1
|
Nandakumar R, Shi X, Gu H, Kim Y, Raskind WH, Peter B, Dinu V. Joint exome and metabolome analysis in individuals with dyslexia: Evidence for associated dysregulations of olfactory perception and autoimmune functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600448. [PMID: 39005457 PMCID: PMC11244894 DOI: 10.1101/2024.06.27.600448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dyslexia is a learning disability that negatively affects reading, writing, and spelling development at the word level in 5%-9% of children. The phenotype is variable and complex, involving several potential cognitive and physical concomitants such as sensory dysregulation and immunodeficiencies. The biological pathogenesis is not well-understood. Toward a better understanding of the biological drivers of dyslexia, we conducted the first joint exome and metabolome investigation in a pilot sample of 30 participants with dyslexia and 13 controls. In this analysis, eight metabolites of interest emerged (pyridoxine, kynurenic acid, citraconic acid, phosphocreatine, hippuric acid, xylitol, 2-deoxyuridine, and acetylcysteine). A metabolite-metabolite interaction analysis identified Krebs cycle intermediates that may be implicated in the development of dyslexia. Gene ontology analysis based on exome variants resulted in several pathways of interest, including the sensory perception of smell (olfactory) and immune system-related responses. In the joint exome and metabolite analysis, the olfactory transduction pathway emerged as the primary pathway of interest. Although the olfactory transduction and Krebs cycle pathways have not previously been described in dyslexia literature, these pathways have been implicated in other neurodevelopmental disorders including autism spectrum disorder and obsessive-compulsive disorder, suggesting the possibility of these pathways playing a role in dyslexia as well. Immune system response pathways, on the other hand, have been implicated in both dyslexia and other neurodevelopmental disorders.
Collapse
|
2
|
Algaidi SA, Sunyur AM, Alshenqiti KM. Dyslexia and Stuttering: An Overview of Processing Deficits and the Relationship Between Them. Cureus 2023; 15:e47051. [PMID: 38021798 PMCID: PMC10644203 DOI: 10.7759/cureus.47051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Stuttering and dyslexia are two processing deficits that have an impact on a person's social and academic lives, especially as they usually affect the pediatric population more than adults. Even though they affect different domains, they have similar characteristics in their pathogenesis, epidemiology, and impact on life. Both disorders represent a considerable percentage of the population worldwide and locally in Saudi Arabia, and they have similar epidemiological trends. Family history, genetic factors, early fetal and neonatal factors, and environmental factors are all identified as risk factors for both conditions. Moreover, it has been established that both diseases share a common genetic and anatomical basis, along with a mutual disruption of diadochokinetic skills. While rehabilitative techniques can be used in both conditions, stuttering could also benefit from pharmacological interventions. This review emphasizes that extensive research should be done to explore both of these conditions as they impact different areas of one's life and the relationship between them to better understand their pathophysiological origins.
Collapse
Affiliation(s)
| | - Amal M Sunyur
- Medicine and Surgery, Taibah University, Medina, SAU
| | | |
Collapse
|
3
|
Hongyao HE, Chun JI, Xiaoyan G, Fangfang L, Jing Z, Lin Z, Pengxiang Z, Zengchun L. Associative gene networks reveal novel candidates important for ADHD and dyslexia comorbidity. BMC Med Genomics 2023; 16:208. [PMID: 37667328 PMCID: PMC10478365 DOI: 10.1186/s12920-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is commonly associated with developmental dyslexia (DD), which are both prevalent and complicated pediatric neurodevelopmental disorders that have a significant influence on children's learning and development. Clinically, the comorbidity incidence of DD and ADHD is between 25 and 48%. Children with DD and ADHD may have more severe cognitive deficiencies, a poorer level of schooling, and a higher risk of social and emotional management disorders. Furthermore, patients with this comorbidity are frequently treated for a single condition in clinical settings, and the therapeutic outcome is poor. The development of effective treatment approaches against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and treatment. In this study, we developed bioinformatical methodology for the analysis of the comorbidity of these two diseases. As such, the search for candidate genes related to the comorbid conditions of ADHD and DD can help in elucidating the molecular mechanisms underlying the comorbid condition, and can also be useful for genotyping and identifying new drug targets. RESULTS Using the ANDSystem tool, the reconstruction and analysis of gene networks associated with ADHD and dyslexia was carried out. The gene network of ADHD included 599 genes/proteins and 148,978 interactions, while that of dyslexia included 167 genes/proteins and 27,083 interactions. When the ANDSystem and GeneCards data were combined, a total of 213 genes/proteins for ADHD and dyslexia were found. An approach for ranking genes implicated in the comorbid condition of the two diseases was proposed. The approach is based on ten criteria for ranking genes by their importance, including relevance scores of association between disease and genes, standard methods of gene prioritization, as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analyzed genes. Among the top 20 genes with the highest priority DRD2, DRD4, CNTNAP2 and GRIN2B are mentioned in the literature as directly linked with the comorbidity of ADHD and dyslexia. According to the proposed approach, the genes OPRM1, CHRNA4 and SNCA had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the most relevant genes are involved in biological processes related to signal transduction, positive regulation of transcription from RNA polymerase II promoters, chemical synaptic transmission, response to drugs, ion transmembrane transport, nervous system development, cell adhesion, and neuron migration. CONCLUSIONS The application of methods of reconstruction and analysis of gene networks is a powerful tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance for the comorbid condition of ADHD and dyslexia was employed to predict genes that play key roles in the development of the comorbid condition. The results can be utilized to plan experiments for the identification of novel candidate genes and search for novel pharmacological targets.
Collapse
Affiliation(s)
- H E Hongyao
- Medical College of Shihezi University, Shihezi, China
| | - J I Chun
- Medical College of Shihezi University, Shihezi, China
| | - Gao Xiaoyan
- Medical College of Shihezi University, Shihezi, China
| | - Liu Fangfang
- Medical College of Shihezi University, Shihezi, China
| | - Zhang Jing
- Medical College of Shihezi University, Shihezi, China
| | - Zhong Lin
- Medical College of Shihezi University, Shihezi, China
| | - Zuo Pengxiang
- Medical College of Shihezi University, Shihezi, China.
| | - Li Zengchun
- Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
4
|
Naudhani S, Ahmad A, Khan Bazai F, Pervez MT, Zafar A, Shah SA, Raheem N, Baloch AH, Mushtaq M, Daud S. A Missense Pathogenic Variant in a Conserved Region of CNTNAP2 Is Associated with Obesity, Seizures, and Language Impairment in a Pakistani Family. Mol Syndromol 2023; 14:293-302. [PMID: 37766826 PMCID: PMC10521233 DOI: 10.1159/000529427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction In a consanguineous family, seven siblings born in three sibships showed a syndromic disorder characterized by obesity, seizures, and language impairment phenotypes, which appeared at early age or developed during early childhood. Methods By whole-exome sequencing and subsequent Sanger sequencing, a novel homozygous missense variant (c.3371 T>A [p.Ile1124Asn]) in exon 20 of the CNTNAP2 gene was identified. Results The pathogenic variant in this family is located within one of the laminin G-like 4 domains of CASPR2 and may cause loss of hydrophobic interactions of CASPR2 with its partner proteins. Single nucleotide and copy number variants in this gene have previously been related to Gilles de la Tourette syndrome, cortical dysplasia-focal epilepsy syndrome, schizophrenia, Pitt-Hopkins syndrome, and autism spectrum, attention deficit hyperactivity, and obsessive compulsive disorders. Yet, few studies described patients with CNTNAP2 variants showing diet-induced obesity. Conclusion This report expands the phenotypic spectrum of this rare syndrome and provides deeper insights by documenting the clinical features and genetic findings of the patients.
Collapse
Affiliation(s)
- Sara Naudhani
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Adeel Ahmad
- Continental Medical College and Hayat Memorial Hospital, Lahore, Pakistan
| | - Fariya Khan Bazai
- Quetta Institute of Medical Sciences/Combined Military Hospital, Quetta, Pakistan
| | - Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Azqa Zafar
- Lahore General Hospital, Lahore, Pakistan
| | - Sajjad Ali Shah
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | | | - Abdul Hameed Baloch
- Department of Biotechnology, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Pakistan
| | | | - Shakeela Daud
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| |
Collapse
|
5
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
6
|
Investigation of the forkhead box protein P2 gene by the next-generation sequence analysis method in children diagnosed with specific learning disorder. Psychiatr Genet 2023; 33:8-19. [PMID: 36617742 DOI: 10.1097/ypg.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE It was aimed to investigate the role of the forkhead box protein P2 (FOXP2) gene in the cause of specific learning disorder (SLD) with the next-generation sequencing method. MATERIAL AND METHODS The study included 52 children diagnosed with SLD and 46 children as control between the ages of 6-12 years. Interview Schedule for Affective Disorders and Schizophrenia for School-Age Children, Present and Lifelong Version in Turkish, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-Based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders, Specific Learning Disability Test Battery were applied to all participants. The FOXP2 gene was screened by the next-generation sequencing (NGS) method in all participants. RESULTS A total of 17 variations were detected in the FOXP2 gene in participants. The number and diversity of variations were higher in the patient group. In the patient group, c.1914 + 8A>T heterozygous variation and three different types of heterozygous variation (13insT, 13delT and 4dup) in the c.1770 region were detected. It was found that the detected variations showed significant relationships with the reading phenotypes determined by the test battery. CONCLUSION It was found that FOXP2 variations were seen more frequently in the patient group. Some of the detected variations might be related to the clinical phenotype of SLD and variations found in previous studies from different countries were not seen in Turkish population. Our study is the first to evaluate the role of FOXP2 gene variations in children with SLD in Turkish population, and novel variations in the related gene were detected.
Collapse
|
7
|
Exploring Genetic and Neural Risk of Specific Reading Disability within a Nuclear Twin Family Case Study: A Translational Clinical Application. J Pers Med 2023; 13:jpm13010156. [PMID: 36675818 PMCID: PMC9862148 DOI: 10.3390/jpm13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Imaging and genetic studies have characterized biological risk factors contributing to specific reading disability (SRD). The current study aimed to apply this literature to a family of twins discordant for SRD and an older sibling with reading difficulty. Intraclass correlations were used to understand the similarity of imaging phenotypes between pairs. Reading-related genes and brain region phenotypes, including asymmetry indices representing the relative size of left compared to right hemispheric structures, were descriptively examined. SNPs that corresponded between the SRD siblings and not the typically developing (TD) siblings were in genes ZNF385D, LPHN3, CNTNAP2, FGF18, NOP9, CMIP, MYO18B, and RBFOX2. Imaging phenotypes were similar among all sibling pairs for grey matter volume and surface area, but cortical thickness in reading-related regions of interest (ROIs) was more similar among the siblings with SRD, followed by the twins, and then the TD twin and older siblings, suggesting cortical thickness may differentiate risk for this family. The siblings with SRD had more symmetry of cortical thickness in the transverse temporal and superior temporal gyri, while the TD sibling had greater rightward asymmetry. The TD sibling had a greater leftward asymmetry of grey matter volume and cortical surface area in the fusiform, supramarginal, and transverse temporal gyrus. This exploratory study demonstrated that reading-related risk factors appeared to correspond with SRD within this family, suggesting that early examination of biological factors may benefit early identification. Future studies may benefit from the use of polygenic risk scores or machine learning to better understand SRD risk.
Collapse
|
8
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
9
|
Andres EM, Neely HL, Hafeez H, Yasmin T, Kausar F, Basra MAR, Raza MH. Study of rare genetic variants in TM4SF20, NFXL1, CNTNAP2, and ATP2C2 in Pakistani probands and families with language impairment. Meta Gene 2021; 30. [PMID: 34540591 DOI: 10.1016/j.mgene.2021.100966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Language impairment (LI) is highly heritable and aggregates in families. Genetic investigation of LI has revealed many chromosomal regions and genes of interest, though very few studies have focused on rare variant analysis in non-English speaking or non-European samples. We selected four candidate genes (TM4SF20, NFXL1, CNTNAP2 and ATP2C2) strongly suggested for specific language impairment (SLI), a subtype of LI, and investigated rare protein coding variants through Sanger sequencing of probands with LI ascertained from Pakistan. The probands and their family members completed a speech and language family history questionnaire and a vocabulary measure, the Peabody Picture Vocabulary Test-fourth edition (PPVT-4), translated to Urdu, the national language of Pakistan. Our study aimed to determine the significance of rare variants in these SLI candidate genes through segregation analysis in a novel population with a high rate of consanguinity. In total, we identified 16 rare variants (according to the rare MAF in the global population in gnomAD v2.1.1 database exomes), including eight variants with a MAF <0.5 % in the South Asian population. Most of the identified rare variants aggregated in proband's families, one rare variant (c.*9T>C in CNTNAP2) co-segregated in a small family (PKSLI-64) and another (c.2465C>T in ATP2C2) co-segregated in the proband branch (PKSLI-27). The lack of complete co-segregation of most of the identified rare variants indicates that while these genes could be involved in overall risk for LI, other genes are likely involved in LI in this population. Future investigation of these consanguineous families has the potential to expand our understanding of gene function related to language acquisition and impairment.
Collapse
Affiliation(s)
- Erin M Andres
- University of Kansas, Child Language Doctoral Program
| | | | - Huma Hafeez
- School of Chemistry, University of the Punjab
| | | | | | | | | |
Collapse
|
10
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Chien YL, Chen YC, Gau SSF. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. NEUROIMAGE-CLINICAL 2021; 31:102729. [PMID: 34271514 PMCID: PMC8280509 DOI: 10.1016/j.nicl.2021.102729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/23/2023]
Abstract
ASD individuals showed thinner cortical thickness in bilateral cingulate subregions. The right anterior cingulate WM volume was correlated with social awareness deficit. The CNTNAP2 variant might be associated with the right middle cingulate WM volume. The CNTNAP2 might interact with ASD diagnosis and age on the cortical thickness.
Backgrounds Although evidence suggests that the activity of the anterior cingulate cortex involves social cognition, there are inconsistent findings regarding the aberrant cingulate gray matter (GM) and scanty evidence about altered cortical thickness and white matter (WM) of cingulate in individuals with autism spectrum disorder (ASD). Evidence supports the association between the genetic variants of CNTNAP2 and altered brain connectivity. This study investigated the cingulate substructure and its association with social awareness deficits and the CNTNAP2 variants in individuals with ASD and typically-developing controls (TDC). Methods We assessed 118 individuals with ASD and 122 TDC with MRI and clinical evaluation. The GM, WM volumes and cortical thickness of the cingulate gyrus were compared between ASD and TDC based on fine parcellation. Five SNPs of the CNTNAP2 linked to ASD and brain structural abnormality were genotyped, and rs2710102, rs2538991, rs2710126 passed quality control filters. Results ASD individuals showed thinner cortical thickness in bilateral cingulate subregions than TDC without significant group differences in GM and WM volumes. The WM volume of the right anterior cingulate gyrus was correlated with social awareness deficits in ASD. The CNTNAP2 variant demonstrated a main effect on the WM volumes of the right middle cingulate gyrus. Besides, the CNTNAP2 variants interacted with ASD diagnosis and age on the cortical thickness of the left anterior middle cingulate cortex. Conclusions Our findings suggest that aberrant cingulate structure in ASD might be associated with the social awareness deficits and genetic variants of the CNTNAP2. These novel findings need validation.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Chen
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
13
|
CNTNAP2 gene polymorphisms in autism spectrum disorder and language impairment among Bangladeshi children: a case-control study combined with a meta-analysis. Hum Cell 2021; 34:1410-1423. [PMID: 33950402 DOI: 10.1007/s13577-021-00546-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by communication deficits, impaired social interactions, repetitive and stereotyped behaviors with restricted interests, and connected with the interaction between environmental factors and genetic vulnerability. CNTNAP2 gene has been extensively investigated for ASD and related neurodevelopment diseases. However, previous studies have resulted in an inconsistent outcome. Based on this fact, we conducted a case-control study followed by a meta-analysis to investigate the association of rs7794745 and rs2710102 polymorphisms with ASD. A total of 216 autistic children and 240 healthy volunteers were recruited, and genotyping was performed using the PCR-RFLP method. We observed that SNP rs7794745 revealed a significantly (p < 0.05) increased association with the development of ASD in children in all genetic models. No significant association was found for rs2710102 with ASD. Besides, rs2710102 exhibited a significant association with language impairment in TC genotype, C allele, and dominant model. From the meta-analysis of both SNPs, we found a significant association in codominant 1, 2, and the dominant model of rs2710102 and codominant 1 and dominant model of rs7794745 with ASD. Our case-control study suggests that rs7794745 polymorphism is associated with ASD, while rs2710102 is correlated with language impairment. Moreover, meta-analysis results indicated the association between both rs7794745 and rs2710102 polymorphisms and ASD.
Collapse
|
14
|
Rahul DR, Ponniah RJ. The Modularity of Dyslexia. Pediatr Neonatol 2021; 62:240-248. [PMID: 33775610 DOI: 10.1016/j.pedneo.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/24/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022] Open
Abstract
There is a growing interest in understanding dyslexia and the mechanisms involved in reading difficulties. Inquiries into the morphological and physiological changes of the brain have contributed to our increased understanding of reading ability and dyslexia. Similarly, inquiries into brain chemistry and reading provide a neurometabolic framework of dyslexia in terms of poor reading and phonological measures. Also, studies of the genetic etiology of reading yield substantial evidence of genes and SNPs associated with dyslexia. However, little is known about the interface between these distinct areas of knowledge. Therefore, we offer an exhaustive perspective on dyslexia using the idea of modularity by assimilating the findings and implications from the brain morphological, neurophysiological, neurochemical, genetic, and educational insights into dyslexia. We contend that this endeavor will provide a beneficial foundation for aiming at the possibilities of a holistic intervention and informed solutions for reading difficulties.
Collapse
Affiliation(s)
- D R Rahul
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India.
| |
Collapse
|
15
|
Thomas T, Perdue MV, Khalaf S, Landi N, Hoeft F, Pugh K, Grigorenko EL. Neuroimaging genetic associations between SEMA6D, brain structure, and reading skills. J Clin Exp Neuropsychol 2021; 43:276-289. [PMID: 33960276 PMCID: PMC8225580 DOI: 10.1080/13803395.2021.1912300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 01/15/2023]
Abstract
Specific reading disability (SRD) is defined by genetic and neural risk factors that are not fully understood. The current study used imaging genetics methodology to investigate relationships between SEMA6D, brain structure, and reading. SEMA6D, located on SRD risk locus DYX1, is involved in axon guidance, synapse formation, and dendrite development. SEMA6D's associations with brain structure in reading-related regions of interest (ROIs) were investigated in a sample of children with a range of reading performance, from sites in Connecticut, CT (n = 67, 6-13 years, mean age = 9.07) and San Francisco, SF (n = 28, 5-8 years, mean age = 6.5). Multiple regression analyses revealed significant associations between SEMA6D's rs16959669 and cortical thickness in the fusiform gyrus and rs4270119 and gyrification in the supramarginal gyrus in the CT sample, but this was not replicated in the SF sample. Significant clusters were not associated with reading. For white matter volume, combined analyses across both samples revealed associations between reading and the left transverse temporal gyrus, left pars triangularis, left cerebellum, and right cerebellum. White matter volume in the left transverse temporal gyrus was nominally related to rs1817178, rs12050859, and rs1898110 in SEMA6D, and rs1817178 was significantly related to reading. Haplotype analyses revealed significant associations between the whole gene and brain phenotypes. Results suggest SEMA6D likely has an impact on multiple reading-related neural structures, but only white matter volume in the transverse temporal gyrus was significantly related to reading in the current sample. As the sample was young, the transverse temporal gyrus, involved in auditory perception, may be more strongly involved in reading because phonological processing is still being learned. The relationship between SEMA6D and reading may change as different brain regions are involved during reading development. Future research should examine mediating effects, use additional brain measures, and use an older sample to better understand effects.
Collapse
Affiliation(s)
- Tina Thomas
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Meaghan V. Perdue
- University of Connecticut Dept. of Psychological Sciences, Storrs, CT, USA
- Haskins Laboratories, University of Connecticut, New Haven, CT, USA
| | - Shiva Khalaf
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
| | - Nicole Landi
- University of Connecticut Dept. of Psychological Sciences, Storrs, CT, USA
- Haskins Laboratories, University of Connecticut, New Haven, CT, USA
| | - Fumiko Hoeft
- University of Connecticut Dept. of Psychological Sciences, Storrs, CT, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Kenneth Pugh
- University of Connecticut Dept. of Psychological Sciences, Storrs, CT, USA
- Haskins Laboratories, University of Connecticut, New Haven, CT, USA
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, TX, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Grimm T, Garshasbi M, Puettmann L, Chen W, Ullmann R, Müller-Myhsok B, Klopocki E, Herbst L, Haug J, Jensen LR, Fischer C, Nöthen M, Ludwig K, Warnke A, Ott J, Schulte-Körne G, Ropers HH, Kuss AW. A Novel Locus and Candidate Gene for Familial Developmental Dyslexia on Chromosome 4q. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2020; 48:478-489. [PMID: 33172359 DOI: 10.1024/1422-4917/a000758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.
Collapse
Affiliation(s)
- Tiemo Grimm
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Masoud Garshasbi
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lucia Puettmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Chen
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Eva Klopocki
- Department of Human Genetics, Biozentrum, University of Würzburg, Germany
| | - Lina Herbst
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Janina Haug
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Lars R Jensen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | | | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Germany
| | - Kerstin Ludwig
- Institute of Human Genetics, University of Bonn, Germany
| | - Andreas Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Würzburg, Germany
| | - Jürg Ott
- Laboratory of Statistical Genetics, Rockefeller University, New York, USA
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Germany
| | - Hans-Hilger Ropers
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| |
Collapse
|
17
|
Liebig J, Friederici AD, Neef NE. Auditory brainstem measures and genotyping boost the prediction of literacy: A longitudinal study on early markers of dyslexia. Dev Cogn Neurosci 2020; 46:100869. [PMID: 33091833 PMCID: PMC7576516 DOI: 10.1016/j.dcn.2020.100869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023] Open
Abstract
Multi-domain profiles advance retrospective prediction of emergent literacy. DCDC2 and KIAA0319 risk variants influence emergent spelling skills. Combined DYX2 and auditory brainstem measures enhance predictive model fits. Additional benefit of preliterate phonological awareness on predictive power.
Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
18
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
19
|
Scott TL, Perrachione TK. Common cortical architectures for phonological working memory identified in individual brains. Neuroimage 2019; 202:116096. [PMID: 31415882 DOI: 10.1016/j.neuroimage.2019.116096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 08/11/2019] [Indexed: 02/01/2023] Open
Abstract
Phonological working memory is the capacity to briefly maintain and recall representations of sounds important for speech and language and is believed to be critical for language and reading acquisition. Whether phonological working memory is supported by fronto-parietal brain regions associated with short-term memory storage or perisylvian brain structures implicated in speech perception and production is unclear, perhaps due to variability in stimuli, task demands, and individuals. We used fMRI to assess neurophysiological responses while individuals performed two tasks with closely matched stimuli but divergent task demands-nonword repetition and nonword discrimination-at two levels of phonological working memory load. Using analyses designed to address intersubject variability, we found significant neural responses to the critical contrast of high vs. low phonological working memory load in both tasks in a set of regions closely resembling those involved in speech perception and production. Moreover, within those regions, the voxel-wise patterns of load-related activation were highly correlated between the two tasks. These results suggest that brain regions in the temporal and frontal lobes encapsulate the core neurocomputational components of phonological working memory; an architecture that becomes increasingly evident as neural responses are examined in successively finer-grained detail in individual participants.
Collapse
Affiliation(s)
- Terri L Scott
- Graduate Program for Neuroscience, Boston University, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, USA.
| |
Collapse
|
20
|
Wortman-Jutt S, Edwards D. Poststroke Aphasia Rehabilitation: Why All Talk and No Action? Neurorehabil Neural Repair 2019; 33:235-244. [PMID: 30900528 DOI: 10.1177/1545968319834901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is ample agreement in the scientific literature, across diverse areas of study, that suggests that language and movement are interrelated. In particular, it is widely held that the upper limb and hand play a key role in language use. Aphasia, a common, disabling language disorder frequently associated with stroke, requires new restorative methods. A combinatorial hand-arm-language paradigm that capitalizes on shared neural networks may therefore prove beneficial for aphasia recovery in stroke patients and requires further exploration.
Collapse
Affiliation(s)
- Susan Wortman-Jutt
- 1 Burke Rehabilitation Hospital, White Plains, NY, USA
- 2 Burke Neurological Institute, White Plains, NY, USA
| | - Dylan Edwards
- 3 Moss Rehabilitation Research Institute, Elkins Park, PA, USA
- 4 Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
21
|
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, Moll K, Becker J, Hoffmann P, Ludwig KU, Czamara D, St Pourcain B, Brandler W, Honbolygó F, Tóth D, Csépe V, Huguet G, Morris AP, Hulslander J, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Vaessen A, Maurer U, Lyytinen H, Peyrard-Janvid M, Leppänen PHT, Brandeis D, Bonte M, Stein JF, Talcott JB, Fauchereau F, Wilcke A, Francks C, Bourgeron T, Monaco AP, Ramus F, Landerl K, Kere J, Scerri TS, Paracchini S, Fisher SE, Schumacher J, Nöthen MM, Müller-Myhsok B, Schulte-Körne G. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl Psychiatry 2019; 9:77. [PMID: 30741946 PMCID: PMC6370792 DOI: 10.1038/s41398-019-0402-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - William Brandler
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Andrew P Morris
- Department of Biostatistics, Universiy of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline Hulslander
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shelley D Smith
- Developmental Neuroscience Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce F Pennington
- Developmental Neuropsychology Lab & Clinic, Department of Psychology, University of Denver, Denver, CO, USA
| | - Anniek Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Heikki Lyytinen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Paavo H T Leppänen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience & Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - John F Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fabien Fauchereau
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arndt Wilcke
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Tufts University, Medford, MA, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, CNRS, EHESS, PSL Research University, Paris, France
| | - Karin Landerl
- Institute of Psychology, University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Medicine Program, Biomedicum, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- School of Basic and Medical Biosciences, King's College London, London, UK
| | - Thomas S Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research & Melbourne University, Melbourne, Australia
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Munich Cluster for Systems Neurology (Sypartially), Munich, Germany.
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
22
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
23
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|
24
|
Onnis L, Truzzi A, Ma X. Language development and disorders: Possible genes and environment interactions. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:132-146. [PMID: 30077386 DOI: 10.1016/j.ridd.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Language development requires both basic cognitive mechanisms for learning language and a rich social context from which learning takes off. Disruptions in learning mechanisms, processing abilities, and/or social interactions increase the risks associated with social exclusion or developmental delays. Given the complexity of language processes, a multilevel approach is proposed where both cognitive mechanisms, genetic and environmental factors need to be probed together with their possible interactions. Here we review and discuss such interplay between environment and genetic predispositions in understanding language disorders, with a particular focus on a possible endophenotype, the ability for statistical sequential learning.
Collapse
Affiliation(s)
- Luca Onnis
- Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
25
|
Sánchez-Morán M, Hernández JA, Duñabeitia JA, Estévez A, Bárcena L, González-Lahera A, Bajo MT, Fuentes LJ, Aransay AM, Carreiras M. Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples. PLoS One 2018; 13:e0206431. [PMID: 30379906 PMCID: PMC6209299 DOI: 10.1371/journal.pone.0206431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/13/2018] [Indexed: 01/21/2023] Open
Abstract
Dyslexia and attention deficit hyperactivity disorder (ADHD) are two complex neuro-behaviorally disorders that co-occur more often than expected, so that reading disability has been linked to inattention symptoms. We examined 4 SNPs located on genes previously associated to dyslexia (KIAA0319, DCDC2, DYX1C1 and FOXP2) and 3 SNPs within genes related to ADHD (COMT, MAOA and DBH) in a cohort of Spanish children (N = 2078) that met the criteria of having one, both or none of these disorders (dyslexia and ADHD). We used a case-control approach comparing different groups of samples based on each individual diagnosis. In addition, we also performed a quantitative trait analysis with psychometric measures on the general population (N = 3357). The results indicated that the significance values for some markers change depending on the phenotypic groups compared and/or when considering pair-wise marker interactions. Furthermore, our quantitative trait study showed significant genetic associations with specific cognitive processes. These outcomes advocate the importance of establishing rigorous and homogeneous criteria for the diagnosis of cognitive disorders, as well as the relevance of considering cognitive endophenotypes.
Collapse
Affiliation(s)
- Mirian Sánchez-Morán
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
- CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Jon Andoni Duñabeitia
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
| | | | | | | | - María Teresa Bajo
- Research Center for Brain, Mind & Behavior, Universidad de Granada, Granada, Spain
| | | | - Ana M. Aransay
- CIC bioGUNE, Derio, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Carreiras
- BCBL-Basque Center on Cognition Brain and Language, Donostia-San Sebastian, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad del Pais Vasco UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
26
|
Gu H, Hou F, Liu L, Luo X, Nkomola PD, Xie X, Li X, Song R. Genetic variants in the CNTNAP2 gene are associated with gender differences among dyslexic children in China. EBioMedicine 2018; 34:165-170. [PMID: 30017804 PMCID: PMC6116347 DOI: 10.1016/j.ebiom.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background It is well known that males have a higher prevalence of developmental dyslexia (DD) than females. Although the mechanism underlying this gender difference remains unknown, the contactin-associated protein-like 2 (CNTNAP2) gene, which shows sex-specific patterns in some neurodevelopmental disorders, has attracted extensive attention. This study aimed to explore whether CNTNAP2 shows a sex-specific association with DD in a Chinese population. Methods Using genomic DNA samples of 726 students [372 cases (282 male, 90 female), 354 controls (267 male, 87 female)], we genotyped five SNPs of CNTNAP2. Gender-stratified logistic regression models were used to determine the relationships between the CNTNAP2 variants and DD. Findings After adjustment for the false discovery rate (FDR), two SNPs (rs3779031, rs987456) of CNTNAP2 were associated with DD risk in females but not in males. Female participants carrying the rs3779031 G allele had a lower risk of DD than those with the A genotype [GG vs AA: OR (95%CI) = 0.281 (0.097–0.814)]. The rs987456 CC genotype was associated with a decreased risk of DD in females [CC vs AA+CA: OR (95%CI) = 0.222 (0.078–0.628)]. Furthermore, the interaction between CNTNAP2 (rs987456) and environmental factors (scheduled reading time) played a protective role in females [OR (95%CI) = 0.431 (0.188–0.987)]. Interpretation We performed a genetic association study on CNTNAP2 variants and DD. The sex specificity of CNTNAP2 in DD, along with the gene-environment interaction may help us to understand gender differences in DD.
Collapse
Affiliation(s)
- Huaiting Gu
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fang Hou
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Lingfei Liu
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiu Luo
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Pauline Denis Nkomola
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xinyan Xie
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xin Li
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ranran Song
- Department of Maternal and Child Health, MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
27
|
Rodenas-Cuadrado PM, Mengede J, Baas L, Devanna P, Schmid TA, Yartsev M, Firzlaff U, Vernes SC. Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. J Comp Neurol 2018; 526:1235-1266. [PMID: 29297931 PMCID: PMC5900884 DOI: 10.1002/cne.24385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system.
Collapse
Affiliation(s)
- Pedro M Rodenas-Cuadrado
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Laura Baas
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Tobias A Schmid
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720
| | - Michael Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720.,Department of Bioengineering, UC Berkeley, 306 University of California, Berkeley, California, 94720
| | - Uwe Firzlaff
- Department Tierwissenschaften, Lehrstuhl für Zoologie, TU München, München, 85354, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
28
|
Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family. EBioMedicine 2018; 28:168-179. [PMID: 29409727 PMCID: PMC5835549 DOI: 10.1016/j.ebiom.2017.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu]) result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading. A set of seventeen common variations on chr5q31.3 co-segregate with dyslexia Ancestral risk forms are conserved throughoutNeanderthals to primates while non-risks are preponderant in modern humans p.Ile154Leu and p.Ala181Thr, present in interacting interface of EC2: EC3 Species specific isoform identity of p.Ile154Leu, p.Arg679Pro and p.Lys687Glu
Worldwide epidemiological data suggests that one in every ten children is affected with dyslexia which is an alarming number and possesses a serious burden on mental health. We identified single nucleotide variations on protocadherin gamma (PCDHG) gene cluster co-segregate with dyslexia in a multiincident family. The described variants present on the interacting domain of protocadherin gamma reiterates the underlying dysregulated functional connectivity in dyslexia pathophysiology. This finding may help toward understanding the basic molecular mechanisms of dyslexia, and may help in identifying points of therapeutic intervention.
Collapse
|
29
|
Müller B, Schaadt G, Boltze J, Emmrich F, Skeide MA, Neef NE, Kraft I, Brauer J, Friederici AD, Kirsten H, Wilcke A. ATP2C2 and DYX1C1 are putative modulators of dyslexia-related MMR. Brain Behav 2017; 7:e00851. [PMID: 29201552 PMCID: PMC5698869 DOI: 10.1002/brb3.851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dyslexia is a specific learning disorder affecting reading and spelling abilities. Its prevalence is ~5% in German-speaking individuals. Although the etiology of dyslexia largely remains to be determined, comprehensive evidence supports deficient phonological processing as a major contributing factor. An important prerequisite for phonological processing is auditory discrimination and, thus, essential for acquiring reading and spelling skills. The event-related potential Mismatch Response (MMR) is an indicator for auditory discrimination capabilities with dyslexics showing an altered late component of MMR in response to auditory input. METHODS In this study, we comprehensively analyzed associations of dyslexia-specific late MMRs with genetic variants previously reported to be associated with dyslexia-related phenotypes in multiple studies comprising 25 independent single-nucleotide polymorphisms (SNPs) within 10 genes. RESULTS First, we demonstrated validity of these SNPs for dyslexia in our sample by showing that additional inclusion of a polygenic risk score improved prediction of impaired writing compared with a model that used MMR alone. Secondly, a multifactorial regression analysis was conducted to uncover the subset of the 25 SNPs that is associated with the dyslexia-specific late component of MMR. In total, four independent SNPs within DYX1C1 and ATP2C2 were found to be associated with MMR stronger than expected from multiple testing. To explore potential pathomechanisms, we annotated these variants with functional data including tissue-specific expression analysis and eQTLs. CONCLUSION Our findings corroborate the late component of MMR as a potential endophenotype for dyslexia and support tripartite relationships between dyslexia-related SNPs, the late component of MMR and dyslexia.
Collapse
Affiliation(s)
- Bent Müller
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| | - Gesa Schaadt
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany.,Department of Psychology Humboldt-Universität zu Berlin Berlin Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany.,Department of Medical Cell Technology Fraunhofer Research Institution for Marine Biotechnology Lübeck Germany.,Institute for Medical and Marine Biotechnology University of Lübeck Lübeck Germany
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| | | | - Michael A Skeide
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Nicole E Neef
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Indra Kraft
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Jens Brauer
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Angela D Friederici
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany.,Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany.,LIFE-Leipzig Research Center for Civilization Diseases University of Leipzig Leipzig Germany
| | - Arndt Wilcke
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig Germany
| |
Collapse
|
30
|
Adams AK, Smith SD, Truong DT, Willcutt EG, Olson RK, DeFries JC, Pennington BF, Gruen JR. Enrichment of putatively damaging rare variants in the DYX2 locus and the reading-related genes CCDC136 and FLNC. Hum Genet 2017; 136:1395-1405. [PMID: 28866788 PMCID: PMC5702371 DOI: 10.1007/s00439-017-1838-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Eleven loci with prior evidence for association with reading and language phenotypes were sequenced in 96 unrelated subjects with significant impairment in reading performance drawn from the Colorado Learning Disability Research Center collection. Out of 148 total individual missense variants identified, the chromosome 7 genes CCDC136 and FLNC contained 19. In addition, a region corresponding to the well-known DYX2 locus for RD contained 74 missense variants. Both allele sets were filtered for a minor allele frequency ≤0.01 and high Polyphen-2 scores. To determine if observations of these alleles are occurring more frequently in our cases than expected by chance in aggregate, counts from our sample were compared to the number of observations in the European subset of the 1000 Genomes Project using Fisher's exact test. Significant P values were achieved for both CCDC136/FLNC (P = 0.0098) and the DYX2 locus (P = 0.012). Taken together, this evidence further supports the influence of these regions on reading performance. These results also support the influence of rare variants in reading disability.
Collapse
Affiliation(s)
- Andrew K Adams
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Shelley D Smith
- Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | | | - Jeffrey R Gruen
- Department of Genetics, Yale University, New Haven, CT, USA.
- Department of Pediatrics and the Investigative Medicine Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Ross LA, Del Bene VA, Molholm S, Woo YJ, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. BRAIN AND LANGUAGE 2017; 174:50-60. [PMID: 28738218 DOI: 10.1016/j.bandl.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals.
Collapse
Affiliation(s)
- Lars A Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Victor A Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Ferkauf Graduate School of Psychology Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gizely N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Becker N, Vasconcelos M, Oliveira V, Santos FCD, Bizarro L, Almeida RMMD, Salles JFD, Carvalho MRS. Genetic and environmental risk factors for developmental dyslexia in children: systematic review of the last decade. Dev Neuropsychol 2017; 42:423-445. [PMID: 29068706 DOI: 10.1080/87565641.2017.1374960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advances in the characterization of developmental dyslexia (DD), several questions regarding the interplay between DD-susceptibility genes and environmental risk factors remain open. This systematic review aimed at answering the following questions: What has been the impact of new resources on the knowledge about DD? Which questions remain open? What is the investigative agenda for the short term? Forty-six studies were analyzed. Despite the growing literature on DD candidate genes, most studies have not been replicated. We found large effects on causative genes and smaller environmental contributions, involving maternal smoking during pregnancy, SES and the DYX1C1-1259C/G marker. Implications are discussed.
Collapse
Affiliation(s)
- Natalia Becker
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Mailton Vasconcelos
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Vanessa Oliveira
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Fernanda Caroline Dos Santos
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| | - Lisiane Bizarro
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Rosa M M De Almeida
- b Experimental Psychology, Neuroscience and Behavior Lab, Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Jerusa Fumagalli De Salles
- a Cognitive Neuropsychology Research Center (Neurocog), Department of Developmental and Personality Psychology , Post-Graduation Program in Psychology, Institute of Psychology, Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Rio Grande do Sul , Brazil
| | - Maria Raquel Santos Carvalho
- c Departamento de Biologia Geral , Post-Graduation Program in Genetics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG) , Pampulha, Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
33
|
Uddén J, Snijders TM, Fisher SE, Hagoort P. A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. BRAIN AND LANGUAGE 2017; 172:16-21. [PMID: 27059522 DOI: 10.1016/j.bandl.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/04/2015] [Accepted: 02/20/2016] [Indexed: 05/23/2023]
Abstract
The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan et al. (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al. (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes.
Collapse
Affiliation(s)
- Julia Uddén
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Tineke M Snijders
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Krishnan S, Alcock KJ, Carey D, Bergström L, Karmiloff-Smith A, Dick F. Fractionating nonword repetition: The contributions of short-term memory and oromotor praxis are different. PLoS One 2017; 12:e0178356. [PMID: 28704379 PMCID: PMC5509101 DOI: 10.1371/journal.pone.0178356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
The ability to reproduce novel words is a sensitive marker of language impairment across a variety of developmental disorders. Nonword repetition tasks are thought to reflect phonological short-term memory skills. Yet, when children hear and then utter a word for the first time, they must transform a novel speech signal into a series of coordinated, precisely timed oral movements. Little is known about how children's oromotor speed, planning and co-ordination abilities might influence their ability to repeat novel nonwords, beyond the influence of higher-level cognitive and linguistic skills. In the present study, we tested 35 typically developing children between the ages of 5-8 years on measures of nonword repetition, digit span, memory for non-verbal sequences, reading fluency, oromotor praxis, and oral diadochokinesis. We found that oromotor praxis uniquely predicted nonword repetition ability in school-age children, and that the variance it accounted for was additional to that of digit span, memory for non-verbal sequences, articulatory rate (measured by oral diadochokinesis) as well as reading fluency. We conclude that the ability to compute and execute novel sensorimotor transformations affects the production of novel words. These results have important implications for understanding motor/language relations in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Saloni Krishnan
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - Daniel Carey
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Lina Bergström
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Frederic Dick
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
35
|
Perrachione TK, Ghosh SS, Ostrovskaya I, Gabrieli JDE, Kovelman I. Phonological Working Memory for Words and Nonwords in Cerebral Cortex. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:1959-1979. [PMID: 28631005 PMCID: PMC5831089 DOI: 10.1044/2017_jslhr-l-15-0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 05/27/2023]
Abstract
PURPOSE The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. METHOD We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. RESULTS Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. CONCLUSION These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production.
Collapse
Affiliation(s)
| | - Satrajit S. Ghosh
- Massachusetts Institute of Technology, Cambridge
- Harvard Medical School, Boston, MA
| | - Irina Ostrovskaya
- Massachusetts Institute of Technology, Cambridge
- Harvard Medical School, Boston, MA
| | - John D. E. Gabrieli
- Massachusetts Institute of Technology, Cambridge
- Harvard Medical School, Boston, MA
| | - Ioulia Kovelman
- Massachusetts Institute of Technology, Cambridge
- University of Michigan, Ann Arbor
| |
Collapse
|
36
|
Mozzi A, Riva V, Forni D, Sironi M, Marino C, Molteni M, Riva S, Guerini FR, Clerici M, Cagliani R, Mascheretti S. A common genetic variant in FOXP2 is associated with language-based learning (dis)abilities: Evidence from two Italian independent samples. Am J Med Genet B Neuropsychiatr Genet 2017; 174:578-586. [PMID: 28436202 DOI: 10.1002/ajmg.b.32546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/06/2017] [Indexed: 11/10/2022]
Abstract
Language-based Learning Disabilities (LLDs) encompass a group of complex, comorbid, and developmentally associated deficits in communication. Language impairment and developmental dyslexia (DD) represent the most recognized forms of LLDs. Substantial genetic correlations exist between language and reading (dis)abilities. Common variants in the FOXP2 gene were consistently associated with language- and reading-related neuropsychological and neuroanatomical phenotypes. We tested the effect of a FOXP2 common variant, that is, rs6980093 (A/G), on quantitative measures of language and reading in two independent Italian samples: a population-based cohort of 699 subjects (3-11 years old) and a sample of 572 children with DD (6-18 years old). rs6980093 modulates expressive language in the general population sample, with an effect on fluency scores. In the DD sample, the variant showed an association with the accuracy in the single word reading task. rs6980093 shows distinct genetic models of association in the two cohorts, with a dominant effect of the G allele in the general population sample and heterozygote advantage in the DD cohort. We provide preliminary evidence that rs6980093 associates with language and reading (dis)abilities in two independent Italian cohorts. rs6980093 is an intronic SNP, suggesting that it (or a linked variant) modulates phenotypic association via regulation of FOXP2 expression. Because FOXP2 brain expression is finely regulated, both temporally and spatially, it is possible that the two alleles at rs6980093 differentially modulate expression levels in a developmental stage- or brain area-specific manner. This might help explaining the heterozygote advantage effect and the different genetic models in the two cohorts.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Valentina Riva
- Scientific Institute, IRCCS Eugenio Medea, Child Psychopathology Unit, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Cecilia Marino
- Scientific Institute, IRCCS Eugenio Medea, Child Psychopathology Unit, Bosisio Parini, Italy.,Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Massimo Molteni
- Scientific Institute, IRCCS Eugenio Medea, Child Psychopathology Unit, Bosisio Parini, Italy
| | - Stefania Riva
- Bioinformatics Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | | | - Mario Clerici
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy.,Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sara Mascheretti
- Scientific Institute, IRCCS Eugenio Medea, Child Psychopathology Unit, Bosisio Parini, Italy
| |
Collapse
|
37
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
38
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
39
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
40
|
Puglisi ML, Befi-Lopes DM. Impact of specific language impairment and type of school on different language subsystems. Codas 2016; 28:388-94. [PMID: 27652925 DOI: 10.1590/2317-1782/20162015242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This study aimed to explore quantitative and qualitative effects of type of school and specific language impairment (SLI) on different language abilities. METHODS 204 Brazilian children aged from 4 to 6 years old participated in the study. Children were selected to form three groups: 1) 63 typically developing children studying in private schools (TDPri); 2) 102 typically developing children studying in state schools (TDSta); and 39 children with SLI studying in state schools (SLISta). All individuals were assessed regarding expressive vocabulary, number morphology and morphosyntactic comprehension. RESULTS All language subsystems were vulnerable to both environmental (type of school) and biological (SLI) effects. The relationship between the three language measures was exactly the same to all groups: vocabulary growth correlated with age and with the development of morphological abilities and morphosyntactic comprehension. Children with SLI showed atypical errors in the comprehension test at the age of 4, but presented a pattern of errors that gradually resembled typical development. CONCLUSION The effect of type of school was marked by quantitative differences, while the effect of SLI was characterised by both quantitative and qualitative differences.
Collapse
|
41
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
42
|
Paternicó D, Manes M, Premi E, Cosseddu M, Gazzina S, Alberici A, Archetti S, Bonomi E, Cotelli MS, Cotelli M, Turla M, Micheli A, Gasparotti R, Padovani A, Borroni B. Frontotemporal dementia and language networks: cortical thickness reduction is driven by dyslexia susceptibility genes. Sci Rep 2016; 6:30848. [PMID: 27484312 PMCID: PMC4971514 DOI: 10.1038/srep30848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022] Open
Abstract
Variations within genes associated with dyslexia result in a language network vulnerability, and in patients with Frontotemporal Dementia (FTD), language disturbances represent a disease core feature. Here we explored whether variations within three related-dyslexia genes, namely KIAA0319, DCDC2, and CNTNAP, might affect cortical thickness measures in FTD patients. 112 FTD patients underwent clinical and neuropsychological examination, genetic analyses and brain Magnetic Resonance Imaging (MRI). KIAA0319 rs17243157 G/A, DCDC2 rs793842 A/G and CNTNAP2 rs17236239 A/G genetic variations were assessed. Cortical thickness was analysed by Freesurfer. Patients carrying KIAA0319 A*(AG or AA) carriers showed greater cortical thickness atrophy in the left fusiform and inferior temporal gyri, compared to KIAA0319 GG (p ≤ 0.001). Patients carrying CNTNAP2 G*(GA or GG) showed reduced cortical thickness in the left insula thenCNTNAP2 AA carriers (p≤0.001). When patients with both at-risk polymorphisms were considered (KIAA0319 A* and CNTNAP2 G*), greater and addictive cortical thickness atrophy of the left insula and the inferior temporal gyrus was demonstrated (p ≤ 0.001). No significant effect of DCDC2 was found. In FTD, variations of KIAA0319 and CNTNAP2 genes were related to cortical thickness abnormalities in those brain areas involved in language abilities. These findings shed light on genetic predisposition in defining phenotypic variability in FTD.
Collapse
Affiliation(s)
- Donata Paternicó
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Manes
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maura Cosseddu
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Gazzina
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- The III Laboratory, Biotechnology, Spedali Civili Hospital, Brescia, Italy
| | - Elisa Bonomi
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Maria Cotelli
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | | | | | - Alessandro Padovani
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre of Brain Aging, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
43
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
44
|
Smogavec M, Cleall A, Hoyer J, Lederer D, Nassogne MC, Palmer EE, Deprez M, Benoit V, Maystadt I, Noakes C, Leal A, Shaw M, Gecz J, Raymond L, Reis A, Shears D, Brockmann K, Zweier C. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53:820-827. [PMID: 27439707 DOI: 10.1136/jmedgenet-2016-103880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany
| | - Alison Cleall
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Marie-Cécile Nassogne
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Elizabeth E Palmer
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Charlotte Noakes
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alejandro Leal
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Section of Genetics and Biotechnology, School of Biology and Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Marie Shaw
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Deborah Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech. PLoS One 2016; 11:e0153864. [PMID: 27120335 PMCID: PMC4847873 DOI: 10.1371/journal.pone.0153864] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS.
Collapse
|
46
|
Mueller KL, Murray JC, Michaelson JJ, Christiansen MH, Reilly S, Tomblin JB. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development. PLoS One 2016; 11:e0152576. [PMID: 27064276 PMCID: PMC4827837 DOI: 10.1371/journal.pone.0152576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.
Collapse
Affiliation(s)
- Kathryn L. Mueller
- Hearing, Language and Literacy, Murdoch Childrens Institute, Melbourne, Australia
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| | - Jeffrey C. Murray
- Dept. of Pediatrics, The University of Iowa, Iowa City, United States of America
| | - Jacob J. Michaelson
- Dept. of Psychiatry, The University of Iowa, Iowa City, United States of America
| | | | | | - J. Bruce Tomblin
- Dept. of Communication Sciences and Disorders, The University of Iowa, Iowa City, United States of America
| |
Collapse
|
47
|
Bishop DVM. The interface between genetics and psychology: lessons from developmental dyslexia. Proc Biol Sci 2016; 282:20143139. [PMID: 25854887 DOI: 10.1098/rspb.2014.3139] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Developmental dyslexia runs in families, and twin studies have confirmed that there is a substantial genetic contribution to poor reading. The way in which discoveries in molecular genetics are reported can be misleading, encouraging us to think that there are specific genes that might be used to screen for disorder. However, dyslexia is not a classic Mendelian disorder that is caused by a mutation in a single gene. Rather, like many other common disorders, it appears to involve combined effects of many genes and environmental factors, each of which has a small influence, possibly supplemented by rare variants that have larger effects but apply to only a minority of cases. Furthermore, to see clearer relationships between genotype and phenotype, we may need to move beyond the clinical category of dyslexia to look at underlying cognitive deficits that may be implicated in other neurodevelopmental disorders.
Collapse
Affiliation(s)
- D V M Bishop
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| |
Collapse
|
48
|
Evans PD, Mueller KL, Gamazon ER, Cox NJ, Tomblin JB. A genome-wide sib-pair scan for quantitative language traits reveals linkage to chromosomes 10 and 13. GENES BRAIN AND BEHAVIOR 2016; 14:387-97. [PMID: 25997078 DOI: 10.1111/gbb.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 02/03/2023]
Abstract
Although there is considerable evidence that individual differences in language development are highly heritable, there have been few genome-wide scans to locate genes associated with the trait. Previous analyses of language impairment have yielded replicable evidence for linkage to regions on chromosomes 16q, 19q, 13q (within lab) and at 13q (between labs). Here we report the first linkage study to screen the continuum of language ability, from normal to disordered, as found in the general population. 383 children from 147 sib-ships (214 sib-pairs) were genotyped on the Illumina(®) Linkage IVb Marker Panel using three composite language-related phenotypes and a measure of phonological memory (PM). Two regions (10q23.33; 13q33.3) yielded genome-wide significant peaks for linkage with PM. A peak suggestive of linkage was also found at 17q12 for the overall language composite. This study presents two novel genetic loci for the study of language development and disorders, but fails to replicate findings by previous groups. Possible reasons for this are discussed.
Collapse
Affiliation(s)
- P D Evans
- Department of Medicine, The University of Chicago, IL, USA
| | - K L Mueller
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Communication Sciences and Disorders, The University of Iowa, IA, USA
| | - E R Gamazon
- Department of Medicine, The University of Chicago, IL, USA.,Present address: Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - N J Cox
- Department of Medicine, The University of Chicago, IL, USA.,Department of Communication Sciences and Disorders, The University of Iowa, IA, USA.,Present address: Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - J B Tomblin
- Department of Communication Sciences and Disorders, The University of Iowa, IA, USA
| |
Collapse
|
49
|
Rendall AR, Truong DT, Fitch RH. Learning delays in a mouse model of Autism Spectrum Disorder. Behav Brain Res 2016; 303:201-7. [PMID: 26873041 DOI: 10.1016/j.bbr.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/21/2016] [Accepted: 02/06/2016] [Indexed: 01/02/2023]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with core symptoms of atypical social interactions and repetitive behaviors. It has also been reported that individuals with ASD have difficulty with multisensory integration, and this may disrupt higher-order cognitive abilities such as learning and social communication. Impairments in the integration of sensory information could in turn reflect diminished cross-modal white matter connectivity. Moreover, the genetic contribution in ASD appears to be strong, with heritability estimates as high as 90%. However, no single gene has been identified, and over 1000 risk genes have been reported. One of these genes - contactin-associated-like-protein 2 (CNTNAP2) - was first associated with Specific Language Impairment, and more recently has been linked to ASD. CNTNAP2 encodes a cell adhesion protein regulating synaptic signal transmission. To better understand the behavioral and biological underlying mechanisms of ASD, a transgenic mouse model was created with a genetic knockout (KO) of the rodent homolog Cntnap2. Initial studies on this mouse revealed poor social interactions, behavioral perseveration, and reduced vocalizations-all strongly resembling human ASD symptoms. Cntnap2 KO mice also show abnormalities in myelin formation, consistent with a hypo-connectivity model of ASD. The current study was designed to further assess the behavioral phenotype of this mouse model, with a focus on learning and memory. Cntnap2 KO and wild-type mice were tested on a 4/8 radial arm water maze for 14 consecutive days. Error scores (total, working memory, reference memory, initial and repeated reference memory), latency and average turn angle were independently assessed using a 2×14 repeated measures ANOVA. Results showed that Cntnap2 KO mice exhibited significant deficits in working and reference memory during the acquisition period of the task. During the retention period (i.e., after asymptote in errors), Cntnap2 KO mice performed comparably to wild-type mice. These findings suggest that CNTNAP2 may influence the development of neural systems important to learning and cross-modal integration, and that disruption of this function could be associated with delayed learning in ASD.
Collapse
Affiliation(s)
- Amanda R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States.
| | - Dongnhu T Truong
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - R Holly Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| |
Collapse
|
50
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|