1
|
Oh KI, Lim E, Uprety LP, Jeong J, Jeong H, Park E, Jeong SY. Anti-adipogenic and anti-obesity effects of morroniside in vitro and in vivo. Biomed Pharmacother 2024; 176:116762. [PMID: 38788597 DOI: 10.1016/j.biopha.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is a multifaceted medical condition characterized by the pathological accumulation of excessive lipids in the body. We investigated the effects of morroniside, a bioactive compound derived from Cornus officinalis, on adipogenesis. We used a preadipocyte 3T3-L1 stable cell line and primary cultured adipose-derived stem cells (ADSCs) in vitro and ovariectomized (OVX) and a high-fat diet (HFD)-fed obese mouse model in vivo. Preadipocyte 3T3-L1 cells and ADSCs incubated with morroniside during adipocyte differentiation and obese mice subjected to OVX and HFD received oral morroniside treatment for 12 weeks. Morroniside treatment significantly reduced adipocyte differentiation and fatty acid accumulation and downregulated adipogenesis-related gene expression, concomitant with a decrease in triglyceride content and an increase in glycerol release in cells. The results of the in vivo study showed that morroniside ameliorated obesity-related phenotypes by reducing body weight gain, hepatic steatosis, and adipose tissue in obese mice. These findings suggest that morroniside is a promising compound for preventing and treating obesity.
Collapse
Affiliation(s)
- Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Eunguk Lim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Junhwan Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea
| | - Hyesoo Jeong
- Nine B Co., Ltd., Daejeon 34121, the Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, the Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, the Republic of Korea.
| |
Collapse
|
2
|
Uprety LP, Lee CG, Oh KI, Jeong H, Yeo S, Yong Y, Seong JK, Kim IY, Go H, Park E, Jeong SY. Anti-obesity effects of Celosia cristata flower extract in vitro and in vivo. Biomed Pharmacother 2024; 176:116799. [PMID: 38805969 DOI: 10.1016/j.biopha.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.
Collapse
Affiliation(s)
- Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, South Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | | | - Subin Yeo
- Nine B Co., Ltd., Daejeon 34121, South Korea
| | | | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Il Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Hyesun Go
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| |
Collapse
|
3
|
Zhang Q, Xia Y, Wang F, Yang D, Liang Z. Induction of ferroptosis by natural products in non-small cell lung cancer: a comprehensive systematic review. Front Pharmacol 2024; 15:1385565. [PMID: 38751790 PMCID: PMC11094314 DOI: 10.3389/fphar.2024.1385565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Oluwamodupe C, Adeleye AO. Targeting Retinol-Binding Protein 4 (RBP4) in the Management of Cardiometabolic Diseases. Cardiovasc Toxicol 2023; 23:285-294. [PMID: 37587250 DOI: 10.1007/s12012-023-09803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The ancient use of herbs for the treatment of various human diseases have been documented, with several scientific literatures supporting the use of medicinal plants. There is however a major concern about the phyto-constituents in the plants that performs the healing function and the mechanism by which it works for different ailments are still a research prospect. Cardiometabolic disease (CMD) is no doubt becoming more frequent globally and this is due to poor approach in therapy, contrary effects linked with intensive control, inept strategies with old drugs, inadequate control of some risk factors and lack of knowledge of the pathophysiological mechanisms that lead to this malaise. Retinol-binding protein 4 (RBP4) are predominantly secreted in the liver and adipose tissues and several researches have observed that elevation in serum levels of RBP4 often observed in obese experimental animals and human subjects causes CMD (obesity, insulin resistance, hyperlipidemia, etc.). RBP4 has gained special attention in the last 20 years in the field of metabolism research. This review aims to show research interaction of some medicinal plants targeting RBP4 in treating CMD and to encourage researchers, who are interested in CMD drug design, to focus on medicinal plants that inhibit the secretion of serum RBP4 in the adipose tissue for therapeutic approach to CMD. It also aims to identify the major bioactive compounds of plants that serves as a better and cheaper drug candidate for CMD and also study the signaling pathway which the plant material uses to regulate the metabolic consequences.
Collapse
Affiliation(s)
- Cecilia Oluwamodupe
- Department of Chemical Sciences (Biochemistry Program), Olusegun Agagu University of Science and Technology, P. M. B. 353, Okitipupa, Nigeria.
| | - Adesola Oluwaseun Adeleye
- Department of Chemical Sciences (Biochemistry Program), Olusegun Agagu University of Science and Technology, P. M. B. 353, Okitipupa, Nigeria
| |
Collapse
|
5
|
Lee E, Park J, Nam JO. Euscaphis japonica Kanitz Fruit Exerts Antiobesity Effects by Inhibiting the Early Stage of Adipogenic Differentiation. Nutrients 2023; 15:3078. [PMID: 37513496 PMCID: PMC10384140 DOI: 10.3390/nu15143078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
During the worldwide COVID-19 outbreak, there was an increase in the prevalence of obesity, including childhood obesity, due to which the awareness of obesity and interest in treatment increased. Accordingly, we describe EJF (Euscaphis japonica Kanitz fruit) extract as a candidate for naturally derived antiobesity agents. In this study, we found that EJF is involved in the early stage of adipogenic differentiation in vitro and finally inhibits adipogenesis. We propose two mechanisms for the antiobesity effect of EJF. First, EJF inhibits MDI-induced mitotic clonal expansion (MCE) by inducing cell cycle arrest at the initiation of adipogenic differentiation. The second aims to regulate stability and activation at the protein level of IRS1, which initiates differentiation in the early stage of differentiation. As a result, it was found that the activation of Akt decreased, leading to the inhibition of the expression of adipogenesis-related transcription factors (PPARγ, C/EBPα) and the subsequent suppression of adipogenic differentiation. In summary, we suggest that EJF can inhibit adipogenesis and lipid accumulation by suppressing the early stage of adipogenic differentiation in 3T3-L1 adipocytes. These findings indicate that EJF's functionality could be beneficial in the treatment of obesity, particularly childhood obesity associated with adipocyte hyperplasia.
Collapse
Affiliation(s)
- Eunbi Lee
- Department of Food Science and Biotechnology, Kyungpook National University 80, Daehakro, Bukgu, Daegu 702701, Republic of Korea
| | - Juhye Park
- Department of Food Science and Biotechnology, Kyungpook National University 80, Daehakro, Bukgu, Daegu 702701, Republic of Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University 80, Daehakro, Bukgu, Daegu 702701, Republic of Korea
| |
Collapse
|
6
|
Khalil HE, Abdelwahab MF, Ibrahim HIM, AlYahya KA, Altaweel AA, Alasoom AJ, Burshed HA, Alshawush MM, Waz S. Cichoriin, a Biocoumarin, Mitigates Oxidative Stress and Associated Adverse Dysfunctions on High-Fat Diet-Induced Obesity in Rats. Life (Basel) 2022; 12:1731. [PMID: 36362887 PMCID: PMC9694194 DOI: 10.3390/life12111731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolic dysfunctions linked to obesity carry the risk of co-morbidities such as diabetes, hepatorenal, and cardiovascular diseases. Coumarins are believed to display several biological effects on diverse adverse health conditions. This study was conducted to uncover the impact of cichoriin on high-fat diet (HFD)-induced obese rats. Methods: Obesity was induced in twenty rats by exposure to an HFD for six weeks. The rats were randomly divided into five groups; group I comprised five healthy rats and was considered the control one. On the other hand, the HFD-induced rats were divided into the following (five per each group): group II (the HFD group), groups III (cichoriin 50 mg/kg) and IV (cichoriin 100 mg/kg) as the treatment groups, and group V received atorvastatin (10 mg/kg) (as a standard). Triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), aspartate transaminase (AST), creatine kinase MB (CK-MB), urea, creatinine, the hepatic and renal malondialdehyde (MDA) as well as reduced glutathione (GSH) levels were assessed. Histopathological analysis of the heart, kidney, and liver tissues was investigated. mRNA and protein expressions of the peroxisome proliferator-activated receptor gamma (PPAR-γ) were estimated. Results: The administration of cichoriin alleviated HFD-induced metabolic dysfunctions and improved the histopathological characteristics of the heart, kidney, and liver. Additionally, the treatment improved the lipid profile and hepatic and renal functions, as well as the oxidative balance state. Cichoriin demonstrated an upregulation of the mRNA and protein expressions of PPAR-γ. Taken together, these findings are the first report on the beneficial role of cichoriin in alleviating adverse metabolic effects in HFD-induced obesity and adapting it into an innovative obesity management strategy.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| | - Khalid A. AlYahya
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 36363, Saudi Arabia
| | - Abdullah Abdulhamid Altaweel
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdullah Jalal Alasoom
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hussein Ali Burshed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Marwan Mohamed Alshawush
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
7
|
Chang D, Hu X, Ma Z. Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11377-11390. [PMID: 36026466 DOI: 10.1021/acs.jafc.2c03289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study compared the modulatory effects of different resistant starches (RSs) isolated from native (NP-RS), acid-hydrolyzed (AHP-RS), and pullulanase debranched (PDP-RS) pea starches on the corresponding in vivo metabolic responses in high fat (HF)-diet-induced obese mice. The biochemical studies on serum lipid profile and antioxidant enzyme activities were supported by histological and gene expression analyses, which suggested a potential therapeutic role for RS in regulating obesity, possibly through the production of short-chain fatty acids and the proliferation of some beneficial colonic bacteria, including Allobaculum, Bifidobacterium, Odoribacter, Clostridium, and Prevotella. Particularly, a more pronounced effect of AHP-RS with a higher proportion of the crystalline region and a more ordered double-helical alignment on improving the hyperlipidemic symptoms in obese mice induced by a HF diet was observed. Our analysis revealed that the RS3 samples seemed to be more effective than RS2 in terms of attenuating obesity in mice that were fed a HF diet.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
8
|
Tahmasbi F, Araj-Khodaei M, Mahmoodpoor A, Sanaie S. Effects of saffron (Crocus sativus L.) on anthropometric and cardiometabolic indices in overweight and obese patients: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:3394-3414. [PMID: 35866520 DOI: 10.1002/ptr.7530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The worldwide prevalence of obesity is approximately tripled between 1975 and 2016 according to World Health Organization; therefore, obesity is now considered a global pandemic that needs academic and clinical focus. In search of antiobesity agents, Crocus sativus, known widely as saffron, has been praised for its beneficial effects. Several randomized controlled trials (RCTs) have been conducted to investigate the weight lowering effect of saffron. Following PRISMA guidelines, several medical databases were comprehensively searched for RCTs with a population consisting of obese individuals. A random-effects meta-analysis was used to pool estimates across studies, and standardized mean difference (SMD) was used to synthesize quantitative results. Twenty-five RCTs met the inclusion criteria. Meta-analysis showed a nonsignificant decrease for weight (-0.32 kg; CI: -3.15, 2.51; p = 0.82), BMI (-0.06 kg/m2 ;CI:-1.04,0.93; p = .91), waist circumference (-1.23 cm; CI: -4.14, 1.68; p = .41), and hip circumference (-0.38 cm; CI: -5.99, 5.23; p = .89) and a significant decrease of waist-to-hip ratio (SMD = -0.41; CI: -0.73, -0.09; p = .01; I2 = 0%). The mean difference in fasting blood sugar showed a significant reduction in patients with metabolic syndrome (SMD = -0.30; 95% CI: -0.63, 0.03; p = .07; I2 = 0.37%) but a nonsignificant change in the HbA1C level (WMD = 0.05; 95% CI: 0.32, 0.41; p = .79). Despite bearing several limitations, mainly as a result of heterogeneity among included studies, the available evidence indicates saffron supplementation shows promising effects on some cardiometabolic factors among overweight to obese patients; however, further investigations and high-quality evidence are required for more generalizable and comprehensive results.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology and critical care department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ha YS, Kim TK, Park KS, Hwang S, Kim J, Kim SJ. Inhibitory effects of Rocaglamide-A on PPARγ-driven adipogenesis through regulation of mitotic clonal expansion involving the JAK2/STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159148. [PMID: 35248800 DOI: 10.1016/j.bbalip.2022.159148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022]
Abstract
Inhibition of adipogenesis is an important strategy for obesity treatment. Rocaglamide-A (Roc-A) is a natural herbal medicine isolated from the genus Aglaia (family Meliaceae), which has a cyclopenta[b]benzofuran core structure. Roc-A exhibits various pharmacological effects against diverse human cancer cells. However, the exact role of Roc-A during adipogenesis in adipocytes has not been studied at all. In this study, we demonstrate that Roc-A is crucial for reducing adipogenesis via downregulating PPARγ transcriptional activity. Consistently, Western-blot and RT-PCR analyses clearly showed that Roc-A inhibits the expression of PPARγ target genes and lipogenic markers in a dose-dependent manner along with suppression of lipid accumulation, in both 3T3-L1 cells and mouse adipose-derived stem cells. Mechanistically, Roc-A significantly decreased JAK2/STAT3 phosphorylation in a dose-dependent manner in 3T3-L1 adipocytes. In particular, we confirmed that Roc-A effectively suppressed the expression of genes involved in cell-cycle regulation, such as cyclin A, B, D1, and E1, early during mitotic clonal expansion in 3T3-L1 adipocytes, and this effect was abolished by the JAK2/STAT3 activator FGF2. Taken together, our results demonstrated that Roc-A reduces adipogenesis by inhibiting PPARγ transactivation and JAK2/STAT3 phosphorylation and thus may serve as a therapeutic target in obesity.
Collapse
Affiliation(s)
- Yoon-Su Ha
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Taek-Kyong Kim
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, South Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, and Kangwon Institute of Inclusive Technology, Kangwon National University, 24341 Chuncheon, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, 24341 Chuncheon, Republic of Korea.
| |
Collapse
|
10
|
Khateeb S, Albalawi A, Alkhedaide A. Diosgenin Modulates Oxidative Stress and Inflammation in High-Fat Diet-Induced Obesity in Mice. Diabetes Metab Syndr Obes 2022; 15:1589-1596. [PMID: 35637860 PMCID: PMC9147404 DOI: 10.2147/dmso.s355677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Obesity is a chronic metabolic disorder that results in excessive energy accumulated in adipose tissue causing dysfunction of adipocytes, inflammation, and oxidative stress. Diosgenin (DG), a steroidal saponin produced by several plants, has been reported to have antioxidant activity. This study aimed to evaluate the effects of diosgenin on oxidative stress and inflammation in mice fed with a high-fat diet (HFD). METHODS Thirty adult male mice were divided into three groups including the control group, mice fed with a normal diet; the HFD group, mice fed with a high-fat diet for 6 weeks; and the HFD+DG group, mice fed with a high-fat diet and diosgenin daily for 6 weeks. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), and total antioxidant capacity (TAC) activities were evaluated. Histopathological changes in the adipose tissues have been investigated. RESULTS Data showed that diosgenin increased TAC activities with a concomitant decrease in MDA levels. As well, DG reduces the TNF and IL-6 levels. The histopathological changes in the adipose tissues due to high-fat consumption were restored upon DG supplementation. CONCLUSION Our results suggested that diosgenin is a promising agent for regulating obesity by increasing the levels of antioxidants, modifying oxidative stress and pro-inflammatory cytokines, which might prevent the onset of many diseases.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Aishah Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Adel Alkhedaide
- Department of Medical Laboratory, Turabah University College, Taif University, Taif, 21944, Saudi Arabia
- Correspondence: Adel Alkhedaide, Department of Medical Laboratory, Turabah University College, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia, Tel +966540490404, Fax +966128224366, Email
| |
Collapse
|
11
|
Pham Ngoc L, Helmus R, Ehlers AW, Swart K, Besselink H, de Rijke E, Dang Thi Cam H, Brouwer A, van der Burg B. Effect-directed analysis and chemical identification of agonists of peroxisome proliferator-activated receptors in white button mushroom. Food Funct 2021; 12:133-143. [PMID: 33283804 DOI: 10.1039/d0fo02071k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has a serious effect on human health. It relates to metabolic syndrome, including the associated disorders such as type 2 diabetes, heart disease, stroke and hyperemia. The peroxisome proliferator-activated receptors (PPARs) are important receptors to control fat metabolism in the human body. Because of the safety concerns of synthetic drugs targeting PPARs, ligands from natural sources have drawn interest. Earlier, we have found high PPAR activities in extracts from Agaricus bisporus (white button mushroom, WBM). WBM contains a wide range of candidate compounds which could be agonists of PPARs. To identify which compounds are responsible for PPAR activation by WBM extracts, we used fractionation coupled to effect-directed analysis with reporter gene assays specific for all three PPARs for purification and LC/MS-TOF and NMR for compound identification in purified active fractions. Surprisingly, we identified the relatively common dietary fatty acid, linoleic acid, as the main ligand of PPARs in WBM. Possibly, the relatively low levels of linoleic acid in WBM are sufficient and instrumental in inducing its anti-obesogenic effects, avoiding high energy intake and negative health effects associated with high levels of linoleic acid consumption. However, it could not be excluded that a minor relatively potent compound contributes towards PPAR activation, while the anti-obesity effects of WBM may be further enhanced by receptor expression modulating compounds or compounds with completely PPAR unrelated modes of action.
Collapse
Affiliation(s)
- Long Pham Ngoc
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands. and Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Department of Ecological Science, Vrije Universitei, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute of Biodiversity & Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Andreas W Ehlers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands and Department of Chemistry, Science Faculty, University of Johannesburg, PO Box 254, Auckland Park, Johannesburg, South Africa
| | - Kees Swart
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| | - Harry Besselink
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| | - Eva de Rijke
- Institute of Biodiversity & Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Ha Dang Thi Cam
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands. and Department of Ecological Science, Vrije Universitei, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Bart van der Burg
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Maunder A, Bessell E, Lauche R, Adams J, Sainsbury A, Fuller NR. Effectiveness of herbal medicines for weight loss: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22:891-903. [PMID: 31984610 DOI: 10.1111/dom.13973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023]
Abstract
AIM To update the available evidence on the efficacy and safety of complementary medicines to assist in weight loss by conducting a systematic review and meta-analysis of herbal medicines for weight loss. METHODS Four electronic databases (Medline, Embase, CINAHL and Web of Science) were searched from inception until August 2018. A total of 54 randomized placebo-controlled trials of healthy overweight or obese adults were identified. Meta-analyses were conducted for herbal medicines with ≥4 studies available. Weight differences of ≥2.5 kg were considered clinically significant. RESULTS As a single agent, only Phaseolus vulgaris resulted in a statistically significant weight loss compared to placebo, although this was not considered clinically significant. No effect was seen for Camellia sinensis or Garcinia cambogia. Statistically, but not clinically, significant differences were observed for combination preparations containing C. sinensis, P. vulgaris or Ephedra sinica. Of the herbal medicines trialled in ≤3 randomized controlled trials, statistically and clinically significant weight loss compared to placebo was reported for Irvingia gabonensis, Cissus quadrangularis, and Sphaeranthus indicus combined with Garcinia mangostana, among others, but these findings should be interpreted cautiously because of the small number of studies, generally poor methodological quality, and poor reporting of the herbal medicine interventions. Most herbal medicines appeared safe for consumption over the short duration of the studies (commonly ≤12 weeks). Some warrant further investigation to determine effect size, dosage and long-term safety. CONCLUSION There is currently insufficient evidence to recommend any of the herbal medicines for weight loss included in the present review.
Collapse
Affiliation(s)
- Alison Maunder
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Erica Bessell
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Romy Lauche
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), NSW, Australia
- Department of Internal and Integrative Medicine, Sozialstiftung Bamberg, Germany
| | - Jon Adams
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), NSW, Australia
| | - Amanda Sainsbury
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Nicholas R Fuller
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| |
Collapse
|
13
|
A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res 2020; 158:104852. [PMID: 32438038 DOI: 10.1016/j.phrs.2020.104852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.
Collapse
|
14
|
Wang X, Liu M, Cai GH, Chen Y, Shi XC, Zhang CC, Xia B, Xie BC, Liu H, Zhang RX, Lu JF, Zhu MQ, Yang SZ, Chu XY, Zhang DY, Wang YL, Wu JW. A Potential Nutraceutical Candidate Lactucin Inhibits Adipogenesis through Downregulation of JAK2/STAT3 Signaling Pathway-Mediated Mitotic Clonal Expansion. Cells 2020; 9:cells9020331. [PMID: 32023857 PMCID: PMC7072480 DOI: 10.3390/cells9020331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 μM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.
Collapse
|
15
|
Sundaram R, Nandhakumar E, Haseena Banu H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol Mech Methods 2019; 29:644-653. [PMID: 31345080 DOI: 10.1080/15376516.2019.1646370] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study investigated the protective effect of hesperidin on carbohydrate metabolizing enzymes in streptozotocin-induced diabetic rats. Hesperidin was administered to streptozotocin-induced (40 mg/kg b.w.) diabetic rats at different dosages of (25, 50, 100 mg/kg b.w.) respectively for 30 days to evaluate its effect on fasting plasma glucose, insulin, glycosylated hemoglobin, hemoglobin, and carbohydrate metabolic enzymes. The plasma glucose levels were significantly reduced in a dose-dependent manner in hesperdin-treated group of rats when compared to the diabetic control rats. In addition, concomitant increase in hemoglobin and insulin levels and a decrease in glycosylated hemoglobin were observed in treated group of rats. The activities of the hepatic key enzymes of carbohydrate metabolism such as hexokinase and glucose-6-phosphate dehydrogenase were significantly increased, whereas glucose-6-phosphatase and fructose-1,6-bisphosphatase were significantly decreased. Furthermore, hesperidin administration prevented the loss in body weight and improved the glycogen content in the hepatic tissue of diabetic animals by reinstating the activities of glycogen synthase and glycogen phosphorylase. These results showed that hesperidin has potential antihyperglycemic activity in streptozotocin-induced diabetic rats. This was further supported by the histological studies of pancreas and liver.
Collapse
Affiliation(s)
- R Sundaram
- Meenakshi Academy of Higher Education and Research, Central Research Laboratory, Meenakshi Ammal Dental College , Chennai , India.,Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University , Chennai , India
| | - E Nandhakumar
- Department of Biochemistry, Sri Muthukumaran Medical College Hospital and Research Institute , Chennai , India
| | - H Haseena Banu
- Department of Pathology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Taramani Campus , Chennai , India
| |
Collapse
|
16
|
Jiao D, Cao L, Liu Y, Wu J, Zheng A, Jiang X. Synergistic Osteogenesis of Biocompatible Reduced Graphene Oxide with Methyl Vanillate in BMSCs. ACS Biomater Sci Eng 2019; 5:1920-1936. [PMID: 33405565 DOI: 10.1021/acsbiomaterials.8b01264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl vanillate (MV), a recently characterized small molecule, can promote the Wnt/β-catenin signaling pathway and induce osteoblast differentiation both in vitro and in vivo. On the other hand, graphene-based materials have been introduced into the field of biomedical sciences in the past decade, and graphene oxide (GO), which serves as an efficient nanocarrier for drug delivery, has attracted great attention for its biomedical applications in tissue engineering. This study aimed to develop a biocompatible gelatin-reduced graphene oxide (GOG) for MV delivery so as to realize the effective osteogenesis for bone repair. First, GOG was prepared, and its morphology as well as properties were then characterized using scanning electron microscope (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA), respectively. In addition, the endocytosis of GOG in bone marrow stromal cells (BMSCs) was also investigated with the treatment of Rhodamine 6G (R6G)-labeled GOG. Our results found that GOG could be easily absorbed by cells and was distributed in both nucleus and cytoplasm, thus suggesting the favorable biocompatibility of GOG. Moreover, the effect of MV on osteogenesis was also tested, the results of which indicated that MV could promote BMSC osteogenesis in a concentration-dependent manner, and significant enhancement could be achieved at the concentration of 1 μg/mL. In addition, the complex containing different concentrations of GOG and an optimal concentration of MV was used to investigate the synergistic effect between GOG and MV on pro-osteogenesis. The results revealed that the weight ratio of MV/GOG of 1:1000 could attain remarkably enhanced osteoinduction in BMSCs, as evaluated by alkaline phosphatase (ALP) assay, alizarin red S (ARS) staining, immunofluorescence staining, and gene expression of related osteogenic markers. Taken together, these data had provided strong evidence that the complex of MV and GOG could induce osteogenesis, which was promising for bone tissue engineering.
Collapse
Affiliation(s)
- Delong Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiannan Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ao Zheng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
17
|
Syzygium cumini Leaf Extract Reverts Hypertriglyceridemia via Downregulation of the Hepatic XBP-1s/PDI/MTP Axis in Monosodium L-Glutamate-Induced Obese Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9417498. [PMID: 31015892 PMCID: PMC6446099 DOI: 10.1155/2019/9417498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 01/07/2023]
Abstract
Syzygium cumini is used worldwide for the treatment of metabolic syndrome-associated outcomes. Previously, we described the antihypertriglyceridemic effect of the hydroethanolic extract of S. cumini leaf (HESc) in monosodium L-glutamate- (MSG-) induced obese rats. This study sought to investigate the molecular mechanisms underlying the antihypertriglyceridemic effect of HESc in MSG-obese rats. Newborn male Wistar rats were injected subcutaneously with MSG (4.0 g/kg/day, obese group) or saline 1.25% (1.0 mL/kg/day, lean group), from 2nd through 10th postnatal day. At 8 weeks old, obese rats started to be orally treated with HESc (0.5 or 1.0 g/kg/day, n = 7) or saline 0.9% (1 mL/kg/day, n = 7). Lean rats received saline solution (1 mL/kg/day, n = 7). Upon 8-week treatment, animals were euthanized for blood and tissue collection. Another set of adult nonobese Wistar rats was used for the assessment of HESc acute effects on Triton WR1339-induced hypertriglyceridemia. HESc reduced weight gain, as well as adipose tissue fat pads, without altering food intake of obese rats. HESc restored fasting serum glucose, triglycerides, total cholesterol, and free fatty acids, as well as insulin sensitivity, to levels similar to lean rats. Additionally, HESc halved the triglyceride content into very low-density lipoprotein particles, as well as healed liver steatosis, in obese rats. Hepatic protein expression of the endoplasmic reticulum chaperone GRP94 was decreased by HESc, which also downregulated the hepatic triglyceride secretion pathway by reducing the splicing of X-box binding protein 1 (XBP-1s), as well as protein disulfide isomerase (PDI) and microsomal triglyceride transfer protein (MTP) translational levels. This action was further corroborated by the acute inhibitory effect of HESc on triglyceride accumulation on Triton WR1339-treated rats. Our data support the downregulation of the XBP-1s/PDI/MTP axis in the liver of MSG-obese rats as a novel feasible mechanism for the antihypertriglyceridemic effect promoted by the polyphenolic phytocomplex present in S. cumini leaf.
Collapse
|
18
|
Kim NJ, Baek JH, Lee J, Kim H, Song JK, Chun KH. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med 2019; 51:1-15. [PMID: 30635550 PMCID: PMC6329698 DOI: 10.1038/s12276-018-0198-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Vinpocetine, a phosphodiesterase (PDE) type-1 inhibitor, increases cAMP and cGMP levels and is currently used for the management of cerebrovascular disorders, such as stroke, cerebral hemorrhage, and cognitive dysfunctions. In this study, we first determined that vinpocetine effectively suppressed adipogenesis and lipid accumulation. However, we questioned which molecular mechanism is involved because the role of PDE in adipogenesis is still controversial. Vinpocetine decreased adipogenic cell signaling, including the phosphorylation of ERK, AKT, JAK2, and STAT3, and adipokine secretion, including IL-6, IL-10, and IFN-α. Interestingly, vinpocetine increased the phosphorylation of HSL, suggesting the induction of the lipolysis pathway. Moreover, vinpocetine increased UCP1 expression via increasing cAMP and PKA phosphorylation. The administration of vinpocetine with a normal-chow diet (NFD) or a high-fat diet (HFD) in mice attenuated body weight gain in mice fed both the NFD and HFD. These effects were larger in the HFD-fed mice, without a difference in food intake. Vinpocetine drastically decreased fat weight and adipocyte cell sizes in gonadal and inguinal white adipose tissues and in the liver in both diet groups. Serum triacylglycerol levels and fasting blood glucose levels were reduced by vinpocetine treatment. This study suggested that vinpocetine prevents adipocyte differentiation through the inhibition of adipogenesis-associated cell signaling in the early stages of adipogenesis. Moreover, upregulating cAMP levels leads to an increase in lipolysis and UCP1 expression and then inhibits lipid accumulation. Therefore, we suggest that vinpocetine could be an effective agent for treating obesity, as well as improving cognition and cardiovascular function in older individuals. A compound extracted from the periwinkle plant can limit the over-production of fat cells and may be a useful agent for treating obesity. Being overweight is the result of changes in the size and number of fat cells, or adipocytes, in the body. Scientists are searching for molecules that can limit the growth and replication of adipocytes, but many anti-obesity agents found to date have unpleasant side-effects. Kyung-Hee Chun at Yonsei University in Seoul, South Korea and co-workers examined the effects of 502 naturally occuring compounds on adipocyte differentiation in cell culture. One compound called vincamine, which is safely used to treat vascular diseases in the brain, decreased cell signaling pathways involved in adipocyte generation in mice and also lowered fasting blood glucose levels.
Collapse
Affiliation(s)
- Nam-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - JinAh Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - HyeNa Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Tumor Microenvironment Research Branch, Division of Cancer Biology, National Cancer Center, Goyang, Republic of Korea
| | - Jun-Kyu Song
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Gu M, Luo L, Fang K. Crocin inhibits obesity via AMPK-dependent inhibition of adipocyte differentiation and promotion of lipolysis. Biosci Trends 2018; 12:587-594. [DOI: 10.5582/bst.2018.01240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ming Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Li Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Kai Fang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
20
|
Ji H, Ahn K, Cho H, Kim HE, Kim Y, Kim O. Sanguisorba officinalis L. extracts activate Wnt/β-catenin pathway, and subsequently control adipo-osteogenic differentiation. Biochem Biophys Res Commun 2018; 504:352-358. [DOI: 10.1016/j.bbrc.2018.08.196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023]
|
21
|
Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors 2018; 44:50-60. [PMID: 29315906 DOI: 10.1002/biof.1409] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Obesity is a current global epidemic that has led to a marked increase in metabolic diseases. However, its treatment remains a challenge. Obesity is a multifactorial disease, which involves the dysfunction of neuropeptides, hormones, and inflammatory adipokines from the brain, gut, and adipose tissue. An understanding of the mechanisms and signal interactions in the crosstalk between organs and tissue in the coordination of whole-body energy metabolism would be helpful to provide therapeutic and putative approaches to the treatment and prevention of obesity and related complications. Resveratrol and pterostilbene are well-known stilbenes that provide various potential benefits to human health. In particular, their potential anti-obesity effects have been proven in numerous cell culture and animal studies. Both compounds act to regulate energy intake, adipocyte life cycle and function, white adipose tissue (WAT) inflammation, energy expenditure, and gut microbiota by targeting multiple molecules and signaling pathways as an intervention for obesity. Although the efficacy of both compounds in humans requires further investigation with respect to their oral bioavailability, promising scientific findings have highlighted their potential as candidates for the treatment of obesity and the improvement of obesity-related metabolic diseases. © 2018 BioFactors, 44(1):50-60, 2018.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Rodríguez-Pérez C, Segura-Carretero A, Del Mar Contreras M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr 2017; 59:1212-1229. [PMID: 29156939 DOI: 10.1080/10408398.2017.1399859] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevalence of obesity worldwide has reached pandemic proportions. Despite the increasing evidence in the implication of phenolic compounds in obesity management, the real effect is not completely understood. The available in vitro and in vivo studies have demonstrated the implication of phenolic compounds in: lowering food intake, decreasing lipogenesis, increasing lipolysis, stimulating fatty acids β-oxidation, inhibiting adipocyte differentiation and growth, attenuating inflammatory responses and suppress oxidative stress. This review encompasses the most recent evidence in the anti-obesity effect of phenolic compounds from plants to different nutraceuticals and functional foods based on the in vitro, in vivo and clinical studies. For that, this review has been focused on popular plant-based products highly consumed today such as cocoa, cinnamon, and olive oil, beverages such as red wine, tea (green, white and black tea) and Hibiscus sabdariffa L. tea, among others.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - Antonio Segura-Carretero
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - María Del Mar Contreras
- b Department of Analytical Chemistry , Annex C-3 Building, Campus of Rabanales, University of Córdoba , Córdoba , Spain
| |
Collapse
|
23
|
Wu T, Guo X, Zhang M, Yang L, Liu R, Yin J. Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. Food Funct 2017; 8:3178-3186. [PMID: 28792056 DOI: 10.1039/c7fo00449d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiological evidence indicates that anthocyanin consumption reduces the incidence of chronic and degenerative diseases. Therefore, the present study aimed to determine whether black rice anthocyanin (BRA), black soybean anthocyanin (BSA), and purple corn anthocyanin (PCA) could mitigate oxidative stress and inflammation associated obesity in C57BL/6 mice fed with a high-fat diet. BRA, BSA, or PCA was administered at doses of 200 mg kg-1 throughout the 12-week experiment and reduced the bodyweight by 9.6%, 13.3%, or 16.6%, respectively. Furthermore, BRA, BSA or PCA administration could effectively increase fecal butyric acid levels, elevate hepatic SOD and GPx activities, decrease lipid peroxidation, and downregulate the gene expression levels of TNFα, IL-6, iNOS, and NF-κB. Hence, BRA, BSA, or PCA might ameliorate diet-induced obesity by alleviating both oxidative stress and inflammation.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | | | | | | | | | | |
Collapse
|
24
|
Yang Q, Qi M, Tong R, Wang D, Ding L, Li Z, Huang C, Wang Z, Yang L. Plantago asiatica L. Seed Extract Improves Lipid Accumulation and Hyperglycemia in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2017; 18:ijms18071393. [PMID: 28665305 PMCID: PMC5535886 DOI: 10.3390/ijms18071393] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Obesity and its common association with type 2 diabetes, dyslipidemia, and cardiovascular diseases are worldwide epidemics. Currently, to prevent or treat obesity and associated metabolic disorders, herbal dietary supplements or medicines have attracted more and more attention owing to their relative effectiveness with fewer significant side effects. We investigate the therapeutic effects and underlying mechanisms of Plantago asiatica L. seed extract (PSE) on obesity and associated metabolic disorders in high-fat (HF) diet-induced mice. Our results displayed that PSE did not modify food intake or body weight but decreased abdominal white adipose tissue ratio, white/brown adipocyte size, serum total cholesterol, triglyceride (TG), low density lipoprotein cholesterol, free fatty acid, and hepatic TG concentrations when compared with the HF group. The levels of fasting blood glucose and glucose tolerance were improved in the PSE group when compared with the HF group. Furthermore, PSE upregulated mRNA expressions of peroxisome proliferator activated receptors (PPARs) and target genes related to fatty acid metabolism and energy expenditure in liver and adipose tissue of obese mice when compared with the HF group. PSE treatment effectively improved lipid and glucose metabolism in HF diet-induced obese mice. These effects might be attributed to the upregulation of PPAR signaling.
Collapse
Affiliation(s)
- Qiming Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Meng Qi
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Renchao Tong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dandan Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zeyun Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Mangal P, Khare P, Jagtap S, Bishnoi M, Kondepudi KK, Bhutani KK. Screening of six Ayurvedic medicinal plants for anti-obesity potential: An investigation on bioactive constituents from Oroxylum indicum (L.) Kurz bark. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:138-146. [PMID: 27469197 DOI: 10.1016/j.jep.2016.07.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an effort to identify newer anti-obesity lead(s) we have selected 13 plant materials from the six plant species which have been reported in Indian Ayurvedic medicine as remedy against complications affecting glucose and lipid homeostasis. AIM OF THE STUDY In vitro screening of six Indian Ayurvedic medicinal plants on anti-adipogenic and pancreatic lipase (PL) inhibition potential followed by bioactivity guided isolation from most active plant material. MATERIALS AND METHODS In vitro anti-adipogenic assay using 3T3-L1 preadipocytes and pancreatic lipase (PL) inhibition assay were performed for hexanes, dichloromethane, ethyl acetate and methanolic extracts of all the plant materials. Bioactivity guided isolation approach was used to identify active constituent for anti-adipogenesis and PL inhibition assay. Inhibition of lipid accumulation and adipogenic transcription factor was measured by oil Red 'O' staining and quantitative real-time PCR method respectively. RESULTS Ethyl acetate extract of Oroxylum indicum bark was found to be most active in screening of anti-adipogenesis (59.12±1.66% lipid accumulation as compared to control at 50μg/mL dose) and PL inhibition (89.12±6.87% PL inhibition at 250μg/mL dose) assays. Further, three bioactive flavonoids were isolated and identified as oroxylin A, chrysin and baicalein from O. indicum bark. Oroxylin A, chrysin, and baicalein were inhibited lipid accumulation in 3T3-L1 preadipocytes (75.00±5.76%, 70.21±4.23% and 77.21±5.49% lipid accumulation respectively in comparison to control at 50μM dose) and PL enzyme (69.86±2.96%, 52.08±2.14% and 45.06±2.42% PL inhibition respectively at 250μg/mL dose). In addition, oroxylin A and chrysin also inhibited PPARγ and C/EBPα, major adipogenic transcription factors, in 3T3L-1 preadipocytes during adipogenesis process at 50μM dose. CONCLUSION The present study augurs the anti-obesity potential of well practiced Ayurvedic herb O. indicum and its flavonoids.
Collapse
Affiliation(s)
- Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 160071, India
| | | | - Kamlesh Kumar Bhutani
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
26
|
Marrelli M, Conforti F, Araniti F, Statti GA. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016; 21:molecules21101404. [PMID: 27775618 PMCID: PMC6273086 DOI: 10.3390/molecules21101404] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Obesity is one of the greatest public health problems. This complex condition has reached epidemic proportions in many parts of the world, and it constitutes a risk factor for several chronic disorders, such as hypertension, cardiovascular diseases and type 2 diabetes. In the last few decades, several studies dealt with the potential effects of natural products as new safe and effective tools for body weight control. Saponins are naturally-occurring surface-active glycosides, mainly produced by plants, whose structure consists of a sugar moiety linked to a hydrophobic aglycone (a steroid or a triterpene). Many pharmacological properties have been reported for these compounds, such as anti-inflammatory, immunostimulant, hypocholesterolemic, hypoglycemic, antifungal and cytotoxic activities. The aim of this review is to provide an overview of recent studies about the anti-obesity therapeutic potential of saponins isolated from medicinal plants. Results on the in vitro and in vivo activity of this class of phytochemicals are here presented and discussed. The most interesting findings about their possible mechanism of action and their potential health benefits in the treatment of obesity are reported, as well.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| | - Fabrizio Araniti
- Department of AGRARIA, University "Mediterranea" of Reggio Calabria, Reggio Calabria (RC) I-89124, Italy.
| | - Giancarlo A Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS) I-87036, Italy.
| |
Collapse
|
27
|
Kim B, Woo MJ, Park CS, Lee SH, Kim JS, Kim B, An S, Kim SH. Hovenia Dulcis Extract Reduces Lipid Accumulation in Oleic Acid-Induced Steatosis of Hep G2 Cells via Activation of AMPK and PPARα/CPT-1 Pathway and in Acute Hyperlipidemia Mouse Model. Phytother Res 2016; 31:132-139. [PMID: 27762456 DOI: 10.1002/ptr.5741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/28/2022]
Abstract
Hovenia dulcis Thunb. (HDT) was known to have anti-fatigue, anti-diabetes, neuroprotective, and hepatoprotective effects. In the present study, the anti-fatty liver mechanism of HDT was elucidated in oleic acid (OA)-treated Hep G2 cells and acute hyperlipidemia mouse model using Triton WR-1339. Here, HDT activated p-AMP-activated protein kinase (p-AMPK), proliferator activated receptor-α, carnitine palmitoyltransferase and also inhibited the expression of lipogenesis and cholesterol synthesis proteins, such as 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element binding protein-1c, SREBP-2, and fatty acid synthase in OA-treated Hep G2 cells. Conversely, AMPK inhibitor compound C blocked the anti-fatty liver effect of HDT to induce AMPK phosphorylation and decrease 3-hydroxy-3-methylglutaryl-CoA reductase and lipid accumulation by oil red O staining in OA-treated Hep G2 cells. Additionally, HDT pretreatment protected against the increase of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol and phospholipid in an acute hyperlipidemia mouse model with enhancement of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase activities. Taken together, HDT inhibits OA-induced hepatic lipid accumulation via activation of AMPK and proliferator activated receptor-α/carnitine palmitoyltransferase signaling and enhancement of antioxidant activity as a potent candidate for nonalcoholic fatty liver disease and hyperlipidemia. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Moon-Jea Woo
- Kwang dong Pharmaceutical Co., Ltd., Seoul, 137-875, Korea
| | - Chul-Soo Park
- Kwang dong Pharmaceutical Co., Ltd., Seoul, 137-875, Korea
| | - Sang-Hun Lee
- Kwang dong Pharmaceutical Co., Ltd., Seoul, 137-875, Korea
| | - Jin-Soo Kim
- Kwang dong Pharmaceutical Co., Ltd., Seoul, 137-875, Korea
| | - Boim Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Seho An
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| |
Collapse
|
28
|
Jeong EJ, Jegal J, Ahn J, Kim J, Yang MH. Anti-obesity Effect of Dioscorea oppositifolia Extract in High-Fat Diet-Induced Obese Mice and Its Chemical Characterization. Biol Pharm Bull 2015; 39:409-14. [PMID: 26700066 DOI: 10.1248/bpb.b15-00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dioscorea oppositifolia is a well-known edible and traditional medicine for the treatment of gastrointestinal diseases. In our previous study, D. oppositifolia exhibited both pancreatic lipase inhibition and an anti-adipogenesis effect in vitro. This study was performed to investigate the anti-obesity effect of D. oppositifolia on high-fat diet-induced obese mice. Female ICR mice were fed a high-fat diet with the 100 mg/kg of D. oppositifolia n-BuOH extract for 8 weeks. The high-fat diet mice received the 15 mg/kg Orlistat orally as a positive control. The body weight, parametrial adipose tissue weight, and the levels of triglyceride (TG), total cholesterol (TC), and low density lipoprotein (LDL)-cholesterol in blood serum of female ICR mice were significantly decreased by feeding a high-fat diet with the n-BuOH extract of D. oppositifolia. An inhibitory effect of D. oppositifolia extract on dietary fat absorption was also clearly shown. The D. oppositifolia sample was found to contain 3,5-dimethoxy-2,7-phenanthrenediol and (3R,5R)-3,5-dihydroxy-1,7-bis(4-hydroxyphenyl)-3,5-heptanediol as main components based on its phytochemical analysis. The present study is the first report of the anti-obesity effect by D. oppositifolia n-BuOH extract using an established disease model. The increase in fecal fat excretion by treatment of D. oppositifolia may be an effective approach for treating obesity and related diseases.
Collapse
Affiliation(s)
- Eun Ju Jeong
- Department of Agronomy & Medicinal Plant Resources, College of Life Sciences and Natural Resources, Gyeongnam National University of Science and Technology
| | | | | | | | | |
Collapse
|
29
|
Chagas VT, França LM, Malik S, Paes AMDA. Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases. Front Pharmacol 2015; 6:259. [PMID: 26578965 PMCID: PMC4630574 DOI: 10.3389/fphar.2015.00259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Syzygium cumini (Myrtaceae) is a worldwide medicinal plant traditionally used in herbal medicines due to its vaunted properties against cardiometabolic disorders, which include: antihyperglycemic, hypolipemiant, antiinflammatory, cardioprotective, and antioxidant activities. These properties have been attributed to the presence of bioactive compounds such as phenols, flavonoids, and tannins in different parts of the plant, albeit the knowledge on their mechanisms of action is scarce. This mini-review highlights the cardiometabolic properties of S. cumini by correlating its already identified phytochemicals with their described mechanisms of action. Data herein compiled show that some compounds target multiple metabolic pathways; thereby, becoming potential pharmacological tools. Moreover, the lack of clinical trials on S. cumini usage makes it a fruitful field of interest for both scientific community and pharmaceutical industry.
Collapse
Affiliation(s)
- Vinicyus Teles Chagas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão São Luís, Brazil ; Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão São Luís, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão São Luís, Brazil ; Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão São Luís, Brazil
| | - Sonia Malik
- Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão São Luís, Brazil ; Graduate Program in Health Sciences, Biological and Health Sciences Center, Federal University of Maranhão São Luís, Brazil
| |
Collapse
|
30
|
Kim SW, Park TJ, Chaudhari HN, Choi JH, Choi JY, Kim YJ, Choi MS, Yun JW. Hepatic proteome and its network response to supplementation of an anti-obesity herbal mixture in diet-induced obese mice. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0258-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Anti-adipogenic effects in 3T3-L1 cells of acetone extracts and fractions from Styrax japonica fruit. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Etxeberria U, De La Garza AL, Martínez JA, Milagro FI. Biocompounds Attenuating the Development of Obesity and Insulin Resistance Produced by a High-fat Sucrose Diet. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of biocompounds as agents with potential anti-obesity effects might be a feasible alternative to the prescription of traditional drugs in the near future. The goal of the present study was to screen five different compounds in relation to their ability to prevent body weight gain and ameliorate obesity-associated metabolic impairments, namely insulin resistance. For this purpose, seventy Wistar rats were randomly assigned into seven experimental groups. A standard diet-fed control group (control, n=10); a high-fat, high-sucrose diet-fed group (HFS, n=10) and five experimental groups which were fed the HFS diet supplemented with one of the following biocompounds; curcumin (100 mg/kg bw, n=10), chlorogenic acid (50 mg/kg bw, n=10), coumaric acid (100 mg/kg bw, n=10), naringin (100 mg/kg bw, n=10) and leucine (1 % of diet, n=10). These results confirm the effectiveness of all the compounds to reduce significantly food efficiency, despite the significant higher food intake. Moreover, visceral fat mass percentage was significantly decreased after naringin and coumaric acid supplementation. In fact, this finding might be related to the considerable amelioration of HOMA-IR index detected in naringin-treated animals. A significant reduction in serum insulin levels and an improvement in the intraperitoneal glucose tolerance test and AUC were found in leucine- and coumaric acid-treated rats, respectively. In summary, the tested biocompounds, particularly naringin, coumaric acid and leucine, showed potential benefits in the prevention of obesity-related complications in rats, at least at the proved doses.
Collapse
Affiliation(s)
- Usune Etxeberria
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
| | - Ana Laura De La Garza
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
| | - J. Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, C/Irunlarrea 1,31008 Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Carlos III Health Research Institute, Madrid, Spain
| |
Collapse
|
33
|
Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Terminalia paniculata bark extract attenuates non-alcoholic fatty liver via down regulation of fatty acid synthase in high fat diet-fed obese rats. Lipids Health Dis 2014; 13:58. [PMID: 24678767 PMCID: PMC4006078 DOI: 10.1186/1476-511x-13-58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Background This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1α were also studied in addition to histopathology examination of liver tissue in all the groups. Results HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1α compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b.wt) treated group when compared to HFD group at protein level. Conclusions Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.
Collapse
|
35
|
Cha PH, Shin W, Zahoor M, Kim HY, Min DS, Choi KY. Hovenia dulcis Thunb extract and its ingredient methyl vanillate activate Wnt/β-catenin pathway and increase bone mass in growing or ovariectomized mice. PLoS One 2014; 9:e85546. [PMID: 24465596 PMCID: PMC3899039 DOI: 10.1371/journal.pone.0085546] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
The Wnt/β-catenin pathway is a potential target for development of anabolic agents to treat osteoporosis because of its role in osteoblast differentiation and bone formation. However, there is no clinically available anti-osteoporosis drug that targets this Wnt/β-catenin pathway. In this study, we screened a library of aqueous extracts of 350 plants and identified Hovenia dulcis Thunb (HDT) extract as a Wnt/β-catenin pathway activator. HDT extract induced osteogenic differentiation of calvarial osteoblasts without cytotoxicity. In addition, HDT extract increased femoral bone mass without inducing significant weight changes in normal mice. In addition, thickness and area of femoral cortical bone were also significantly increased by the HDT extract. Methyl vanillate (MV), one of the ingredients in HDT, also activated the Wnt/β-catenin pathway and induced osteoblast differentiation in vitro. MV rescued trabecular or cortical femoral bone loss in the ovariectomized mice without inducing any significant weight changes or abnormality in liver tissue when administrated orally. Thus, natural HDT extract and its ingredient MV are potential anabolic agents for treating osteoporosis.
Collapse
Affiliation(s)
- Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Wookjin Shin
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Muhammad Zahoor
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyun-Yi Kim
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
36
|
Lu Y, Xi W, Ding X, Fan S, Zhang Y, Jiang D, Li Y, Huang C, Zhou Z. Citrange fruit extracts alleviate obesity-associated metabolic disorder in high-fat diet-induced obese C57BL/6 mouse. Int J Mol Sci 2013; 14:23736-50. [PMID: 24317433 PMCID: PMC3876074 DOI: 10.3390/ijms141223736] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is becoming one of the global epidemics of the 21st century. In this study, the effects of citrange (Citrus sinensis × Poncirus trifoliata) fruit extracts in high-fat (HF) diet-induced obesity mice were studied. Female C57BL/6 mice were fed respectively a chow diet (control), an HF diet, HF diet supplemented with 1% w/w citrange peel extract (CPE) or 1% w/w citrange flesh and seed extract (CFSE) for 8 weeks. Our results showed that both CPE and CFSE regulated the glucose metabolic disorders of obese mice. In CPE and CFSE-treated groups, the body weight gain, blood glucose, serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-c) levels were significantly (p < 0.05) reduced relative to those in the HF group. To explore the mechanisms of action of CPE and CFSE on the metabolism of glucose and lipid, related genes’ expressions in liver were assayed. In liver tissue, the expression level of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were down-regulated by CPE and CFSE supplementation as revealed by qPCR tests. In addition, both CPE and CFSE decreased the expression level of liver X receptor (LXR) α and β, which are involved in lipid and glucose metabolism. Taken together, these results suggest that CPE and CFSE administration could ameliorate obesity and related metabolic disorders in HF diet-induced obesity mice probably through the inhibition of PPARγ and LXRs gene expressions.
Collapse
Affiliation(s)
- Yan Lu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; E-Mails: (Y.L.); (W.X.); (X.D.)
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; E-Mails: (Y.L.); (W.X.); (X.D.)
| | - Xiaobo Ding
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; E-Mails: (Y.L.); (W.X.); (X.D.)
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
| | - Dong Jiang
- Citrus Research Institute, Chinese Academy Agricultural Science, Chongqing 400712, China; E-Mail:
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; E-Mails: (S.F.); (Y.Z.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (C.H.); Tel.: +86-23-6825-0229 (Z.Z.); +86-21-5132-2182 (C.H.); Fax: +86-23-6825-1274 (Z.Z.); +86-21-5132-2193 (C.H.)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; E-Mails: (Y.L.); (W.X.); (X.D.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.Z.); (C.H.); Tel.: +86-23-6825-0229 (Z.Z.); +86-21-5132-2182 (C.H.); Fax: +86-23-6825-1274 (Z.Z.); +86-21-5132-2193 (C.H.)
| |
Collapse
|
37
|
Marimuthu S, Balakrishnan P, Nair S. Phytochemical investigation and radical scavenging activities of Melia azedarach and its DNA protective effect in cultured lymphocytes. PHARMACEUTICAL BIOLOGY 2013; 51:1331-1340. [PMID: 23767787 DOI: 10.3109/13880209.2013.791323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Melia azedarach Linn (Meliaceae) is an Ayurvedic medicinal plant which is native to India. It is traditionally used for the treatment of leprosy, inflammation, scrofula, anthelmintic, antilithic, diuretic, deobstruent and cardiac disorders. OBJECTIVE To evaluate the phytochemical constituents and antioxidant activities of the ethanol leaf extract of Melia azedarach (MA) and its protective effect against H2O2-induced cellular damage in cultured lymphocytes. MATERIALS AND METHODS The dose-dependent study of MA (20, 40, 60, 80, 100 µg/ml) was used to study in vitro radical scavenging assays. The effective dose of MA (60 µg/ml) was further used to study the H2O2-induced DNA damage (comet assay and DNA fragmentation assay) in cultured lymphocytes. RESULTS The ethanol extract of MA (20, 40, 60, 80, 100 µg/ml) exhibited a significant dose-dependent inhibition of in vitro radical scavenging assays and their corresponding IC50 values as follows: hydroxyl radical (26.50 ± 0.26 µg/ml), superoxide anion (30.00 ± 0.32 µg/ml), nitric oxide radical (48.00 ± 0.48 µg/ml), DPPH radical (30.55 ± 0.32 µg/ml) and reducing power (22.00 ± 0.22 µg/ml). The increase in the severity of DNA damage and TBARS was increased significantly (p<0.05) at 500 µM H2O2-treated cultured lymphocytes and RBC cellular membranes. The phytochemical screening studies identified 13 chemical constituents present in the leaf extract of MA. DISCUSSION AND CONCLUSION The results of this study demonstrate that MA offers protection against H2O2-induced cellular damage and it can be developed as an effective antioxidant during oxidative stress.
Collapse
Affiliation(s)
- Srinivasan Marimuthu
- Ayurveda Research Institute for Mother & Child health Care, Poojapura, Trivandrum, India
| | | | | |
Collapse
|
38
|
Decrease of Obesity by Allantoin via Imidazoline I 1 -Receptor Activation in High Fat Diet-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:589309. [PMID: 23606885 PMCID: PMC3626183 DOI: 10.1155/2013/589309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/16/2013] [Accepted: 03/04/2013] [Indexed: 12/21/2022]
Abstract
The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity.
Collapse
|
39
|
Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. JOURNAL OF ACUTE DISEASE 2013. [DOI: 10.1016/s2221-6189(13)60123-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
40
|
Citrus ichangensis Peel Extract Exhibits Anti-Metabolic Disorder Effects by the Inhibition of PPARγ and LXR Signaling in High-Fat Diet-Induced C57BL/6 Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:678592. [PMID: 23320036 PMCID: PMC3536358 DOI: 10.1155/2012/678592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/29/2012] [Indexed: 01/20/2023]
Abstract
Obesity is a common nutritional disorder associated with type 2 diabetes, cardiovascular diseases, dyslipidemia, and certain cancers. In this study, we investigated the effects of Citrus ichangensis peel extract (CIE) in high-fat (HF) diet-induced obesity mice. Female C57BL/6 mice were fed a chow diet or an HF diet alone or supplemented with 1% w/w CIE for 8 weeks. We found that CIE treatment could lower blood glucose level and improve glucose tolerance. In the HF+CIE group, body weight gain, serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) levels, and liver triglyceride (TG) and TC concentrations were significantly (P < 0.05) decreased relative to those in the HF group. To elucidate the mechanism of CIE on the metabolism of glucose and lipid, related genes expression in liver were examined. In liver tissue, CIE significantly decreased the mRNA expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes, such as fatty acid synthase (FAS) and acyl-CoA oxidase (ACO). Moreover, CIE also decreased the expression of liver X receptor (LXR) α and β which are involved in lipid and glucose metabolism. These results suggest that CIE administration could alleviate obesity and related metabolic disorders in HF diet-induced obesity mice through the inhibition of PPARγ and LXR signaling.
Collapse
|