1
|
Valero P, Silva K, Valenzuela-Hinrichsen A, Vásquez A, Espinoza F, Lira F, Cornejo M, Fuentes G, González D, Moore-Carrasco R, van der Beek EM, Hillebrands JL, van Goor H, Grismaldo A, Sobrevia L. Shortcomings, limitations and gaps in physiological roles of extracellular vesicles in obesity. J Physiol 2024. [PMID: 39470472 DOI: 10.1113/jp286955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in mediating communication between cells across species and kingdoms. The intercellular communication facilitated by EVs through autocrine and paracrine signalling mechanisms is essential for cell survival, maintaining normal metabolic functions and ensuring overall bodily homeostasis and health. Extracellular vesicles are present in various bodily fluids, such as pleural effusions, plasma, breast milk, amniotic fluid, semen and saliva. Additionally, the generation and release of EVs contribute to the removal of cellular waste. Patients with obesity exhibit a higher release and amount of circulating EVs than individuals with normal weight. This increased EV release in obesity might contribute to the inflammatory state characteristic of this metabolic condition, because higher levels of pro-inflammatory molecules are found within their cargo. However, interpreting results related to EV abundance, cargo and biological actions can be complicated by several factors; these include variations in cell sources, a wide age range (from children to the elderly), a mix of females and males, medication use and health status, a range of body weights (from normal weight to morbid obesity) and differences between in vitro assays using cell lines versus primary cultures. This article addresses the shortcomings, limitations and gaps in knowledge, providing a framework for enhancing our understanding of the physiological effects of EVs on obesity.
Collapse
Affiliation(s)
- Paola Valero
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Katherin Silva
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Valenzuela-Hinrichsen
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Vásquez
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Espinoza
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Lira
- Faculty of Medicine, Universidad de Antofagasta, Antofagasta, Chile
| | - Marcelo Cornejo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Daniel González
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | | | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Adriana Grismaldo
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- **Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- **Faculty of Excellence program, School of Medicine and Health Sciences, The Institute for Obesity Research (IOR), Eutra, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
2
|
Novinbahador T, Abroon S, Motlagh K, Abbasi K, Mehdizadeh A, Nejabati HR, Yousefi M. Surface markers on microparticles involved in obesity-derived diseases. Life Sci 2024; 352:122876. [PMID: 38942357 DOI: 10.1016/j.lfs.2024.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
AIMS This review aimed to investigate the different types of microparticles playing role in obesity-related diseases. Additionally, the factors participating in changing the microparticles amount in obese people will also be discussed. MATERIAL & METHODS The authors collected the relevant articles published until 2023 and these are carefully selected from three scientific databases based on keywords. KEY FINDINGS It has been revealed that exercise might change the microparticle content in the body. The other factor which participates in obesity process is the oxidative stress which is increased in microparticles. Moreover, the obesity is implicated in metabolic conditions including diabetes and cardiovascular diseases. SIGNIFICANCE More than one-third of people on the planet today are known as overweight individuals. Microparticles (MPs) are small membrane-bound vesicles that are found in healthy people's blood and are elevated in patients with pathological conditions such as obesity. MPs mostly come from platelets, leukocytes, endothelial cells, and vascular smooth muscle cells. Considering the effect of obesity on microparticles, these small membrane-bound vesicles might play a crucial role in preventing or treatment of obesity.
Collapse
Affiliation(s)
- Tannaz Novinbahador
- Department of Biology, Faculty of Naturexoal Sciences, University of Tabriz, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Abroon
- Department of Biology, Faculty of Naturexoal Sciences, University of Tabriz, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Baptista Pereira P, Torrejón E, Ferreira I, Carvalho AS, Teshima A, Sousa-Lima I, Beck HC, Costa-Silva B, Matthiesen R, Macedo MP, de Oliveira RM. Proteomic Profiling of Plasma- and Gut-Derived Extracellular Vesicles in Obesity. Nutrients 2024; 16:736. [PMID: 38474865 DOI: 10.3390/nu16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.
Collapse
Affiliation(s)
- Pedro Baptista Pereira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Estefania Torrejón
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Ferreira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Akiko Teshima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Sousa-Lima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Paula Macedo
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Rita Machado de Oliveira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
4
|
Fabris L, Campello E, Cadamuro M, Simioni P. The evil relationship between liver fibrosis and cardiovascular disease in metabolic dysfunction-associated fatty liver disease (MAFLD): Looking for the culprit. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166763. [PMID: 37951510 DOI: 10.1016/j.bbadis.2023.166763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 11/14/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), the hepatic component of the metabolic syndrome caused by insulin resistance, is a major public health problem, affecting about the 25 % of the general population in Western countries. Morbidity and mortality of MAFLD patients is increased primarily due to cardiovascular disease (CVD). Liver fibrosis, the byproduct of hepatic repair, is the main determinant of MAFLD progression and the strongest predictor for overall mortality. Since the mechanistic relationship between MAFLD, fibrosis, insulin resistance and the cardiometabolic risk is far to be clear, deciphering the functional link of hepatic fibrogenesis with genetic factors and hypercoagulability in MAFLD-associated CVD may hold translational potential for risk profiling and innovative therapeutic targeting.
Collapse
Affiliation(s)
- L Fabris
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Molecular Medicine (DMM), University of Padua, Padua, Italy; Digestive Disease Section, Liver Center, Yale University, New Haven, CT, USA.
| | - E Campello
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - M Cadamuro
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - P Simioni
- General Internal Medicine Unit, and Thrombotic and Haemorrhagic Disease Unit and Haemophilia Center, Padua University-Hospital, Padua, Italy; Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Boulassel MR, Al-Rubkhi K, Al-Qasabi J, El-Ghamry I, Khan H, Panjwani V, Qureshi RN, Al-Mamari S, Al-Qarni Z, Al-Kindi M, Al-Nabhani A, Al-Gharibi K, Wali Y, Pathare A. Impact of splenectomy on circulating microparticles in patients with sickle cell anemia. Int J Lab Hematol 2024; 46:141-147. [PMID: 37661331 DOI: 10.1111/ijlh.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Circulating microparticles (MP) are being described as potential biomarkers for disease activity in a variety of conditions including sickle cell anemia (SCA). However, relatively little is known about the influence of spleen status on MP levels in patients with SCA. METHODS Using a prospective study design we characterize circulating MP in 144 patients with SCA in steady state by assessing their cellular origin and their relationships to spleen status defined by clinical and imaging findings. In addition, MP levels were studied according to demographic characteristics, clinical status, treatment modalities, and other hematological and biochemical parameters. Absolute plasma concentrations of MP were determined by flow cytometry. RESULTS Patients with SCA displayed a 10-fold increase in levels of MP derived from red blood cell (RBC) and platelets (PLT) when compared to their healthy counterparts (p < 0.0001). Splenectomized patients with SCA have more pronounced levels of MPRBC and MPPLT, and remained elevated after several weeks of follow-up. Levels of MP were not significantly associated with spleen removal procedures, age, gender, clinical severity score, hydroxyurea therapy, hemoglobin F, and co-existence of glucose-6-phosphate dehydrogenase deficiency. CONCLUSION Collectively, these results suggest that splenectomy affects circulating levels of MP regardless of the known SCA modifiers and correlates.
Collapse
Affiliation(s)
- Mohamed-Rachid Boulassel
- Department of Allied Health Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Khoula Al-Rubkhi
- Department of Allied Health Sciences, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Jamal Al-Qasabi
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Islam El-Ghamry
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Hammad Khan
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Vinodh Panjwani
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Rizwan Nabi Qureshi
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Sahimah Al-Mamari
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Zahra Al-Qarni
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Mohamed Al-Kindi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdulrahman Al-Nabhani
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Khalaf Al-Gharibi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yasser Wali
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Anil Pathare
- Department of Haematology, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| |
Collapse
|
7
|
Engin A. Bariatric Surgery in Obesity: Metabolic Quality Analysis and Comparison of Surgical Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:697-726. [PMID: 39287870 DOI: 10.1007/978-3-031-63657-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
8
|
Machado CR, Braun AM, Ceolin J, Richter SA, Ribeiro MC, Santos LD, Rigo MM, de Souza APD, Padoin AV, Alves LB, Mottin CC, Drumond Costa CA, Mundstock E, Cañon-Montañez W, Ayala CO, Mattiello R. Variation of modulation and expression of biomarkers associated with inflammation in bariatric surgery patients: A systematic review and meta-analysis. Surgery 2023; 174:1114-1144. [PMID: 37633813 DOI: 10.1016/j.surg.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Bariatric surgery is an effective intervention that causes a series of metabolic changes related to inflammatory processes; however, the variation of biomarkers related to these processes is not entirely understood. Our objective was to investigate the variation of modulation and expression of biomarkers associated with inflammation in patients who underwent bariatric surgery. METHODS We searched the MEDLINE (via PubMed), EMBASE (via Elsevier), Cochrane Central Register of Controlled Trials, Latin American and Caribbean Literature on Health Sciences (via virtual health library), Cumulative Index to Nursing and Allied Health Literature (via EBSCO), Web of Science core collection, and Scopus (via Elsevier) databases, and the gray literature was examined from inception to January 2022. Three pairs of reviewers performed data screening, extraction, and quality assessment independently. Meta-analysis with random effects models was used for general, subgroup, and sensitivity analyses. The I2 statistic was used to assess heterogeneity between studies. RESULTS In total, 96 articles were included in this systematic review; of these, 87 studies met the criteria for the meta-analysis, involving 3,533 participants. Five biomarkers were included in the meta-analysis (tumor necrosis factor alpha; interleukin 6; leptin; interleukin 1 beta, and lipopolysaccharides). Only leptin showed a significant decrease in the first month after surgery (mean difference -20.71; [95% confidence interval: -28.10 to -13.32, P < .0001; I2 = 66.7%), with moderate heterogeneity. The 12 months after surgery showed a significant decrease in tumor necrosis factor alpha (mean difference -0.89; [95% confidence interval: -1.37 to -0.42], P = .0002; I2 = 94.7%), interleukin 6 (mean difference -1.62; [95% confidence interval: -1.95 to -1.29], P < .0001; I2 = 94.9%), leptin (mean difference -28.63; [95% confidence interval: -34.02 to -23.25], P < .0001; I2 = 92.7%), and interleukin 1 beta (mean difference -2.46; [95% confidence interval: -4.23 to -0.68], P = .006; I2 = 98.3%), all with high heterogeneity. The type of surgery did not show significant differences for the biomarkers at the first month and 12 months, and the results have not changed with high-quality studies. In the 12-month measurement, variations in tumor necrosis factor alpha and leptin were associated with body mass index. CONCLUSION The findings of this meta-analysis suggest that Roux-en-Y gastric bypass and sleeve gastrectomy bariatric surgeries are associated with a significant reduction in leptin at 1 month after bariatric surgical intervention and tumor necrosis factor alpha, leptin, and interleukin 1 beta after 12 months.
Collapse
Affiliation(s)
- Cátia R Machado
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda M Braun
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jamile Ceolin
- Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Samanta A Richter
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Leonardo D Santos
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Clinical and Experimental Immunology, Health and Life Science School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício M Rigo
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX
| | - Ana P D de Souza
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Clinical and Experimental Immunology, Health and Life Science School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre V Padoin
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center for Obesity and Metabolic Syndrome, Hospital São Lucas, Porto Alegre, RS, Brazil
| | - Letícia B Alves
- Center for Obesity and Metabolic Syndrome, Hospital São Lucas, Porto Alegre, RS, Brazil
| | - Claudio C Mottin
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Center for Obesity and Metabolic Syndrome, Hospital São Lucas, Porto Alegre, RS, Brazil
| | - Caroline A Drumond Costa
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Health and Life Science School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Mundstock
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Education, Sport, and Leisure of Canela, RS, Brazil
| | | | - Camila Ospina Ayala
- Medicine School, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil. http://twitter.com/CamilaOAyala2
| | - Rita Mattiello
- Postgraduate Program in Epidemiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Mendivil-Alvarado H, Limon-Miro AT, Carvajal-Millan E, Lizardi-Mendoza J, Mercado-Lara A, Coronado-Alvarado CD, Rascón-Durán ML, Anduro-Corona I, Talamás-Lara D, Rascón-Careaga A, Astiazarán-García H. Extracellular Vesicles and Their Zeta Potential as Future Markers Associated with Nutrition and Molecular Biomarkers in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076810. [PMID: 37047783 PMCID: PMC10094966 DOI: 10.3390/ijms24076810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (β = 2.1; p = 0.00), Ki67 (β = -1.39; p = 0.007), estrogen positive (β = 1.57; p = 0.01), weight (β = -0.09; p = 0.00), and visceral fat (β = 0.004; p = 0.00). miRNA-30 was associated with LDL (β = -0.012; p = 0.01) and HDL (β = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (β = -0.0007; p = 0.05) and Ki67 (β = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.
Collapse
Affiliation(s)
| | - Ana Teresa Limon-Miro
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Elizabeth Carvajal-Millan
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Jaime Lizardi-Mendoza
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Araceli Mercado-Lara
- Undersecretariat of Prevention and Health Promotion, Secretary of Health of the Government of Mexico, Mexico City 11570, Mexico
| | | | - María L Rascón-Durán
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Iván Anduro-Corona
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
| | - Daniel Talamás-Lara
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Mexico City 14330, Mexico
| | - Antonio Rascón-Careaga
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| | - Humberto Astiazarán-García
- Department of Nutrition, Research Center for Food and Development, CIAD, A.C., Hermosillo 83304, Mexico
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
10
|
Nunes P, Silva S, Mazzarella R, Lima C, Silveira J, Leite-Dellova D. Serum small extracellular vesicles in overweight and obese dogs before and after weight loss: preliminary observations. ARQ BRAS MED VET ZOO 2023. [DOI: 10.1590/1678-4162-12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
11
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
12
|
Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients 2022; 14:nu14051002. [PMID: 35267977 PMCID: PMC8912428 DOI: 10.3390/nu14051002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) have been identified as active components in cellular communication, which are easily altered both morphologically and chemically by the cellular environment and metabolic state of the body. Due to this sensitivity to the conditions of the cellular microenvironment, EVs have been found to be associated with disease conditions, including those associated with obesity and undernutrition. The sensitivity that EVs show to changes in the cellular microenvironment could be a reflection of early cellular alterations related to conditions of malnutrition, which could eventually be used in the routine monitoring and control of diseases or complications associated with it. However, little is known about the influence of malnutrition alone; that is, without the influence of additional diseases on the heterogeneity and specific content of EVs. To date, studies in “apparently healthy” obese patients show that there are changes in the size, quantity, and content of EVs, as well as correlations with some metabolic parameters (glucose, insulin, and serum lipids) in comparison with non-obese individuals. In light of these changes, a direct participation of EVs in the development of metabolic and cardiovascular complications in obese subjects is thought to exist. However, the mechanisms through which this process might occur are not yet fully understood. The evidence on EVs in conditions of undernutrition is limited, but it suggests that EVs play a role in the maintenance of homeostasis and muscle repair. A better understanding of how EVs participate in or promote cellular signaling in malnutrition conditions could help in the development of new strategies to treat them and their comorbidities.
Collapse
|
13
|
Campello E, Radu CM, Simion C, Spiezia L, Bulato C, Gavasso S, Tormene D, Perin N, Turatti G, Simioni P. Longitudinal Trend of Plasma Concentrations of Extracellular Vesicles in Patients Hospitalized for COVID-19. Front Cell Dev Biol 2022; 9:770463. [PMID: 35111751 PMCID: PMC8801799 DOI: 10.3389/fcell.2021.770463] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Plasma concentrations of extracellular vesicles (EVs) originating from cells involved in COVID-19-associated coagulopathy (CAC), their longitudinal trend and association with clinical outcomes were evaluated. Blood samples of consecutive COVID-19 patients admitted to a medical Unit were longitudinally collected within 48 h of admission, at discharge and 30 days post-discharge. EVs were analyzed using high sensitivity flow cytometry and phospholipid-dependent clotting time (PPL). The following EVs were measured: endothelium-, platelet-, leukocyte-derived, bearing tissue factor (TF)+, angiotensin-converting enzyme (ACE2)+, platelet-derived growth factor receptor-β (PDGF-β)+ and SARS-CoV-2-nucleoprotein (NP)+. 91 patients were recruited for baseline EV analysis (mean age 67 ± 14 years, 50.5% male) and 48 underwent the longitudinal evaluation. From baseline to 30-days post-discharge, we observed significantly decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+ TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+), p < 0.001, p = 0.03, p = 0.001, p = 0.001, respectively. Conversely, platelet-derived (P-Selectin+) and leukocyte-derived EVs (CD45+) increased from baseline to 30-days post-discharge (p = 0.038 and 0.032, respectively). EVs TF+, ACE2+, PDGF-β+, and SARS-CoV-2-NP+ did not significantly change during the monitoring. PPL increased from baseline to 30-days post-discharge (+ 6.3 s, p = 0.006). P-Selectin + EVs >1,054/µL were associated with thrombosis (p = 0.024), E-Selectin + EVs ≤531/µL with worsening/death (p 0.026) and 30-days P-Selectin+ and CD45 + EVs with persistent symptoms (p < 0.0001). We confirmed increased EVs originating from cells involved in CAC at admission and discharge. EVs derived from activated pericytes and expressing SARS-CoV-2-NP were also detected. 30-days post-discharge, endothelium-EVs decreased, while platelet- and leukocyte-EVs further increased, indicating that cellular activation persists long after the acute phase.
Collapse
Affiliation(s)
- Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Claudia Maria Radu
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Chiara Simion
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sabrina Gavasso
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Daniela Tormene
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Nicola Perin
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Giacomo Turatti
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| |
Collapse
|
14
|
Ruiz GP, Camara H, Fazolini NPB, Mori MA. Extracellular miRNAs in redox signaling: Health, disease and potential therapies. Free Radic Biol Med 2021; 173:170-187. [PMID: 33965563 DOI: 10.1016/j.freeradbiomed.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Extracellular microRNAs (miRNAs) have emerged as important mediators of cell-to-cell communication and intertissue crosstalk. MiRNAs are produced by virtually all types of eukaryotic cells and can be selectively packaged and released to the extracellular medium, where they may reach distal cells to regulate gene expression cell non-autonomously. By doing so, miRNAs participate in integrative physiology. Oxidative stress affects miRNA expression, while miRNAs control redox signaling. Disruption in miRNA expression, processing or release to the extracellular compartment are associated with aging and a number of chronic diseases, such as obesity, type 2 diabetes, neurodegenerative diseases and cancer, all of them being conditions related to oxidative stress. Here we discuss the interplay between redox balance and miRNA function and secretion as a determinant of health and disease states, reviewing the findings that support this notion and highlighting novel and yet understudied venues of research in the field.
Collapse
Affiliation(s)
- Gabriel Palermo Ruiz
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Henrique Camara
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Narayana P B Fazolini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Sun XD, Han L, Lan HT, Qin RR, Song M, Zhang W, Zhong M, Wang ZH. Endothelial microparticle-associated protein disulfide isomerase increases platelet activation in diabetic coronary heart disease. Aging (Albany NY) 2021; 13:18718-18739. [PMID: 34285139 PMCID: PMC8351716 DOI: 10.18632/aging.203316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Background: Endothelial microparticles (EMPs) carrying the protein disulfide isomerase (PDI) might play a key role in promoting platelet activation in diabetes. This study aimed to examine the activation of platelets, the amounts of MPs, PMPs, and EMPs, and the concentration and activity of PDI in patients with diabetic coronary heart disease (CHD) and non-diabetic CHD. Methods: Patients with CHD (n=223) were divided as non-diabetic CHD (n=121) and diabetic CHD (n=102). Platelet activation biomarkers, circulating microparticles (MPs), the concentration of protein disulfide isomerase (PDI), and MP-PDI activity were determined. The effect of EMPs on platelet activation was investigated in vitro. Allosteric GIIb/IIIa receptors that bind to PDI were detected by a proximity ligation assay (PLA). Results: Platelet activation, platelet-leukocyte aggregates, circulating MPs, EMPs, PDI, and MP-PDI activity in the diabetic CHD group were significantly higher than in the non-diabetic CHD group (P<0.05). Diabetes (P=0.006) and heart rate <60 bpm (P=0.047) were associated with elevated EMPs. EMPs from diabetes increased CD62p on the surface of the platelets compared with the controls (P<0.01), which could be inhibited by the PDI inhibitor RL90 (P<0.05). PLA detected the allosteric GIIb/IIIa receptors caused by EMP-PDI, which was also inhibited by RL90. Conclusions: In diabetic patients with CHD, platelet activation was significantly high. Diabetes and heart rate <60 bpm were associated with elevated EMPs and simultaneously increased PDI activity on EMP, activating platelets through the allosteric GPIIb/IIIa receptors.
Collapse
Affiliation(s)
- Xiao-Di Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Geriatric Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hong-Tao Lan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan 250012, Shandong, China
| | - Ran-Ran Qin
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266071, Shandong, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhi-Hao Wang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong key Laboratory of Cardiovascular Proteomics, Jinan 250012, Shandong, China
| |
Collapse
|
16
|
Campello E, Zanetto A, Radu CM, Bulato C, Truma A, Spiezia L, Senzolo M, Garcia-Tsao G, Simioni P. Acute kidney injury is associated with increased levels of circulating microvesicles in patients with decompensated cirrhosis. Dig Liver Dis 2021; 53:879-888. [PMID: 33431230 PMCID: PMC11090178 DOI: 10.1016/j.dld.2020.12.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microvesicles (MVs) play a role in inflammation, coagulation, and vascular homeostasis in liver disease. AIM To characterize circulating plasma MVs profile in patients with decompensated cirrhosis and acute kidney injury (AKI). METHODS We measured the levels of total, endothelial, platelet, tissue factor (TF)+, leukocyte and hepatocyte MVs by new generation flow-cytometry in a prospective cohort of patients with decompensated cirrhosis with and without AKI. RESULTS Eighty patients with decompensated cirrhosis were recruited (40 each with and without AKI). Patients with cirrhosis with AKI had significantly higher calcein+ (total), endothelial, and platelet-MVs. Conversely, TF+, leukocyte, and hepatocyte-MVs were comparable between groups. Resolution of AKI was associated with significantly decreased total and endothelial-MVs that became comparable with those in patients without AKI. Platelet MVs significantly decreased but remained higher compared to patients without AKI. TF+MVs significantly decreased and became lower than patients without AKI. Leukocyte and hepatocyte-MVs remained unchanged. Creatinine (OR 4.3 [95%CI 1.8-10.7]), MELD (OR 1.13 [95%CI 1.02-1.27]), any bleeding (OR 9.07 [95%CI 2.02-40.6]), and hepatocyte-MVs (OR 1.04 [95%CI 1.02-1.07]) were independently associated with 30-day mortality. CONCLUSION AKI worsened vascular and cellular homeostasis in patients with cirrhosis, particularly by inducing endothelial dysfunction and platelet activation. AKI did not worsen systemic inflammation and hepatocytes activation.
Collapse
Affiliation(s)
- Elena Campello
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA; Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Claudia M Radu
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Cristiana Bulato
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Addolorata Truma
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Luca Spiezia
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Guadalupe Garcia-Tsao
- Digestive Disease Section, Internal Medicine, Yale School of Medicine, New Haven, CT, USA; VA-Connecticut Healthcare System, West Haven, CT, USA
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, General Internal Medicine, Padova University Hospital, Padova, Italy.
| |
Collapse
|
17
|
Protective Role of Platelets in Myocardial Infarction and Ischemia/Reperfusion Injury. Cardiol Res Pract 2021; 2021:5545416. [PMID: 34123416 PMCID: PMC8169247 DOI: 10.1155/2021/5545416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Thrombotic occlusion of the coronary artery is a key component in the pathogenesis of myocardial ischemia and myocardial infarction (MI). The standard therapy for ischemia is revascularization and restoration of blood flow to previously ischemic myocardium. Paradoxically, reperfusion may result in further tissue damage called ischemia/reperfusion injury (IRI). Platelets play a major role in the pathogenesis of MI and IRI, since they contribute to the thrombus and microthrombi formation, inflammation, release of immunomodulatory mediators, and vasoconstrictive molecules. Antiplatelet therapies have proven efficacy in the prevention of thrombosis and play a protective role in cardiac IRI. Beyond the deterioration effect of platelets in MI and IRI, in the 90s the first reports on a protective effect of molecules released from platelets during MI appeared. However, the role of platelets in cardioprotection is still poorly understood. This review describes the involvement of platelets in MI, IRI, and inflammation. It mainly focuses on the protective role of platelets in MI and IRI. Platelets are involved in cardioprotection based on platelet-releasing molecules and antiplatelet therapy, apart from antiaggregatory effects. Additionally, the use of platelet-derived microparticles as possible markers of MI, with and without comorbidities, and their role in cardioprotection are discussed. This review is aimed at illustrating the present knowledge on the role of platelets in MI and IRI, especially in a context of cardioprotection.
Collapse
|
18
|
Marco A, Marco P. Improvement in the cardiovascular profile of patients with morbid obesity following bariatric surgery: Effect on hypercoagulability. Medicine (Baltimore) 2021; 100:e25280. [PMID: 33761732 PMCID: PMC9281975 DOI: 10.1097/md.0000000000025280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity is an inflammatory state related to vascular endothelium dysfunction. It generates a biological situation of hypercoagulability increasing the risk of thrombosis. This prothrombotic condition could be improved by bariatric surgery.The main objective was to analyze the impact of bariatric surgery on cardiovascular risk factors (CVRF) associated with changes in thrombin generation and procoagulant activity of microparticles (MP).We present a prospective longitudinal study including consecutive patients candidate for bariatric surgery. We performed 3 sequential clinical visits: at inclusion, before surgery after completing the modified fasting phase, and 6 months after surgery. We analyzed CVRF, thrombin generation, and MP activity. The data analysis was performed using a logistic regression model to determine changes over time of hemostatic parameters and body mass index (BMI). McNemar test for binary variables was used to analyze the CVRF.We included 94 patients (66 women), with an average age of 45.7 ± 10.1 years. The mean BMI reduction at the end of the follow-up was 15.5 ± 4.2 kg/m2. We detected a statistically significant improvement in CVRF: hypertension, diabetes mellitus, dyslipidemia, and obstructive sleep apnea, as well as a significant reduction in thrombin generation capacity and procoagulant MP activity.Massive weight loss induced by bariatric surgery improves the cardiovascular profile, associated with a reduction in the hypercoagulable status.
Collapse
Affiliation(s)
- Ana Marco
- Hematology and Hemotherapy Service, Thrombosis and Hemostasis Department, University General Hospital
- Biomedical Research Institute
| | - Pascual Marco
- Hematology and Hemotherapy Service, Thrombosis and Hemostasis Department, University General Hospital
- Biomedical Research Institute
- Clinical Medicine Department, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
19
|
Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021; 10:327. [PMID: 33477341 PMCID: PMC7830384 DOI: 10.3390/jcm10020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are emerging early markers of myocardial damage and key mediators of cardioprotection. Therefore, EV are becoming fascinating tools to prevent cardiovascular disease and feasible weapons to limit ischaemia/reperfusion injury. It is well known that metabolic syndrome negatively affects vascular and endothelial function, thus creating predisposition to ischemic diseases. Additionally, sex is known to significantly impact myocardial injury and cardioprotection. Therefore, actions able to reduce risk factors related to comorbidities in ischaemic diseases are required to prevent maladaptive ventricular remodelling, preserve cardiac function, and prevent the onset of heart failure. This implies that early diagnosis and personalised medicine, also related to sex differences, are mandatory for primary or secondary prevention. Here, we report the contribution of EV as biomarkers and/or therapeutic tools in comorbidities predisposing to cardiac ischaemic disease. Whenever possible, attention is dedicated to data linking EV to sex differences.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Giuseppe Alloatti
- Uni-Astiss, Polo Universitario Rita Levi Montalcini, 14100 Asti, Italy;
| | - Maria F. Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy;
| |
Collapse
|
20
|
Nair S, Salomon C. Extracellular vesicles as critical mediators of maternal-fetal communication during pregnancy and their potential role in maternal metabolism. Placenta 2020; 98:60-68. [PMID: 33039033 DOI: 10.1016/j.placenta.2020.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) have been implicated in the pathophysiology of metabolic disorders by transferring biologically active molecules such as miRNAs and proteins to recipient cells, and influencing their metabolic pathways. Pregnancy is one of the greatest metabolic challenges faced by both the mother and the growing fetus, and this is fine-tuned by several factors, including hormones, soluble molecules, and molecules encapsulated in EVs released from the placenta. A wide range of EVs originating from the placenta are present in maternal circulation, and changes in their circulating levels and bioactivity (i.e., capacity to induce changes in the target cells) have been associated with several complications of pregnancies, including gestational diabetes mellitus (GDM), preeclampsia, preterm birth, and fetal growth restriction. Complications of pregnancies are associated with maternal metabolic dysfunction with short- and long-term consequences for both mother and child. However, the potential roles of circulating EVs originating from the placenta and other tissues (e.g. adipose tissue), on changes in maternal metabolism during normal and pregnancy complications have not been fully described. The aim of this brief review, thus, is to discuss the diversity of EVs, and their potential roles in the metabolic alterations during pregnancy, with a special focus on GDM.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| |
Collapse
|
21
|
Sáez T, Toledo F, Sobrevia L. Extracellular Vesicles and Insulin Resistance: A Potential Interaction in Vascular Dysfunction. Curr Vasc Pharmacol 2020; 17:491-497. [PMID: 30277159 DOI: 10.2174/1570161116666181002095745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Insulin resistance plays a key role in cardiovascular complications associated with diabetes mellitus and hypertensive disorders. In states of insulin resistance several circulating factors may contribute to a defective insulin sensitivity in different tissues, including the vasculature. One of these factors influencing the vascular insulin resistance are the extracellular vesicles. The extracellular vesicles include exosomes, microvesicles, and apoptotic bodies which are released to the circulation by different vascular cells. Since the cargo of extracellular vesicles seems to be altered in metabolic complications associated with insulin resistance, these vesicles may be candidates contributing to vascular insulin resistance. Despite the studies linking insulin resistance signalling pathways with the vascular effect of extracellular vesicles, the involvement of these structures in vascular insulin resistance is a phenomenon that remains unclear.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton T6G 2S2, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Bio-Bio University, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,Department of Physiology, Faculty of Pharmacy, University of Sevilla, Seville E-41012, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| |
Collapse
|
22
|
Effect of Bariatric Surgery on Serum Inflammatory Factors of Obese Patients: a Systematic Review and Meta-Analysis. Obes Surg 2020; 29:2631-2647. [PMID: 31093862 DOI: 10.1007/s11695-019-03926-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is one of the main causes of inflammation. Previous studies have reported inconclusive results regarding the effect of bariatric surgery on inflammatory markers. This systematic review and meta-analysis is aimed at describing the effect of bariatric surgery on C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). PubMed/Medline and Scopus were systematically searched for all eligible studies from inception to June 2018. Results are expressed as weighted mean difference (MD) with 95% confidence intervals (CI) using a random effects model. Overall, 116 studies which evaluated serum CRP, IL-6, and TNF-α after bariatric surgery were included. Pooled effect size showed significant reduction in serum CRP (- 5.30 mg/l, 95% CI - 5.46, - 5.15, P < 0.001), IL-6 (- 0.58 pg/ml, 95% CI - 0.64, - 0.53, P < 0.001), and TNF-α (- 0.20 pg/ml, 95% CI - 0.39, - 0.02, P = 0.031) with significant heterogeneity across studies (> 95% for all factors). Bariatric surgery significantly lowered inflammatory factors; however, baseline BMI, follow-up duration and type of surgery could impact the extent of observed effects.
Collapse
|
23
|
Papadia C, Bassett P, Cappello G, Forbes A, Lazarescu V, Shidrawi R. Therapeutic action of ketogenic enteral nutrition in obese and overweight patients: a retrospective interventional study. Intern Emerg Med 2020; 15:73-78. [PMID: 31089862 DOI: 10.1007/s11739-019-02092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022]
Abstract
Ketogenic enteral nutrition (KEN™) is a modification of Blackburn's protein-sparing modified fast, using a hypocaloric, ketogenic liquid diet. The study is about ketogenic enteral nutrition (KEN) in overweight and obese patients receiving a short treatment of the nutritional solution as a 24-h infusion. It is a retrospective analysis that examines safety, weight loss and body composition changes after three sequential 10-day cycles of KEN therapy. Anthropometric and bio-impedance data from 629 patients who underwent KEN were collected before and after completing a 10-day cycle. The study focuses on the change in outcomes from the first cycle to the second cycle and from the first cycle to the third cycle. The following outcomes were explored: weight, waist circumference, BMI, fat mass, lean mass, dry lean mass, phase angle, wellness marker, water mass as a percentage of total body weight. Statistical tests were used to test for significant differences between paired cycle 1 and cycle 2 outcomes and also between paired cycle 1 and cycle 3 outcomes. Where changes in outcomes between timepoints were found to be normally distributed, the paired t test was used, whereas where the changes in outcomes had skewed distributions, the Wilcoxon signed-rank test was used. Linear regression was used to examine associations between changes in both phase angle and BMR/weight with percentage weight change. Initially the simple relationship between variables was examined, and subsequently multiple linear regression was used to re-examine the relationships after adjusting for two pre-specified confounding variables. The results suggested significant changes for all analyzed parameters. There were significant decreases in weight, waist circumference, BMI, fat mass, lean mass, dry lean mass and phase angle. Quantitative changes in lean mass and dry lean mass were minor changes with respect to changes in fat mass. When considering the change from cycle 1 to cycle 3, there was a significant association between change in BMR/weight and change in weight, which remained significant after adjusting for changes in phase angle, fat mass and waist circumference. A one-unit increase in BMR/weight was associated with a 2.4% reduction in weight. There was no significant association between change in phase angle from cycle 1 to cycle 3 in the simple analysis. However, after adjustments greater change in phase angle was associated with a greater weight loss. KEN treatment was overall well tolerated. Results might be restricted to a British cohort only and should not be universally applied. Long-term results need to be explored in controlled studies. KEN treatment is safe, well tolerated and results in rapid fat loss without detriment to dry lean mass.
Collapse
Affiliation(s)
- Cinzia Papadia
- Princess Alexandra Hospital, NHS Trust, Hamstel Road, Harlow, CM20 1QX, UK.
| | | | | | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ray Shidrawi
- Gastroenterology Department, Homerton University Hospital, London, UK
| |
Collapse
|
24
|
Tripodi A, Primignani M, Badiali S, de Ruberto F, Granelli P, Tosetti G, Clerici M, Padovan L, Chantarangkul V, Scalambrino E, Peyvandi F. Body mass index reduction improves the baseline procoagulant imbalance of obese subjects. J Thromb Thrombolysis 2019; 48:52-60. [PMID: 30701462 DOI: 10.1007/s11239-019-01818-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Obesity is a risk factor for cardiovascular diseases. The latter being dependent (at least in part) on plasma procoagulant imbalance (i.e., hypercoagulability). Information on hypercoagulability associated with obesity is scanty and mainly based on global traditional coagulation tests or on the measurement of individual components of coagulation (i.e., pro- and anticoagulants). Plasma from 33 obese subjects was investigated soon before endoscopic balloon placement and after removal (6 months later) by thrombin-generation procedures that are thought to represent much better than any other in vitro test the coagulation process occurring in vivo. We found that obese subjects possess a state of hypercoagulability as demonstrated by the modification of the main parameters of thrombin-generation. In particular, the median value (min-max) of the endogenous thrombin potential (ETP) of obese subjects at baseline was higher than that of controls [1968 (1335-2533) vs. 1710 (1010-2119), p < 0.001]. Endoscopic balloon placement achieved a BMI reduction from 38.9 (31.7-62.3) to 31.6 (21.9-53.3), p < 0.001 and a parallel reduction of thrombin-generation as demonstrated by the following findings. The ETP measured soon after balloon removal was significantly smaller than that measured at baseline [1783 (1224-2642) vs. 1968 (1335-2533), p < 0.01]. The other parameters of thrombin-generation, including lag-time, peak-thrombin, time-to-reach the peak and velocity index showed a pattern consistent with the ETP, both at baseline and soon after balloon removal. Endoscopic balloon placement achieves concomitant reduction of BMI and thrombin-generation in subjects with obesity.
Collapse
Affiliation(s)
- Armando Tripodi
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy.
| | - Massimo Primignani
- Division of Gastroenterology and Hepatology, IRCCS Cà Granda Maggiore Hospital Foundation Milano, A.M. and A. Migliavacca Center for Liver Disease, Milano, Italy
| | - Sara Badiali
- Divisione di Chirurgia Generale, IRCCS Cà Granda Maggiore Hospital Foundation Milano, Milano, Italy
| | - Fausto de Ruberto
- Divisione di Chirurgia Generale, IRCCS Cà Granda Maggiore Hospital Foundation Milano, Milano, Italy
| | - Paola Granelli
- Divisione di Chirurgia Generale, IRCCS Cà Granda Maggiore Hospital Foundation Milano, Milano, Italy
| | - Giulia Tosetti
- Division of Gastroenterology and Hepatology, IRCCS Cà Granda Maggiore Hospital Foundation Milano, A.M. and A. Migliavacca Center for Liver Disease, Milano, Italy
| | - Marigrazia Clerici
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy
| | - Lidia Padovan
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy
| | - Veena Chantarangkul
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy
| | - Erica Scalambrino
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy
| | - Flora Peyvandi
- IRCCS Cà Granda Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi villa, Via Pace 9, 20122, Milano, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Sáez T, Toledo F, Sobrevia L. Impaired signalling pathways mediated by extracellular vesicles in diabesity. Mol Aspects Med 2019; 66:13-20. [DOI: 10.1016/j.mam.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023]
|
27
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
28
|
Javeed N. Shedding Perspective on Extracellular Vesicle Biology in Diabetes and Associated Metabolic Syndromes. Endocrinology 2019; 160:399-408. [PMID: 30624638 PMCID: PMC6349001 DOI: 10.1210/en.2018-01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The etiology of diabetes and associated metabolic derailments is a complex process that relies on crosstalk between metabolically active tissues. Dysregulation of secreted factors and metabolites from islets, adipose tissue, liver, and skeletal muscle contributes to the overall progression of diabetes and metabolic syndrome. Extracellular vesicles (EVs) are circulating nanovesicles secreted by most cell types and are comprised of bioactive cargoes that are horizontally transferred to targeted cells/tissues. Accumulating evidence from the past decade implicates the role of EVs as mediators of islet cell dysfunction, inflammation, insulin resistance, and other metabolic consequences associated with diabetes. This review covers a broad spectrum of basic EV biology (i.e., biogenesis, secretion, and uptake), including a comprehensive investigation of the emerging role of EVs in β-cell autocrine/paracrine interactions and the multidirectional crosstalk in metabolically active tissues. Understanding the utility of this novel means of intercellular communication could impart insight into the development of new treatment regimens and biomarker detection to treat diabetes.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Correspondence: Naureen Javeed, PhD, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
29
|
Boscolo A, Campello E, Bertini D, Spiezia L, Lucchetta V, Piasentini E, Radu CM, Manesso L, Ori C, Simioni P. Levels of circulating microparticles in septic shock and sepsis-related complications: a case-control study. Minerva Anestesiol 2018; 85:625-634. [PMID: 30481997 DOI: 10.23736/s0375-9393.18.12782-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Microparticles (MP) have been largely studied as potential biomarkers in septic shock (SS) though their biological and clinical relevance is still unclear. This case-control study describes the trend of various MP subtypes during SS to evaluate their possible association with severity of illness and sepsis-related complications (disseminated intravascular coagulation [DIC] and acute kidney injury [AKI]). METHODS Forty patients admitted to the Intensive Care Unit with SS and 40 matched healthy volunteers were recruited. AnnexinV+, E-selectin+, thrombomodulin (TM+), leukocyte-derived (CD45+, CD36+) and platelet-derived MP (PMP-expressed as PMP/platelets ratio) were measured by flow-cytometry at baseline, on day 1, 3 and 7 after diagnosis. Severity of illness was assessed by Sequential Organ Failure Assessment Score, duration of vasoactive support and mechanical ventilation. Sepsis-related complications were considered. RESULTS Overall, septic patients showed higher levels of all MP considered compared to controls. TM+MP were significantly lower in more severe sepsis, while CD36+MP and PMP/platelets ratio were significantly increased in patients requiring longer vasoactive support and mechanical ventilation. As for sepsis-related complications, a higher PMP/platelets ratio in patients who developed DIC and increased E-selectin+MP in subjects who developed AKI were observed. PMP/platelets ratio at baseline was significantly associated with longer vasoactive support (OR=1.59 [1.05-2.42]), longer mechanical ventilation (OR=1.6 [1.06-2.42]) and DIC occurrence (OR=1.45 [1.08-1.96]). CONCLUSIONS A global response through extra-vesiculation of endothelial cells, leukocytes and platelets during the early stages of SS was confirmed. The cellular activation was detected until day 3 after diagnosis. PMP/platelets ratio at diagnosis may be useful to evaluate SS severity and DIC occurrence.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Elena Campello
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Diana Bertini
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Luca Spiezia
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Vittorio Lucchetta
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Eleonora Piasentini
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudia M Radu
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Leonardo Manesso
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Carlo Ori
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Paolo Simioni
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy -
| |
Collapse
|
30
|
Botha J, Nielsen MH, Christensen MH, Vestergaard H, Handberg A. Bariatric surgery reduces CD36-bearing microvesicles of endothelial and monocyte origin. Nutr Metab (Lond) 2018; 15:76. [PMID: 30386406 PMCID: PMC6199798 DOI: 10.1186/s12986-018-0309-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022] Open
Abstract
Background Bariatric surgery is a widely adopted treatment for obesity and its secondary complications. In the past decade, microvesicles (MVs) and CD36 have increasingly been considered as possible biomarkers for obesity, the metabolic syndrome (MetSy), type 2 diabetes mellitus (T2DM). Thus, the purpose of this study was to investigate how weight loss resulting from bariatric surgery affects levels of specific MV phenotypes and their expression of CD36 scavenger receptor. Additionally, we hypothesised that subjects with MetSy had higher baseline concentrations of investigated MV phenotypes. Methods Twenty individuals undergoing Roux-en-Y gastric bypass surgery were evaluated before and 3 months after surgery. MVs were characterised by flow cytometry at both time points and defined as lactadherin-binding particles within a 100-1000 nm size gate. MVs of monocyte (CD14) and endothelial (CD62E) origin were defined by cell-specific markers, and their expression of CD36 was investigated. Results Following bariatric surgery, subjects incurred an average BMI reduction (delta) of − 8.4 ± 1.4 (p < 0.0001). Significant reductions were observed for the total MVs (− 66.55%, p = 0.0017) and MVs of monocyte (− 36.11%, p = 0.0056) and endothelial (− 40.10%, p = 0.0007) origins. Although the bulk of CD36-bearing MVs were unaltered, significant reductions were observed for CD36-bearing MVs of monocyte (− 60.04%, p = 0.0192) and endothelial (− 54.93%, p = 0.04) origin. No differences in levels of MVs were identified between subjects who presented with MetSy at baseline (n = 13) and those that did not (n = 7). Conclusion Bariatric surgery resulted in significantly altered levels of CD36-bearing MVs of monocyte and endothelial origin. This likely reflects improvements in ectopic fat distribution, plasma lipid profile, low-grade inflammation, and oxidative stress following weight loss. Conversely, however, the presence of MetSy at baseline had no impact on MV phenotypes. Electronic supplementary material The online version of this article (10.1186/s12986-018-0309-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaco Botha
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark.,2Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark
| | - Morten Hjuler Nielsen
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Maja Høegh Christensen
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Henrik Vestergaard
- 3Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, SUND, University of Copenhagen, Panum, Mærsk tårnet, Bygning 7, 8. Etage, DK-2200 Copenhagen N, Denmark
| | - Aase Handberg
- 1Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark.,2Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Sdr. Skovvej 15, DK-9000 Aalborg, Denmark
| |
Collapse
|
31
|
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60:81-91. [DOI: 10.1016/j.mam.2017.11.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
|
32
|
Neven KY, Nawrot TS, Bollati V. Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication. Curr Environ Health Rep 2018; 4:30-37. [PMID: 28116555 DOI: 10.1007/s40572-017-0130-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process. RECENT FINDINGS EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress. EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|
33
|
Witczak JK, Min T, Prior SL, Stephens JW, James PE, Rees A. Bariatric Surgery Is Accompanied by Changes in Extracellular Vesicle-Associated and Plasma Fatty Acid Binding Protein 4. Obes Surg 2017; 28:767-774. [DOI: 10.1007/s11695-017-2879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Does Bariatric Surgery Improve Obesity Associated Comorbid Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:545-570. [PMID: 28585216 DOI: 10.1007/978-3-319-48382-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery for obesity is taken into account when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with bariatric surgery regarding to weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. However, the benefits of weight loss following bariatric procedures are still debated regarding the pro-inflammatory and metabolic profile of obesity.
Collapse
|
35
|
Kupcinskiene K, Trepenaitis D, Petereit R, Kupcinskas J, Gudaityte R, Maleckas A, Macas A. Monitoring of Hypercoagulability by Thromboelastography in Bariatric Surgery. Med Sci Monit 2017; 23:1819-1826. [PMID: 28411285 PMCID: PMC5402836 DOI: 10.12659/msm.900769] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Obesity is known as a major risk factor for postoperative vein thrombosis. Thromboelastography (TEG) is used to monitor viscoelastic features of blood clots. The aim of this study was to determine hypercoagulable states in patients undergoing bariatric surgery and to assess dynamics of coagulation parameters in the perioperative setting using TEG. Material/Methods We included 60 consecutive patients undergoing bariatric surgery. TEG alterations were assessed at 4 time points: at baseline, after the surgery, and on postoperative day 1 (POD1) and 2 (POD2). Hypercoagulable state was defined when patients showed clot strength (G) of ≥11 dynes/cm2 or maximum amplitude (MA) ≥68 mm. Results Fourteen patients (23.3%) out of 60 showed hypercoagulability prior to surgery on TEG. Fibrinogen levels were significantly higher in the G ≥11 group compared to the G <11 group, at 4.2 and 3.8 g/l, respectively (p=0.02). Seventeen patients (28.3%) had MA ≥68 mm at baseline. Fibrinogen levels increased significantly from 3.90 at baseline to 4.16 g/l in POD2 (p<0.001). There was an increase in mean reaction time from baseline (6.74 s) to POD2 (7.43 s, p=0.022). We found a correlation between baseline fibrinogen levels and MA (R=0.431, p=0.001) or G (R=0.387, p=0.003). ROC curve analysis showed that fibrinogen levels can predict clot strength (G) ≥11 dynes/cm2 with AUC=0.680 (p=0.044). Conclusions A considerable proportion of patients referred to bariatric surgery show a trend towards hypercoagulability on TEG. This study shows the potential of hypercoagulation monitoring by TEG in the perioperative setting of bariatric surgery.
Collapse
Affiliation(s)
- Kristina Kupcinskiene
- Department of Anesthesiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Darius Trepenaitis
- Department of Anesthesiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ruta Petereit
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rita Gudaityte
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Almantas Maleckas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Macas
- Department of Anesthesiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
36
|
Petrini S, Neri T, Lombardi S, Cordazzo C, Balìa C, Scalise V, Paggiaro P, Pedrinelli R, Celi A. Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells. Biochim Biophys Acta Gen Subj 2016; 1860:1354-61. [PMID: 27015759 DOI: 10.1016/j.bbagen.2016.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/20/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is linked to increased thrombotic risk. Circulating leptin concentration correlates with body mass index. Microparticles are small (.05-1 μm) vesicles shed by activated and apoptotic cells, involved in numerous pathophysiologically relevant phenomena including blood coagulation and thrombosis. We tested the hypothesis that leptin induces the shedding of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells, and investigated the intracellular mechanisms leading to microparticle release upon incubation with leptin. METHODS Peripheral blood mononuclear cells were isolated from healthy donors. Cells were incubated with leptin in the presence or in the absence of a phospholipase C inhibitor, U73122, a calmodulin inhibitor, W-7, and three inhibitors of mitogen activated protein kinases. Microparticle generation was assessed as phosphatidylserine concentration with a prothrombinase assay and by cytofluorimetric analysis. Tissue factor expression on microparticles was measured with a one-stage clotting assay. Intracellular calcium concentration was assessed by a fluorescent probe. RESULTS Leptin increased intracellular calcium mobilization and stimulated the generation of tissue factor-bearing MP by peripheral blood mononuclear cells, as assessed by phosphatidylserine quantification, clotting tests and flow-cytometry. U73122, PD98059 (an extracellular signal-regulated kinase1/2 inhibitor), and W-7, significantly inhibited leptin-induced MP release. SB203580 (a p38 inhibitor), and SP600125 (a c-Jun N-terminal kinase inhibitor) had no effect. CONCLUSION Leptin-induced generation of procoagulant microparticles might represent a link between obesity and atherothrombotic risk. Inhibition of leptin-induced microparticle generation might prove a viable strategy for the reduction of such risk in obese individuals.
Collapse
Affiliation(s)
- Silvia Petrini
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Tommaso Neri
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Lombardi
- SSD Analisi ChimicoCliniche ed ImmunoAllergologia, USL 1, Massa e Carrara, Italy
| | - Cinzia Cordazzo
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cristina Balìa
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Valentina Scalise
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Pierluigi Paggiaro
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Roberto Pedrinelli
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandro Celi
- Laboratorio di Biologia Cellulare Respiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| |
Collapse
|