1
|
Abstract
Obesity is a multi-factorial disease that is influenced by genetic, epigenetic, and environmental factors. Precision medicine is a practice wherein prevention and treatment strategies take individual variability into account. It involves using a variety of factors including deep phenotyping using clinical, physiologic, and behavioral characteristics, 'omics assays (eg, genomics, epigenomics, transcriptomics, and microbiomics among others), and environmental factors to devise practices that are individualized to subsets of patients. Personalizing the therapeutic modality to the individual can lead to enhanced effectiveness and tolerability. The authors review advances in precision medicine made in the field of bariatrics and discuss future avenues and challenges.
Collapse
Affiliation(s)
- Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA. https://twitter.com/KhushbooSGala
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA; Department of Internal Medicine, Boston University Medical Center, Harrison Avenue, Boston, MA 02111, USA. https://twitter.com/Wissam_Ghusn
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA.
| |
Collapse
|
2
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
3
|
Cucoreanu C, Tigu AB, Nistor M, Moldovan RC, Pralea IE, Iacobescu M, Iuga CA, Szabo R, Dindelegan GC, Ciuce C. Epigenetic and Molecular Alterations in Obesity: Linking CRP and DNA Methylation to Systemic Inflammation. Curr Issues Mol Biol 2024; 46:7430-7446. [PMID: 39057082 PMCID: PMC11275580 DOI: 10.3390/cimb46070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is marked by excessive fat accumulation in the adipose tissue, which disrupts metabolic processes and causes chronic systemic inflammation. Commonly, body mass index (BMI) is used to assess obesity-related risks, predicting potential metabolic disorders. However, for a better clustering of obese patients, we must consider molecular and epigenetic changes which may be responsible for inflammation and metabolic changes. Our study involved two groups of patients, obese and healthy donors, on which routine analysis were performed, focused on BMI, leukocytes count, and C-reactive protein (CRP) and completed with global DNA methylation and gene expression analysis for genes involved in inflammation and adipogenesis. Our results indicate that obese patients exhibited elevated leukocytes levels, along with increased BMI and CRP. The obese group revealed a global hypomethylation and upregulation of proinflammatory genes, with adipogenesis genes following the same trend of being overexpressed. The study confirms that obesity is linked to systematic inflammation and metabolic dysfunction through epigenetic and molecular alterations. The CRP was correlated with the hypomethylation status in obese patients, and this fact may contribute to a better understanding of the roles of specific genes in adipogenesis and inflammation, leading to a better personalized therapy.
Collapse
Affiliation(s)
- Ciprian Cucoreanu
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Robert Szabo
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - George-Calin Dindelegan
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Constatin Ciuce
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Ribeiro DA, da Silva GN, Malacarne IT, Pisani LP, Salvadori DMF. Oxidative Stress Responses in Obese Individuals Undergoing Bariatric Surgery: Impact on Carcinogenesis. PATHOPHYSIOLOGY 2024; 31:352-366. [PMID: 39051223 PMCID: PMC11270384 DOI: 10.3390/pathophysiology31030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.
Collapse
Affiliation(s)
- Daniel Araki Ribeiro
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, Federal University of Ouro Preto—UFOP, Ouro Preto 35402-163, MG, Brazil;
| | - Ingra Tais Malacarne
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of Sao Paulo—UNIFESP, Santos 11015-020, SP, Brazil; (I.T.M.); (L.P.P.)
| | - Daisy Maria Favero Salvadori
- Department of Pathology, Botucatu Medical School, Sao Paulo State University—UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
5
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. BMC Med Genomics 2024; 17:146. [PMID: 38802805 PMCID: PMC11129464 DOI: 10.1186/s12920-024-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. METHODS We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = 2,531) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether demographic factors including age, sex, and educational attainment modified the relationships between epigenetic age acceleration and blood lipids. RESULTS After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05), although the effect sizes were relatively small (e.g., < 7 mg/dL of TC per standard deviation in epigenetic age acceleration). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjustment for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. CONCLUSION Multiple measures of epigenetic age acceleration are associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or non-linear relationships between age and these lipids, as both TC and LDL-C decrease faster at older ages.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Farah Ammous
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
6
|
de Oliveira Melo NC, Cuevas-Sierra A, Souto VF, Martínez JA. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health. Biomolecules 2024; 14:559. [PMID: 38785965 PMCID: PMC11117887 DOI: 10.3390/biom14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Circadian rhythms integrate a finely tuned network of biological processes recurring every 24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within the environmental milieu, including dietary and physical activity habits. The systemic integration of circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through genomic and epigenetic processes, particularly those involving gene expression, DNA methylation and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota, unravelling the repercussions on metabolic health while suggesting the potential benefits of feed circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via gut microbiota. This exploration delves into the interconnections that underscore the significance of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of metabolic, well-being, and quality of life outcomes.
Collapse
Affiliation(s)
| | - Amanda Cuevas-Sierra
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
| | - Vitória Felício Souto
- Department of Nutrition at the Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (N.C.d.O.M.); (V.F.S.)
| | - J. Alfredo Martínez
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centre of Medicine and Endocrinology, University of Valladolid, 47002 Valladolid, Spain
| |
Collapse
|
7
|
Lin L, Kiryakos J, Ammous F, Ratliff SM, Ware EB, Faul JD, Kardia SLR, Zhao W, Birditt KS, Smith JA. Epigenetic age acceleration is associated with blood lipid levels in a multi-ancestry sample of older U.S. adults. RESEARCH SQUARE 2024:rs.3.rs-3934965. [PMID: 38464171 PMCID: PMC10925395 DOI: 10.21203/rs.3.rs-3934965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia. Methods We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS). As a sensitivity analysis, we examined the same associations in participants who fasted prior to the blood draw (n = and f) and in participants who did not take lipid-lowering medication (n = 1,869). Using interaction models, we also examined whether the relationships between epigenetic age acceleration and blood lipids differ by demographic factors including age, sex, and educational attainment. Results After adjusting for age, race/ethnicity, sex, fasting status, and lipid-lowering medication use, greater epigenetic age acceleration was associated with lower TC, HDL-C, and LDL-C, and higher TG (p < 0.05). GrimAge acceleration and DunedinPACE associations with all lipids remained significant after further adjusting for body mass index, smoking status, and educational attainment. These associations were stronger in participants who fasted and who did not use lipid-lowering medication, particularly for LDL-C. We observed the largest number of interactions between DunedinPACE and demographic factors, where the associations with lipids were stronger in younger participants, females, and those with higher educational attainment. Conclusion Epigenetic age acceleration, a powerful biomarker of cellular aging, is highly associated with blood lipid levels in older adults. A greater understanding of how these associations differ across demographic groups can help shed light on the relationships between aging and downstream cardiovascular diseases. The inverse associations between epigenetic age and TC and LDL-C could be due to sample limitations or the non-linear relationship between age and these lipids, as both TC and LDL-C decrease faster at older ages. More studies are needed to further understand the temporal relationships between epigenetic age acceleration on blood lipids and other health outcomes.
Collapse
Affiliation(s)
- Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Jenna Kiryakos
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan
| |
Collapse
|
8
|
ElGendy K, Malcomson FC, Afshar S, Bradburn MD, Mathers JC. Effects of obesity, and of weight loss following bariatric surgery, on methylation of DNA from the rectal mucosa and in cell-free DNA from blood. Int J Obes (Lond) 2023; 47:1278-1285. [PMID: 37714902 DOI: 10.1038/s41366-023-01384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism through which environmental factors including nutrition and inflammation influence health. Obesity is a major modifiable risk factor for many common diseases including cardiovascular diseases and cancer. In particular, obesity-induced inflammation resulting from aberrantly-methylated inflammatory genes may drive risk of several non-communicable diseases including colorectal cancer (CRC). This study is the first to investigate the effects of weight loss induced by bariatric surgery (BS) on DNA methylation in the rectum and in cell-free DNA (cfDNA) from blood. SUBJECTS AND METHODS DNA methylation was quantified in rectal mucosal biopsies and cfDNA from serum of 28 participants with obesity before and 6 months after BS, as well as in 12 participants without obesity (control group) matched for age and sex from the Biomarkers Of Colorectal cancer After Bariatric Surgery (BOCABS) Study. DNA methylation of LEP, IL6, POMC, LINE1, MAPK7 and COX2 was quantified by pyrosequencing. RESULTS BMI decreased significantly from 41.8 kg/m2 pre-surgery to 32.3 kg/m2 at 6 months after BS. Compared with the control group, obesity was associated with lower LEP methylation in both the rectal mucosa and in cfDNA from serum. BS normalised LEP methylation in DNA from the rectal mucosa but not in cfDNA. BS decreased methylation of some CpG sites of LINE1 in the rectal mucosal DNA and in cfDNA to levels comparable with those in participants without obesity. Methylation of POMC in rectal mucosal DNA was normalised at 6 months after BS. CONCLUSION BS reversed LINE1, POMC and LEP methylation in the rectal mucosa of patients with obesity to levels similar to those in individuals without obesity. These findings support current evidence of effects of BS-induced weight loss on reversibility of DNA methylation in other tissues. The DNA methylation changes in the rectal mucosa shows promise as a biomarker for objective assessment of effects of weight loss interventions on risk of cancer and other diseases.
Collapse
Affiliation(s)
- Khalil ElGendy
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England.
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England.
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Sorena Afshar
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - Michael D Bradburn
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
9
|
Gutiérrez-Repiso C, Cantarero-Cuenca A, González-Jiménez A, Linares-Pineda T, Peña-Montero N, Ocaña-Wilhelmi L, Tinahones FJ, Morcillo S. Epigenetic Marks as Predictors of Metabolic Response to Bariatric Surgery: Validation from an Epigenome Wide Association Study. Int J Mol Sci 2023; 24:14778. [PMID: 37834223 PMCID: PMC10572880 DOI: 10.3390/ijms241914778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Little is known about the potential role of epigenetic marks as predictors of the resolution of obesity-related comorbidities after bariatric surgery. In this study, 20 patients were classified according to the metabolic improvement observed 6 months after sleeve gastrectomy, based on the diagnosis of metabolic syndrome, into responders if metabolic syndrome reversed after bariatric surgery (n = 10) and non-responders if they had metabolic syndrome bariatric surgery (n = 10). Blood DNA methylation was analyzed at both study points using the Infinium Methylation EPIC Bead Chip array-based platform. Twenty-six CpG sites and their annotated genes, which were previously described to be associated with metabolic status, were evaluated. Cg11445109 and cg19469447 (annotated to Cytochrome P450 2E1 (CYP2E1) gene) were significantly more hypomethylated in the responder group than in the non-responder group at both study points, whilst cg25828445 (annotated to Nucleolar Protein Interacting With The FHA Domain Of MKI67 Pseudogene 3 (NIFKP3) gene) showed to be significantly more hypermethylated in the non-responder group compared to the responder group at both study points. The analysis of the methylation sites annotated to the associated genes showed that CYP2E1 had 40% of the differentially methylated CpG sites, followed by Major Histocompatibility Complex, Class II, DR Beta 1 (HLA-DRB1) (33.33%) and Zinc Finger Protein, FOG Family Member 2 (ZFPM2) (26.83%). Cg11445109, cg19469447 and cg25828445 could have a role in the prediction of metabolic status and potential value as biomarkers of response to bariatric surgery.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos s/n, 29010 Málaga, Spain; (T.L.-P.); (N.P.-M.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Campus de Teatinos s/n, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Cantarero-Cuenca
- ECAI Bioinformática, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (A.C.-C.); (A.G.-J.)
| | - Andrés González-Jiménez
- ECAI Bioinformática, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (A.C.-C.); (A.G.-J.)
| | - Teresa Linares-Pineda
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos s/n, 29010 Málaga, Spain; (T.L.-P.); (N.P.-M.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Nerea Peña-Montero
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos s/n, 29010 Málaga, Spain; (T.L.-P.); (N.P.-M.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Universitario Virgen de la Victoria, 29590 Málaga, Spain;
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, 29590 Málaga, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos s/n, 29010 Málaga, Spain; (T.L.-P.); (N.P.-M.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Campus de Teatinos s/n, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29590 Málaga, Spain
| | - Sonsoles Morcillo
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos s/n, 29010 Málaga, Spain; (T.L.-P.); (N.P.-M.); (F.J.T.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Campus de Teatinos s/n, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Reyes-Mata MP, Mireles-Ramírez MA, Griñán-Ferré C, Pallàs M, Pavón L, Guerrero-García JDJ, Ortuño-Sahagún D. Global DNA Methylation and Hydroxymethylation Levels in PBMCs Are Altered in RRMS Patients Treated with IFN-β and GA-A Preliminary Study. Int J Mol Sci 2023; 24:ijms24109074. [PMID: 37240421 DOI: 10.3390/ijms24109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/15/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic disease affecting the central nervous system (CNS) due to an autoimmune attack on axonal myelin sheaths. Epigenetics is an open research topic on MS, which has been investigated in search of biomarkers and treatment targets for this heterogeneous disease. In this study, we quantified global levels of epigenetic marks using an ELISA-like approach in Peripheral Blood Mononuclear Cells (PBMCs) from 52 patients with MS, treated with Interferon beta (IFN-β) and Glatiramer Acetate (GA) or untreated, and 30 healthy controls. We performed media comparisons and correlation analyses of these epigenetic markers with clinical variables in subgroups of patients and controls. We observed that DNA methylation (5-mC) decreased in treated patients compared with untreated and healthy controls. Moreover, 5-mC and hydroxymethylation (5-hmC) correlated with clinical variables. In contrast, histone H3 and H4 acetylation did not correlate with the disease variables considered. Globally quantified epigenetic DNA marks 5-mC and 5-hmC correlate with disease and were altered with treatment. However, to date, no biomarker has been identified that can predict the potential response to therapy before treatment initiation.
Collapse
Affiliation(s)
- María Paulina Reyes-Mata
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario Alberto Mireles-Ramírez
- Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - José de Jesús Guerrero-García
- Banco de Sangre Central, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara 44340, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
12
|
Talukdar FR, Escobar Marcillo DI, Laskar RS, Novoloaca A, Cuenin C, Sbraccia P, Nisticò L, Guglielmi V, Gheit T, Tommasino M, Dogliotti E, Fortini P, Herceg Z. Bariatric surgery-induced weight loss and associated genome-wide DNA-methylation alterations in obese individuals. Clin Epigenetics 2022; 14:176. [PMID: 36528638 PMCID: PMC9759858 DOI: 10.1186/s13148-022-01401-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is a multifactorial and chronic condition of growing universal concern. It has recently been reported that bariatric surgery is a more successful treatment for severe obesity than other noninvasive interventions, resulting in rapid significant weight loss and associated chronic disease remission. The identification of distinct epigenetic patterns in patients who are obese or have metabolic imbalances has suggested a potential role for epigenetic alterations in causal or mediating pathways in the development of obesity-related pathologies. Specific changes in the epigenome (DNA methylome), associated with metabolic disorders, can be detected in the blood. We investigated whether such epigenetic changes are reversible after weight loss using genome-wide DNA methylome analysis of blood samples from individuals with severe obesity (mean BMI ~ 45) undergoing bariatric surgery. RESULTS Our analysis revealed 41 significant (Bonferroni p < 0.05) and 1169 (false discovery rate p < 0.05) suggestive differentially methylated positions (DMPs) associated with weight loss due to bariatric surgery. Among the 41 significant DMPs, 5 CpGs were replicated in an independent cohort of BMI-discordant monozygotic twins (the heavier twin underwent diet-induced weight loss). The effect sizes of these 5 CpGs were consistent across discovery and replication sets (p < 0.05). We also identified 192 differentially methylated regions (DMRs) among which SMAD6 and PFKFB3 genes were the top hypermethylated and hypomethylated regions, respectively. Pathway enrichment analysis of the DMR-associated genes showed that functional pathways related to immune function and type 1 diabetes were significant. Weight loss due to bariatric surgery also significantly decelerated epigenetic age 12 months after the intervention (mean = - 4.29; p = 0.02). CONCLUSIONS We identified weight loss-associated DNA-methylation alterations targeting immune and inflammatory gene pathways in blood samples from bariatric-surgery patients. The top hits were replicated in samples from an independent cohort of BMI-discordant monozygotic twins following a hypocaloric diet. Energy restriction and bariatric surgery thus share CpGs that may represent early indicators of response to the metabolic effects of weight loss. The analysis of bariatric surgery-associated DMRs suggests that epigenetic regulation of genes involved in endothelial and adipose tissue function is key in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - David Israel Escobar Marcillo
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ruhina Shirin Laskar
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Alexei Novoloaca
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Paolo Sbraccia
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenza Nisticò
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Valeria Guglielmi
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tarik Gheit
- Early Detection, Prevention, and Infections Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | | | - Eugenia Dogliotti
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Paola Fortini
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| |
Collapse
|
13
|
KIANI AYSHAKARIM, BONETTI GABRIELE, DONATO KEVIN, KAFTALLI JURGEN, HERBST KARENL, STUPPIA LIBORIO, FIORETTI FRANCESCO, NODARI SAVINA, PERRONE MARCO, CHIURAZZI PIETRO, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polymorphisms, diet and nutrigenomics. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E125-E141. [PMID: 36479483 PMCID: PMC9710387 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Every human being possesses an exclusive nutritional blueprint inside their genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the science that analyzes gene-nutrient interactions (nutrigenetics), which can lead to the development of personalized nutritional recommendations to maintain optimal health and prevent disease. Genomic diversity among various ethnic groups might affect nutrients bioavailability as well as their metabolism. Nutrigenomics combines different branches of science including nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Genes regulate intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of a number of genes; testing of specific genetic polymorphisms may therefore become a useful tool to manage weight loss and to fully understand gene-nutrient interactions. Indeed, several approaches are used to study gene-nutrient interactions: epigenetics, the study of genome modification not related to changes in nucleotide sequence; transcriptomics, the study of tissue-specific and time-specific RNA transcripts; proteomics, the study of proteins involved in biological processes; and metabolomics, the study of changes of primary and secondary metabolites in body fluids and tissues. Hence, the use of nutrigenomics to improve and optimize a healthy, balanced diet in clinical settings could be an effective approach for long-term lifestyle changes that might lead to consistent weight loss and improve quality of life.
Collapse
Affiliation(s)
| | - GABRIELE BONETTI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Gabriele Bonetti, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | | | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - MARCO PERRONE
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
14
|
Barouti Z, Heidari-Beni M, Shabanian-Boroujeni A, Mohammadzadeh M, Pahlevani V, Poursafa P, Mohebpour F, Kelishadi R. Effects of DNA methylation on cardiometabolic risk factors: a systematic review and meta-analysis. Arch Public Health 2022; 80:150. [PMID: 35655232 PMCID: PMC9161587 DOI: 10.1186/s13690-022-00907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes, especially DNA methylation have a main role in regulating cardiometabolic disorders and their risk factors. This study provides a review of the current evidence on the association between methylation of some genes (LINE1, ABCG1, SREBF1, PHOSPHO1, ADRB3, and LEP) and cardiometabolic risk factors. Methods A systematic literature search was conducted in electronic databases including Web of Science, PubMed, EMBASE, Google Scholar and Scopus up to end of 2020. All observational human studies (cross-sectional, case–control, and cohort) were included. Studies that assessed the effect of DNA methylation on cardiometabolic risk factors were selected. Results Among 1398 articles, eight studies and twenty-one studies were included in the meta-analysis and the systematic review, respectively. Our study showed ABCG1 and LINE1 methylation were positively associated with blood pressure (Fisher’s zr = 0.07 (0.06, 0.09), 95% CI: 0.05 to 0.08). Methylation in LINE1, ABCG1, SREBF1, PHOSPHO1 and ADRB3 had no significant association with HDL levels (Fisher’s zr = − 0.05 (− 0.13, 0.03), 95% CI:-0.12 to 0.02). Positive association was existed between LINE1, ABCG1 and LEP methylation and LDL levels (Fisher’s zr = 0.13 (0.04, 0.23), 95% CI: 0.03 to 0.23). Moreover, positive association was found between HbA1C and ABCG1 methylation (Fisher’s zr = 0.11 (0.09, 0.13), 95% CI: 0.09 to 0.12). DNA methylation of LINE1, ABCG1 and SREBF1 genes had no significant association with glucose levels (Fisher’s zr = 0.01 (− 0.12, 0.14), 95% CI:-0.12 to 0.14). Conclusion This meta-analysis showed that DNA methylation was associated with some cardiometabolic risk factors including LDL-C, HbA1C, and blood pressure. Registration Registration ID of the protocol on PROSPERO is CRD42020207677.
Collapse
|
15
|
Lorenzo PM, Sajoux I, Izquierdo AG, Gomez-Arbelaez D, Zulet MA, Abete I, Castro AI, Baltar J, Portillo MP, Tinahones FJ, Martinez JA, Casanueva FF, Crujeiras AB. Immunomodulatory effect of a very-low-calorie ketogenic diet compared with bariatric surgery and a low-calorie diet in patients with excessive body weight. Clin Nutr 2022; 41:1566-1577. [DOI: 10.1016/j.clnu.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
|
16
|
Li X, Qi L. Epigenetics in Precision Nutrition. J Pers Med 2022; 12:jpm12040533. [PMID: 35455649 PMCID: PMC9027461 DOI: 10.3390/jpm12040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging area of nutrition research, with primary focus on the individual variability in response to dietary and lifestyle factors, which are mainly determined by an individual’s intrinsic variations, such as those in genome, epigenome, and gut microbiome. The current research on precision nutrition is heavily focused on genome and gut microbiome, while epigenome (DNA methylation, non-coding RNAs, and histone modification) is largely neglected. The epigenome acts as the interface between the human genome and environmental stressors, including diets and lifestyle. Increasing evidence has suggested that epigenetic modifications, particularly DNA methylation, may determine the individual variability in metabolic health and response to dietary and lifestyle factors and, therefore, hold great promise in discovering novel markers for precision nutrition and potential targets for precision interventions. This review summarized recent studies on DNA methylation with obesity, diabetes, and cardiovascular disease, with more emphasis put in the relations of DNA methylation with nutrition and diet/lifestyle interventions. We also briefly reviewed other epigenetic events, such as non-coding RNAs, in relation to human health and nutrition, and discussed the potential role of epigenetics in the precision nutrition research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-504-988-7259
| |
Collapse
|
17
|
Martínez-Montoro JI, Cornejo-Pareja I, Gómez-Pérez AM, Tinahones FJ. Impact of Genetic Polymorphism on Response to Therapy in Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:4077. [PMID: 34836332 PMCID: PMC8625016 DOI: 10.3390/nu13114077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions with derived major health and socioeconomic consequences; this tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type 2 diabetes mellitus, sedentary lifestyle, increased caloric intake and genetic predisposition constitute the main risk factors associated with the development and progression of the disease. Importantly, the interaction between the inherited genetic background and some unhealthy dietary patterns has been postulated to have an essential role in the pathogenesis of NAFLD. Weight loss through lifestyle modifications is considered the cornerstone of the treatment for NAFLD and the inter-individual variability in the response to some dietary approaches may be conditioned by the presence of different single nucleotide polymorphisms. In this review, we summarize the current evidence on the influence of the association between genetic susceptibility and dietary habits in NAFLD pathophysiology, as well as the role of gene polymorphism in the response to lifestyle interventions and the potential interaction between nutritional genomics and other emerging therapies for NAFLD, such as bariatric surgery and several pharmacologic agents.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
- Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| | - Isabel Cornejo-Pareja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Gómez-Pérez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain; (J.I.M.-M.); (F.J.T.)
- Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
18
|
Boughanem H, Ruiz-Limon P, Crujeiras AB, de Luque V, Tinahones FJ, Macias-Gonzalez M. 25-Hydroxyvitamin D status is associated with interleukin-6 methylation in adipose tissue from patients with colorectal cancer. Food Funct 2021; 12:9620-9631. [PMID: 34549226 DOI: 10.1039/d1fo01371h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A dysfunctional visceral adipose tissue (VAT) is characterized by increased production of proinflammatory cytokines, which may increase the risk of colorectal cancer (CRC). However, the epigenetic contribution to the inflammatory status is poorly understood. In our study, we hypothesized that a dysfunctional VAT may be a risk factor for CRC, through epigenetic modifications. Therefore, we aimed to study the transcriptional/methylation profile of proinflammatory cytokines and genes related to vitamin D metabolism in VAT from CRC patients, and evaluate their association with serum 25-hydroxyvitamin D (25(OH)D). We included 129 participants (68 healthy participants and 61 CRC patients). We found that the majority of the studied genes are upregulated and hypomethylated in CRC patients, when compared to the healthy subjects (p < 0.05). In addition, serum 25(OH)D was associated with both mRNA gene expression and methylation of key genes, such as interleukin (IL)6, IL10, vitamin D receptor (VDR) or cytochrome P450 subfamily 27 type B1 (CYP27B1) (p < 0.05). Interestingly, while high IL6 expression was related to poor survival in CRC (p < 0.05), IL6 methylation was associated with an increased risk of CRC, in which 25(OH)D partially mediated this association (p < 0.05). Our study suggests a potential association between epigenetic regulation of inflammatory mediators in VAT - such as IL6 - in the CRC context, in which 25(OH)D may mediate this risk. Therefore, vitamin D could affect the epigenetic status of IL6, which can be considered for additional preventive strategies.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, 29016 Malaga, Spain.
| | - Patricia Ruiz-Limon
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, 29016 Malaga, Spain. .,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana B Crujeiras
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.,Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Vanessa de Luque
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, 29016 Malaga, Spain. .,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, 29016 Malaga, Spain. .,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Faenza M, Benincasa G, Docimo L, Nicoletti GF, Napoli C. Clinical epigenetics and restoring of metabolic health in severely obese patients undergoing batriatric and metabolic surgery. Updates Surg 2021; 74:431-438. [PMID: 34599748 PMCID: PMC8995275 DOI: 10.1007/s13304-021-01162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic-sensitive mechanisms, mainly DNA methylation, mirror the relationship between environmental and genetic risk factors able to affect the sensitiveness to development of obesity and its comorbidities. Bariatric and metabolic surgery may reduce obesity-related cardiovascular risk through tissue-specific DNA methylation changes. Among the most robust results, differential promoter methylation of ACACA, CETP, CTGF, S100A8, and S100A9 genes correlated significantly with the levels of mRNA before and after gastric bypass surgery (RYGB) in obese women. Additionally, promoter hypermethylation of NFKB1 gene was significantly associated with reduced blood pressure in obese patients after RYGB suggesting useful non-invasive biomarkers. Of note, sperm-related DNA methylation signatures of genes regulating the central control of appetite, such as MC4R, BDNF, NPY, and CR1, and other genes including FTO, CHST8, and SH2B1 were different in obese patients as compared to non-obese subjects and patients who lost weight after RYGB surgery. Importantly, transgenerational studies provided relevant evidence of the potential effect of bariatric and metabolic surgery on DNA methylation. For example, peripheral blood biospecimens isolated from siblings born from obese mothers before bariatric surgery showed different methylation signatures in the insulin receptor and leptin signaling axis as compared to siblings born from post-obese mothers who underwent surgery. This evidence suggests that bariatric and metabolic surgery of mothers may affect the epigenetic profiles of the offspring with potential implication for primary prevention of severe obesity. We update on tissue-specific epigenetic signatures as potential mechanisms underlying the restoration of metabolic health after surgery suggesting useful predictive biomarkers.
Collapse
Affiliation(s)
- Mario Faenza
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ludovico Docimo
- Division of General, Mininvasive and Bariatric Surgery, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80100, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Plastic Surgery Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.,Clinical Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Transfusion Medicine and Transplant Immunology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
20
|
Cifuentes L, Hurtado A. MD, Eckel-Passow J, Acosta A. Precision Medicine for Obesity. DIGESTIVE DISEASE INTERVENTIONS 2021; 5:239-248. [PMID: 36203650 PMCID: PMC9534386 DOI: 10.1055/s-0041-1729945] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Obesity is a multifactorial disease with a variable and underwhelming weight loss response to current treatment approaches. Precision medicine proposes a new paradigm to improve disease classification based on the premise of human heterogeneity, with the ultimate goal of maximizing treatment effectiveness, tolerability, and safety. Recent advances in high-throughput biochemical assays have contributed to the partial characterization of obesity's pathophysiology, as well as to the understanding of the role that intrinsic and environmental factors, and their interaction, play in its development and progression. These data have led to the development of biological markers that either are being or will be incorporated into strategies to develop personalized lines of treatment for obesity. There are currently many ongoing initiatives aimed at this; however, much needs to be resolved before precision obesity medicine becomes common practice. This review aims to provide a perspective on the currently available data of high-throughput technologies to treat obesity.
Collapse
Affiliation(s)
- Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Daniela Hurtado A.
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic Health System La Crosse, Rochester, Minnesota
| | - Jeanette Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Womble JT, McQuade VL, Ihrie MD, Ingram JL. Imbalanced Coagulation in the Airway of Type-2 High Asthma with Comorbid Obesity. J Asthma Allergy 2021; 14:967-980. [PMID: 34408442 PMCID: PMC8364356 DOI: 10.2147/jaa.s318017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common, chronic airway inflammatory disease marked by airway hyperresponsiveness, inflammation, and remodeling. Asthma incidence has increased rapidly in the past few decades and recent multicenter analyses have revealed several unique asthma endotypes. Of these, type-2 high asthma with comorbid obesity presents a unique clinical challenge marked by increased resistance to standard therapies and exacerbated disease development. The extrinsic coagulation pathway plays a significant role in both type-2 high asthma and obesity. The type-2 high asthma airway is marked by increased procoagulant potential, which is readily activated following damage to airway tissue. In this review, we summarize the current understanding of the role the extrinsic coagulation pathway plays in the airway of type-2 high asthma with comorbid obesity. We propose that asthma control is worsened in obesity as a result of a systemic and local airway shift towards a procoagulant and anti-fibrinolytic environment. Lastly, we hypothesize bariatric surgery as a treatment for improved asthma management in type-2 high asthma with comorbid obesity, facilitated by normalization of systemic procoagulant and pro-inflammatory mediators. A better understanding of attenuated coagulation parameters in the airway following bariatric surgery will advance our knowledge of biomolecular pathways driving asthma pathobiology in patients with obesity.
Collapse
Affiliation(s)
- Jack T Womble
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark D Ihrie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
23
|
Crujeiras AB, Izquierdo AG, Primo D, Milagro FI, Sajoux I, Jácome A, Fernandez-Quintela A, Portillo MP, Martínez JA, Martinez-Olmos MA, de Luis D, Casanueva FF. Epigenetic landscape in blood leukocytes following ketosis and weight loss induced by a very low calorie ketogenic diet (VLCKD) in patients with obesity. Clin Nutr 2021; 40:3959-3972. [PMID: 34139469 DOI: 10.1016/j.clnu.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the potential health benefits of a ketogenic diet are unknown and could be mediated by epigenetic mechanisms. OBJECTIVE To identify the changes in the obesity-related methylome that are mediated by the induced weight loss or are dependent on ketosis in subjects with obesity underwent a very-low calorie ketogenic diet (VLCKD). METHODS Twenty-one patients with obesity (n = 12 women, 47.9 ± 1.02 yr, 33.0 ± 0.2 kg/m2) after 6 months on a VLCKD and 12 normal weight volunteers (n = 6 women, 50.3 ± 6.2 yrs, 22.7 ± 1.5 kg/m2) were studied. Data from the Infinium MethylationEPIC BeadChip methylomes of blood leukocytes were obtained at time points of ketotic phases (basal, maximum ketosis, and out of ketosis) during VLCKD (n = 10) and at baseline in volunteers (n = 12). Results were further validated by pyrosequencing in representative cohort of patients on a VLCKD (n = 18) and correlated with gene expression. RESULTS After weight reduction by VLCKD, differences were found at 988 CpG sites (786 unique genes). The VLCKD altered methylation levels in patients with obesity had high resemblance with those from normal weight volunteers and was concomitant with a downregulation of DNA methyltransferases (DNMT)1, 3a and 3b. Most of the encoded genes were involved in metabolic processes, protein metabolism, and muscle, organ, and skeletal system development. Novel genes representing the top scoring associated events were identified, including ZNF331, FGFRL1 (VLCKD-induced weight loss) and CBFA2T3, C3orf38, JSRP1, and LRFN4 (VLCKD-induced ketosis). Interestingly, ZNF331 and FGFRL1 were validated in an independent cohort and inversely correlated with gene expression. CONCLUSIONS The beneficial effects of VLCKD therapy on obesity involve a methylome more suggestive of normal weight that could be mainly mediated by the VLCKD-induced ketosis rather than weight loss.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain.
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - David Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Ignacio Sajoux
- Medical Department Pronokal Group, PronokalGroup, Barcelona, Spain
| | - Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - Alfredo Fernandez-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| |
Collapse
|
24
|
Maugeri A. The Effects of Dietary Interventions on DNA Methylation: Implications for Obesity Management. Int J Mol Sci 2020; 21:ijms21228670. [PMID: 33212948 PMCID: PMC7698434 DOI: 10.3390/ijms21228670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Previous evidence from in vivo and observational research suggested how dietary factors might affect DNA methylation signatures involved in obesity risk. However, findings from experimental studies are still scarce and, if present, not so clear. The current review summarizes studies investigating the effect of dietary interventions on DNA methylation in the general population and especially in people at risk for or with obesity. Overall, these studies suggest how dietary interventions may induce DNA methylation changes, which in turn are likely related to the risk of obesity and to different response to weight loss programs. These findings might explain the high interindividual variation in weight loss after a dietary intervention, with some people losing a lot of weight while others much less so. However, the interactions between genetic, epigenetic, environmental and lifestyle factors make the whole framework even more complex and further studies are needed to support the hypothesis of personalized interventions against obesity.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
25
|
Galyean S, Sawant D, Shin AC. Immunometabolism, Micronutrients, and Bariatric Surgery: The Use of Transcriptomics and Microbiota-Targeted Therapies. Mediators Inflamm 2020; 2020:8862034. [PMID: 33281501 PMCID: PMC7685844 DOI: 10.1155/2020/8862034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Obesity is associated with the gut microbiota and decreased micronutrient status. Bariatric surgery is a recommended therapy for obesity. It can positively affect the composition of the gut bacteria but also disrupt absorption of nutrients. Low levels of micronutrients can affect metabolic processes, like glycolysis, TCA cycle, and oxidative phosphorylation, that are associated with the immune system also known as immunometabolism. METHODS MEDLINE, PUBMED, and Google Scholar were searched. Articles involving gut microbiome, micronutrient deficiency, gut-targeted therapies, transcriptome analysis, micronutrient supplementation, and bariatric surgery were included. RESULTS Studies show that micronutrients play a pivotal role in the intestinal immune system and regulating immunometabolism. Research demonstrates that gut-targeting therapies may improve the microbiome health for bariatric surgery populations. There is limited research that examines the role of micronutrients in modulating the gut microbiota among the bariatric surgery population. CONCLUSIONS Investigations are needed to understand the influence that micronutrient deficiencies have on the gut, particularly immunometabolism. Nutritional transcriptomics shows great potential in providing this type of analysis to develop gut-modulating therapies as well as more personalized nutrition recommendations for bariatric surgery patients.
Collapse
Affiliation(s)
- Shannon Galyean
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Dhanashree Sawant
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Andrew C. Shin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
26
|
Afarideh M, Thaler R, Khani F, Tang H, Jordan KL, Conley SM, Saadiq IM, Obeidat Y, Pawar AS, Eirin A, Zhu XY, Lerman A, van Wijnen AJ, Lerman LO. Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming. Epigenetics 2020; 16:705-717. [PMID: 32893712 DOI: 10.1080/15592294.2020.1819663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity promotes dysfunction and impairs the reparative capacity of mesenchymal stem/stromal cells (MSCs), and alters their transcription, protein content, and paracrine function. Whether these adverse effects are mediated by chromatin-modifying epigenetic changes remains unclear. We tested the hypothesis that obesity imposes global DNA hydroxymethylation and histone tri-methylation alterations in obese swine abdominal adipose tissue-derived MSCs compared to lean pig MSCs. MSCs from female lean (n = 7) and high-fat-diet fed obese (n = 7) domestic pigs were assessed using global epigenetic assays, before and after in-vitro co-incubation with the epigenetic modulator vitamin-C (VIT-C) (50 μg/ml). Dot blotting was used to measure across the whole genome 5-hydroxyemthycytosine (5hmC) residues, and Western blotting to quantify in genomic histone-3 protein tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. MSC migration and proliferation were studied in-vitro. Obese MSCs displayed reduced global 5hmC and H3K4m3 levels, but comparable H3K9me3 and H3K27me3, compared to lean MSCs. Global 5hmC, H3K4me3, and HK9me3 marks correlated with MSC migration and reduced proliferation, as well as clinical and metabolic characteristics of obesity. Co-incubation of obese MSCs with VIT-C enhanced 5hmC marks, and reduced their global levels of H3K9me3 and H3K27me3. Contrarily, VIT-C did not affect 5hmC, and decreased H3K4me3 in lean MSCs. Obesity induces global genomic epigenetic alterations in swine MSCs, involving primarily genomic transcriptional repression, which are associated with MSC function and clinical features of obesity. Some of these alterations might be reversible using the epigenetic modulator VIT-C, suggesting epigenetic modifications as therapeutic targets in obesity.
Collapse
Affiliation(s)
- Mohsen Afarideh
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
27
|
Pinhel MAS, Noronha NY, Nicoletti CF, Pereira VAB, de Oliveira BAP, Cortes-Oliveira C, Salgado W, Barbosa F, Marchini JS, Souza DRS, Nonino CB. Changes in DNA Methylation and Gene Expression of Insulin and Obesity-Related Gene PIK3R1 after Roux-en-Y Gastric Bypass. Int J Mol Sci 2020; 21:E4476. [PMID: 32599690 PMCID: PMC7352760 DOI: 10.3390/ijms21124476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
Weight regulation and the magnitude of weight loss after a Roux-en-Y gastric bypass (RYGB) can be genetically determined. DNA methylation patterns and the expression of some genes can be altered after weight loss interventions, including RYGB. The present study aimed to evaluate how the gene expression and DNA methylation of PIK3R1, an obesity and insulin-related gene, change after RYGB. Blood samples were obtained from 13 women (35.9 ± 9.2 years) with severe obesity before and six months after surgical procedure. Whole blood transcriptome and epigenomic patterns were assessed by microarray-based, genome-wide technologies. A total of 1966 differentially expressed genes were identified in the pre- and postoperative periods of RYGB. From these, we observed that genes involved in obesity and insulin pathways were upregulated after surgery. Then, the PIK3R1 gene was selected for further RT-qPCR analysis and cytosine-guanine nucleotide (CpG) sites methylation evaluation. We observed that the PI3KR1 gene was upregulated, and six DNA methylation CpG sites were differently methylated after bariatric surgery. In conclusion, we found that RYGB upregulates genes involved in obesity and insulin pathways.
Collapse
Affiliation(s)
- Marcela A S Pinhel
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
- Department of Molecular Biology, São José do Rio Preto Medical School, São José do Rio Preto 15090-000, Brazil;
| | - Natália Y Noronha
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Carolina F Nicoletti
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Vanessa AB Pereira
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Bruno AP de Oliveira
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Cristiana Cortes-Oliveira
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Wilson Salgado
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto 14040-900, Brazil;
| | - Júlio S Marchini
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| | - Doroteia RS Souza
- Department of Molecular Biology, São José do Rio Preto Medical School, São José do Rio Preto 15090-000, Brazil;
| | - Carla B Nonino
- Laboratory of Nutrigenomics Studies, Health Science Department, Ribeirão Preto Medical School, Ribeirão Preto 14049-900, Brazil; (M.A.S.P.); (N.Y.N.); (C.F.N.); (V.A.B.P.); (B.A.P.d.O.); (C.C.-O.); (W.S.J.); (J.S.M.)
| |
Collapse
|
28
|
Nicoletti CF, Cortes-Oliveira C, Noronha NY, Pinhel MAS, Dantas WS, Jácome A, Marchini JS, Gualano B, Crujeiras AB, Nonino CB. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur J Clin Nutr 2020; 74:1345-1353. [PMID: 32404903 DOI: 10.1038/s41430-020-0660-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES We aimed to investigate the effects of short-term hypocaloric diet-induced weight loss on DNA methylation profile in leukocytes from women with severe obesity. METHODS Eleven women with morbid obesity (age: 36.9 ± 10.3 years; BMI: 58.5 ± 10.5 kg/m2) were assessed before and after 6 weeks of a hypocaloric dietary intervention. The participants were compared with women of average weight and the same age (age: 36.9 ± 11.8 years; BMI: 22.5 ± 1.6 kg/m2). Genome-wide DNA methylation analysis was performed in DNA extracted from peripheral blood leukocytes using the Infinium Human Methylation 450 BeadChip assay. Changes (Δβ) in the methylation level of each CpGs were calculated. A threshold with a minimum value of 10%, p < 0.001, for the significant CpG sites based on Δβ and a false discovery rate of <0.05 was set. RESULTS Dietary intervention changed the methylation levels at 16,064 CpG sites. These CpGs sites were related to cancer, cell cycle-related, MAPK, Rap1, and Ras signaling pathways. However, regardless of hypocaloric intervention, a group of 878 CpGs (related to 649 genes) remained significantly altered in obese women when compared with normal-weight women. Pathway enrichment analysis identified genes related to the cadherin and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose deprivation. CONCLUSION A short-term hypocaloric intervention in patients with severe obesity partially restored the obesity-related DNA methylation pattern. Thus, the full change of obesity-related DNA methylation patterns could be proportional to the weight-loss rate in these patients after dietary interventions.
Collapse
Affiliation(s)
- C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Cortes-Oliveira
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - M A S Pinhel
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, Sao Paulo, Brazil
| | - W S Dantas
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A Jácome
- Department of Mathematics, MODES group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - J S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - B Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC), Santiago de Compostela, Spain. .,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain.
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
29
|
Jurcikova-Novotna L, Mrazova L, Mičová K, Friedecký D, Hubacek JA, Poledne R. Global DNA methylation in rats´ liver is not affected by hypercholesterolemic diet. Physiol Res 2020; 69:347-252. [PMID: 32199015 DOI: 10.33549/physiolres.934313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased plasma cholesterol levels are listed between the major atherosclerosis risk factors. The final plasma cholesterol levels result from the interplay between the genetic and environmental (diet, physical activity) factors. Little is known, how dietary factor influence epigenetics. We have analyzed, if an over-generation feeding of rat with cholesterol influences total liver-DNA methylation, and if total liver-DNA methylation differ between the different rat strains (Prague hereditary hypercholesterolemic rats, Prague hereditary hypertriglyceridemic rats and Wistar Kyoto rats). The animals were feed with high fat (additional 5 % over normal capacity) high cholesterol (2 %) diet for 14 days. DNA methylation in the liver tissue in different generations was analyzed using the liquid chromatography coupled with tandem mass spectrometry. We have not observed any significant changes in total liver-DNA methylation over the 9 generations of animals feed by fat/cholesterol enriched diet. Additionally, there were no differences in DNA methylation between different rat strains. In animal model, the dietary changes (hypercholesterolemic diet) not significantly influence the total DNA methylation status within the liver.
Collapse
Affiliation(s)
- L Jurcikova-Novotna
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
30
|
Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020; 21:ijms21082986. [PMID: 32340286 PMCID: PMC7215858 DOI: 10.3390/ijms21082986] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as 'nutritional genomics,' which encompasses both 'nutrigenetics' and 'nutriepigenomics.' It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alice Rustichelli
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
31
|
Altered pathways in methylome and transcriptome longitudinal analysis of normal weight and bariatric surgery women. Sci Rep 2020; 10:6515. [PMID: 32296077 PMCID: PMC7160100 DOI: 10.1038/s41598-020-60814-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
DNA methylation could provide a link between environmental, genetic factors and weight control and can modify gene expression pattern. This study aimed to identify genes, which are differentially expressed and methylated depending on adiposity state by evaluating normal weight women and obese women before and after bariatric surgery (BS). We enrolled 24 normal weight (BMI: 22.5 ± 1.6 kg/m2) and 24 obese women (BMI: 43.3 ± 5.7 kg/m2) submitted to BS. Genome-wide methylation analysis was conducted using Infinium Human Methylation 450 BeadChip (threshold for significant CpG sites based on delta methylation level with a minimum value of 5%, a false discovery rate correction (FDR) of q < 0.05 was applied). Expression levels were measured using HumanHT-12v4 Expression BeadChip (cutoff of p ≤ 0.05 and fold change ≥2.0 was used to detect differentially expressed probes). The integrative analysis of both array data identified four genes (i.e. TPP2, PSMG6, ARL6IP1 and FAM49B) with higher methylation and lower expression level in pre-surgery women compared to normal weight women: and two genes (i.e. ZFP36L1 and USP32) that were differentially methylated after BS. These methylation changes were in promoter region and gene body. All genes are related to MAPK cascade, NIK/NF-kappaB signaling, cellular response to insulin stimulus, proteolysis and others. Integrating analysis of DNA methylation and gene expression evidenced that there is a set of genes relevant to obesity that changed after BS. A gene ontology analysis showed that these genes were enriched in biological functions related to adipogenesis, orexigenic, oxidative stress and insulin metabolism pathways. Also, our results suggest that although methylation plays a role in gene silencing, the majority of effects were not correlated.
Collapse
|
32
|
Assem S, Abdelbaki TN, Mohy-El Dine SH, Ketat AF, Abdelmonsif DA. SERPINE-1 Gene Methylation and Protein as Molecular Predictors of Laparoscopic Sleeve Gastrectomy Outcome. Obes Surg 2020; 30:2620-2630. [PMID: 32170551 DOI: 10.1007/s11695-020-04533-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Body weight is subjected to genetic and epigenetic modifiers that might affect the success of weight loss interventions. Because of its possible complications and disparity in patients' response, identification of predictors to the outcome of bariatric surgery is indispensable. OBJECTIVES This prospective study aims to investigate serpin peptidase inhibitor type 1 (SERPINE-1) protein and gene methylation as molecular predictors to the outcome of bariatric surgery. PATIENTS AND METHODS One hundred participants were enrolled and divided to control group (n = 50) and obese patients who underwent laparoscopic sleeve gastrectomy (LSG) (n = 50). Anthropometric measurements were assessed and blood samples were collected preoperatively and 6 months postoperatively for assessment of SERPINE-1 protein and gene methylation, C-reactive protein (CRP), and homeostatic model assessment of insulin resistance (HOMA-IR). Moreover, subjects were followed for 2 years for weight loss parameters. RESULTS Patients with obesity showed high baseline SERPINE-1 protein and gene hypermethylation where LSG was followed by a drop in SERPINE-1 protein level but not gene hypermethylation. Baseline SERPINE-1 gene methylation was negatively related to postoperative weight loss and was the independent predictor to weight loss after LSG. Likewise, postoperative SERPINE-1 protein was negatively related to weight loss with independent expression from its gene methylation state. Furthermore, postoperative SERPINE-1 gene methylation correlated to CRP and HOMA-IR. CONCLUSION Baseline SERPINE-1 gene methylation might be a predictor of weight loss after LSG. Meanwhile, postoperative SERPINE-1 protein could be a predictor to weight loss maintenance after LSG. Lastly, postoperative SERPINE-1 gene methylation might serve as an index to postoperative changes in obesity-related comorbidities.
Collapse
Affiliation(s)
- Sara Assem
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tamer N Abdelbaki
- Department of Surgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Safaa H Mohy-El Dine
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Amel F Ketat
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,Molecular Biology Lab. and Nanomedicine Lab., Center of Excellence for Research in Regenerative Medicine and Applications, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
33
|
Beisani M, Pappa S, Moreno P, Martínez E, Tarascó J, Granada ML, Puig R, Cremades M, Puig-Domingo M, Jordà M, Pellitero S, Balibrea JM. Laparoscopic sleeve gastrectomy induces molecular changes in peripheral white blood cells. Clin Nutr 2020; 39:592-598. [DOI: 10.1016/j.clnu.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
34
|
Edillor CR, Parks BW, Mehrabian M, Lusis AJ, Pellegrini M. DNA Methylation Changes More Slowly Than Physiological States in Response to Weight Loss in Genetically Diverse Mouse Strains. Front Endocrinol (Lausanne) 2019; 10:882. [PMID: 31920990 PMCID: PMC6933503 DOI: 10.3389/fendo.2019.00882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Responses to a high fat, high sucrose (HFHS) diet vary greatly among inbred strains of mice. We sought to examine the epigenetic (DNA methylation) changes underlying these differences as well as variation in weight loss when switched to a low-fat chow diet. We surveyed DNA methylation from livers of 45 inbred mouse strains fed a HFHS diet for 8 weeks using reduced-representation bisulfite sequencing (RRBS). We observed a total of 1,045,665 CpGs of which 83 candidate sites were significantly associated with HFHS diet. Many of these CpGs correlated strongly with gene expression or clinical traits such as body fat percentage and plasma glucose. Five inbred strains were then studied in the context of weight loss to test for evidence of epigenetic "memory." The mice were first fed a HFHS diet for 6 weeks followed by a low-fat chow diet for 4 weeks. Four of the five strains returned to initial levels of body fat while one strain, A/J, retained almost 50% of the fat gained. A total of 36 of the HFHS diet responsive CpGs exhibited evidence of persistent epigenetic modifications following weight normalization, including CpGs near the genes Scd1 and Cdk1. Our study identifies DNA methylation changes in response to a HFHS diet challenge that revert more slowly than overall body fat percentage in weight loss and provides evidence for epigenetic mediated "memory."
Collapse
Affiliation(s)
- Chantle R. Edillor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Margarete Mehrabian
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
Nonino CB, Oliveira BAPD, Chaves RCP, Silva LTPE, Pinhel MADS, Ferreira FDC, Rocha GDC, Donadelli SP, Marchini JS, Salgado-Junior W, Nicoletti CF. IS THERE ANY CHANGE IN PHENOTYPIC CHARACTERISTICS COMPARING 5 TO 10 YEARS OF FOLLOW-UP IN OBESE PATIENTS UNDERGOING ROUX-EN-Y GASTRIC BYPASS? ACTA ACUST UNITED AC 2019; 32:e1453. [PMID: 31644673 PMCID: PMC6812142 DOI: 10.1590/0102-672020190001e1453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Background
: Bariatric surgery promotes significant weight loss and
improvement of associated comorbidities; however, nutrients deficiencies and
weight regain may occur in the middle-late postoperative period.
Aim:
To investigate nutritional status in 10 years follow-up.
Methods
: Longitudinal retrospective study in which anthropometric,
biochemical indicators and nutritional intake were assessed before and after
one, two, three, four, five and ten years of Roux-en Y gastric bypass
through analysis of medical records.
Results
: After ten years there was a reduction of 29.2% of initial
weight; however, 87.1% of patients had significant weight regain. Moreover,
there was an increase of incidence of iron (9.2% to 18.5%), vitamin B12
(4.2% to 11.1%) and magnesium deficiency (14.1% to 14.8%). Folic acid
concentrations increased and the percentage of individuals with glucose
(40.4% to 3.7%), triglycerides (38% to 7.4%), HDL cholesterol (31 % to 7.4%)
and uric acid (70.5% to 11.1%) abnormalities reduced. Also, there is a
reduction of food intake at first year postoperative. After 10 years, there
was an increase in energy, protein and lipid intake, also a reduction in
folid acid intake.
Conclusions
: Roux-en Y gastric bypass is an effective procedure to
promote weight loss and improve comorbidities associated with obesity.
However, comparison between postoperative period of five and 10 years showed
a high prevalence of minerals deficiency and a significant weight regain,
evidencing the need for nutritional follow-up in the postoperative
period.
Collapse
Affiliation(s)
- Carla Barbosa Nonino
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Raoana Cássia Paixão Chaves
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Flávia de Campos Ferreira
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela da Costa Rocha
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simara Paganini Donadelli
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julio Sergio Marchini
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Salgado-Junior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Ferreira Nicoletti
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
36
|
ElGendy K, Malcomson FC, Bradburn DM, Mathers JC. Effects of bariatric surgery on DNA methylation in adults: a systematic review and meta-analysis. Surg Obes Relat Dis 2019; 16:128-136. [PMID: 31708383 DOI: 10.1016/j.soard.2019.09.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism through which environmental factors, including obesity, influence health. Obesity is a major modifiable risk factor for many common diseases, including cardiovascular diseases and cancer. Obesity-induced metabolic stress and inflammation are key mechanisms that affect disease risk and that may result from changes in methylation of metabolic and inflammatory genes. OBJECTIVES This review aims to report the effects of weight loss induced by bariatric surgery (BS) on DNA methylation in adults with obesity focusing on changes in metabolic and inflammatory genes. METHODS A systematic review was performed using MEDLINE, EMBASE, and Scopus, to identify studies in adult humans that reported DNA methylation after BS. RESULTS Of 15,996 screened titles, 15 intervention studies were identified, all of which reported significantly lower body mass index postsurgery. DNA methylation was assessed in 5 different tissues (blood = 7 studies, adipose tissues = 4, skeletal muscle = 2, liver, and spermatozoa). Twelve studies reported significant changes in DNA methylation after BS. Meta-analysis showed that BS increased methylation of PDK4 loci in skeletal muscle and blood in 2 studies, while the effects of BS on IL6 methylation levels in blood were inconsistent. BS had no overall effect on LINE1 or PPARGC1 methylation. CONCLUSION The current evidence supports the reversibility of DNA methylation at specific loci in response to BS-induced weight loss. These changes are consistent with improved metabolic and inflammatory profiles of patients after BS. However, the evidence regarding the effects of BS on DNA methylation in humans is limited and inconsistent, which makes it difficult to combine and compare data across studies.
Collapse
Affiliation(s)
- Khalil ElGendy
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - D Michael Bradburn
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
37
|
Obesity, weight loss, and influence on telomere length: New insights for personalized nutrition. Nutrition 2019; 66:115-121. [DOI: 10.1016/j.nut.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 01/29/2023]
|
38
|
The regulation of inflammation-related genes after palmitic acid and DHA treatments is not mediated by DNA methylation. J Physiol Biochem 2019; 75:341-349. [PMID: 31423543 DOI: 10.1007/s13105-019-00685-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Fatty acids (FAs) are known to participate in body inflammatory responses. In particular, saturated FAs such as palmitic acid (PA) induce inflammatory signals in macrophages, whereas polyunsaturated FAs, including docosahexaenoic acid (DHA), have been related to anti-inflammatory effects. Several studies have suggested a role of fatty acids on DNA methylation, epigenetically regulating gene expression in inflammation processes. Therefore, this study investigated the effect of PA and DHA on the inflammation-related genes on human macrophages. In addition, a second aim was to study the epigenetic mechanism underlying the effect of FAs on the inflammatory response. For these purposes, human acute monocytic leukaemia cells (THP-1) were differentiated into macrophages with 12-O-tetradecanoylphorbol-13-acetate (TPA), followed by an incubation with PA or DHA. At the end of the experiment, mRNA expression, protein secretion, and CpG methylation of the following inflammatory genes were analysed: interleukin 1 beta (IL1B), tumour necrosis factor (TNF), plasminogen activator inhibitor-1 (SERPINE1) and interleukin 18 (IL18). The results showed that the treatment with PA increased IL-18 and TNF-α production. Contrariwise, the supplementation with DHA reduced IL-18, TNF-α and PAI-1 secretion by macrophages. However, the incubation with these fatty acids did not apparently modify the DNA methylation status of the investigated genes in the screened CpG sites. This research reveals that PA induces important pro-inflammatory markers in human macrophages, whereas DHA decreases the inflammatory response. Apparently, DNA methylation is not directly involved in the fatty acid-mediated regulation of the expression of these inflammation-related genes.
Collapse
|
39
|
Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, Miele C, Beguinot F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci 2019; 20:ijms20122983. [PMID: 31248068 PMCID: PMC6627657 DOI: 10.3390/ijms20122983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy diet improves life expectancy and helps to prevent common chronic diseases such as type 2 diabetes (T2D) and obesity. The mechanisms driving these effects are not fully understood, but are likely to involve epigenetics. Epigenetic mechanisms control gene expression, maintaining the DNA sequence, and therefore the full genomic information inherited from our parents, unchanged. An interesting feature of epigenetic changes lies in their dynamic nature and reversibility. Accordingly, they are susceptible to correction through targeted interventions. Here we will review the evidence supporting a role for nutritional factors in mediating metabolic disease risk through DNA methylation changes. Special emphasis will be placed on the potential of using DNA methylation traits as biomarkers to predict risk of obesity and T2D as well as on their response to dietary and pharmacological (epi-drug) interventions.
Collapse
Affiliation(s)
- Luca Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Rosa Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Antonella Nicolò
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Michele Longo
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Paola Mirra
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Claudia Miele
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| | - Francesco Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131 Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
40
|
Whyte JM, Ellis JJ, Brown MA, Kenna TJ. Best practices in DNA methylation: lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Arthritis Res Ther 2019; 21:133. [PMID: 31159831 PMCID: PMC6547594 DOI: 10.1186/s13075-019-1922-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in genomic technology have enabled a greater understanding of the genetics of common immune-mediated diseases such as ankylosing spondylitis (AS), inflammatory bowel disease (IBD) and psoriasis. The substantial overlap in genetically identified pathogenic pathways has been demonstrated between these diseases. However, to date, gene discovery approaches have only mapped a minority of the heritability of these common diseases, and most disease-associated variants have been found to be non-coding, suggesting mechanisms of disease-association through transcriptional regulatory effects. Epigenetics is a major interface between genetic and environmental modifiers of disease and strongly influence transcription. DNA methylation is a well-characterised epigenetic mechanism, and a highly stable epigenetic marker, that is implicated in disease pathogenesis. DNA methylation is an under-investigated area in immune-mediated diseases, and many studies in the field are affected by experimental design limitations, related to study design, technical limitations of the methylation typing methods employed, and statistical issues. This has resulted in both sparsity of investigations into disease-related changes in DNA methylation, a paucity of robust findings, and difficulties comparing studies in the same disease. In this review, we cover the basics of DNA methylation establishment and control, and the methods used to examine it. We examine the current state of DNA methylation studies in AS, IBD and psoriasis; the limitations of previous studies; and the best practices for DNA methylation studies. The purpose of this review is to assist with proper experimental design and consistency of approach in future studies to enable a better understanding of the functional role of DNA methylation in immune-mediated disease.
Collapse
Affiliation(s)
- Jessica M Whyte
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Jonathan J Ellis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia. .,Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Tony J Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, Queensland, Australia
| |
Collapse
|
41
|
Nicoletti CF, Pinhel MAS, Diaz-Lagares A, Casanueva FF, Jácome A, Pinhanelli VC, de Oliveira BAP, Crujeiras AB, Nonino CB. DNA methylation screening after roux-en Y gastric bypass reveals the epigenetic signature stems from genes related to the surgery per se. BMC Med Genomics 2019; 12:72. [PMID: 31133015 PMCID: PMC6537208 DOI: 10.1186/s12920-019-0522-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background/objectives Obesity has been associated with gene methylation regulation. Recent studies have shown that epigenetic signature plays a role in metabolic homeostasis after Roux-en Y gastric bypass (RYGB). To conduct a genome-wide epigenetic analysis in peripheral blood to investigate whether epigenetic changes following RYGB stem from weight loss or the surgical procedure per se. Subjects/methods By means of the Infinium Human Methylation 450 BeadChip array, global methylation was analyzed in blood of 24 severely obese women before and 6 months after RYGB and in 24 normal-weight women (controls). Results In blood cells, nine DMCpG sites showed low methylation levels before surgery, methylation levels increased after RYGB and neared the levels measured in the controls. Additionally, 44 CpG sites associated with the Wnt and p53 signaling pathways were always differently methylated in the severely obese patients as compared to the controls and were not influenced by RYGB. Finally, 1638 CpG sites related to inflammation, angiogenesis, and apoptosis presented distinct methylation in the post-surgery patients as compared to the controls. Conclusion Bariatric surgery per se acts on CpGs related to inflammation, angiogenesis, and endothelin-signaling. However, the gene cluster associated with obesity remains unchanged, suggesting that weight loss 6 months after RYGB surgery cannot promote this effect. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12920-019-0522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - M A S Pinhel
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - A Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - F F Casanueva
- Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - A Jácome
- Department of Mathematics, MODES group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - V C Pinhanelli
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - B A P de Oliveira
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - A B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain. .,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
42
|
Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan YX. Epigenetic Regulation of Metabolism and Inflammation by Calorie Restriction. Adv Nutr 2019; 10:520-536. [PMID: 30915465 PMCID: PMC6520046 DOI: 10.1093/advances/nmy129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic caloric restriction (CR) without malnutrition is known to affect different cellular processes such as stem cell function, cell senescence, inflammation, and metabolism. Despite the differences in the implementation of CR, the reduction of calories produces a widespread beneficial effect in noncommunicable chronic diseases, which can be explained by improvements in immuno-metabolic adaptation. Cellular adaptation that occurs in response to dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA methylation, histone modifications, and microRNA. In this review, we define these modifications and systematically summarize the current evidence related to CR and the epigenome. We then explain the significance of genome-wide epigenetic modifications in the context of disease development. Although substantial evidence exists for the widespread effect of CR on longevity, there is no consensus regarding the epigenetic regulations of the underlying cellular mechanisms that lead to improved health. We provide compelling evidence that CR produces long-lasting epigenetic effects that mediate expression of genes related to immuno-metabolic processes. Epigenetic reprogramming of the underlying chronic low-grade inflammation by CR can lead to immuno-metabolic adaptations that enhance quality of life, extend lifespan, and delay chronic disease onset.
Collapse
Affiliation(s)
| | | | - Guanying Bianca Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hong Chen
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL,Address correspondence to Y-XP (e-mail: )
| |
Collapse
|
43
|
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019; 14:421-444. [PMID: 30915894 DOI: 10.1080/15592294.2019.1595297] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition. The main objectives in this field are to understand the mechanisms involved in transgenerational epigenetic inheritance, and featuring the nutritional and lifestyle factors implicated in the epigenetic modifications. Likewise, DNA methylation modulation caused by diet and environment may be a target for newer therapeutic strategies concerning the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Mirian Samblas
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermín I Milagro
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alfredo Martínez
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,d IMDEA, Research Institute on Food & Health Sciences , Madrid , Spain
| |
Collapse
|
44
|
Lopes LL, Bressan J, Peluzio MDCG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J Am Coll Nutr 2019; 38:478-484. [PMID: 30862304 DOI: 10.1080/07315724.2018.1553116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases, by activating or silencing the related-genes. Scientific evidence has suggested that LINE-1 methylation is associated with body composition and obesity-related diseases, including insulin resistance, type 2 diabetes mellitus, and cardiovascular disease (CVD). It also has been evaluated as predictor of weight loss. The studies' results are still conflicting, and positive and negative associations have been found to LINE-1 methylation regarding adiposity and cardiometabolic markers. Overall, this review presents observational (cross-sectional and longitudinal) studies and interventions (diet, exercises, and bariatric surgery) that evaluated the relationship of the LINE-1 methylation with obesity, weight loss, dyslipidemias, hypertension, insulin resistance, CVD, and metabolic syndrome. TEACHING POINTS Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases. Many studies have related methylation of LINE-1 with cardiometabolic diseases; however, the results are still controversial. The relationship between the etiology of chronic diseases and the methylation of LINE-1 is not fully elucidated. With advances in epigenetic studies, related mechanisms may be early biomarkers in weight change and cardiometabolic risk.
Collapse
Affiliation(s)
- Lílian L Lopes
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Josefina Bressan
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Maria do Carmo G Peluzio
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Helen Hermana M Hermsdorff
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|
45
|
Coppedè F, Seghieri M, Stoccoro A, Santini E, Giannini L, Rossi C, Migliore L, Solini A. DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals. J Endocrinol Invest 2019; 42:37-44. [PMID: 29603098 DOI: 10.1007/s40618-018-0881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Epigenetic traits are influenced by clinical variables; interaction between DNA methylation (DNAmeth) and bariatric surgery-induced weight loss has been scarcely explored. We investigated whether DNAmeth of genes encoding for molecules/hormones regulating appetite, food intake or obesity could predict successful weight outcome following Roux-en-Y gastric bypass (RYGB). METHODS Forty-five obese individuals with no known comorbidities were stratified accordingly to weight decrease one-year after RYGB (excess weight loss, EWL ≥ 50%: good responders, GR; EWL < 50%: worse responders, WR). DNAmeth of leptin (LEP), ghrelin (GHRL), ghrelin receptor (GHSR) and insulin-growth factor-2 (IGF2) was assessed before intervention. Single nucleotide polymorphisms of genes affecting DNAmeth, DNMT3A and DNMT3B, were also determined. RESULTS At baseline, type 2 diabetes was diagnosed by OGTT in 13 patients. Post-operatively, GR (n = 23) and WR (n = 22) achieved an EWL of 67.7 ± 9.6 vs 38.2 ± 9.0%, respectively. Baseline DNAmeth did not differ between GR and WR for any tested genes, even when the analysis was restricted to subjects with no diabetes. A relationship between GHRL and LEP methylation profiles emerged (r = 0.47, p = 0.001). Searching for correlation between DNAmeth of the studied genes with demographic characteristics and baseline biochemical parameters of the studied population, we observed a correlation between IGF2 methylation and folate (r = 0.44, p = 0.003). Rs11683424 for DNMT3A and rs2424913 for DNMT3B did not correlate with DNAmeth of the studied genes. CONCLUSIONS In severely obese subjects, the degree of DNAmeth of some genes affecting obesity and related conditions does not work as predictor of successful response to RYGB.
Collapse
Affiliation(s)
- F Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - M Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
46
|
Izquierdo AG, Crujeiras AB. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front Endocrinol (Lausanne) 2019; 10:232. [PMID: 31040824 PMCID: PMC6476922 DOI: 10.3389/fendo.2019.00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: In recent years, an increasing number of studies have begun focusing on epigenetics as a link between environmental factors and a greater predisposition to the development of obesity and its comorbidities. An important challenge in this field is the evaluation of the possibility of the reversal of obesity-related epigenetic marks by means of therapy to induce weight loss and if the beneficial effects of therapy in reducing obesity are mediated by epigenetic mechanisms. We aimed to offer an outline of the current results regarding to the impact of bariatric surgery on epigenetic regulation, as well as to show if the beneficial effect of this intervention could be mediated by epigenetic mechanisms. Methods: A review of the scientific publications in PubMed was performed by using key words related to obesity, epigenetics and bariatric surgery to provide an update of recent findings in this area of research. The most relevant and recently published articles and abstracts were selected to frame this review. Results: Previous studies have demonstrated the presence of differential DNA methylation after bariatric surgery and the differential expression of non-coding RNAs. Therefore, epigenetic regulation could mediate the benefit of bariatric surgery on body weight and the metabolic disturbances associated with excess body weight, such as insulin resistance, hypertension, and cardiovascular disease. This evidence is relatively new as epigenetic regulation was first evaluated in the obesity field only a few years ago. However, there is an urgent need to perform longitudinal studies to evaluate the capacity of epigenetic marks in the prediction of bariatric surgery response. Conclusions: Bariatric surgery appears to be capable of partially reversing the obesity-related epigenome. The identification of potential epigenetic biomarkers predictive for the success of bariatric surgery may open new doors to personalized therapy for severe obesity.
Collapse
Affiliation(s)
- Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
- *Correspondence: Ana B. Crujeiras
| |
Collapse
|
47
|
Abstract
Obesity is a complex disease which has reached epidemic dimensions. Thus, prevention of excessive weight gain and associated metabolic and cardiovascular diseases has to start as early in life as possible. The impact of epigenetic mechanisms on the regulation of genes involved in obesity is increasingly recognized. On the other hand, it is well known that socioeconomic factors influence the risk for obesity. These factors can also have an impact on epigenetic gene regulation. There is increasing body of evidence that several factors and interventions addressing extragenetic causes of obesity may not only improve individual health, but also the health of future generations by epigenetic alterations. Our current understanding of epigenetic changes has shown that many of them are potentially reversible, i.e. by physical exercise, by pharmacological treatment, by environmental factors or nutrition, or even by influencing socioeconomic factors, which might have impact on improving health in future generations by avoiding epigenetic dysregulation. In this review we present the current state of the art with regard to the interplay between social determinants, weight status and epigenetic alterations.
Collapse
Affiliation(s)
- Susann Weihrauch-Blüher
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Germany.
| | - Matthias Richter
- Institute of Medical Sociology, Martin Luther University Halle-Wittenberg, Germany
| | - Martin S Staege
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
48
|
Aronica L, Levine AJ, Brennan K, Mi J, Gardner C, Haile RW, Hitchins MP. A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics 2018; 9:769-787. [PMID: 28517981 DOI: 10.2217/epi-2016-0182] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Obesity results from the interaction of genetic and environmental factors, which may involve epigenetic mechanisms such as DNA methylation (DNAm). MATERIALS & METHODS We have followed the PRISMA protocol to select studies that analyzed DNAm at baseline and end point of a weight loss intervention using either candidate-locus or genome-wide approaches. RESULTS Six genes displayed weight loss associated DNAm across four out of nine genome-wide studies. Weight loss is associated with significant but small changes in DNAm across the genome, and weight loss outcome is associated with individual differences in baseline DNAm at several genomic locations. CONCLUSION The identified weight loss associated DNAm markers, especially those showing reproducibility across different studies, warrant validation by further studies with robust design and adequate power.
Collapse
Affiliation(s)
- Lucia Aronica
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - A Joan Levine
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Brennan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey Mi
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Christopher Gardner
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA 94305, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Megan P Hitchins
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Pirini F, Rodriguez-Torres S, Ayandibu BG, Orera-Clemente M, Gonzalez-de la Vega A, Lawson F, Thorpe RJ, Sidransky D, Guerrero-Preston R. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program. Mol Med Rep 2017; 17:1699-1709. [PMID: 29138870 PMCID: PMC5780113 DOI: 10.3892/mmr.2017.8039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | | | - Bola Grace Ayandibu
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - María Orera-Clemente
- Genetic Laboratory, University General Hospital Gregorio Marañón, 28007 Madrid, Spain
| | | | - Fahcina Lawson
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Roland J Thorpe
- Johns Hopkins University Centre for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
50
|
Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 2017; 54:1-10. [PMID: 29154162 DOI: 10.1016/j.jnutbio.2017.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Environmental factors (e.g., malnutrition and physical inactivity) contribute largely to metabolic disorders including obesity, type 2 diabetes, cardiometabolic disease and nonalcoholic fatty liver diseases. The abnormalities in metabolic activity and pathways have been increasingly associated with altered DNA methylation, histone modification and noncoding RNAs, whereas lifestyle interventions targeting diet and physical activity can reverse the epigenetic and metabolic changes. Here we review recent evidence primarily from human studies that links DNA methylation reprogramming to metabolic derangements or improvements, with a focus on cross-tissue (e.g., the liver, skeletal muscle, pancreas, adipose tissue and blood samples) epigenetic markers, mechanistic mediators of the epigenetic reprogramming, and the potential of using epigenetic traits to predict disease risk and intervention response. The challenges in epigenetic studies addressing the mechanisms of metabolic diseases and future directions are also discussed and prospected.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Fabio A Almeida
- Department of Health Promotion, Social & Behavioral Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|