1
|
Sun S, Wang A, Kou R, Xue H, Zhao X, Yang B, Shi M, Wang Y, Yan Q, Qu M, Wang Y, Gao Z. Duodenal-Jejunal Bypass Restores Sweet Taste Receptor-Mediated Glucose Sensing and Absorption in Diabetic Rats. J Diabetes Res 2024; 2024:5544296. [PMID: 39263491 PMCID: PMC11390237 DOI: 10.1155/2024/5544296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: The aim of the study is to identify the regulatory role of intestinal sweet taste receptors (STRs) and glucose transporters (SGLT1, GLUT2) and gut peptide secretion in duodenal-jejunal bypass (DJB)-ameliorated glycemic control in Type 2 diabetes. Materials and Methods: DJB and sham surgeries were performed in streptozotocin-induced diabetic male rats. The blood GLP-1 and GLP-2 levels were evaluated under feeding and fasting conditions. The expression of STRs (T1R2, T1R3), sweet taste signaling effector (Gα-gustducin), SGLT1, and GLUT2 was detected in the intestinal alimentary limb (A limb), biliopancreatic limb (BP limb), and common limb (C limb). The effects of STR inhibition on glucose control were measured with lactisole. Results: Glucose tolerance was improved in DJB-operated rats compared with the sham group, similar to that of normal control rats, without significant differences in food intake and body weight. The plasma GLP-1 levels of DJB rats were increased under diet-fed condition, and GLP-2 levels were increased after fasting. The villus height and crypt depth were significantly increased in the A limb of DJB-operated rats. In addition, GLP-1 expression was restored in enterocytes. The expression of T1R2, Gα-gustducin, and SGLT1 was elevated in the A limb after DJB, while GLUT2 was downregulated in the A, BP, and C limbs. The localization of GLUT2 was normalized in the three intestinal limbs after DJB. However, the beneficial effects of DJB on glucose control were abolished in the presence of lactisole in vivo. Conclusion: DJB ameliorates glycemic control probably by restoring STR-mediated glucose sensing and absorption with the responses of GLP-1 and GLP-2 to carbohydrate.
Collapse
Affiliation(s)
- Sipeng Sun
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Anping Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Rongguan Kou
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Hantao Xue
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Xiangyu Zhao
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Ben Yang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Mengqi Shi
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Yubing Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Qingtao Yan
- Department of Pediatric SurgeryWeifang People's HospitalThe First Affiliated Hospital of Shandong Second Medical University, Weifang 261021, China
| | - Meihua Qu
- Translational Medical CenterWeifang Second People's Hospital, Weifang 261021, China
| | - Yi Wang
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| | - Zhiqin Gao
- School of Life Science and TechnologyShandong Second Medical University, Weifang 261021, China
| |
Collapse
|
2
|
Wu Z, Xu Q, Gu S, Wang Q, Chen Y, Lv L, Zheng B, Wang K, Wang S, Xia J, Li L. Modulation of Lactobacillus rhamnosus GG on the gut microbiota and metabolism in mice with Clostridioides difficile infection. Food Funct 2022; 13:5667-5679. [PMID: 35510410 DOI: 10.1039/d2fo00374k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile infection (CDI) is a common nosocomial infection and is an urgent threat to public health. Vancomycin is the preferred antibiotic treatment for CDI but is associated with recurrence. Lactobacillus rhamnosus GG is an adjunctive treatment for gastroenteritis and diarrhea and exerts its effects by modulating the immune responses and repairing the intestinal barrier. This study explored the effect of LGG on restoring the intestinal microbiota in mouse models. Primary and recurrent CDI models were constructed, and LGG was administered to C57BL/6 mice. Structural changes in the mouse gut microbiota were determined using 16S rRNA gene analysis based on Illumina sequencing. In the CDI model, 6 days after infection, 33.3% mortality, significant weight loss and colonic injury were observed. LGG can ameliorate these events. In the R-CDI mouse model, vancomycin combined with LGG prevented weight loss, improved the histopathological scores, and effectively reduced the mortality. LGG + vancomycin administration promoted the recovery of the intestinal flora by inhibiting Enterococcus and counteracting the side effects of vancomycin treatment. In both the preventive and therapeutic CDI mouse models, the oral LGG strain showed the ability to protect against primary and recurrent infections, indicating that probiotics have potential for treating intestinal diseases. Overall, these observations suggest that LGG can be applied as a preventive treatment for CDI or in combination with antibiotics to reduce recurrence.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
3
|
Scheithauer TP, Davids M, Winkelmeijer M, Verdoes X, Aydin Ö, de Brauw M, van de Laar A, Meijnikman AS, Gerdes VE, van Raalte D, Herrema H, Nieuwdorp M. Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes 2022; 14:2031696. [PMID: 35130127 PMCID: PMC8824225 DOI: 10.1080/19490976.2022.2031696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are growing burdens for individuals and the health-care system. Bariatric surgery is an efficient, but drastic treatment to reduce body weight, normalize glucose values, and reduce low-grade inflammation. The gut microbiome, which is in part controlled by intestinal antibodies, such as IgA, is involved in the development of both conditions. Knowledge of the effect of bariatric surgery on systemic and intestinal antibody response is limited. Here, we determined the fecal antibody and gut microbiome response in 40 T2D and non-diabetic (ND) obese individuals that underwent bariatric surgery (N = 40). Body weight, fasting glucose concentrations and inflammatory parameters decreased after bariatric surgery, whereas pro-inflammatory bacterial species such as lipopolysaccharide (LPS), and flagellin increased in the feces. Simultaneously, concentrations of LPS- and flagellin-specific intestinal IgA levels increased with the majority of pro-inflammatory bacteria coated with IgA after surgery. Finally, serum antibodies decreased in both groups, along with a lower inflammatory tone. We conclude that intestinal rearrangement by bariatric surgery leads to expansion of typical pro-inflammatory bacteria, which may be compensated by an improved antibody response. Although further evidence and mechanistic insights are needed, we postulate that this apparent compensatory antibody response might help to reduce systemic inflammation by neutralizing intestinal immunogenic components and thereby enhance intestinal barrier function after bariatric surgery.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, AZ1105, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Victor E.A. Gerdes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Daniël van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| |
Collapse
|
4
|
Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci 2021; 28:4446-4454. [PMID: 34354429 PMCID: PMC8324937 DOI: 10.1016/j.sjbs.2021.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an emerging health condition globally and is suggested to have a direct connection with the gut microbiota that determine our metabolic outcomes. Sensitivity to insulin and glucose metabolism is normal in healthy people as compared to those people who cannot maintain their glucose metabolism. One of the reasons of the differences is that healthy people have different microbiome that leads to achieve more short chain fatty acids and make up more branched amino acids, while the gut microbiota of the other group of people are more likely to produce compounds that affects glucose metabolism. Herein, this review will present the research related to the impact of gut microbes on diabetes carried out in the past decade. The review focus on the relation between gut microbiota and Type-1 Diabetes (T1D), Type-2 Diabetes (T2D), and how gut microbiota could be an alternative therapy for treatment of diabetes.
Collapse
Affiliation(s)
- Suhailah S Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Wu WK, Chen YH, Lee PC, Yang PJ, Chang CC, Liu KL, Hsu CC, Huang CC, Chuang HL, Sheen LY, Liu CJ, Wu MS. Mining Gut Microbiota From Bariatric Surgery for MAFLD. Front Endocrinol (Lausanne) 2021; 12:612946. [PMID: 33897617 PMCID: PMC8063105 DOI: 10.3389/fendo.2021.612946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
The progression of metabolic dysfunction associated fatty liver disease (MAFLD) leads to steatohepatitis, liver fibrosis and hepatocellular carcinoma. Thus far, there have been no FDA-approved medications for MAFLD. Bariatric surgery (BS) has been found to improve insulin resistance, steatohepatitis and liver fibrosis but is not recommended for treating MAFLD due to its invasiveness. Recent studies suggest the improved glucose metabolism after BS is a result of, at least partly, alterations to the gut microbiota and its associated metabolites, including short chain fatty acids and bile acids. It makes sense the improved steatohepatitis and fibrosis after BS are also induced by the gut microbiota that involves in host metabolic modulation, for example, through altering bile acids composition. Given that the gut-liver axis is a path that may harbor unexplored mechanisms behind MAFLD, we review current literatures about disentangling the metabolic benefits of MAFLD after BS, with a focus on gut microbiota. Some useful research tools including the rodent BS model, the multiomics approach, and the human microbiota associated (HMA) mice are presented and discussed. We believe, by taking advantage of these modern translational tools, researchers will uncover microbiota related pathways to serve as potential therapeutic targets for treating MAFLD.
Collapse
Affiliation(s)
- Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsun Chen
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Kao-Lang Liu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories Research Institute, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
6
|
Wu WY, Chou PL, Yang JC, Chien CT. Silicon-containing water intake confers antioxidant effect, gastrointestinal protection, and gut microbiota modulation in the rodents. PLoS One 2021; 16:e0248508. [PMID: 33788857 PMCID: PMC8011764 DOI: 10.1371/journal.pone.0248508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
We explored the effects of silicon-containing water (BT) intake on gastrointestinal function and gut microbiota. BT was obtained by pressuring tap water through silicon minerals (mullite, Al6Si2O13) column. BT decreased H2O2 chemiluminescence counts, indicating its antioxidant activity. Four weeks of BT drinking increased H2O2 scavenging activity and glutathione peroxidase activity of plasma. BT drinking did not affect the body weight but significantly reduced the weight of feces and gastrointestinal motility. BT drinking significantly suppressed pylorus ligation enhanced gastric juice secretion, gastric reactive oxygen species amount, erythrocyte extravasation, IL-1β production by infiltrating leukocyte, and lipid peroxidation within gastric mucosa. Data from 16S rRNA sequencing revealed BT drinking significantly increased beneficial flora including Ruminococcaceae UCG-005, Prevotellaceae NK3B31, Weissella paramesenteroides, Lactobacillus reuteri, and Lactobacillus murinus and decreased harmful flora including Mucispirillum, Rodentibacter, and Staphylococcus aureus. This study pioneerly provided scientific evidences for the potential effects of water-soluble forms of silicon intake on antioxidant activity, gastrointestinal function, and gut microbiota modulation.
Collapse
Affiliation(s)
- Wei-Yi Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Li Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail: (CTC); (JCY)
| |
Collapse
|
7
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
8
|
Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:616506. [PMID: 33767669 PMCID: PMC7985551 DOI: 10.3389/fendo.2021.616506] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
An intact intestinal barrier, representing the interface between inner and outer environments, is an integral regulator of health. Among several factors, bacteria and their products have been evidenced to contribute to gut barrier impairment and its increased permeability. Alterations of tight junction integrity - caused by both external factors and host metabolic state - are important for gut barrier, since they can lead to increased influx of bacteria or bacterial components (endotoxin, bacterial DNA, metabolites) into the host circulation. Increased systemic levels of bacterial endotoxins and DNA have been associated with an impaired metabolic host status, manifested in obesity, insulin resistance, and associated cardiovascular complications. Bacterial components and cells are distributed to peripheral tissues via the blood stream, possibly contributing to metabolic diseases by increasing chronic pro-inflammatory signals at both tissue and systemic levels. This response is, along with other yet unknown mechanisms, mediated by toll like receptor (TLR) transduction and increased expression of pro-inflammatory cytokines, which in turn can further increase intestinal permeability leading to a detrimental positive feedback loop. The modulation of gut barrier function through nutritional and other interventions, including manipulation of gut microbiota, may represent a potential prevention and treatment target for metabolic diseases.
Collapse
Affiliation(s)
- Lucas Massier
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Matthias Blüher
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Rima M. Chakaroun
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Rima M. Chakaroun,
| |
Collapse
|
9
|
Cook J, Lehne C, Weiland A, Archid R, Ritze Y, Bauer K, Zipfel S, Penders J, Enck P, Mack I. Gut Microbiota, Probiotics and Psychological States and Behaviors after Bariatric Surgery-A Systematic Review of Their Interrelation. Nutrients 2020; 12:nu12082396. [PMID: 32785153 PMCID: PMC7468806 DOI: 10.3390/nu12082396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota plays an important role in health and disease, including brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota composition in humans and other vertebrates, whether probiotics influence postoperative health, and whether microbiota and psychological and behavioral factors interact. A search was conducted using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and probiotics after BS, and later screened for psychological and behavioral parameters. Studies were classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes were further assessed for whether they were specific to BS in humans through the comparison to sham operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific, whereas dissimilarity in overall microbial community structure, and increases in the abundance of the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery were observed in both human and other vertebrates studies and may be specific to BS in humans. Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS. The relationship between GI microbiota and psychological diseases in this context is unclear due to insufficient available data.
Collapse
Affiliation(s)
- Jessica Cook
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Christine Lehne
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Alisa Weiland
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Rami Archid
- Department of General, Visceral and Transplant Surgery, University Hospital, 72072 Tübingen, Germany;
| | - Yvonne Ritze
- Institute for Medical Psychology and Behavioral Neurobiology, University Hospital, 72072 Tübingen, Germany;
| | - Kerstin Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute(Caphri), Maastricht University Medical Centre, 6211 Maastricht, The Netherlands;
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
- Correspondence: ; Tel.: +49-7071-2985614; Fax: +49-7071-294382
| |
Collapse
|
10
|
Sookoian S, Salatino A, Castaño GO, Landa MS, Fijalkowky C, Garaycoechea M, Pirola CJ. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease. Gut 2020; 69:1483-1491. [PMID: 31900291 DOI: 10.1136/gutjnl-2019-318811] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to characterise the liver tissue bacterial metataxonomic signature in two independent cohorts of patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD) diagnosis, as differences in the host phenotypic features-from moderate to severe obesity-may be associated with significant changes in the microbial DNA profile. DESIGN AND METHODS Liver tissue samples from 116 individuals, comprising of 47 NAFLD overweight or moderately obese patients, 50 NAFLD morbidly obese patients elected for bariatric surgery and 19 controls, were analysed using high-throughput 16S rRNA gene sequencing. RESULTS Liver bacterial DNA profile significantly differs between morbidly obese and non-morbidly obese patients with NAFLD. Bacteroidetes (p=1.8e-18) and Firmicutes (p=0.0044) were over-represented in morbidly obese patients and Proteobacteria (p=5.2e-10)-specifically Gammaproteobacteria and Alphaproteobacteria, and Deinococcus-Thermus (p=0.00012)-were over-represented in the non-morbidly obese cohort. Cohort-specific analysis of liver microbial DNA signatures shows patterns linked to obesity. The imbalance in Proteobacteria (Alpha or Gamma) among non-morbidly obese patients, and Peptostreptococcaceae, Verrucomicrobia, Actinobacteria and Gamma Proteobacteria DNA among morbidly obese patients was associated with histological severity. Decreased amounts of bacterial DNA from the Lachnospiraceae family were associated with more severe histological features. Proteobacteria DNA was consistently associated with lobular and portal inflammation scores. Microbial DNA composition corresponded to predicted functional differences. CONCLUSION This is the first comprehensive study showing that the liver tissue of NAFLD patients contains a diverse repertoire of bacterial DNA (up to 2.5×104 read counts). The liver metataxonomic signature may explain differences in the NAFLD pathogenic mechanisms as well as physiological functions of the host.
Collapse
Affiliation(s)
- Silvia Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires Faculty of Medicine, Buenos Aires, Argentina .,Institute of Medical Research (IDIM), Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Adrian Salatino
- Institute of Medical Research A Lanari, University of Buenos Aires Faculty of Medicine, Buenos Aires, Argentina.,Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Gustavo Osvaldo Castaño
- Liver Unit, Medicine and Surgery Department, Hospital General de Agudos Dr Abel Zubizarreta, Buenos Aires, Argentina
| | - Maria Silvia Landa
- Institute of Medical Research A Lanari, University of Buenos Aires Faculty of Medicine, Buenos Aires, Argentina.,Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Cinthia Fijalkowky
- Institute of Medical Research A Lanari, University of Buenos Aires Faculty of Medicine, Buenos Aires, Argentina.,Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | | | - Carlos Jose Pirola
- Institute of Medical Research A Lanari, University of Buenos Aires Faculty of Medicine, Buenos Aires, Argentina .,Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, National Scientific and Technical Research Council, Buenos Aires, Argentina
| |
Collapse
|
11
|
Woldeamlak B, Yirdaw K, Biadgo B. Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 74:314-320. [PMID: 31870137 DOI: 10.4166/kjg.2019.74.6.314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus has become one of the fastest growing public health problems worldwide. The disease is believed to involve a complex process involving genetic susceptibility and environmental factors. The human intestine harbors hundreds of trillions of bacteria, as well as bacteriophage particles, viruses, fungi, and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. Increasing evidence has indicated changes in the gut microbiota composition or function in type 2 diabetic patients. An analysis of 'dysbiosis' enables the detection of alterations in the specific bacteria, clusters of bacteria, or bacterial functions associated with the occurrence of type 2 diabetes. These bacteria are involved predominantly in the control of inflammation and energy homeostasis. This review attempts to show that the gut microbiota are important factors for the occurrence of type 2 diabetes and are important for the treatment of gut microbiota dysbiosis through bariatric surgery, fecal microbiota transplantation, prebiotics, and probiotics.
Collapse
Affiliation(s)
- Birhanu Woldeamlak
- Clinical Chemistry Laboratory, University of Gondar Hospital, Gondar, Ethiopia
| | - Ketsela Yirdaw
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belete Biadgo
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Rajilic-Stojanovic M, Figueiredo C, Smet A, Hansen R, Kupcinskas J, Rokkas T, Andersen L, Machado JC, Ianiro G, Gasbarrini A, Leja M, Gisbert JP, Hold GL. Systematic review: gastric microbiota in health and disease. Aliment Pharmacol Ther 2020; 51:582-602. [PMID: 32056247 DOI: 10.1111/apt.15650] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori is the most infamous constituent of the gastric microbiota and its presence is the strongest risk factor for gastric cancer and other gastroduodenal diseases. Although historically the healthy stomach was considered a sterile organ, we now know it is colonised with a complex microbiota. However, its role in health and disease is not well understood. AIM To systematically explore the literature on the gastric microbiota in health and disease as well as the gut microbiota after bariatric surgery. METHODS A systematic search of online bibliographic databases MEDLINE/EMBASE was performed between 1966 and February 2019 with screening in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomised controlled trials, cohort studies and observational studies were included if they reported next-generation sequencing derived microbiota analysis on gastric aspirate/tissue or stool samples (bariatric surgical outcomes). RESULTS Sixty-five papers were eligible for inclusion. With the exception of H pylori-induced conditions, overarching gastric microbiota signatures of health or disease could not be determined. Gastric carcinogenesis induces a progressively altered microbiota with an enrichment of oral and intestinal taxa as well as significant changes in host gastric mucin expression. Proton pump inhibitors usage increases gastric microbiota richness. Bariatric surgery is associated with an increase in potentially pathogenic proteobacterial species in patient stool samples. CONCLUSION While H pylori remains the single most important risk factor for gastric disease, its capacity to shape the collective gastric microbiota remains to be fully elucidated. Further studies are needed to explore the intricate host/microbial and microbial/microbial interplay.
Collapse
|
13
|
Alvarez R, Sandoval DA, Seeley RJ. A rodent model of partial intestinal diversion: a novel metabolic operation. Surg Obes Relat Dis 2019; 16:270-281. [PMID: 31874737 DOI: 10.1016/j.soard.2019.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic surgery is safe and the most effective therapy for obesity and its co-morbidities. New procedures may allow for better tailoring of metabolic surgery to the individual patient. OBJECTIVE To evaluate the impact, comparative effectiveness, and mechanisms of the partial intestinal diversion (PID), vertical sleeve gastrectomy (VSG), and the combination of PID and VSG on weight and glucose regulation. SETTING University research facility, United States. METHODS Three cohorts of high-fat diet-induced obese male rats were randomized to distal PID (DPID), proximal PID (PPID), VSG, VSG and DPID (VSG/DPID), or sham operation (Sham). Animals were followed for 11 (cohort 1) or 10 (cohorts 2 and 3) weeks. Outcomes included weight and composition, food intake, glucose metabolism, lipids, bile acids, and energy balance. Statistical comparisons were performed using Tukey's multiple comparison test applied to analysis of variance. RESULTS DPID and not PPID resulted in significant weight and body fat reductions relative to Sham. Improved glucose tolerance was seen in all surgical groups though this reached statistical significance for only DPID and VSG compared with Sham. Improvements in baseline glucose and insulin, corresponding insulin resistance, and plasma lipids were noted in DPID compared with Sham. Though the magnitude of weight and body composition changes and metabolic benefit tended to be larger for VSG relative to DPID, it only reached statistical significance for lipids. VSG and VSG/DPID resulted in similar outcomes. Markedly reduced food intake occurred after VSG and more modestly after DPID. Stool caloric content was higher in DPID relative to all groups. CONCLUSIONS DPID is an effective metabolic operation resulting in notable weight and fat loss and metabolic improvement relative to sham-operated rodents. Interestingly, combining VSG with DPID added little additional benefit to the effects of VSG.
Collapse
Affiliation(s)
- Rafael Alvarez
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Li Y, Lv L, Ye J, Fang D, Shi D, Wu W, Wang Q, Wu J, Yang L, Bian X, Jiang X, Jiang H, Yan R, Peng C, Li L. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol 2018; 103:375-393. [PMID: 30345482 DOI: 10.1007/s00253-018-9454-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague-Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of D-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Conggao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
15
|
Akalestou E, Genser L, Villa F, Christakis I, Chokshi S, Williams R, Rubino F. Establishing a successful rat model of duodenal- jejunal bypass: A detailed guide. Lab Anim 2018; 53:362-371. [PMID: 30227760 DOI: 10.1177/0023677218797370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gastric bypass surgery, an operation that restricts the stomach and bypasses the duodenum and part of the jejunum, results in major improvement or remission of type 2 diabetes. Duodenual-jejunal bypass was developed by one of the authors (FR) as an experimental, stomach-sparing variant of gastric bypass surgery to investigate weight-independent mechanisms of surgical control of diabetes. Duodenual-jejunal bypass has been shown to improve various aspects of glucose homeostasis in rodents and in humans, thus providing an experimental model for investigating mechanisms of action of surgery and elusive aspects of gastrointestinal physiology. Performing duodenual-jejunal bypass in rodents, however, is associated with a steep learning curve. Here we report our experience with duodenual-jejunal bypass and provide practical tips for successful surgery in rats. Duodenual-jejunal bypass was performed on 50 lean rats as part of a study aimed at investigating the effect of the procedure on the physiologic mechanisms of glucose homeostasis. During the study, we have progressively refined details of anatomic exposure, technical aspects of duodeno-jejunostomy and peri-operative care. We analysed the role of such refinements in improving operative time and post-operative mortality. We found that refinement of exposure methods of the gastro-duodenal junction aimed at minimizing tension on small visceral vasculature, technical aspects of duodeno-jejunal anastomosis and peri-operative management played a major role in improving the survival rate and operative time. Overall, an experimental model of duodenual-jejunal bypass was successfully reproduced. Based on this experience, we describe here what we believe are the most important technical tips to reduce the learning curve for the procedure.
Collapse
Affiliation(s)
- Elina Akalestou
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Laurent Genser
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Francesco Villa
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ioannis Christakis
- 4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Shilpa Chokshi
- 2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Roger Williams
- 2 Institute of Hepatology London, Foundation for Liver Research, London, UK.,3 Division of Transplantation, Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, UK
| | - Francesco Rubino
- 1 Division of Diabetes and Nutritional Sciences, King's College London, UK.,4 Department of Surgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Wang X, Liu F, Gao Y, Xue CH, Li RW, Tang QJ. Transcriptome analysis revealed anti-obesity effects of the Sodium Alginate in high-fat diet -induced obese mice. Int J Biol Macromol 2018; 115:861-870. [PMID: 29649537 DOI: 10.1016/j.ijbiomac.2018.04.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Human obesity and overweight, caused by accumulated of fat, is the most commonly phenomenon from all over the world, especially in Western countries and Chinese mainland during the past three decades. Sodium Alginate, a polysaccharide extracted from brown seaweeds, has been proved its strong ability on body weight loss and anti-inflammatory response. However, no studies have been explored the effects of Sodium Alginate on colonic transcriptome, especially in obese individuals. Therefore, the current study was designed to detect whether Sodium Alginate could remit obesity and ease chronic metabolism disease through strengthening the bio-functionality of the lower intestine, particularly in colon. The data showed after Sodium Alginate gavaged for four weeks, the body weight, fat accumulation, triglyceride and total cholesterol were ameliorated in high fat diet induced obese mice. Sodium Alginate also improved the blood glucose level and lipopolysaccharides in serum. Furthermore, data from RNA sequence indicated that there were significantly changes in several genes, which involved in lipid metabolism and carbohydrate metabolism. In conclusion, these results suggested that Sodium Alginate could effectively suppress obesity and obesity related metabolic syndromes, due to the colonic transcriptome changes.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Robert W Li
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Qing-Juan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Metabolic surgery is recommended for the treatment of type 2 diabetes for its potent ability to improve glycemic control. However, the mechanisms underlying the beneficial effects of metabolic surgery are still under investigation. We provide an updated review of recent studies into the molecular underpinnings of metabolic surgery, focusing in on what is known about the role of gut microbiota. Over the last 7 years several reports have been published on the topic, however the field is expanding rapidly. RECENT FINDINGS Studies have now linked the regulation of glucose and lipid metabolism, neuronal and intestinal adaptations, and hormonal and nutrient signaling pathways to gut microbiota. Given that the composition of gut microbiota is altered by metabolic surgery, investigating the potential mechanism and outcomes of this change are now a priority to the field. SUMMARY As evidence for a role for microbiota builds, we expect future patients may receive microbe-based therapeutics to improve surgical outcomes and perhaps one day preclude the need for surgical therapies all together. In this review and perspective, we evaluate the current state of the field and its future.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Correspondence should be addressed to: Randy J. Seeley, Department of Surgery, University of Michigan, 2800 Plymouth Road, NCRC Building 26-343N, Ann Arbor, MI 48109, USA; Phone: +1 (734) 615-2880;
| |
Collapse
|
18
|
Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model. Br J Nutr 2017; 117:1332-1342. [PMID: 28528593 DOI: 10.1017/s0007114517000964] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymannuronic acid (PM), one of numerous alginates isolated from brown seaweeds, is known to possess antioxidant activities. In this study, we examined its potential role in reducing body weight gain and attenuating inflammation induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating the gut microbiome in mice. A 30-d PM treatment significantly reduced the diet-induced body weight gain and blood TAG levels (P2·0). PM also had a profound impact on the microbial composition in the gut microbiome and resulted in a distinct microbiome structure. For example, PM significantly increased the abundance of a probiotic bacterium, Lactobacillus reuteri (log10 LDA score>2·0). Together, our results suggest that PM may exert its immunoregulatory effects by enhancing proliferation of several species with probiotic activities while repressing the abundance of the microbial taxa that harbor potential pathogens. Our findings should facilitate mechanistic studies on PM as a potential bioactive compound to alleviate obesity and the metabolic syndrome.
Collapse
|
19
|
Barazzoni R, Deutz N, Biolo G, Bischoff S, Boirie Y, Cederholm T, Cuerda C, Delzenne N, Leon Sanz M, Ljungqvist O, Muscaritoli M, Pichard C, Preiser J, Sbraccia P, Singer P, Tappy L, Thorens B, Van Gossum A, Vettor R, Calder P. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin Nutr 2017; 36:355-363. [DOI: 10.1016/j.clnu.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
|
20
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|
21
|
European Obesity Summit (EOS) - Joint Congress of EASOand IFSO-EC, Gothenburg, Sweden, June 1 - 4, 2016: Abstracts. Obes Facts 2016; 9 Suppl 1:1-376. [PMID: 27238363 PMCID: PMC5672850 DOI: 10.1159/000446744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016; 8:126. [PMID: 26938554 PMCID: PMC4808856 DOI: 10.3390/nu8030126] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 12/24/2022] Open
Abstract
This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01) and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01). Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01). These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05) and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05) expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01). The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01) and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01). These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.
Collapse
|