1
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner TJ, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2025; 20:25-37. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Bezerra TO, Roque AC, Salum C. A Computational Model for the Simulation of Prepulse Inhibition and Its Modulation by Cortical and Subcortical Units. Brain Sci 2024; 14:502. [PMID: 38790479 PMCID: PMC11118907 DOI: 10.3390/brainsci14050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The sensorimotor gating is a nervous system function that modulates the acoustic startle response (ASR). Prepulse inhibition (PPI) phenomenon is an operational measure of sensorimotor gating, defined as the reduction of ASR when a high intensity sound (pulse) is preceded in milliseconds by a weaker stimulus (prepulse). Brainstem nuclei are associated with the mediation of ASR and PPI, whereas cortical and subcortical regions are associated with their modulation. However, it is still unclear how the modulatory units can influence PPI. In the present work, we developed a computational model of a neural circuit involved in the mediation (brainstem units) and modulation (cortical and subcortical units) of ASR and PPI. The activities of all units were modeled by the leaky-integrator formalism for neural population. The model reproduces basic features of PPI observed in experiments, such as the effects of changes in interstimulus interval, prepulse intensity, and habituation of ASR. The simulation of GABAergic and dopaminergic drugs impaired PPI by their effects over subcortical units activity. The results show that subcortical units constitute a central hub for PPI modulation. The presented computational model offers a valuable tool to investigate the neurobiology associated with disorder-related impairments in PPI.
Collapse
Affiliation(s)
- Thiago Ohno Bezerra
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| | - Antonio C. Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Cristiane Salum
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
- Interdisciplinary Applied Neuroscience Unit, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil
| |
Collapse
|
3
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
4
|
Haigh SM, Van Key L, Brosseau P, Eack SM, Leitman DI, Salisbury DF, Behrmann M. Assessing Trial-to-Trial Variability in Auditory ERPs in Autism and Schizophrenia. J Autism Dev Disord 2023; 53:4856-4871. [PMID: 36207652 PMCID: PMC10079782 DOI: 10.1007/s10803-022-05771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Sensory abnormalities are characteristic of autism and schizophrenia. In autism, greater trial-to-trial variability (TTV) in sensory neural responses suggest that the system is more unstable. However, these findings have only been identified in the amplitude and not in the timing of neural responses, and have not been fully explored in schizophrenia. TTV in event-related potential amplitudes and inter-trial coherence (ITC) were assessed in the auditory mismatch negativity (MMN) in autism, schizophrenia, and controls. MMN was largest in autism and smallest in schizophrenia, and TTV was greater in autism and schizophrenia compared to controls. There were no differences in ITC. Greater TTV appears to be characteristic of both autism and schizophrenia, implicating several neural mechanisms that could underlie sensory instability.
Collapse
Affiliation(s)
- Sarah M Haigh
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA.
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Laura Van Key
- Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, Reno, NV, USA
| | - Pat Brosseau
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Perez Y, Velmeshev D, Wang L, White M, Siebert C, Baltazar J, Dutton NG, Wang S, Haeussler M, Chamberlain S, Kriegstein A. Single cell analysis of dup15q syndrome reveals developmental and postnatal molecular changes in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559056. [PMID: 37790331 PMCID: PMC10543006 DOI: 10.1101/2023.09.22.559056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.
Collapse
Affiliation(s)
- Yonatan Perez
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Current address: Bryan Research Building, Duke University, Durham, NC27710, USA
| | - Li Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew White
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clara Siebert
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Baltazar
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Garcia Dutton
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shaohui Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Stormy Chamberlain
- Departments of Genetics and Genome Sciences and Pediatrics, Connecticut Children's Medical Center, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Knudsen LV, Sheldrick AJ, Vafaee MS, Michel TM. Diversifying autism neuroimaging research: An arterial spin labeling review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022:13623613221137230. [DOI: 10.1177/13623613221137230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cognition and brain homeostasis depends on cerebral blood flow to secure adequate oxygen and nutrient distribution to the brain tissue. Altered cerebral blood flow has previously been reported in individuals diagnosed with autism spectrum condition in comparison to non-autistics. This phenomenon might suggest cerebral blood flow as a potential biomarker for autism spectrum condition. Major technological advancement enables the non-invasive and quantitative measurement of cerebral blood flow via arterial spin labeling magnetic resonance imaging. However, most neuroimaging studies in autistic individuals exploit the indirect blood oxygen level dependent functional magnetic resonance imaging signal instead. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of the autism spectrum condition. Followed by a comparison of results from molecular imaging and arterial spin labeling studies and a discussion concerning the future direction and potential of arterial spin labeling in this context. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. Arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow, including assessment of functional connectivity and arterial transit time. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism spectrum condition. Lay abstract Brain function and health depend on cerebral blood flow to secure the necessary delivery of oxygen and nutrients to the brain tissue. However, cerebral blood flow appears to be altered in autistic compared to non-autistic individuals, potentially suggesting this difference to be a cause and potential identification point of autism. Recent technological development enables precise and non-invasive measurement of cerebral blood flow via the magnetic resonance imaging method referred to as arterial spin labeling. However, most neuroimaging studies still prefer using the physiologically indirect measure derived from functional magnetic resonance imaging. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of autism. Furthermore, the review includes a comparison of results from molecular imaging and arterial spin labeling followed by a discussion concerning the future direction and potential of arterial spin labeling. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. In addition, arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism.
Collapse
|
7
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
8
|
Gagliano A, Murgia F, Capodiferro AM, Tanca MG, Hendren A, Falqui SG, Aresti M, Comini M, Carucci S, Cocco E, Lorefice L, Roccella M, Vetri L, Sotgiu S, Zuddas A, Atzori L. 1H-NMR-Based Metabolomics in Autism Spectrum Disorder and Pediatric Acute-Onset Neuropsychiatric Syndrome. J Clin Med 2022; 11:6493. [PMID: 36362721 PMCID: PMC9658067 DOI: 10.3390/jcm11216493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/03/2023] Open
Abstract
We recently described a unique plasma metabolite profile in subjects with pediatric acute-onset neuropsychiatric syndrome (PANS), suggesting pathogenic models involving specific patterns of neurotransmission, neuroinflammation, and oxidative stress. Here, we extend the analysis to a group of patients with autism spectrum disorder (ASD), as a consensus has recently emerged around its immune-mediated pathophysiology with a widespread involvement of brain networks. This observational case-control study enrolled patients referred for PANS and ASD from June 2019 to May 2020, as well as neurotypical age and gender-matched control subjects. Thirty-four PANS outpatients, fifteen ASD outpatients, and twenty-five neurotypical subjects underwent physical and neuropsychiatric evaluations, alongside serum metabolomic analysis with 1H-NMR. In supervised models, the metabolomic profile of ASD was significantly different from controls (p = 0.0001), with skewed concentrations of asparagine, aspartate, betaine, glycine, lactate, glucose, and pyruvate. Metabolomic separation was also observed between PANS and ASD subjects (p = 0.02), with differences in the concentrations of arginine, aspartate, betaine, choline, creatine phosphate, glycine, pyruvate, and tryptophan. We confirmed a unique serum metabolomic profile of PANS compared with both ASD and neurotypical subjects, distinguishing PANS as a pathophysiological entity per se. Tryptophan and glycine appear as neuroinflammatory fingerprints of PANS and ASD, respectively. In particular, a reduction in glycine would primarily affect NMDA-R excitatory tone, overall impairing downstream glutamatergic, dopaminergic, and GABAergic transmissions. Nonetheless, we found metabolomic similarities between PANS and ASD that suggest a putative role of N-methyl-D-aspartate receptor (NMDA-R) dysfunction in both disorders. Metabolomics-based approaches could contribute to the identification of novel ASD and PANS biomarkers.
Collapse
Affiliation(s)
- Antonella Gagliano
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Agata Maria Capodiferro
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Marcello Giuseppe Tanca
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Aran Hendren
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stella Giulia Falqui
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Michela Aresti
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Martina Comini
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Sara Carucci
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Regional Center, ASSL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Regional Center, ASSL Cagliari, 09126 Cagliari, Italy
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Luigi Vetri
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Stefano Sotgiu
- Child Neuropsychiatry Unit, Department of Medicine, Surgery and Farmacy, University of Sassari, 07100 Sassari, Italy
| | - Alessandro Zuddas
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, “A. Cao” Paediatric Hospital, University of Cagliari, 09121 Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
9
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
11
|
Keeratitanont K, Theerakulpisut D, Auvichayapat N, Suphakunpinyo C, Patjanasoontorn N, Tiamkao S, Tepmongkol S, Khiewvan B, Raruenrom Y, Srisuruk P, Paholpak S, Auvichayapat P. Brain laterality evaluated by F-18 fluorodeoxyglucose positron emission computed tomography in autism spectrum disorders. Front Mol Neurosci 2022; 15:901016. [PMID: 36034502 PMCID: PMC9399910 DOI: 10.3389/fnmol.2022.901016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Background and rationale Autism spectrum disorder (ASD) is a neuropsychiatric disorder that has no curative treatment. Little is known about the brain laterality in patients with ASD. F-18 fluorodeoxyglucose positron emission computed tomography (F-18 FDG PET/CT) is a neuroimaging technique that is suitable for ASD owing to its ability to detect whole brain functional abnormalities in a short time and is feasible in ASD patients. The purpose of this study was to evaluate brain laterality using F-18 FDG PET/CT in patients with high-functioning ASD. Materials and methods This case-control study recruited eight ASD patients who met the DSM-5 criteria, the recorded data of eight controls matched for age, sex, and handedness were also enrolled. The resting state of brain glucose metabolism in the regions of interest (ROIs) was analyzed using the Q.Brain software. Brain glucose metabolism and laterality index in each ROI of ASD patients were compared with those of the controls. The pattern of brain metabolism was analyzed using visual analysis and is reported in the data description. Results The ASD group’s overall brain glucose metabolism was lower than that of the control group in both the left and right hemispheres, with mean differences of 1.54 and 1.21, respectively. We found statistically lower mean glucose metabolism for ASD patients than controls in the left prefrontal lateral (Z = 1.96, p = 0.049). The left laterality index was found in nine ROIs for ASD and 11 ROIs for the control. The left laterality index in the ASD group was significantly lower than that in the control group in the prefrontal lateral (Z = 2.52, p = 0.012), precuneus (Z = 2.10, p = 0.036), and parietal inferior (Z = 1.96, p = 0.049) regions. Conclusion Individuals with ASD have lower brain glucose metabolism than control. In addition, the number of ROIs for left laterality index in the ASD group was lower than control. Left laterality defects may be one of the causes of ASD. This knowledge can be useful in the treatment of ASD by increasing the left-brain metabolism. This trial was registered in the Thai Clinical Trials Registry (TCTR20210705005).
Collapse
Affiliation(s)
- Keattichai Keeratitanont
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Daris Theerakulpisut
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanyut Suphakunpinyo
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Niramol Patjanasoontorn
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somsak Tiamkao
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yutapong Raruenrom
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyawan Srisuruk
- Department of Educational Psychology and Counseling, Faculty of Education, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Suchat Paholpak
- Department of Psychiatry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
| | - Paradee Auvichayapat
- Noninvasive Brain Stimulation Research Group of Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Service Institute for Autism, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Paradee Auvichayapat,
| |
Collapse
|
12
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|
13
|
Yue X, Zhang G, Li X, Shen Y, Wei W, Bai Y, Luo Y, Wei H, Li Z, Zhang X, Wang M. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders. Front Hum Neurosci 2022; 16:891965. [PMID: 35664346 PMCID: PMC9160196 DOI: 10.3389/fnhum.2022.891965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children’s socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqiang Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
14
|
Xie Y, He Y, Guan M, Zhou G, Wang Z, Ma Z, Wang H, Yin H. Impact of low-frequency rTMS on functional connectivity of the dentate nucleus subdomains in schizophrenia patients with auditory verbal hallucination. J Psychiatr Res 2022; 149:87-96. [PMID: 35259665 DOI: 10.1016/j.jpsychires.2022.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023]
Abstract
Despite low-frequency repetitive transcranial magnetic stimulation (rTMS) is effective in treating schizophrenia patients with auditory verbal hallucinations (AVH), the underlying neural mechanisms of the effect still need to be clarified. Using the cerebellar dentate nucleus (DN) subdomain (dorsal and versal DN) as seeds, the present study investigated resting state functional connectivity (FC) alternations of the seeds with the whole brain and their associations with clinical responses in schizophrenia patients with AVH receiving 1 Hz rTMS treatment. The results showed that the rTMS treatment improved the psychiatric symptoms (e.g., AVH and positive symptoms) and certain neurocognitive functions (e.g., visual learning and verbal learning) in the patients. In addition, the patients at baseline showed increased FC between the DN subdomains and temporal lobes (e.g., right superior temporal gyrus and right middle temporal gyrus) and decreased FC between the DN subdomains and the left superior frontal gyrus, right postcentral gyrus, left supramarginal gyrus and regional cerebellum (e.g., lobule 4-5) compared to controls. Furthermore, these abnormal DN subdomain connectivity patterns did not persist and decreased FC of DN subdomains with cerebellum lobule 4-5 were reversed in patients after rTMS treatment. Linear regression analysis showed that the FC difference values of DN subdomains with the temporal lobes, supramarginal gyrus and cerebellum 4-5 between the patients at baseline and posttreatment were associated with clinical improvements (e.g., AVH and verbal learning) after rTMS treatment. The results suggested that rTMS treatment may modulate the neural circuits of the DN subdomains and hint to underlying neural mechanisms for low-frequency rTMS treating schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | | | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Tan Z, Wei H, Song X, Mai W, Yan J, Ye W, Ling X, Hou L, Zhang S, Yan S, Xu H, Wang L. Positron Emission Tomography in the Neuroimaging of Autism Spectrum Disorder: A Review. Front Neurosci 2022; 16:806876. [PMID: 35495051 PMCID: PMC9043810 DOI: 10.3389/fnins.2022.806876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a basket term for neurodevelopmental disorders characterized by marked impairments in social interactions, repetitive and stereotypical behaviors, and restricted interests and activities. Subtypes include (A) disorders with known genetic abnormalities including fragile X syndrome, Rett syndrome, and tuberous sclerosis and (B) idiopathic ASD, conditions with unknown etiologies. Positron emission tomography (PET) is a molecular imaging technology that can be utilized in vivo for dynamic and quantitative research, and is a valuable tool for exploring pathophysiological mechanisms, evaluating therapeutic efficacy, and accelerating drug development in ASD. Recently, several imaging studies on ASD have been published and physiological changes during ASD progression was disclosed by PET. This paper reviews the specific radioligands for PET imaging of critical biomarkers in ASD, and summarizes and discusses the similar and different discoveries in outcomes of previous studies. It is of great importance to identify general physiological changes in cerebral glucose metabolism, cerebral blood flow perfusion, abnormalities in neurotransmitter systems, and inflammation in the central nervous system in ASD, which may provide excellent points for further ASD research.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiubao Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wangxiang Mai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiajian Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hao Xu,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lu Wang,
| |
Collapse
|
16
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
17
|
Hughes RB, Whittingham-Dowd J, Clapcote SJ, Broughton SJ, Dawson N. Altered medial prefrontal cortex and dorsal raphé activity predict genotype and correlate with abnormal learning behavior in a mouse model of autism-associated 2p16.3 deletion. Autism Res 2022; 15:614-627. [PMID: 35142069 PMCID: PMC9303357 DOI: 10.1002/aur.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14C‐2‐deoxyglucose imaging. We also assess performance in an olfactory‐based discrimination and reversal learning (OB‐DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/− mice. Behaviorally, Nrxn1α+/− mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/− mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/− mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/− mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
18
|
Nenadić I, Meller T, Evermann U, Schmitt S, Pfarr JK, Abu-Akel A, Grezellschak S. Subclinical schizotypal vs. autistic traits show overlapping and diametrically opposed facets in a non-clinical population. Schizophr Res 2021; 231:32-41. [PMID: 33744683 DOI: 10.1016/j.schres.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND The overlap of autism spectrum disorder (ASD) and psychosis or schizophrenia spectrum disorders (SSD) has exposed problems central to conceptualising and understanding co-morbidity in psychiatric disorders. METHODS In the present study, we demonstrate that a deep phenotyping approach aids clarification of both overlapping and diametrically opposed features of ASD and SSD on the level of trait facets. RESULTS We first show overlap of negative and disorganised (but not positive) features of schizotypy with autistic traits in a sample of n = 376 German non-clinical subjects using multiple psychometric measures of schizotypy (MSS multidimensional schizotypy scale, OLIFE Oxford-Liverpool Inventory of Feelings and Experiences, and SPQ-B schizotypal personality questionnaire - brief) and the AQ autism spectrum quotient, with control measures for affective spectrum pathology (BDI). Findings were then replicated in a French-Swiss sample (n = 264) using MSS, OLIFE, AQ, and in addition the Community Assessment of Psychic Experiences (CAPE). Additional principal component analysis confirmed our finding of the co-existence of both overlapping (loss of function, social communication deficit, and negative schizotypy) as well as diametrically opposed features (AQ attention to detail, positive schizotypy) across the two spectra. Results were validated with Horn's parallel analyses, affirming two component solutions, and PCA using sample-specific, factor-analysis-derived schizotypy scores. CONCLUSIONS Providing a framework for multi-dimensional transdiagnostic characterisation of ASD vs. SSD phenotypes we point out overlapping vs. discriminating facets. In addition to the use of novel multidimensional schizotypy scales, it also shows transcultural consistency of findings, and highlights a particular role for the attention to detail AQ subscale.
Collapse
Affiliation(s)
- Igor Nenadić
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany.
| | - Tina Meller
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ulrika Evermann
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Simon Schmitt
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Julia-Katharina Pfarr
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Quartier UNIL-Mouline, Géopolis, Lausanne, Switzerland
| | - Sarah Grezellschak
- Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany; Marburg University Hospital - UKGM, Marburg, Germany
| |
Collapse
|
19
|
Cross-sectional investigation of insulin resistance in youths with autism spectrum disorder. Any role for reduced brain glucose metabolism? Transl Psychiatry 2021; 11:229. [PMID: 33879765 PMCID: PMC8058067 DOI: 10.1038/s41398-021-01345-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The autism spectrum disorder (ASD) is an etiologically heterogeneous disorder. Dysfunctions of the intermediate metabolism have been described in some patients. We speculate these metabolic abnormalities are associated with brain insulin resistance (IR), i.e., the reduced glucose metabolism at the level of the nervous central system. The Homeostasis model assessment of insulin resistance (HOMA-IR) is very often used in population studies as estimate of peripheral IR and it has been recently recognized as proxy of brain IR. We investigated HOMA-IR in 60 ASD patients aged 4-18 years and 240 healthy controls, also aged 4-18 years, but unmatched for age, sex, body weight, or body mass index (BMI). At multivariable linear regression model, the HOMA-IR was 0.31 unit higher in ASD individuals than in controls, after having adjusted for sex, age, BMI z-score category, and lipids that are factors known to influence HOMA-IR. Findings of this preliminary study suggest it is worth investigating brain glucose metabolism in larger population of patients with ASD by using gold standard technique. The recognition of a reduced glucose metabolism in some areas of the brain as marker of autism might have tremendous impact on our understanding of the pathogenic mechanisms of the disease and in terms of public health.
Collapse
|
20
|
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in autism research: literature review. Ir J Psychol Med 2021; 39:272-286. [PMID: 33818321 DOI: 10.1017/ipm.2021.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) remains a behaviourally defined condition. Its molecular basis is unknown; however, its prevalence has been increasing significantly. There have been several abnormalities in neurotransmitter systems reported in ASD. In our review, we described studies involving positron emission tomography (PET) and single-photon emission computed tomography (SPECT) that can provide useful and corroborative data. METHOD We conducted a literature review by comprehensive database searching on EMBASE, Scopus, PubMed, and PsychINFO looking for articles published since January 2009. Thirty-one studies were carefully selected - 22 PET studies and 9 SPECT studies - and reviewed by 2 independent researchers. References of the articles were also cross-checked. RESULTS Results of the studies, which mainly involve small groups of participants, are frequently inconclusive and often controversial due to the nature of ASD and its wide spectrum. Studies are conducted under different conditions and with poor control for confounding factors which creates difficulties in comparing the data. CONCLUSIONS There is ongoing need to improve methodology of the studies involving molecular imaging in ASD. Lack of consistent findings causes difficulties in evaluation, diagnosis, and treatment of the condition.
Collapse
|
21
|
Li X, Zhang K, He X, Zhou J, Jin C, Shen L, Gao Y, Tian M, Zhang H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci Bull 2021; 37:1051-1071. [PMID: 33779890 DOI: 10.1007/s12264-021-00673-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder associated with both genetic and environmental risks. Neuroimaging approaches have been widely employed to parse the neurophysiological mechanisms underlying ASD, and provide critical insights into the anatomical, functional, and neurochemical changes. We reviewed recent advances in neuroimaging studies that focused on ASD by using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-positron emission tomography (SPECT). Longitudinal structural MRI has delineated an abnormal developmental trajectory of ASD that is associated with cascading neurobiological processes, and functional MRI has pointed to disrupted functional neural networks. Meanwhile, PET and SPECT imaging have revealed that metabolic and neurotransmitter abnormalities may contribute to shaping the aberrant neural circuits of ASD. Future large-scale, multi-center, multimodal investigations are essential to elucidate the neurophysiological underpinnings of ASD, and facilitate the development of novel diagnostic biomarkers and better-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Lesang Shen
- Department of Surgical Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Noritake A, Ninomiya T, Isoda M. Subcortical encoding of agent-relevant associative signals for adaptive social behavior in the macaque. Neurosci Biobehav Rev 2021; 125:78-87. [PMID: 33609569 DOI: 10.1016/j.neubiorev.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Primates are group-living creatures that constantly face the challenges posed by complex social demands. To date, the cortical mechanisms underlying social information processing have been the major focus of attention. However, emerging evidence suggests that subcortical regions also mediate the collection and processing of information from other agents. Here, we review the literature supporting the hypothesis that behavioral variables important for decision-making, i.e., stimulus, action, and outcome, are associated with agent information (self and other) in subcortical regions, such as the amygdala, striatum, lateral hypothalamus, and dopaminergic midbrain nuclei. Such self-relevant and other-relevant associative signals are then integrated into a social utility signal, presumably at the level of midbrain dopamine neurons. This social utility signal allows decision makers to organize their optimal behavior in accordance with social demands. Determining how self-relevant and other-relevant signals might be altered in psychiatric and neurodevelopmental disorders will be fundamental to better understand how social behaviors are dysregulated in disease conditions.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan
| | - Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
23
|
Digital autoradiography for efficient functional imaging without anesthesia in experimental animals: Reversing phencyclidine-induced functional alterations using clozapine. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109887. [PMID: 32061743 DOI: 10.1016/j.pnpbp.2020.109887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022]
Abstract
Autoradiography (ARG) is a high-resolution imaging method for localization of radiolabeled biomarkers in ex vivo specimen. ARG using 2-deoxy-d-glucose (2-DG) method is used in to study drug actions on brain functional activity, as it provides results comparable to clinically used functional positron-emission tomography (PET). The requirement of slow analog detection methods and emerging advances in small animal PET imaging have, however, reduced the interest in ARG. In contrast to ARG, experimental animals need to be restrained or sedated/anesthetized for PET imaging, which strongly influence functional activity and thus complicate the interpretation of the results. Digital direct particle-counting ARG systems have gained attraction during the last decade to overcome the caveats of conventional ARG methods. Here we demonstrate that the well-established 2-DG imaging method can be adapted into use with contemporary digital detectors. This method readily and rapidly captures the characteristic effects of phencyclidine (5 mg/kg, i.p.), a dissociative agent targeting the NMDAR (N-methyl-d-aspartate receptor), on regional glucose utilization in the adult mouse brain. Pretreatment with antipsychotic drug clozapine (6 mg/kg, i.p.) essentially abolishes these effects of phencyclidine on brain functional activity. Digital ARG produces viable data for the regional analysis of functional activity in a fraction of time required for film development. These results support the use of digital ARG in preclinical drug research, where high throughput and response linearity are preferred and use of sedation/anesthesia has to be avoided.
Collapse
|
24
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Positive association between cerebral grey matter metabolism and dopamine D 2/D 3 receptor availability in healthy and schizophrenia subjects: An 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography study. World J Biol Psychiatry 2020; 21:368-382. [PMID: 31552783 DOI: 10.1080/15622975.2019.1671609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Overlapping decreases in extrastriatal dopamine D2/D3-receptor availability and glucose metabolism have been reported in subjects with schizophrenia. It remains unknown whether these findings are physiologically related or coincidental.Methods: To ascertain this, we used two consecutive 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography scans in 19 healthy and 25 unmedicated schizophrenia subjects. Matrices of correlations between 18F-fluorodeoxyglucose uptake and 18F-fallypride binding in voxels at the same xyz location and AFNI-generated regions of interest were evaluated in both diagnostic groups.Results:18F-fluorodeoxyglucose uptake and 18F-fallypride binding potential were predominantly positively correlated across the striatal and extrastriatal grey matter in both healthy and schizophrenia subjects. In comparison to healthy subjects, significantly weaker correlations in subjects with schizophrenia were confirmed in the right cingulate gyrus and thalamus, including the mediodorsal, lateral dorsal, anterior, and midline nuclei. Schizophrenia subjects showed decreased D2/D3-receptor availability in the hypothalamus, mamillary bodies, thalamus and several thalamic nuclei, and increased glucose uptake in three lobules of the cerebellar vermis.Conclusions: Dopaminergic system may be involved in modulation of grey matter metabolism and neurometabolic coupling in both healthy human brain and psychopathology. Hyperdopaminergic state in untreated schizophrenia may at least partly account for the corresponding decreases in grey matter metabolism.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City,NY, USA.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, IL, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine School of Medicine, Orange, CA, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To give an update on recent imaging studies probing positron emission tomography (PET) as a tool for improving biomarker-guided diagnosis of neuropsychiatric disorders. RECENT FINDINGS Several studies confirmed the value of imaging of regional neuronal activity and imaging of dopaminergic, serotonergic, and other neuroreceptor function in the diagnostic process of neuropsychiatric disorders, particularly schizophrenia, depression/bipolar disorder, substance use disorders, obsessive compulsive disorders (OCD), and attention-deficit/hyperactivity disorder. Additionally, imaging brain microglial activation using translocator protein 18 kDa (TSPO) radiotracer allows for unique in-vivo insights into pathophysiological neuroinflammatory changes underlying schizophrenia, affective disorders, and OCD. SUMMARY The role of PET imaging in the biomarker-guided diagnostic process of neuropsychiatric disorders has been increasingly acknowledged in recent years. Future prospective studies are needed to define the value of PET imaging for diagnosis, treatment decisions, and prognosis in neuropsychiatric disorders.
Collapse
|
26
|
Tomasella E, Falasco G, Urrutia L, Bechelli L, Padilla L, Gelman DM. Impaired brain glucose metabolism and presynaptic dopaminergic functioning in a mouse model of schizophrenia. EJNMMI Res 2020; 10:39. [PMID: 32303857 PMCID: PMC7165233 DOI: 10.1186/s13550-020-00629-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Schizophrenia is a disease diagnosed by visible signs and symptoms from late adolescence to early adulthood. The etiology of this disease remains unknown. An objective diagnostic approach is required. Here, we used a mouse model that shows schizophrenia-like phenotypes to study brain glucose metabolism and presynaptic dopaminergic functioning by positron emission tomography (PET) and immunohistochemistry. PET scannings were performed on mice after the administration of [18F]-FDG or [18F]-F-DOPA. Glucose metabolism was evaluated in basal conditions and after the induction of a hyperdopaminergic state. Results Mutant animals show reduced glucose metabolism in prefrontal cortex, amygdala, and nucleus reuniens under the hyperdopaminergic state. They also show reduced [18F]-F-DOPA uptake in prefrontal cortex, substantia nigra reticulata, raphe nucleus, and ventral striatum but increased [18F]-F-DOPA uptake in dorsal striatum. Mutant animals also show reduced tyrosine hydroxylase expression on midbrain neurons. Conclusions Dopamine D2 mutant animals show reduced glucose metabolism and impaired presynaptic dopaminergic functioning, in line with reports from human studies. This mouse line may be a valuable model of schizophrenia, useful to test novel tracers for PET scanning diagnostic.
Collapse
Affiliation(s)
- Eugenia Tomasella
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - German Falasco
- Fleni, Centro de Imágenes Moleculares (CIM), Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Leandro Urrutia
- Fleni, Centro de Imágenes Moleculares (CIM), Laboratorio de Imágenes Preclínicas, Buenos Aires, Argentina
| | - Lucila Bechelli
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - Lucia Padilla
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina
| | - Diego M Gelman
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
27
|
B Hughes R, Whittingham-Dowd J, Simmons RE, Clapcote SJ, Broughton SJ, Dawson N. Ketamine Restores Thalamic-Prefrontal Cortex Functional Connectivity in a Mouse Model of Neurodevelopmental Disorder-Associated 2p16.3 Deletion. Cereb Cortex 2020; 30:2358-2371. [PMID: 31812984 PMCID: PMC7175007 DOI: 10.1093/cercor/bhz244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic "rich club" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic "rich club" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Rachel E Simmons
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
28
|
Abstract
In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Elizabeth M Olsen
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
29
|
Xu S, Li M, Yang C, Fang X, Ye M, Wei L, Liu J, Li B, Gan Y, Yang B, Huang W, Li P, Meng X, Wu Y, Jiang G. Altered Functional Connectivity in Children With Low-Function Autism Spectrum Disorders. Front Neurosci 2019; 13:806. [PMID: 31427923 PMCID: PMC6688725 DOI: 10.3389/fnins.2019.00806] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging studies have shown that autism spectrum disorders (ASDs) may be associated with abnormalities in brain structures and functions at rest as well as during cognitive tasks. However, it remains unclear if functional connectivity (FC) of all brain neural networks is also changed in these subjects. In this study, we acquired functional magnetic resonance imaging scans from 93 children with ASD and 79 matched healthy subjects. Group independent component analysis was executed for all of the participants to estimate FC. One-sample t-tests were then performed to obtain the networks for each group. Group differences in the different brain networks were tested using two-sample t-tests. Finally, relationships between abnormal FC and clinical variables were investigated with Pearson’s correlation analysis. The results from one-sample t-tests revealed nine networks with similar spatial patterns in these two groups. When compared with the controls, children with ASD showed increased connectivity in the right dorsolateral superior frontal gyrus and left middle frontal gyrus (MFG) within the occipital pole network. Children with ASD also showed decreased connectivity in the left gyrus rectus, left middle occipital gyrus, right angular gyrus, right MFG and right inferior frontal gyrus (IFG), orbital part within the lateral visual network (LVN), the left IFG, right precuneus, and right angular gyrus within the left frontoparietal (cognition) network. Furthermore, the mean FC values within the LVN showed significant positive correlations with total score of the Childhood Autism Rating Scale. Our findings indicate that abnormal FC extensively exists within some networks in children with ASD. This abnormal FC may constitute a biomarker of ASD. Our results are an important contribution to the study of neuropathophysiological mechanisms in children with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiangling Fang
- Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, China
| | - Miaoting Ye
- Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, China
| | - Lei Wei
- Network Center, Air Force Medical University, Xi'an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi'an, China
| | - Baojuan Li
- Network Center, Air Force Medical University, Xi'an, China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenxian Huang
- Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xianlei Meng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yunfan Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
30
|
Rabany L, Brocke S, Calhoun VD, Pittman B, Corbera S, Wexler BE, Bell MD, Pelphrey K, Pearlson GD, Assaf M. Dynamic functional connectivity in schizophrenia and autism spectrum disorder: Convergence, divergence and classification. Neuroimage Clin 2019; 24:101966. [PMID: 31401405 PMCID: PMC6700449 DOI: 10.1016/j.nicl.2019.101966] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Over the recent years there has been a growing debate regarding the extent and nature of the overlap in neuropathology between schizophrenia (SZ) and autism spectrum disorder (ASD). Dynamic functional network connectivity (dFNC) is a recent analysis method that explores temporal patterns of functional connectivity (FC). We compared resting-state dFNC in SZ, ASD and healthy controls (HC), characterized the associations between temporal patterns and symptoms, and performed a three-way classification analysis based on dFNC indices. METHODS Resting-state fMRI was collected from 100 young adults: 33 SZ, 33 ASD, 34 HC. Independent component analysis (ICA) was performed, followed by dFNC analysis (window = 33 s, step = 1TR, k-means clustering). Temporal patterns were compared between groups, correlated with symptoms, and classified via cross-validated three-way discriminant analysis. RESULTS Both clinical groups displayed an increased fraction of time (FT) spent in a state of weak, intra-network connectivity [p < .001] and decreased FT in a highly-connected state [p < .001]. SZ further showed decreased number of transitions between states [p < .001], decreased FT in a widely-connected state [p < .001], increased dwell time (DT) in the weakly-connected state [p < .001], and decreased DT in the highly-connected state [p = .001]. Social behavior scores correlated with DT in the widely-connected state in SZ [r = 0.416, p = .043], but not ASD. Classification correctly identified SZ at high rates (81.8%), while ASD and HC at lower rates. CONCLUSIONS Results indicate a severe and pervasive pattern of temporal aberrations in SZ (specifically, being "stuck" in a state of weak connectivity), that distinguishes SZ participants from both ASD and HC, and is associated with clinical symptoms.
Collapse
Affiliation(s)
- Liron Rabany
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA.
| | - Sophy Brocke
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; University of New Mexico, Department of ECE, Albuquerque, NM, USA; Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Brian Pittman
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Silvia Corbera
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA; Central Connecticut State University, Department of Psychological Science, New Britain, CT, USA
| | - Bruce E Wexler
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA
| | - Morris D Bell
- Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA; VA Connecticut Healthcare System West Haven, CT, USA
| | - Kevin Pelphrey
- Autism and Neurodevelopment Disorders Institute, George Washington University and Children's National Medical Center, DC, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA; Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA; Yale University School of Medicine, Department of Neuroscience, New Haven, CT, USA
| | - Michal Assaf
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA; Yale University, School of Medicine, Department of Psychiatry, New Haven, CT, USA
| |
Collapse
|
31
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
32
|
Park JH, Hong JS, Kim SM, Min KJ, Chung US, Han DH. Effects of Amisulpride Adjunctive Therapy on Working Memory and Brain Metabolism in the Frontal Cortex of Patients with Schizophrenia: A Preliminary Positron Emission Tomography/Computerized Tomography Investigation. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:250-260. [PMID: 30905125 PMCID: PMC6478094 DOI: 10.9758/cpn.2019.17.2.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/07/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
Objective Dopamine plays a significant role in working memory by acting as a key neuromodulator between brain networks. Additionally, treatment of patients with schizophrenia using amisulpride, a pure dopamine class 2/3 receptor antagonist, improves their clinical symptoms with fewer side effects. We hypothesized that patients with schizophrenia treated with amisulpride and aripiprazole show increased working memory and glucose metabolism compared with those treated with cognitive behavioral therapy (CBT) and aripiprazole instead. Methods Sixteen patients with schizophrenia (eight in the amisulpride group [aripiprazole+amisulpride] and eight in the CBT group [aripiprazole+CBT]) and 15 age- and sex-matched healthy control subjects were recruited for a 12-week-long prospective trial. An [18F]-fluorodeoxyglucose-positron emission tomography/computerized tomography scanner was used to acquire the images. Results After 12 weeks of treatment, the amisulpride group showed greater improvement in the Letter-Number Span scores than the CBT group. Additionally, although brain metabolism in the left middle frontal gyrus, left occipital lingual gyrus, and right inferior parietal lobe was increased in all patients with schizophrenia, the amisulpride group exhibited a greater increase in metabolism in both the right superior frontal gyrus and right frontal precentral gyrus than the CBT group. Conclusion This study suggests that a small dose of amisulpride improves the general psychopathology, working memory performance, and brain glucose metabolism of patients with schizophrenia treated with aripiprazole.
Collapse
Affiliation(s)
- Jeong Ha Park
- Department of Psychiatry, Chung-Ang University Hospital
| | - Ji Son Hong
- Department of Psychiatry, Chung-Ang University Hospital
| | - Sun Mi Kim
- Department of Psychiatry, Chung-Ang University Hospital
| | | | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University Children's
| | - Doug Hyun Han
- Department of Psychiatry, Chung-Ang University Hospital
| |
Collapse
|
33
|
Increased white matter metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2019; 12:1290-1305. [PMID: 29168086 DOI: 10.1007/s11682-017-9785-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both autism spectrum disorder (ASD) and schizophrenia are often characterized as disorders of white matter integrity. Multimodal investigations have reported elevated metabolic rates, cerebral perfusion and basal activity in various white matter regions in schizophrenia, but none of these functions has previously been studied in ASD. We used 18fluorodeoxyglucose positron emission tomography to compare white matter metabolic rates in subjects with ASD (n = 25) to those with schizophrenia (n = 41) and healthy controls (n = 55) across a wide range of stereotaxically placed regions-of-interest. Both subjects with ASD and schizophrenia showed increased metabolic rates across the white matter regions assessed, including internal capsule, corpus callosum, and white matter in the frontal and temporal lobes. These increases were more pronounced, more widespread and more asymmetrical in subjects with ASD than in those with schizophrenia. The highest metabolic increases in both disorders were seen in the prefrontal white matter and anterior limb of the internal capsule. Compared to normal controls, differences in gray matter metabolism were less prominent and differences in adjacent white matter metabolism were more prominent in subjects with ASD than in those with schizophrenia. Autism spectrum disorder and schizophrenia are associated with heightened metabolic activity throughout the white matter. Unlike in the gray matter, the vector of white matter metabolic abnormalities appears to be similar in ASD and schizophrenia, may reflect inefficient functional connectivity with compensatory hypermetabolism, and may be a common feature of neurodevelopmental disorders.
Collapse
|
34
|
Marotta G, Delvecchio G, Pigoni A, Mandolini G, Ciappolino V, Oldani L, Madonna D, Grottaroli M, Altamura AC, Brambilla P. The metabolic basis of psychosis in bipolar disorder: A positron emission tomography study. Bipolar Disord 2019; 21:151-158. [PMID: 30506616 DOI: 10.1111/bdi.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Psychotic symptoms are a common feature in bipolar disorder (BD), especially during manic phases, and are associated with a more severe course of illness. However, not all bipolar subjects experience psychosis during the course of their illness, and this difference often guides assessment and pharmacological treatment. The aim of the present study is to elucidate, for the first time, the FDG uptake dysfunctions associated with psychosis in BD patients with and without a history of past psychotic symptoms, through a positron emission tomography (PET) approach. METHODS Fifty BD patients with lifetime psychotic symptoms, 40 BD patients without lifetime psychotic symptoms and 27 healthy controls (HC) were recruited and underwent an 18F-FDG-PET session. RESULTS Compared to HC, BD subjects shared common FDG uptake deficits in several brain areas, including insula, inferior temporal gyrus and middle occipital gyrus. Moreover, we found that BD patients with a history of past psychotic symptoms had a unique FDG uptake alteration in the right fusiform gyrus compared to both BD patients without lifetime psychotic symptoms and HC (all P < 0.01, cFWE corrected). CONCLUSIONS Overall, our results suggest that FDG uptake alterations in brain regions involved in emotion regulation are a key feature of BD, regardless the presence of past psychosis. Finally, we demonstrated that the FDG uptake reduction in fusiform gyrus is associated with the presence of past psychotic symptoms in BD, ultimately leading towards the idea that the fusiform gyrus might be considered a putative biomarker of psychosis.
Collapse
Affiliation(s)
- Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Scientific Institute, IRCCS E. Medea, Pordenone, Italy
| | - Alessandro Pigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianmario Mandolini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucio Oldani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenico Madonna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marika Grottaroli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, UT Houston Medical School, Houston, TX, USA
| |
Collapse
|
35
|
Malashenkova IK, Krynskiy SA, Ogurtsov DP, Mamoshina MV, Zakharova NV, Ushakov VL, Velichkovsky BM, Didkovsky NA. [A role of the immune system in the pathogenesis of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:72-80. [PMID: 30698566 DOI: 10.17116/jnevro201811812172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review addresses immunological aspects of schizophrenia, a multifactor disease caused by genetic factors, innate disorders of the central nervous system (CNS), including the consequences of perinatal hypoxia and infections, and adverse environmental influences. Neuroinflammation as a part of the pathophysiology of schizophrenia is characterized by the higher transcription of CNS inflammatory mediators, excessive activation of microglia, inhibition of glutamatergic receptors that leads to the decrease in the number of cortical synapses and neuronal apoptosis. The authors discuss a role of genetic polymorphisms of cytokine genes, complement system components etc. The literature data on the changes in systemic immune response and imbalance in Th1/Th2 adaptive immune responses are analyzed as well. Some papers showed higher levels of proinflammatory mediators in CSF and blood of patients with schizophrenia that indicated the involvement of blood brain barrier (BBB) dysfunction. The authors present the recent data on BBB dysfunction in schizophrenia and its role in the pathogenesis of the disease, autoimmunity in patients comparing it with immune activation and genetic predisposition. An important and arguable issues about a role of parasite and viral infections in the pathogenesis of schizophrenia, initiation of immune responses and direct impacts on the brain, an influence of antipsychotic treatment on immunity are discussed. In author's opinion, conflicting results of genetic and immunological studies of schizophrenia may be explained by different methodological approaches to selection of patients and healthy controls and the differences in schizophrenia classification.
Collapse
Affiliation(s)
- I K Malashenkova
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - S A Krynskiy
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - D P Ogurtsov
- Research Center 'Kurchatov Institute', Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| | - M V Mamoshina
- Research Center 'Kurchatov Institute', Moscow, Russia
| | - N V Zakharova
- Russia; Alekseev Psychiatric Clinical Hospital #1, Moscow, Russia ,Pirogov Russian National Research Medical University, Moscow, Russia
| | - V L Ushakov
- Research Center 'Kurchatov Institute', Moscow, Russia
| | | | - N A Didkovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow
| |
Collapse
|
36
|
|
37
|
Li W, Li K, Guan P, Chen Y, Xiao Y, Lui S, Sweeney JA, Gong Q. Volume alteration of hippocampal subfields in first-episode antipsychotic-naïve schizophrenia patients before and after acute antipsychotic treatment. NEUROIMAGE-CLINICAL 2018; 20:169-176. [PMID: 30094166 PMCID: PMC6072650 DOI: 10.1016/j.nicl.2018.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023]
Abstract
The nature of hippocampal changes in schizophrenia before first treatment, and whether hippocampal subfields are affected by antipsychotic treatment are important questions for schizophrenia research. Forty-one first-episode antipsychotic-naïve acutely ill schizophrenia inpatients had MRI scans before and six weeks after antipsychotic treatment. Thirty-nine matched healthy controls were also scanned, twenty-two of which were scanned a second time six weeks later. Volumes of hippocampal subfields were measured via FreeSurfer v6.0 using a longitudinal analysis pipeline. Before treatment, schizophrenia patients had no significant changes in total hippocampal volume but exhibited significantly greater subfield volumes than controls in bilateral molecular layers of the hippocampus (ML), bilateral granular cell layers of the dentate gyrus (GC-DG), and bilateral cornu ammonis area 4 (CA4). After six weeks of antipsychotic treatment, patients showed volume reductions compared with pretreatment scans in total hippocampus bilaterally, with subfield volume reduction noted in previously enlarged subfields (i.e., bilateral ML, GC-DG and CA4) and in bilateral hippocampal tails, left CA1, CA3, and fimbria. Subfields with volume increases before treatment were reduced to the level of healthy controls (bilateral ML and GC-DG) or near to it (bilateral CA4) after treatment. These results indicate subfield-specific hippocampal hypertrophy prior to treatment, and that these abnormalities were reduced after acute antipsychotic therapy in a dose-related manner together with volume reductions in other areas that were not hypertrophic before treatment. Specific hippocampal subfields were enlarged in patients before treatment. Volume decrease in regions with dense D2 receptors (CA3–4 and DG) after treatment. Most enlarged subfields pretreatment were reduced to normal level after treatment. Dosage of antipsychotics was associated with the degree of volume reduction.
Collapse
Affiliation(s)
- Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiming Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Pujun Guan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610036, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Wang Y, Liu X, Li P, Zhou H, Yang L, Zheng L, Xie P, Li L, Liao DJ, Liu Q, Fang D. Regional Cerebral Blood Flow in Mania: Assessment Using 320-Slice Computed Tomography. Front Psychiatry 2018; 9:296. [PMID: 30034350 PMCID: PMC6043786 DOI: 10.3389/fpsyt.2018.00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Objectives: While evidence that episodes of mania in bipolar I are associated with changes in bioenergetic and regional cerebral blood flow (rCBF) and cerebral blood flow velocity (rCBFV), both the regions and the extent of these changes have not yet been defined. Therefore, we determined the pattern of regional cerebral perfusion mania patients and using patients with major depressive disorder (MDD) as positive controls and healthy participants as negative controls. Methods: Twenty participants with mania, together with 22 MDD patients and 24 healthy volunteers, were recruited for this study. On all participants, Transcranial Doppler (TCD) was conducted to measure rCBFV parameters, 320-slice CT was conducted to measure rCBF in the different cerebral artery regions, and hematological parameters were assessed. ANOVA and Pearson's tests were used for the statistical analysis. Results: Our data indicated that rCBF in the medial temporal lobe and hippocampus, especially in the left medial temporal lobe and the right hippocampus, was increased in the mania group compared with the control and MDD groups (p < 0.01). In contrast, rCBF in the medial temporal lobe and hippocampus was decreased in the depression group (p < 0.01) compared with healthy controls. In addition, values of rCBFV in the bilateral internal carotid arteries (ICAs) and middle cerebral arteries (MCA) were increased in mania (p < 0.01) in comparison to the MDD group. Whole blood viscosity and hematocrit as well as red blood cell sedimentation rate remained unchanged in all group (p > 0.05). Conclusions: In mania, rCBF is increased in the medial temporal lobe and hippocampus, with a corresponding increase in rCBFV in the same regions.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Neuroelectrophysiological Testing Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College Students' Mental Health Education and Counseling Center, Guizhou Medical University, Guiyang, China
| | - Xingde Liu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lixia Yang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Zheng
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pingxia Xie
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingjiang Li
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - D Joshua Liao
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qianqian Liu
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
39
|
Abstract
Autism spectrum disorder (ASD) is a condition with onset in early childhood characterized by marked deficits in interpersonal interactions and communication and by a restricted and repetitive range of interests and activities. This review points out key recent findings utilizing molecular imaging including magnetic resonance spectroscopy (MRS) and nuclear neuroimaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). MRS indicates an excitatory/inhibitory imbalance in high-functioning autism. Dysfunction of neurotransmitter and glucose metabolism has been demonstrated by PET and SPECT. Levels of serotonin synthesis in typically developing children are approximately twice those of adults; after the age of 5 years, levels decrease to those of adults. In contrast, levels of serotonin synthesis of children with ASD increase between ages 2 and 15 to 1.5-times adult values. The dopamine transporter is increased in the orbitofrontal cortex of men with ASD. The serotonin transporter is reduced in the brains of children, adolescents, and adults with ASD. Reduced serotonin receptors in the thalamus of adults with ASD are associated with communication difficulties. Glucose metabolism is reduced in the brains of people with ASD. Molecular imaging will provide the preliminary data for promising therapeutic interventions.
Collapse
Affiliation(s)
- Brian Jaeho Hwang
- a Department of Neuroscience , Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University , Baltimore , MD , USA
| | - Mona Adel Mohamed
- b Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science School of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - James Robert Brašić
- c Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science , School of Medicine, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|