This study tested the hypothesis that SiO2-NPs from treated dams could affect the hippocampus of neonatal rats during lactation. Twenty-four pregnant rats, after delivery, were divided into three groups of control, SiO2-NPs (25 mg/kg) and SiO2-NPs (100 mg/kg). The rats were treated from 2nd to 21st days post-delivery by gavage and the effects of these NPs were evaluated in the offspring's hippocampi to reveal the effects of maternal exposure to SiO2-NPs during lactation on the offspring's hippocampi. The offspring in the SiO2-NPs groups had higher malondialdehyde concentration and lower antioxidant activity in the hippocampi than the non-treated control group. The mean number of doublecortin positive (DCX+) cells and synaptophysin expression in the hippocampi of the SiO2-NPs groups were significantly lower than the control group, whereas the mean number of dark neurons was significantly higher. Also, animals in the SiO2-NPs groups had a weak cognitive performance in adulthood. In conclusion, maternal exposure to SiO2-NPs via breastfeeding could affect offspring's hippocampal neurogenesis and synaptogenesis, leading to impaired cognitive performance.
Collapse
Affiliation(s)
- Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Nagu P, Sharma V, Behl T, Pathan AKA, Mehta V. Molecular Insights to the Wnt Signaling During Alzheimer's Disorder: a Potential Target for Therapeutic Interventions. J Mol Neurosci 2022; 72:679-690. [PMID: 34997460 DOI: 10.1007/s12031-021-01940-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
In the adult brain, Wnt signaling is crucial for neurogenesis, and it also regulates neuronal development, neuronal maturation, neuronal differential, and proliferation. Impaired Wnt signaling pathways are associated with enhanced levels of amyloid-β, reduced β-catenin levels, and increased expression of GSK-3β enzyme, suggesting its direct association with the pathogenesis of Alzheimer's disorder (AD). These findings are consolidated by reports where activation of Wnt signaling by genetic factors and pharmacological intervention has improved the cognitive functions in animals and restored neurogenesis in the adult brain. Various natural and synthetic molecules have been identified that modulate Wnt signaling in the adult brain and promote neurogenesis and alleviate behavioral dysfunction. These molecules include lithium, valproic acid, ethosuximide, selenomethionine, curcumin, andrographolide, xanthoceraside, huperzine A, pyridostigmine, ginkgolide-B, ricinine, cannabidiol, and resveratrol. These molecules are associated with the DKK1 and GSK-3β inhibition and β-catenin stabilization along with their effects on neurogenesis, neuronal proliferation, and differentiation in the hippocampus through modulation of Wnt signaling and thereby could prove beneficial in the management of AD pathogenesis. Although modulation of the Wnt signaling seems to suggest to be promising in the management of AD, unfortunately, most of the literature available for the association of Wnt signaling and AD pathogenesis is either from preclinical studies or post-mortem brain. Therefore, it will be interesting to understand the role of Wnt signaling in AD patients, and a rigorous investigation could provide us with a better understanding of AD pathogenesis and the identification of novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India.,Department of Pharmaceutics, Government College of Pharmacy, Rohru, Himachal Pradesh, India
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amjad Khan A Pathan
- Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Himachal Pradesh 171207, Rohru, District Shimla, India.
| |
Collapse
|
23
|
Chen GK, Yan Q, Paul KC, Kusters CD, Folle AD, Furlong M, Keener A, Bronstein J, Horvath S, Ritz B. Stochastic Epigenetic Mutations Influence Parkinson's Disease Risk, Progression, and Mortality. JOURNAL OF PARKINSON'S DISEASE 2022; 12:545-556. [PMID: 34842194 PMCID: PMC9076404 DOI: 10.3233/jpd-212834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stochastic epigenetic mutations (SEM) reflect a deviation from normal site-specific methylation patterns. Epigenetic mutation load (EML) captures the accumulation of SEMs across an individual's genome and may reflect dysfunction of the epigenetic maintenance system in response to epigenetic challenges. OBJECTIVE We investigate whether EML is associated with PD risk and time to events (i.e., death and motor symptom decline). METHODS We employed logistic regression and Cox proportional hazards regression to assess the association between EML and several outcomes. Our analyses are based on 568 PD patients and 238 controls from the Parkinson's disease, Environment and Genes (PEG) study, for whom blood-based methylation data was available. RESULTS We found an association for PD onset and EML in all genes (OR = 1.90; 95%CI 1.52-2.37) and PD-related genes (OR = 1.87; 95%CI 1.50-2.32). EML was also associated with time to a minimum score of 35 points on the motor UPDRS exam (OR = 1.28; 95%CI 1.06-1.56) and time to death (OR = 1.29, 95%CI 1.11-1.49). An analysis of PD related genes only revealed five intragenic hotspots of high SEM density associated with PD risk. CONCLUSION Our findings suggest an enrichment of methylation dysregulation in PD patients in general and specifically in five PD related genes. EML may also be associated with time to death and motor symptom progression in PD patients.
Collapse
Affiliation(s)
| | - Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Cynthia D.J. Kusters
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Melissa Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Adrienne Keener
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jeff Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| |
Collapse
|
24
|
Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Mol Psychiatry 2022; 27:230-248. [PMID: 33837269 DOI: 10.1038/s41380-021-01086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by recurrent and distinctive obsessions and/or compulsions. The etiologies remain unclear. Recent findings have shown that oxidative stress, inflammation, and glutamatergic pathways play key roles in the causes of OCD. However, first-line therapies include cognitive-behavioral therapy but only 40% of the patients respond to this first-line therapy. Research for new treatment is mandatory. This review focuses on the potential effects of cannabidiol (CBD), as a potential therapeutic strategy, on OCD and some of the presumed mechanisms by which CBD provides its benefit properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. The activation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway and circadian rhythms dysregulation in OCD. Future prospective clinical trials could focus on CBD and its different and multiple interactions in OCD.
Collapse
|
25
|
Prokopenko D, Lee S, Hecker J, Mullin K, Morgan S, Katsumata Y, Weiner MW, Fardo DW, Laird N, Bertram L, Hide W, Lange C, Tanzi RE. Region-based analysis of rare genomic variants in whole-genome sequencing datasets reveal two novel Alzheimer's disease-associated genes: DTNB and DLG2. Mol Psychiatry 2022; 27:1963-1969. [PMID: 35246634 PMCID: PMC9126808 DOI: 10.1038/s41380-022-01475-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a genetically complex disease for which nearly 40 loci have now been identified via genome-wide association studies (GWAS). We attempted to identify groups of rare variants (alternate allele frequency <0.01) associated with AD in a region-based, whole-genome sequencing (WGS) association study (rvGWAS) of two independent AD family datasets (NIMH/NIA; 2247 individuals; 605 families). Employing a sliding window approach across the genome, we identified several regions that achieved association p values <10-6, using the burden test or the SKAT statistic. The genomic region around the dystobrevin beta (DTNB) gene was identified with the burden and SKAT test and replicated in case/control samples from the ADSP study reaching genome-wide significance after meta-analysis (pmeta = 4.74 × 10-8). SKAT analysis also revealed region-based association around the Discs large homolog 2 (DLG2) gene and replicated in case/control samples from the ADSP study (pmeta = 1 × 10-6). In conclusion, in a region-based rvGWAS of AD we identified two novel AD genes, DLG2 and DTNB, based on association with rare variants.
Collapse
Affiliation(s)
- Dmitry Prokopenko
- grid.32224.350000 0004 0386 9924Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| | - Sanghun Lee
- grid.411982.70000 0001 0705 4288Department of Medical Consilience, Graduate School, Dankook University, Yongin, South Korea ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Julian Hecker
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Kristina Mullin
- grid.32224.350000 0004 0386 9924Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Sarah Morgan
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA ,grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA USA
| | - Yuriko Katsumata
- grid.266539.d0000 0004 1936 8438Department of Biostatistics, University of Kentucky, Lexington, KY USA ,grid.266539.d0000 0004 1936 8438Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY USA
| | | | - Michael W. Weiner
- grid.266102.10000 0001 2297 6811Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA USA
| | - David W. Fardo
- grid.266539.d0000 0004 1936 8438Department of Biostatistics, University of Kentucky, Lexington, KY USA ,grid.266539.d0000 0004 1936 8438Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY USA
| | - Nan Laird
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Lars Bertram
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Winston Hide
- grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA ,grid.239395.70000 0000 9011 8547Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA USA
| | - Christoph Lange
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Rudolph E. Tanzi
- grid.32224.350000 0004 0386 9924Genetics and Aging Research Unit and The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA
| |
Collapse
|
26
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
27
|
Yuan R, Li Y, Fu Y, Ning A, Wang D, Zhang R, Yu S, Xu Q. TNIK influence the effects of antipsychotics on Wnt/β-catenin signaling pathway. Psychopharmacology (Berl) 2021; 238:3283-3292. [PMID: 34350475 DOI: 10.1007/s00213-021-05943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RationaleTraf2- and Nck-interacting kinase (TNIK), a member of germinal center kinase (GCK) family, has been implicated as a risk factor in schizophrenia and bipolar disorder as well as the action of antipsychotics. TNIK is an essential activator of Wnt/β-catenin signaling pathway which has been identified involved in the mechanism underlying the effects of antipsychotics. Thus, the effects of TNIK on antipsychotics may be achieved by influencing Wnt/β-catenin signaling pathway proteins.Objectives and methodsIn the current study, the effects of up- or downregulated TNIK on β-catenin, T-cell factor 4 (TCF-4), glycogen synthase kinase-3β (GSK3β), and phosphorylated GSK3β (p-GSK3β) were examined in the human glioma U251 cells. Then, we observed the effects of antipsychotics (clozapine and risperidone) on the above proteins and evaluated the role of differentially expressed TNIK on antipsychotic-treated cell groups.ResultsThe result showed that clozapine treatment decreased β-catenin and TCF-4 levels in U251 cells, and risperidone had the similar effects on β-catenin and p-GSK3β. The downregulated TNIK using siRNA impeded the regulation of antipsychotics on Wnt pathway proteins via increasing the expression levels of TCF-4, β-catenin, or p-GSK3β, whereas the upregulated TNIK made no significant change.ConclusionsThe influence of TNIK on the effects of antipsychotics may be partly through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ruixue Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaojing Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailing Ning
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxiang Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingqing Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Zhang X, Shi X, Wang J, Xu Z, He J. Enriched environment remedies cognitive dysfunctions and synaptic plasticity through NMDAR-Ca 2+-Activin A circuit in chronic cerebral hypoperfusion rats. Aging (Albany NY) 2021; 13:20748-20761. [PMID: 34462377 PMCID: PMC8436900 DOI: 10.18632/aging.203462] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Chronic cerebral ischemia (CCI) is one of the critical factors in the occurrence and development of vascular cognitive impairment (VCI). Apoptosis of nerve cells and changes in synaptic activity after CCI are the key factors to induce VCI. Synaptic stimulation up-regulates intraneuronal Ca2+ level through N-methyl-D-aspartic acid receptor (NMDAR) via induction of the activity-regulated inhibitor of death (AID) expression to produce active-dependent neuroprotection. Moreover, the regulation of synaptic plasticity could improve cognition and learning ability. Activin A (ActA), an exocrine protein of AID, can promote NMDAR phosphorylation and participate in the regulation of synaptic plasticity. We previously found that exogenous ActA can improve the cognitive function of rats with chronic cerebral ischemia and enhance the oxygenated glucose deprivation of intracellular Ca2+ level. In addition to NMDAR, the Wnt pathway is critical in the positive regulation of LTP through activation or inhibition. It plays an essential role in synaptic transmission and activity-dependent synaptic plasticity. The enriched environment can increase ActA expression during CCI injury. We speculated that the NMDAR-Ca2+-ActA signal pathway has a loop-acting mode, and the environmental enrichment could improve chronic cerebral ischemia cognitive impairment via NMDAR-Ca2+-ActA, Wnt/β-catenin pathway is involved in this process. For the hypothesis verification, this study intends to establish chronic cerebral hypoperfusion (CCH) rat model, explore the improvement effect of enriched environment on VCI, detect the changes in plasticity of synaptic morphology and investigate the regulatory mechanism NMDAR-Ca2+-ActA-Wnt/β-catenin signaling loop, providing a therapeutic method for the treatment of CCH.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Wu C, Bradley J, Li Y, Wu L, Deng HW. A gene-level methylome-wide association analysis identifies novel Alzheimer's disease genes. Bioinformatics 2021; 37:1933–1940. [PMID: 33523132 PMCID: PMC8337007 DOI: 10.1093/bioinformatics/btab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Transcriptome-wide association studies (TWAS) have successfully facilitated the discovery of novel genetic risk loci for many complex traits, including late-onset Alzheimer's disease (AD). However, most existing TWAS methods rely only on gene expression and ignore epigenetic modification (i.e., DNA methylation) and functional regulatory information (i.e., enhancer-promoter interactions), both of which contribute significantly to the genetic basis of AD. RESULTS We develop a novel gene-level association testing method that integrates genetically regulated DNA methylation and enhancer-target gene pairs with genome-wide association study (GWAS) summary results. Through simulations, we show that our approach, referred to as the CMO (cross methylome omnibus) test, yielded well controlled type I error rates and achieved much higher statistical power than competing methods under a wide range of scenarios. Furthermore, compared with TWAS, CMO identified an average of 124% more associations when analyzing several brain imaging-related GWAS results. By analyzing to date the largest AD GWAS of 71,880 cases and 383,378 controls, CMO identified six novel loci for AD, which have been ignored by competing methods. AVAILABILITY Software: https://github.com/ChongWuLab/CMO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chong Wu
- Department of Statistics, Florida State University
| | | | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer center
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
30
|
Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021; 9:biomedicines9060619. [PMID: 34070746 PMCID: PMC8229353 DOI: 10.3390/biomedicines9060619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Gliomas are the main common primary intraparenchymal brain tumor in the central nervous system (CNS), with approximately 7% of the death caused by cancers. In the WHO 2016 classification, molecular dysregulations are part of the definition of particular brain tumor entities for the first time. Nevertheless, the underlying molecular mechanisms remain unclear. Several studies have shown that 75% to 80% of secondary glioblastoma (GBM) showed IDH1 mutations, whereas only 5% of primary GBM have IDH1 mutations. IDH1 mutations lead to better overall survival in gliomas patients. IDH1 mutations are associated with lower stimulation of the HIF-1α a, aerobic glycolysis and angiogenesis. The stimulation of HIF-1α and the process of angiogenesis appears to be activated only when hypoxia occurs in IDH1-mutated gliomas. In contrast, the observed upregulation of the canonical WNT/β-catenin pathway in gliomas is associated with proliferation, invasion, aggressive-ness and angiogenesis.. Molecular pathways of the malignancy process are involved in early stages of WNT/β-catenin pathway-activated-gliomas, and this even under normoxic conditions. IDH1 mutations lead to decreased activity of the WNT/β-catenin pathway and its enzymatic targets. The opposed interplay between IDH1 mutations and the canonical WNT/β-catenin pathway in gliomas could participate in better understanding of the observed evolution of different tumors and could reinforce the glioma classification.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
31
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
32
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
33
|
Lithium and Atypical Antipsychotics: The Possible WNT/β Pathway Target in Glaucoma. Biomedicines 2021; 9:biomedicines9050473. [PMID: 33925885 PMCID: PMC8146329 DOI: 10.3390/biomedicines9050473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease that represents the major cause of irreversible blindness. Recent findings have shown which oxidative stress, inflammation, and glutamatergic pathway have main roles in the causes of glaucoma. Lithium is the major commonly used drug for the therapy of chronic mental illness. Lithium therapeutic mechanisms remain complex, including several pathways and gene expression, such as neurotransmitter and receptors, circadian modulation, ion transport, and signal transduction processes. Recent studies have shown that the benefits of lithium extend beyond just the therapy of mood. Neuroprotection against excitotoxicity or brain damages are other actions of lithium. Moreover, recent findings have investigated the role of lithium in glaucoma. The combination of lithium and atypical antipsychotics (AAPs) has been the main common choice for the treatment of bipolar disorder. Due to the possible side effects gradually introduced in therapy. Currently, no studies have focused on the possible actions of AAPs in glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with the overactivation of the GSK-3β signaling. The WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Lithium is correlated with upregulation the WNT/β-catenin pathway and downregulation of the GSK-3β activity. Thus, this review focuses on the possible actions of lithium and AAPs, as possible therapeutic strategies, on glaucoma and some of the presumed mechanisms by which these drugs provide their possible benefit properties through the WNT/β-catenin pathway.
Collapse
|
34
|
Vallée A, Vallée JN, Lecarpentier Y. Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 2021; 13:10796-10813. [PMID: 33848261 PMCID: PMC8064164 DOI: 10.18632/aging.202951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 04/11/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease (ND), presenting a progressive degeneration of the nervous system characterized by a loss of dopamine in the substantia nigra pars compacta. Recent findings have shown that oxidative stress and inflammation play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is of the utmost importance. This review focuses on the potential effects of using cannabidiol (CBD) as a potential therapeutic strategy for the treatment of PD and on some of the presumed mechanisms by which CBD provides its beneficial properties. CBD medication downregulates GSK-3β, the main inhibitor of the WNT/β-catenin pathway. Activation of the WNT/β-catenin could be associated with the control of oxidative stress and inflammation. Future prospective clinical trials should focus on CBD and its multiple interactions in the treatment of PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, Suresnes 92150, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens 80054, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers 86000, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux 77100, France
| |
Collapse
|
35
|
Vallée A, Lecarpentier Y, Vallée JN. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front Immunol 2021; 12:666693. [PMID: 33927728 PMCID: PMC8076593 DOI: 10.3389/fimmu.2021.666693] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has quickly reached pandemic proportions. Cytokine profiles observed in COVID-19 patients have revealed increased levels of IL-1β, IL-2, IL-6, and TNF-α and increased NF-κB pathway activity. Recent evidence has shown that the upregulation of the WNT/β-catenin pathway is associated with inflammation, resulting in a cytokine storm in ARDS (acute respire distress syndrome) and especially in COVID-19 patients. Several studies have shown that the WNT/β-catenin pathway interacts with PPARγ in an opposing interplay in numerous diseases. Furthermore, recent studies have highlighted the interesting role of PPARγ agonists as modulators of inflammatory and immunomodulatory drugs through the targeting of the cytokine storm in COVID-19 patients. SARS-CoV2 infection presents a decrease in the angiotensin-converting enzyme 2 (ACE2) associated with the upregulation of the WNT/β-catenin pathway. SARS-Cov2 may invade human organs besides the lungs through the expression of ACE2. Evidence has highlighted the fact that PPARγ agonists can increase ACE2 expression, suggesting a possible role for PPARγ agonists in the treatment of COVID-19. This review therefore focuses on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ in SARS-CoV2 infection and the potential beneficial role of PPARγ agonists in this context.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, Suresnes, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Jean-Noël Vallée
- University Hospital Center (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
| |
Collapse
|
36
|
Key Disease Mechanisms Linked to Alzheimer's Disease in the Entorhinal Cortex. Int J Mol Sci 2021; 22:ijms22083915. [PMID: 33920138 PMCID: PMC8069371 DOI: 10.3390/ijms22083915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain’s entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical–protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.
Collapse
|
37
|
Vallée A, Lecarpentier Y, Vallée JN. Cannabidiol and the Canonical WNT/β-Catenin Pathway in Glaucoma. Int J Mol Sci 2021; 22:ijms22073798. [PMID: 33917605 PMCID: PMC8038773 DOI: 10.3390/ijms22073798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
38
|
Vallée A, Vallée JN, Lecarpentier Y. Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic Pathway. Cells 2021; 10:230. [PMID: 33503974 PMCID: PMC7911116 DOI: 10.3390/cells10020230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the major neurodegenerative diseases (ND) which presents a progressive neurodegeneration characterized by loss of dopamine in the substantia nigra pars compacta. It is well known that oxidative stress, inflammation and glutamatergic pathway play key roles in the development of PD. However, therapies remain uncertain and research for new treatment is mandatory. This review focuses on the potential effects of lithium, as a potential therapeutic strategy, on PD and some of the presumed mechanisms by which lithium provides its benefit properties. Lithium medication downregulates GSK-3beta, the main inhibitor of the WNT/β-catenin pathway. The stimulation of the WNT/β-catenin could be associated with the control of oxidative stress, inflammation, and glutamatergic pathway. Future prospective clinical trials could focus on lithium and its different and multiple interactions in PD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 rue Saint-Fiacre, 77100 Meaux, France;
| |
Collapse
|
39
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. Negative regulation of IL-8 in human astrocytes depends on β-catenin while positive regulation is mediated by TCFs/LEF/ATF2 interaction. Cytokine 2020; 136:155252. [PMID: 32818703 PMCID: PMC7554258 DOI: 10.1016/j.cyto.2020.155252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Expression of cytokines/chemokines is tightly regulated at the transcription level. This is crucial in the central nervous system to maintain neuroimmune homeostasis. IL-8 a chemoattractant, which recruits neutrophils, T cells, and basophils into the brain in response to inflammation and/or injury is secreted predominantly by neurons, microglia, and astrocytes. Here, we investigated the mechanism by which astrocytes regulate IL-8 expression. We demonstrate that while β-catenin negatively regulated IL-8 transcription, its canonical transcriptional partners, members of the TCF/LEF transcription factors (TCF1, TCF3, TCF4 and LEF1) and Activating transcription factor 2 (ATF2) positively regulated IL-8 transcription. We further identified a putative TCF/LEF binding site at -175nt close to the minimal transcription region on the IL-8 promoter, mutation of which caused a significant reduction in IL-8 promoter activity. Chromatin immunoprecipitation demonstrated binding of TCF1, TCF4, LEF1 and ATF2 on the IL-8 promoter suggesting that TCFs/LEF partner with ATF2 to induce IL-8 transcription. These findings demonstrate a novel role for β-catenin in suppression of IL-8 expression and for TCFs/LEF/ATF2 in inducing IL-8. These findings reveal a unique mechanism by which astrocytes tightly regulate IL-8 expression.
Collapse
Affiliation(s)
- KaReisha F Robinson
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA.
| |
Collapse
|
40
|
Edara VV, Nooka S, Proulx J, Stacy S, Ghorpade A, Borgmann K. β-Catenin Regulates Wound Healing and IL-6 Expression in Activated Human Astrocytes. Biomedicines 2020; 8:E479. [PMID: 33171974 PMCID: PMC7694627 DOI: 10.3390/biomedicines8110479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.
Collapse
Affiliation(s)
- Venkata Viswanadh Edara
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Shruthi Nooka
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| |
Collapse
|
41
|
Menet R, Bourassa P, Calon F, ElAli A. Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alzheimer's disease. Neurochem Int 2020; 141:104881. [PMID: 33068684 DOI: 10.1016/j.neuint.2020.104881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) constitutes the leading cause of dementia worldwide. It is associated to amyloid-β (Aβ) aggregation and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Evidence suggests that the canonical Wnt pathway is deregulated in AD. Pathway activity is mediated by β-catenin stabilization in the cytosol, and subsequent translocation to the nucleus to regulate the expression of several genes implicated in brain homeostasis and functioning. It was recently proposed that Dickkopf-related protein-1 (DKK1), an endogenous antagonist of the pathway, might be implicated in AD pathogenesis. Here, we hypothesized that canonical Wnt pathway deactivation associated to DKK1 induction contributes to late-onset AD pathogenesis, and thus DKK1 neutralization could attenuate AD pathology. For this purpose, human post-mortem AD brain samples were used to assess pathway activity, and aged APPswe/PS1 mice were used to investigate DKK1 in late-onset AD-like pathology and therapy. Our findings indicate that β-catenin levels progressively decrease in the brain of AD patients, correlating with the duration of symptoms. Next, we found that Aβ pathology in APPswe/PS1 mediates DKK1 induction in the brain. Pharmacological neutralization of DKK1's biological activity in APPswe/PS1 mice restores pathway activity by stabilizing β-catenin, attenuates Aβ pathology, and ameliorates the memory of mice. Attenuation of AD-like pathology upon DKK1 inhibition is accompanied by a reduced protein expression of beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1). Moreover, DKK1 inhibition enhances vascular density, promotes blood-brain barrier (BBB) integrity by increasing claudin 5, glucose transporter-1 (GLUT1), and ATP-binding cassette sub-family B member-1 (ABCB1) protein expression, as well as ameliorates synaptic plasticity by increasing brain-derived neurotrophic factor (BDNF), and postsynaptic density protein-95 (PSD-95) protein expression. DKK1 conditional induction reduces claudin 5, abcb1, and psd-95 mRNA expression, validating its inhibition effects. Our results indicate that neutralization of DKK1's biological activity attenuates AD-like pathology by restoring canonical Wnt pathway activity.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Bourassa
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Frédéric Calon
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
42
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
43
|
Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S. Evaluation of the Serum Dkk-1, Tenascin-C, Oxidative Stress Markers Levels and Wnt Signaling Pathway Genes Expression in Patients with Alzheimer's Disease. J Mol Neurosci 2020; 71:879-887. [PMID: 32935274 DOI: 10.1007/s12031-020-01710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Early diagnosis of Alzheimer's disease (AD) using potential biomarkers may help with implementing early therapeutic interventions, monitoring, and ultimately disease treatment. The current study aimed to evaluate serum levels of DKK-1, TNC, and oxidative stress markers, as well as analyzing the expression of LRP6, GSK3A, and GSK3B genes in patients with AD. Serum levels of DKK-1, TNC, TOS, TAC, and MDA were measured in 40 AD patients and 40 healthy individuals. Additionally, the relative expressions of LRP6, GSK3A, and GSK3B genes in whole blood were evaluated. Receiver operating characteristic (ROC) analysis was used to investigate the incremental diagnostic value of each factor in the study groups. Mean serum levels of DKK-1, TNC, TOS, TAC, and MDA were significantly higher in the AD group compared to the healthy group (p < 0.001). Moreover, a significant difference was observed in the expression of LRP6 and GSK3A genes (p < 0.001) between patients and healthy groups. However, the expression of GSK3B did not significantly differ between the two groups (p > 0.05). With considerable sensitivity and specificity, ROC analysis demonstrated the diagnostic efficacy of DKK-1 and TNC serum levels in AD within an area under the ROC curve of ≥ 0.98 (p ˂ 0.001). The results showed that evaluating serum levels of DKK-1 and TNC, as well as assessing the expression of LRP6, could be utilized for diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Zahra Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayeh Sadrirad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Suresh J, Khor IW, Kaur P, Heng HL, Torta F, Dawe GS, Tai ES, Tolwinski NS. Shared signaling pathways in Alzheimer’s and metabolic disease may point to new treatment approaches. FEBS J 2020; 288:3855-3873. [DOI: 10.1111/febs.15540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ing Wei Khor
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
| | - Prameet Kaur
- Science Division Yale‐ NUS College Singapore Singapore
| | - Hui Li Heng
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator Department of Biochemistry Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Gavin S. Dawe
- Department of Pharmacology Yong Loo Lin School of Medicine National University of Singapore, and Neurobiology Programme
- Life Sciences Institute National University of Singapore Singapore
| | - E Shyong Tai
- Department of Medicine Yong Loo Lin School of MedicineNational University of Singapore
- Division of Endocrinology National University HospitalNational University Health System
| | | |
Collapse
|
45
|
Molecular insights into therapeutic promise of targeting of Wnt/β-catenin signaling pathway in obesity. Mol Biol Rep 2020; 47:8091-8100. [PMID: 32886327 DOI: 10.1007/s11033-020-05784-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a curable disorder which is a global health concern, linked to an excess amount of fat. It is caused by inherited and environmental factors and can be grim to maintain through dieting only. The importance of peculiar Wnt/β-catenin signaling has directed considerable efforts in the future production of therapeutic approaches in metabolic complications, including obesity. The article aims to examine the prospects of Wnt/β-catenin signaling cascade in obesity via directing effects of Wnt/β-catenin cascade in regulating appetite. A deep research on the literature available to date, for Wnt/β-catenin cascade in obesity is conducted using various medical databases like PubMed, MEDLINE from the internet. The articles published in English language were mainly preferred. Obesity has developed endemic worldwide, which initiates various obesity-related comorbidities. Obesity is implied by excessive deposition of fat primarily in the adipose tissue. Numerous studies have shown the vital impact of the Wnt/β-catenin signaling pathway in the growth of body part and biological homeostasis, while latent data illustrate the inherited variations in the Wnt/β-catenin cascade, correlating to several complications. The current article enlightens the stimulation of the Wnt/β-catenin cascade in obesity, mainly depot-explicit impact among adipose tissue during high caloric intake regulation and WAT browning event. Taken all together these data illustrate Wnt/β-catenin signaling cascade subsidizes to obesity promoted insulin resistance independent proliferation of adipose tissue.
Collapse
|
46
|
Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A. Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 2020; 140:104814. [PMID: 32758586 DOI: 10.1016/j.neuint.2020.104814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is one of the ligand-activated transcription factors which regulates a number of central events and considered as a promising target for various neurodegenerative disease conditions. Numerous reports implicate that PPAR-γ agonists have shown neuroprotective effects by regulating genes transcription associated with the pathogenesis of neurodegeneration. In regards, this review critically appraises the recent knowledge of PPAR-γ receptors in neuroprotection in order to hypothesize potential neuroprotective mechanism of PPAR-γ agonism in chronic neurological conditions. Of note, the PPAR-γ's interaction dynamics with PPAR-γ coactivator-1α (PGC-1α) has gained significant attention for neuroprotection. Likewise, a plethora of studies suggest that the PPAR-γ pathway can be actuated by the endogenous ligands present in the CNS and thus identification and development of novel agonist for the PPAR-γ receptor holds a vow to prevent neurodegeneration. Together, the critical insights of this review enlighten the translational possibilities of developing novel neuroprotective therapeutics targeting PPAR-γ for various neurodegenerative disease conditions.
Collapse
Affiliation(s)
- B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jincy A Jose
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - S Yuvaraj
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Victoria Jeyarani
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Chennu Manisha
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Sayani Banerjee
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - S P Dhanabal
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Antony Justin
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India.
| |
Collapse
|
47
|
Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a. J Neurosci 2020; 40:6664-6677. [PMID: 32616667 DOI: 10.1523/jneurosci.2942-19.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Wnt signaling represents a highly versatile signaling system, which plays critical roles in developmental morphogenesis as well as synaptic physiology in adult life and is implicated in a variety of neural disorders. Recently, we demonstrated that Wnt3a is able to recruit multiple noncanonical signaling pathways to alter peripheral sensory neuron function in a nociceptive modality-specific manner. Furthermore, several studies recently reported an important role for Wnt5a acting via canonical and noncanonical signaling in spinal processing of nociception in a number of pathologic pain disorders. Here, using diverse molecular, genetic, and behavioral approaches in mouse models of pain in vivo, we report a novel role for Wnt5a signaling in nociceptive modulation at the structural level. In models of chronic pain, using male and female mice, we found that Wnt5a is released spinally from peripheral sensory neurons, where it recruits the tyrosine kinase receptors Ror2 and Ryk to modulate dendritic spine rearrangement. Blocking the Wnt5a-Ryk/Ror2 axis in spinal dorsal horn neurons prevented activity-dependent dendritic spine remodeling and significantly reduced mechanical hypersensitivity induced by peripheral injury as well as inflammation. Moreover, we observed that peripheral Wnt3a signaling triggers the release of Wnt5a in the spinal cord, and inhibition of spinal Wnt5a signaling attenuates the functional impact of peripheral Wnt3a on nociceptive sensitivity. In conclusion, this study reports a novel role for the Wnt signaling axis in coordinating peripheral and spinal sensitization and shows that targeting Wnt5a-Ryk/ROR2 signaling alleviates both structural and functional mechanisms of nociceptive hypersensitivity in models of chronic pain in vivo SIGNIFICANCE STATEMENT There is a major need to elucidate molecular mechanisms underlying chronic pain disorders to develop novel therapeutic approaches. Wnt signaling represents a highly versatile signaling system, which plays critical roles during development and adult physiology, and it was implicated in several diseases, including chronic pain conditions. Using mouse models, our study identifies a novel role for Wnt5a signaling in nociceptive modulation at the spinal cord level. We observed that Wnt5a recruits Ror2 and Ryk receptors to enhance dendritic spine density, leading to nociceptive sensitization. Blocking the Wnt5a-Ryk/Ror2 interaction in the spinal dorsal horn prevented spine remodeling and significantly reduced inflammatory and neuropathic hypersensitivity. These findings provide proof-of-concept for targeting spinal Wnt signaling for alleviating nociceptive hypersensitivity in vivo.
Collapse
|
48
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Commun Signal 2020; 18:93. [PMID: 32546183 PMCID: PMC7296971 DOI: 10.1186/s12964-020-00565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/β-catenin signaling involves partnering of β-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between β-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. Methods We performed molecular loss and/or gain of function studies of β-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between β-catenin/TCFs/LEFs and IL-6 promoter activity. Results β-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. β-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of β-catenin. Conclusion IL-6 regulation in human astrocytes engages a discordant interaction between β-catenin and TCF/LEF. These findings are intriguing given that no role for β-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that β-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- KaReisha F Robinson
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Srinivas D Narasipura
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Jennillee Wallace
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA.
| |
Collapse
|
49
|
Chen D, Zhang Y, Zhang M, Chang J, Zeng Z, Kou X, Chen N. Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/β-Catenin Signaling in Aged Rats. Front Aging Neurosci 2020; 12:105. [PMID: 32390823 PMCID: PMC7192222 DOI: 10.3389/fnagi.2020.00105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Down-regulated Wnt signaling is involved in brain aging with declined cognitive capacity due to its modulation on neuronal function and synaptic plasticity. However, the molecular mechanisms are still unclear. In the present study, the naturally aged rat model was established by feeding rats from 6 months old to 21 months old. The cognitive capacity of aged rats was compared with young rats as the controls and the aged rats upon 12-week exercise interventions including treadmill running, resistance exercise, and alternating exercise with resistance exercise and treadmill running. Wnt signaling was examined in hippocampal tissues of the rats from different groups. Results indicated that the expression of Dickkopf-1 (DKK-1) as an antagonist of Wnt signal pathway, the activation of GSK-3β, and the hyperphosphorylated Tau were markedly increased as the extension of age. Meanwhile, higher p-β-cateninSer33, 37, Thr41 promoted neuronal degradation of aged rats. In contrast, three kinds of exercise interventions rescued the abnormal expression of DKK-1 and synaptophysin such as PSD-93 and PSD-95 in hippocampal tissues of the aged rats; especially 12-week treadmill running suppressed DKK-1 up-regulation, GSK-3β activation, β-catenin phosphorylation, and hyperphosphorylated Tau. In addition, the down-regulated PI3K/AKT and Wnt signal pathways were observed in aged rats, but could be reversed by resistance exercise and treadmill running. Moreover, the increased Bax and reduced Bcl-2 levels in hippocampal tissues of aged rats were also reversed upon treadmill running intervention. Taken together, down-regulated Wnt signaling suppressed PI3K/Akt signal pathway, aggravated synaptotoxicity, induced neuron apoptosis, and accelerated cognitive impairment of aged rats. However, exercise interventions, especially treadmill running, can attenuate their brain aging process via restoring Wnt signaling and corresponding targets.
Collapse
Affiliation(s)
- Dandan Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ying Zhang
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Meng Zhang
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jingru Chang
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Zhenzhong Zeng
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xianjuan Kou
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
50
|
Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 2020; 15:803-822. [PMID: 32281421 DOI: 10.1080/17460441.2020.1746266] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Wnt/β-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/β-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED This review focuses on the role of Wnt/β-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION The increasing interest paid to the role of Wnt/β-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Simona Rossi
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council (CNR) , Rome, Italy
| |
Collapse
|