1
|
Dietary oxidized frying oil activates hepatic stellate cells and accelerates the severity of carbon tetrachloride- and thioacetamide-induced liver fibrosis in mice. J Nutr Biochem 2023; 115:109267. [PMID: 36641072 DOI: 10.1016/j.jnutbio.2023.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Deep-frying is a common cooking practice worldwide, and after repeated heating's, the oil undergoes various chemical reactions, including hydrolysis, polymerization, lipid oxidation, and the Maillard reaction. Studies have pointed out that oxidized dietary frying oil may cause teratogenesis in mice and increase cancer and cardiovascular risks. The liver is the main organ involved in dietary nutrient catabolism, detoxification, bile production, and lipid metabolism. Nevertheless, the effects of oxidized frying oil exposure on the activation of hepatic stellate cells (HSCs) and liver fibrosis are still unclear. In this study, we showed that exposure to oxidized frying oil enhanced the sensitivity of HSCs to transforming growth factor (TGF)-β1-induced α-smooth muscle actin (α-SMA), collagen 1a2, collagen 1a1, metalloproteinase-2, and phosphorylated smad2/3 activation. In both carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis mouse models, we showed that long-term administration of a 10% fried oil-containing diet significantly upregulated fibrogenesis genes expression and deposition of hepatic collagen. Furthermore, long-term fried oil exposure not only promoted macrophage infiltration and increased inflammatory-related gene expression, but also accumulated excess cholesterol and lipid peroxidation in the liver tissues. In conclusion, our study demonstrated that feeding a fried oil-containing diet may trigger TGF-β1-induced HSCs activation and thereby promote liver damage and fibrosis progression through enhancing the inflammatory response and lipid peroxidation.
Collapse
|
2
|
Guo Y, Wang L, Hanson A, Urriola PE, Shurson GC, Chen C. Identification of Protective Amino Acid Metabolism Events in Nursery Pigs Fed Thermally Oxidized Corn Oil. Metabolites 2023; 13:metabo13010103. [PMID: 36677028 PMCID: PMC9866068 DOI: 10.3390/metabo13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids are indispensable for the subsistence of energy metabolism, protein synthesis, the antioxidant system, and many other functions essential for pig growth and health. In this study, oxidized corn oil (OCO)-elicited changes in amino acid homeostasis of nursery pigs were examined by metabolomics-based biochemical analysis. The results showed that serum and hepatic free amino acids and metabolites, including tryptophan, threonine, alanine, glutamate, and glutathione, as well as associated metabolic pathways, were selectively altered by feeding OCO, and more importantly, many of these metabolic events possess protective functions. Specifically, OCO activated tryptophan-nicotinamide adenosine dinucleotide (NAD+) synthesis by the transcriptional upregulation of the kynurenine pathway in tryptophan catabolism and promoted adenine nucleotide biosynthesis. Feeding OCO induced oxidative stress, causing decreases in glutathione (GSH)/oxidized glutathione (GSSG) ratio, carnosine, and ascorbic acid in the liver but simultaneously promoted antioxidant responses as shown by the increases in hepatic GSH and GSSG as well as the transcriptional upregulation of GSH metabolism-related enzymes. Moreover, OCO reduced the catabolism of threonine to α-ketobutyrate in the liver by inhibiting the threonine dehydratase (TDH) route. Overall, these protective metabolic events indicate that below a certain threshold of OCO consumption, nursery pigs are capable of overcoming the oxidative stress and metabolic challenges posed by the consumption of oxidized lipids by adjusting antioxidant, nutrient, and energy metabolism, partially through the transcriptional regulation of amino acid metabolism.
Collapse
Affiliation(s)
- Yue Guo
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Andrea Hanson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
- Correspondence: ; Tel.: +1-612-624-7704; Fax: +1-612-625-5272
| |
Collapse
|
3
|
Ghasemi-Sadabadi M, Ebrahimnezhad Y, Maheri-Sis N, Shaddel Teli A, Ghiasi Ghalehkandi J, Veldkamp T. Supplementation of pomegranate processing waste and waste soybean cooking oil as an alternative feed resource with vitamin E in broiler nutrition: effects on productive performance, meat quality and meat fatty acid composition. Arch Anim Nutr 2021; 75:355-375. [PMID: 34461782 DOI: 10.1080/1745039x.2021.1965414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
This research aimed to determine the effect of dietary supplementation of pomegranate peels powder and waste soybean cooking oil on the performance and meat quality of male Ross 308 broiler chickens. Before start of the experiment, the metabolisable energy of pomegranate peels and other nutritive and chemical contents of pomegranate peels were measured. Also, peroxidation indices and fatty acids profiles of experimental oils were analysed. The experiment was designed as a 3 × 3 × 2 factorial arrangement of treatments including i) pomegranate peels (0, 4 and 8%), ii) waste soybean cooking oil (0, 2 and 4%) and iii) vitamin E (0 and 200 mg/kg diet). Supplementation of 8% pomegranate peels significantly decreased growth performance of broiler chickens (p < 0.05). The supplementation of 4% waste cooking oil significantly reduced body weight gain during the grower and whole experimental period (p < 0.05). Pomegranate peels supplementation decreased peroxide value (PV) and thiobarbituric acid (TBA) and increased pH of meat (p < 0.05). Supplementation of 4% waste cooking oil increased PV and TBA and reduced crude protein, water holding capacity (WHC), and pH of meat (p < 0.05). Vitamin E supplementation significantly decreased TBA and increased WHC of meat (p < 0.05). Supplementation of pomegranate peels decreased saturated fatty acids (SFA) and increased polyunsaturated fatty acids (PUFA) of meat (p < 0.05). Broilers fed diets with 4% waste cooking oil showed higher SFA and lower PUFA contents in meat (p < 0.05). So it can be concluded that 4% pomegranate peels could be used as an alternative feed ingredient and a source of antioxidants in broiler diets, and also 2% waste soybean cooking oil can be included as feed ingredient in broiler diets without adversely affecting performance.
Collapse
Affiliation(s)
| | - Yahya Ebrahimnezhad
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Naser Maheri-Sis
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Abdolahad Shaddel Teli
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Teun Veldkamp
- Wageningen Livestock Research, Wageningen University & Research, AH Wageningen, The Netherlands
| |
Collapse
|
4
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Limitation and Potential Effects of Different Levels of Aging Corn on Performance, Antioxidative Capacity, Intestinal Health, and Microbiota in Broiler Chickens. Animals (Basel) 2021; 11:ani11102832. [PMID: 34679852 PMCID: PMC8532906 DOI: 10.3390/ani11102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Corn is an important ingredient and staple food in China; thus, corn storage has a certain importance to ensure domestic food resources. Normally, corn has been stored for 3 or more years under the proper storage conditions in national barns before it is used as a feed ingredient. This study aimed to investigate the effect of different levels of aging corn (AC) on performance, antioxidative capacity, intestinal health, and microbiota in broilers. In the present study, AC grains were stored for 4 years under the proper storage conditions at the national storage facility. The results indicated that a lower level of AC diet showed improved performance and overall bird health than a higher level of AC, and comparable with a normal corn diet. However, antioxidative capacity is reduced by AC diets. Abstract Three-hundred and sixty-day-old male broilers underwent three treatments with six replicates of 20 birds per treatment. The experimental diets included NC: normal corn diet; ACL: lower level (39.6–41.24%) of AC; and ACH: a higher level (56.99–59.12%) of AC. During phase 1 (0–21 d), broilers fed on AC showed lower (p < 0.05) body weight (BW), body weight gain (BWG), and feed conversion ratio (FCR) as compared with the NC group. During phase 2 (22–42 d), the NC group and ACL group showed better (p < 0.05) BW, BWG, and FCR than the ACH group. The footpad lesion score (p = 0.05) and litter moisture percentage (p < 0.05) were found to be higher in the ACH group. During phase 1, the ACL group showed a lower level of malondialdehyde (MDA) contents (p < 0.05) in serum; moreover, catalase (CAT) (p < 0.05) and glutathione peroxidase (GSH-Px) activities (p < 0.05) were found lower in both AC-containing groups. During phase 2, CAT activity in serum was found higher (p < 0.05) in the ACH group. During phase 1, the NC group showed higher CAT (p = 0.05), GSH-Px (p < 0.05), and superoxide dismutase (SOD) activity (p = 0.03); however, it showed lower MDA (p < 0.05) and total-antioxidative capability (T-AOC) (p < 0.05) in the liver. During phase 1, in breast muscle, CAT, SOD, and T-AOC were higher (p < 0.05) in the NC group. During phase 1, total cholesterol and high-density lipoprotein were found to be lower (p < 0.05) in the ACL group. Similarly, triglyceride and low-density lipoprotein were found to be lower (p < 0.05) in the ACL group than the ACH group. During phase 1, villus height was found to be higher (p < 0.05) in the ACH group. Moreover, the goblet cell (GC) was found to be higher (p < 0.05) in the NC group than the ACL group. During phase 2, GC was found to be higher (p < 0.05) in the ACL group. In ileal digesta, during phase 1, acetic acid, propionic acid, and butyric acid (BA) levels were found to be higher (p < 0.05) in the ACL group. In cecal digesta, BA was significantly lower (p < 0.05) in the NC group.
Collapse
|
5
|
Lin YS, Chen DL, Shaw HM, Wang GJ, Chao PM. Consuming oxidative frying oil impairs cardiac energy production and calcium recycling, causing cardiac hypertrophy, fibrosis and diastolic dysfunction in male Sprague Dawley rats. J Nutr Biochem 2021; 98:108816. [PMID: 34246734 DOI: 10.1016/j.jnutbio.2021.108816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/09/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022]
Abstract
With regards to cardiovascular health, frequent consumption of fried foods is discouraged, despite a lack of clear evidence of a direct link between eating oxidative frying oil (OFO) and cardiovascular diseases. In this study, male Sprague Dawley rats were exposed to diets containing fresh or fried soybean oil (groups C and O, respectively) from in utero to 28 weeks of age. A subset of rats in group O was supplemented with vitamin E (500 mg/kg of DL-α-tocopherol acetate; group OE) from 8 week of age onward to mitigate oxidative stress associated with OFO ingestion. Echocardiography, cardiac histology and indices associated with ATP production and calcium cycling in cardiac tissues were measured. Compared to group C, there was cardiac hypertrophy, fibrosis and diastolic dysfunction, in groups O and OE, with no differences between the latter two groups. Although cardiac mRNA levels of genes associated with mitochondrial biogenesis and function were increased, there were lower ATP concentrations and higher transcripts of uncoupling proteins in groups O and OE than in group C. In addition, decreases in phosphorylation of phospholamban and Ca2+/calmodulin-dependent protein kinase II activity, plus increased protein phosphatase 2A activity in groups O and OE, implied calcium cycling required for cardiac function was disrupted by OFO consumption. We concluded that long-term OFO exposure resulted in cardiac hypertrophy, fibrosis and diastolic dysfunction that was not mitigated by vitamin E supplementation. Underlying mechanisms were partly attributed to inefficient energy production via uncoupled phosphorylation and disrupted calcium cycling.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| | - Da-Long Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Mei Shaw
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Kerr BJ, Lindblom SC, Overholt MF. Influence of feeding thermally peroxidized soybean oil on growth performance, digestibility, gut integrity, and oxidative stress in nursery pigs. J Anim Sci 2020; 98:5709617. [PMID: 31955199 DOI: 10.1093/jas/skaa016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The objectives of the current experiments were to evaluate the effect of feeding soybean oil (SO) with different levels of peroxidation on lipid, N, and GE digestibility, gut integrity, oxidative stress, and growth performance in nursery pigs. Treatments consisted diets containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each with an air infusion of 15 L/min, with postprocessing peroxide values of 7.6, 11.5, 19.1, and 13.4 mEq/kg and p-anisidine values of 1.92, 6.29, 149, and 159, for the 22.5 °C, 45 °C, 90 °C and 180 °C processed SO, respectively. In experiment 1, 64 barrows (7.1 ± 0.9 kg initial BW) were randomly allotted into 2 rooms of 32 pens and individually fed their experimental diets for 21 d, with a fresh fecal sample collected on day 20 for determination of GE and lipid digestibility. In experiment 2, 56 barrows (BW 9.16 ± 1.56 kg) were placed into individual metabolism crates for assessment of GE, lipid, and N digestibility and N retention. Urinary lactulose to mannitol ratio was assessed to evaluate in vivo small intestinal integrity, and urine and plasma were collected to analyze for markers of oxidative stress. Pigs were subsequently euthanized to obtain liver weights and analyze the liver for markers of oxidative stress. In experiment 1, pigs fed the SO thermally processed at 90 °C had reduced ADG (P = 0.01) and ADFI (P = 0.04) compared to pigs fed the other SO treatment groups, with no differences noted among pigs fed the 22.5 °C, 45 °C, and 180 °C SO treatments. No effects of feeding thermally processing SO on dietary GE or lipid digestibility (P > 0.10) were noted in either experiment. In experiment 2, there was no dietary effect of feeding peroxidized SO on the DE:ME ratio, N digestibility, or N retained as a percent of N digested, on the urinary ratio of lactulose to mannitol, on serum, urinary, or liver thiobarbituric acid reactive substances, on plasma protein carbonyls, or on urinary or liver 8-OH-2dG (P > 0.10). In experiment 2, pigs fed the SO thermally processed at 90 °C had the greatest isoprostane concentrations in the serum (P ≤ 0.01) and urine (P ≤ 0.05) compared to pigs fed the unprocessed SO. These results indicate that the change in fatty acid composition and/or the presence of lipid peroxidation products in peroxidized SO may reduce ADG and ADFI in nursery pigs, but appears to have no impact on GE, lipid, or N digestibility, or gut permeability. These data suggest that the presence of lipid peroxidation products may affect certain markers of oxidative stress.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | | | | |
Collapse
|
7
|
Pédrono F, Boulier-Monthéan N, Boissel F, Ossemond J, Viel R, Fautrel A, Marchix J, Dupont D. Sciadonic acid derived from pine nuts as a food component to reduce plasma triglycerides by inhibiting the rat hepatic Δ9-desaturase. Sci Rep 2020; 10:6223. [PMID: 32277113 PMCID: PMC7148351 DOI: 10.1038/s41598-020-63301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Sciadonic acid (Scia) is a Δ5-olefinic fatty acid that is particularly abundant in edible pine seeds and that exhibits an unusual polymethylene-interrupted structure. Earlier studies suggested that Scia inhibited the in vitro expression and activity of the Stearoyl-CoA Desaturase 1 (SCD1), the hepatic Δ9-desaturase involved in the formation of mono-unsaturated fatty acids. To confirm this hypothesis, rats were given 10% Scia in diets balanced out with n-6 and n-3 fatty acids. In those animals receiving the Scia supplement, monoene synthesis in the liver was reduced, which was partly attributed to the inhibition of SCD1 expression. As a consequence, the presence of Scia induced a 50% decrease in triglycerides in blood plasma due to a reduced level of VLDL-secreted triglycerides from the liver. In non-fasting conditions, results showed that Scia-induced inhibition of SCD1 led to a decrease in the proportions of 16:1n-7 and 18:1n-7 in the liver without impacting on the level of 18:1n-9, suggesting that only triglycerides with neosynthesized monoenes are marked out for release. In conclusion, this in vivo study confirms that Scia highly inhibits SCD1 expression and activity. The work was performed on normo-triglyceride rats over six weeks, suggesting promising effects on hyper-triglyceridemic models.
Collapse
Affiliation(s)
- Frédérique Pédrono
- AGROCAMPUS OUEST, Rennes, France. .,INRAE Science et Technologie du Lait et de l'Œuf, équipe Bioactivité et Nutrition, Rennes, France.
| | - Nathalie Boulier-Monthéan
- AGROCAMPUS OUEST, Rennes, France.,INRAE Science et Technologie du Lait et de l'Œuf, équipe Bioactivité et Nutrition, Rennes, France
| | - Françoise Boissel
- AGROCAMPUS OUEST, Rennes, France.,INRAE Science et Technologie du Lait et de l'Œuf, équipe Séchage, Matrices concentrées et Fonctionnalités, Rennes, France
| | - Jordane Ossemond
- INRAE Science et Technologie du Lait et de l'Œuf, équipe Bioactivité et Nutrition, Rennes, France
| | - Roselyne Viel
- Université de Rennes1, Inserm, CNRS, Plateforme d'histopathologie H2P2, Biosit, Biogenouest, Rennes, France
| | - Alain Fautrel
- Université de Rennes1, Inserm, CNRS, Plateforme d'histopathologie H2P2, Biosit, Biogenouest, Rennes, France
| | - Justine Marchix
- Cincinnati Children's Hospital Medical Center, Division of Pediatric General and Thoracic Surgery, Cincinnati, United States
| | - Didier Dupont
- INRAE Science et Technologie du Lait et de l'Œuf, équipe Bioactivité et Nutrition, Rennes, France
| |
Collapse
|
8
|
Hung YT, Hanson AR, Urriola PE, Johnston LJ, Kerr BJ, Shurson GC. Addition of tert-butylhydroquinone (TBHQ) to maize oil reduces lipid oxidation but does not prevent reductions in serum vitamin E in nursery pigs. J Anim Sci Biotechnol 2019; 10:51. [PMID: 31312446 PMCID: PMC6609342 DOI: 10.1186/s40104-019-0362-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Background Maize oil is abundantly used in foods and feeds and is highly susceptible to oxidation. Consequently, commercially available antioxidants should be evaluated for effectiveness against lipid oxidation in swine diets. Our study was conducted to evaluate growth performance of nursery pigs fed oxidized maize oil and to determine effects of using antioxidants on oxidative status in a 2 × 2 factorial design. Two hundred eight weaned pigs were blocked by initial BW into 13 blocks, resulting in 4 pigs per pen and 13 pens per treatment. Dietary treatments included 6% unoxidized or oxidized maize oil, and 0 or 60 mg/kg of tert-butylhydroquinone (TBHQ), which was added after lipid oxidation. Data for growth performance were collected from 5 time periods of a two-phase feeding program (Phase 1 = d 0 to 12 and Phase 2 = d 13 to 34). Serum and liver samples were collected from one pig per pen, which had initial BW closest to average BW to determine oxidative status on d 34. Results Oxidized maize oil was heated for 12 h at 185 °C with 12 L/min of air, yielding a peroxide value (PV) of 5.98 mEq O2/kg and TBARS of 0.11 mg MDA eq/g. Addition of TBHQ to diets containing oxidized maize oil decreased PV by 37% and increased the oil stability index by 69%. Final BW, ADG, ADFI, and G:F of pigs were not different among the four dietary treatments. However, pigs fed oxidized maize oil tended (P < 0.08) to increase hepatosomatic index by 5% compared with those fed unoxidized oil, and this was not affected by adding TBHQ. The serum vitamin E concentration of pigs fed oxidized maize oil was less (P < 0.03) than pigs fed unoxidized oil, but this reduction was not reversed by adding TBHQ. Finally, the serum and liver selenium concentration were not different among the treatments. Conclusions The addition of TBHQ did not affect growth performance and vitamin E status in pigs fed moderately oxidized maize oil, but TBHQ reduced lipid oxidation, enhanced the oil stability, and appeared to reduce oxidative stress.
Collapse
Affiliation(s)
- Yuan T Hung
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| | | | - Pedro E Urriola
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| | - Lee J Johnston
- 4West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267 USA
| | - Brian J Kerr
- 3USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011 USA
| | - Gerald C Shurson
- 1Department of Animal Science, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108 USA
| |
Collapse
|
9
|
Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Lv F, Zhou W, Ai L. Lactic Acid Bacteria With Antioxidant Activities Alleviating Oxidized Oil Induced Hepatic Injury in Mice. Front Microbiol 2018; 9:2684. [PMID: 30459744 PMCID: PMC6232458 DOI: 10.3389/fmicb.2018.02684] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
In order to screening new Lactic acid bacteria (LAB) strains to alleviating liver injury induced by oxidized oil, we isolated and screened LAB from Chinese fermented foods. Lactobacillus plantarum AR113, Pediococcus pentosaceus AR243, and Lactobacillus plantarum AR501 showed higher scavenging activity of α, α-Diphenyl-β-Picrylhydrazyl (DPPH) free radical and hydrogen radical, stronger inhibition of lipid peroxidation, and better protective effect on yeast cells in vitro. In vivo, oral administration of L. plantarum AR501 improved the antioxidant status of injury mice induced by oxidized oil including decreasing lipid peroxidation, recovering activities of antioxidant enzymes. Meanwhile, the gene expression of Nuclear factor erythroid 2-related factor 2 (Nrf2) of L. plantarum AR501 group was markedly elevated, and several antioxidant genes such as glutathione S-transferase (GSTO1), heme oxygenase-1 (HO-1), Glutamate cysteine ligase (GCL), and NAD(P)H:quinone oxidoreductase-l (NQO1) were subsequently up regulated in mice liver. Therefore, L. plantarum AR501 could be considered as potential candidates for production of functional foods that can alleviate the oxidative damage induced by oxidized oil.
Collapse
Affiliation(s)
- Xiangna Lin
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Lv
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Ltd., Yangzhou, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Mu Y, Zhang K, Bai S, Wang JP, Zeng Q, Ding X. Effects of vitamin E supplementation on performance, serum biochemical parameters and fatty acid composition of egg yolk in laying hens fed a diet containing ageing corn. J Anim Physiol Anim Nutr (Berl) 2018; 103:135-145. [DOI: 10.1111/jpn.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yadong Mu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| | - Jian Ping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease‐Resistance Nutrition of China, Ministry of Education Sichuan Agricultural University Chengdu China
| |
Collapse
|
11
|
Lindblom SC, Gabler NK, Dilger RN, Olson ZF, Loving CL, Kerr BJ. Influence of feeding thermally peroxidized soybean oil on oxidative status in growing pigs. J Anim Sci 2018; 96:545-557. [PMID: 29385464 DOI: 10.1093/jas/sky005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to determine whether feeding thermally processed peroxidized soybean oil (SO) induces markers of oxidative stress and alters antioxidant status in pig tissue, blood, and urine. Fifty-six barrows (25.3 ± 3.3 kg initial BW) were randomly assigned to dietary treatments containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each with constant air infusion rate of 15 liters/minute. Multiple indices of lipid peroxidation were measured in the SO including peroxide value (2.0, 96, 145, and 4.0 mEq/kg for 22.5, 45, 90, and 180 °C processed SO, respectively) and p-anisidine value (1.2, 8.4, 261, and 174 for 22.5, 45, 90, and 180 °C processed SO, respectively); along with a multitude of aldehydes. Pigs were individually housed and fed ad libitum for 49 d which included a 5 d period in metabolism crates for the collection of urine and serum for measures of oxidative stress. On day 49, pigs were euthanized to determine liver weight and analyze liver-based oxidative stress markers. Oxidative stress markers included serum, urinary, and liver thiobarbituric acid reactive substances (TBARS), and urinary F2-isoprostanes (ISP) as markers of lipid damage; serum and liver protein carbonyls (PC) as a marker of protein damage; and urinary and liver 8-hydroxy-2'-deoxyguanosine (8-OH-2dG) as a marker of DNA damage. Superoxide dismutase (SOD), and catalase activity (CAT) were measured in liver, glutathione peroxidase activity (GPx) was measured in serum and liver, and ferric reducing antioxidant power (FRAP) was measured in serum and urine as determinants of antioxidant status. Pigs fed 90 °C SO had greater urinary ISP (P = 0.02), while pigs fed the 45 °C SO had elevated urinary TBARS (P = 0.02) in comparison to other treatment groups. Pigs fed 45 °C and 90 °C SO had increased serum PC concentrations (P = 0.01) and pigs fed 90 °C SO had greater (P = 0.01) liver concentration of 8-OH-2dG compared to pigs fed the other SO treatments. Furthermore, pigs fed 90 °C SO had reduced serum GPx activity in comparison to pigs fed fresh SO (P = 0.01). In addition, pigs fed 180 °C SO had increased liver CAT activity (P = 0.01). Liver GPx and SOD or serum and urinary FRAP were not affected by dietary treatment. These results indicate that dietary peroxidized soybean oil induced oxidative stress by increasing serum PC while diminishing serum GPx, increasing urinary ISP and TBARS, and increasing 8-OH-2dG and CAT in liver.
Collapse
Affiliation(s)
- S C Lindblom
- Department of Animal Science, Iowa State University, Ames, IA
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames, IA
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Z F Olson
- USDA-ARS-National Animal Disease Center, Ames, IA
| | - C L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| |
Collapse
|
12
|
Mboma J, Leblanc N, Angers P, Rocher A, Vigor C, Oger C, Reversat G, Vercauteren J, Galano JM, Durand T, Jacques H. Effects of Cyclic Fatty Acid Monomers from Heated Vegetable Oil on Markers of Inflammation and Oxidative Stress in Male Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7172-7180. [PMID: 29920087 DOI: 10.1021/acs.jafc.8b01836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study assesses the effects of cyclic fatty acid monomers (CFAM) from heated vegetable oils on oxidative stress and inflammation. Wistar rats were fed either of these four diets for 28 days: canola oil (CO), canola oil and 0.5% CFAM (CC), soybean oil (SO), and soybean oil and 0.5% CFAM (SC). Markers of oxidative stress and inflammation were determined by micro liquid chromatography tandem mass spectrometry (micro-LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) kits, respectively. Analysis of variance (ANOVA) for a 2 × 2 factorial design was performed to determine the CFAM and oil effects and interactions between these two factors at P ≤ 0.05. For significant interactions, a post hoc multiple comparison test was performed, i.e., Tukey HSD (honest significant difference) test. CFAM induced higher plasma levels of 15-F2t-IsoP (CC, 396 ± 43 ng/mL, SC, 465 ± 75 ng/mL vs CO, 261 ± 23 ng/mL and SO, 288 ± 35 ng/mL, P < 0.05). Rats fed the SC diet had higher plasma 2,3-dinor-15-F2t-IsoP (SC, 145 ± 9 ng/mL vs CC, 84 ± 8 ng/mL, CO, 12 ± 1 ng/mL, and SO, 12 ± 1 ng/mL, P < 0.05), urinary 2,3-dinor-15-F2t-IsoP (SC, 117 ± 12 ng/mL vs CC, 67 ± 13 ng/mL, CO, 15 ± 2 ng/mL, and SO, 18 ± 4 ng/mL, P < 0.05), and plasma IL-6 (SC, 57 ± 10 pg/mL vs CC, 48 ± 11 pg/mL, CO, 46 ± 9 pg/mL, and SO, 44 ± 4 pg/mL, P < 0.05) than the other three diet groups. These results indicate that CFAM increased the levels of markers of oxidative stress, and those effects are exacerbated by a CFAM-high-linoleic acid diet.
Collapse
Affiliation(s)
| | - Nadine Leblanc
- Institute of Nutrition and Functional Foods , Laval University , 2440 Boulevard Hochelaga , Québec City , Québec G1V 0A6 , Canada
| | - Paul Angers
- Institute of Nutrition and Functional Foods , Laval University , 2440 Boulevard Hochelaga , Québec City , Québec G1V 0A6 , Canada
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron , UMR 5247-CNRS, Université de Montpellier , Faculté de Pharmacie, 15 Avenue Charles Flahault , BP 14491 Montpellier Cedex 05, Montpellier , 34093 , France
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods , Laval University , 2440 Boulevard Hochelaga , Québec City , Québec G1V 0A6 , Canada
| |
Collapse
|
13
|
Overholt MF, Kim GD, Boler DD, Kerr BJ, Dilger AC. Influence of feeding thermally peroxidized soybean oil to finishing pigs on carcass characteristics, loin quality, and shelf life of loin chops. J Anim Sci 2018; 96:2710-2722. [PMID: 29726946 PMCID: PMC6095266 DOI: 10.1093/jas/sky176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to evaluate the effect of feeding soybean oil (SO) with varying levels of peroxidation on carcass traits and shelf life of loins. Fifty-six barrows were randomly assigned to 1 of 4 diets containing 10% fresh SO (22.5 °C) or thermally processed SO (45 °C for 288 h, 90 °C for 72 h, or 180 °C for 6 h), each infused with air at a rate of 15 liter/min. Individually housed pigs were provided ad libitum access to feed for 81 d. At 82 d, pigs were slaughtered and hot carcass weight and liver weights were recorded. Carcass characteristics and fresh loin quality were evaluated 1 d postmortem. Loin chops from each carcass were overwrap-packaged and subjected to a 10-d simulated retail display. Daily measurements of L*, a*, b*, reflectance, and visual discoloration were conducted, evaluation of cooking loss and Warner-Bratzler shear force (WBSF) was conducted on chops stored 0, 5, and 10 d, and thiobarbituric acid reactive substances (TBARS) were evaluated on chops stored 0 and 10 d. Shelf life-related data were analyzed as a completely randomized design with repeated measures in time, with storage location (shelf) as a random effect. Carcasses of 90 °C pigs weighed 6.0, 8.6, and 6.9 kg less (P < 0.03) than 22.5 °C, 45 °C, and 180 °C carcasses, respectively. Livers of 90 °C and 180 °C pigs were 14.3% and 11.7%, respectively, heavier (P ≤ 0.02) than those from pigs fed 22.5 °C SO, with livers of 45 °C being intermediate. Livers of 90 °C pigs represented 0.12 percentage units less (P = 0.02) of ending live weight than livers of 180 °C pigs, and 180 °C livers were 0.12 percentage units less (P < 0.01) of ending live weight than those from pigs fed 22.5 °C SO, with 45 °C being intermediate. There was no difference (P ≥ 0.19) in back fat depth, loin muscle area, or estimated carcass lean percentage among SO treatments, nor was there an effect (P ≥ 0.13) of SO on any early post-mortem loin quality traits or loin composition. There was no effect (P > 0.14) of SO on cooking loss, WBSF, L*, a*, b*, hue angle, reflectance, discoloration, or TBARS; however, there was a tendency (P = 0.09) for chops of 45 °C pigs to have greater (P < 0.04) chroma than either 22.5 °C or 180 °C, with 90 °C being intermediate. Overall, feeding SO cooked at 90 °C for 72 h resulted in reduced carcass weight and dressing percentage; however, there was no evidence that feeding peroxidized SO was detrimental to shelf life of loin chops.
Collapse
Affiliation(s)
| | - Gap-Don Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dustin Dee Boler
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Brian Jay Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
14
|
Wang L, Yao D, Urriola PE, Hanson AR, Saqui-Salces M, Kerr BJ, Shurson GC, Chen C. Identification of activation of tryptophan-NAD + pathway as a prominent metabolic response to thermally oxidized oil through metabolomics-guided biochemical analysis. J Nutr Biochem 2018; 57:255-267. [PMID: 29800812 DOI: 10.1016/j.jnutbio.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/08/2023]
Abstract
Consumption of thermally oxidized oil is associated with metabolic disorders, but oxidized oil-elicited changes in the metabolome are not well defined. In this study, C57BL/6 mice were fed the diets containing either control soybean oil or heated soybean oil (HSO) for 4 weeks. HSO-responsive metabolic events were examined through untargeted metabolomics-guided biochemical analysis. HSO directly contributed to the presence of new HSO-derived metabolites in urine and the decrease of polyunsaturated fatty acid-containing phospholipids in serum and the liver. HSO disrupted redox balance by decreasing hepatic glutathione and ascorbic acid. HSO also activated peroxisome proliferator-activated receptors, leading to the decrease of serum triacylglycerols and the changes of cofactors and products in fatty acid oxidation pathways. Most importantly, multiple metabolic changes, including the decrease of tryptophan in serum; the increase of NAD+ in the liver; the increases of kynurenic acid, nicotinamide and nicotinamide N-oxide in urine; and the decreases of the metabolites from pyridine nucleotide degradation in the liver indicated that HSO activated tryptophan-NAD+ metabolic pathway, which was further confirmed by the upregulation of gene expression in this pathway. Because NAD+ and its metabolites are essential cofactors in many HSO-induced metabolic events, the activation of tryptophan-NAD+ pathway should be considered as a central metabolic response to the exposure of HSO.
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dan Yao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Andrea R Hanson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, USDA, Ames, IA 50011, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA; Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
15
|
Hung Y, Hanson A, Shurson G, Urriola P. Peroxidized lipids reduce growth performance of poultry and swine: A meta-analysis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Li X, Yu X, Sun D, Li J, Wang Y, Cao P, Liu Y. Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:208-215. [PMID: 27973789 DOI: 10.1021/acs.jafc.6b04565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, effects of deep-fried palm oil, specifically polar compounds generated during the frying process, on animal health including lipid and glucose metabolism and liver functions were investigated. Kunming mice were fed a high-fat diet containing deep-fried palm oil or purified polar compounds for 12 weeks. Their effects on animal health including hepatic lipid profile, antioxidant enzyme activity, serum biochemistry, and glucose tolerance were analyzed. Our results revealed that the consumption of polar compounds was related to the change of lipid deposition in liver and adipose tissue, as well as glucose tolerance alteration in Kunming mice. Correspondingly, the transcription study of genes involved in lipid metabolism including PPARα, Acox1, and Cpt1α indicated that polar compounds probably facilitated the fatty acid oxidation on peroxisomes, whereas lipid oxidation in mitochondria was suppressed. Furthermore, glucose tolerance test (GTT) revealed that a high amount of polar compound intake impaired glucose tolerance, indicating its effect on glucose metabolism in vivo. Our results provide critical information on the effects of polar compounds generated from the deep-frying process of palm oil on animal health, particularly liver functions and lipid and glucose metabolism, which is important for the evaluation of the biosafety of frying oil.
Collapse
Affiliation(s)
- Xiaodan Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Xiaoyan Yu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Dewei Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
17
|
Hanson AR, Urriola PE, Wang L, Johnston LJ, Chen C, Shurson GC. Dietary peroxidized maize oil affects the growth performance and antioxidant status of nursery pigs. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Effect of long-term ingestion of weakly oxidised flaxseed oil on biomarkers of oxidative stress in LDL-receptor knockout mice. Br J Nutr 2016; 116:258-69. [PMID: 27197628 DOI: 10.1017/s0007114516001513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as μmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants.
Collapse
|
19
|
Hosseini H, Ghorbani M, Meshginfar N, Mahoonak AS. A Review on Frying: Procedure, Fat, Deterioration Progress and Health Hazards. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2791-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Shurson GC, Kerr BJ, Hanson AR. Evaluating the quality of feed fats and oils and their effects on pig growth performance. J Anim Sci Biotechnol 2015; 6:10. [PMID: 25844168 PMCID: PMC4384276 DOI: 10.1186/s40104-015-0005-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/01/2015] [Indexed: 11/10/2022] Open
Abstract
Feed fats and oils provide significant amounts of energy to swine diets, but there is large variation in composition, quality, feeding value, and price among sources. Common measures of lipid quality include moisture, insolubles, and unsaponifiables (MIU), titer, and free fatty acid content, but provide limited information regarding their feeding value. Lipid peroxidation is an important quality factor related to animal growth performance and health, but maximum tolerable limits in various lipids have not been established. Several indicative assays can be used to detect the presence of various peroxidation compounds, but due to the complexity and numerous compounds produced and degraded during peroxidation process, no single method can adequately determine the extent of peroxidation. Until further information is available, using a combination of peroxide value, thiobarbituric acid reactive substances (TBARS), and anisidine value appear to provide a reasonable assessment of the extent of peroxidation in a lipid at a reasonable cost. However, fatty acid composition of the lipid being evaluated should be considered when selecting specific assays. Predictive tests can also be used to estimate the stability or susceptibility of lipids to peroxidation and include active oxygen method, oil stability index, and oxygen bomb method. A review of 16 published studies with pigs has shown an average decrease of 11.4% in growth rate, 8.8% feed intake fed isocaloric diets containing peroxidized lipids compared to diets containing unperoxidized lipids of the same source. Furthermore, serum vitamin E content was generally reduced and serum TBARS content was increased when peroxidized lipids were fed in these studies, suggesting that feeding peroxidized lipids negatively affects metabolic oxidative status of pigs. However, it is unclear if antioxidants are useful additions to lipids to maintain optimal nutritional value, or if their addition to swine diets is beneficial in overcoming a metabolic oxidative challenge.
Collapse
Affiliation(s)
- Gerald C Shurson
- />Department of Animal Science, University of Minnesota, St. Paul, MN 55018 USA
| | - Brian J Kerr
- />USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011 USA
| | | |
Collapse
|
21
|
Margaritelis NV, Veskoukis AS, Paschalis V, Vrabas IS, Dipla K, Zafeiridis A, Kyparos A, Nikolaidis MG. Blood reflects tissue oxidative stress: a systematic review. Biomarkers 2015; 20:97-108. [PMID: 25582635 DOI: 10.3109/1354750x.2014.1002807] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether the levels of oxidative stress biomarkers measured in blood reflect the tissue redox status. Data from studies that measured redox biomarkers in blood, heart, liver, kidney and skeletal muscle were analyzed. In seven out of nine investigated redox biomarkers (malondialdehyde, reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, vitamin C and E) there was generally good qualitative and quantitative agreement between the blood and tissues. In contrast, oxidized glutathione and the reduced to oxidized glutathione ratio showed poor agreement between the blood and tissues. This study suggests that most redox biomarkers measured in blood adequately reflect tissue redox status.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki , Serres , Greece
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hanson AR, Wang L, Johnston LJ, Baidoo SK, Torrison JL, Chen C, Shurson GC. Effect of feeding peroxidized dried distillers grains with solubles to sows and progeny on growth performance and metabolic oxidative status of nursery pigs. J Anim Sci 2015; 93:135-46. [PMID: 25568363 DOI: 10.2527/jas.2014-7371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment evaluated the effects of including peroxidized corn dried distillers grains with solubles (DDGS) in diets for sows and nursery pigs on growth performance, vitamin E (VE), and Se status, and the incidence of mulberry heart disease (MHD) of nursery pigs. Sows (n = 12) were fed corn-soybean meal diets (C-SBM) or C-SBM diets with DDGS (40% and 20% in gestation and lactation, respectively) for 3 parities. In the third parity, 108 weaned pigs (BW = 6.6 ± 0.36 kg) were blocked by BW within litter, assigned to pens (2 pigs/pen; 5 and 4 pens per litter for groups 1 and 2, respectively), and pens were assigned 1 of 3 nursery diets: 1) corn-soybean meal (CON), 2) 30% peroxidized DDGS (Ox-D), and 3) 30% Ox-D with 5 × NRC (1998) level of VE (Ox-D+5VE) for 7 wk, in a 2 × 3 factorial arrangement of sow and nursery diets (n = 9 pens/treatment). The peroxidized DDGS source in nursery diets contained concentrations of thiobarbituric acid reactive substances (TBARS) and peroxide values that were 25 and 27 times greater than a reference corn sample. Sow colostrum, milk, and serum, as well as pig serum and liver samples, were analyzed for α-tocopherol and Se concentrations. Pig serum was analyzed for glutathione peroxidase activity (GPx), TBARS, and sulfur-containing AA (SAA). Pig hearts were evaluated for gross and histopathological lesions indicative of MHD, but none were detected. Pigs from sows fed DDGS tended to have reduced (P = 0.07) VE in serum during lactation and reduced VE at weaning (P < 0.01; 5.6 vs. 6.7 ± 0.1 µg/mL) compared with pigs from sows fed C-SBM. Inclusion of DDGS in sow diets reduced the VE status of pigs during lactation, but not in the nursery when MHD can be a concern. Pigs fed Ox-D+5VE (P = 0.08) tended to have, and those fed Ox-D (P = 0.04) had greater ADFI than pigs fed CON, but ADG was not affected (P > 0.1) by nursery diet. Feeding Ox-D or Ox-D+5VE increased (P < 0.05) serum α-tocopherol compared with CON (2.5, 2.8, and 3.4 ± 0.09 µg/mL, respectively), but TBARS and GPx were not affected by nursery diet. Serum concentration of SAA was 40% to 50% greater (P < 0.01) for pigs fed Ox-D or Ox-D+5VE compared with those fed C-SBM, which was likely due to greater (P < 0.01) SAA intake for pigs fed Ox-D. The antioxidant properties of SAA may have spared VE and Se and masked any effect of Ox-D on metabolic oxidation status. Therefore, increasing the dietary VE concentration was unnecessary in nursery diets containing Ox-D.
Collapse
Affiliation(s)
- A R Hanson
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - L Wang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul 55108
| | - L J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris 56267
| | - S K Baidoo
- Southern Research and Outreach Center, University of Minnesota, Waseca 56093
| | - J L Torrison
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul 55108
| | - C Chen
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - G C Shurson
- Department of Animal Science, University of Minnesota, St. Paul 55108
| |
Collapse
|
23
|
Liu P, Kerr BJ, Weber TE, Chen C, Johnston LJ, Shurson GC. Influence of thermally oxidized vegetable oils and animal fats on intestinal barrier function and immune variables in young pigs1. J Anim Sci 2014; 92:2971-9. [DOI: 10.2527/jas.2012-5710] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- P. Liu
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - B. J. Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - T. E. Weber
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - C. Chen
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - L. J. Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris 56267
| | - G. C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul 55108
| |
Collapse
|
24
|
Liu P, Chen C, Kerr BJ, Weber TE, Johnston LJ, Shurson GC. Influence of thermally oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs1. J Anim Sci 2014; 92:2960-70. [DOI: 10.2527/jas.2012-5709] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- P. Liu
- University of Minnesota, St. Paul 55108
| | - C. Chen
- University of Minnesota, St. Paul 55108
| | - B. J. Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - T. E. Weber
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - L. J. Johnston
- West Central Research and Outreach Center, Morris, MN 56267
| | | |
Collapse
|
25
|
Manning PJ, Sutherland WHF, Manning AE, de Jong SA, Berry EA. Ingestion of thermally oxidized sunflower oil decreases postprandial lipemia mainly in younger individuals. Nutr Res 2013; 33:711-8. [PMID: 24034570 DOI: 10.1016/j.nutres.2013.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/27/2022]
Abstract
Animal studies have shown that diets rich in thermally oxidized fat increase glucose and decrease insulin and triglyceride (TG) concentrations in the blood. We hypothesized that ingestion of a potato meal rich in thermally oxidized sunflower oil (TOSO) would decrease postprandial concentrations of insulin, incretins, and TG and increase plasma glucose concentrations. Twenty healthy subjects aged 22 to 70 years consumed meals rich in TOSO or unheated sunflower oil and containing paracetamol (1.5 g) in a randomized, crossover trial. Blood samples were taken at baseline and 10, 20, 30, 60, 90, and 120 minutes after the meals and glucose, insulin, TG, nonesterified fatty acids, glucagon-like polypeptide-1, glucose-independent polypeptide, and paracetamol (as a marker of gastric emptying) were measured in plasma or serum. The incremental areas under the curve of glucose, insulin, nonesterified fatty acid, incretins, and paracetamol levels were not significantly different between the meals. Plasma TG incremental area under the curve was 44% lower after the TOSO meal at a marginal level of significance (P = .06) in the total study population and was significantly (P = .04) and 61% lower in those of median age and younger (n = 11). These data suggest that ingestion of TOSO may acutely decrease plasma TG mainly in younger individuals and does not acutely affect glucose and insulin metabolism or gastric emptying in healthy subjects.
Collapse
Affiliation(s)
- Patrick J Manning
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Chen YJ, Liu YJ, Tian LX, Niu J, Liang GY, Yang HJ, Yuan Y, Zhang YQ. Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoides) fed oxidized fish oil. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:593-604. [PMID: 23053606 DOI: 10.1007/s10695-012-9722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/03/2012] [Indexed: 05/10/2023]
Abstract
Six oxidized fish oil contained diets were formulated to investigate the effect of graded levels of vitamin E (V(E)) (α-tocopherol acetate: 160, 280, and 400 mg kg(-1)) associated with either 1.2 or 1.8 mg kg(-1) selenium (Se) on growth, body composition, and antioxidant defense mechanism of juvenile largemouth bass. Another control diet containing fresh fish oil with 160 mg kg(-1) V(E) and 1.2 mg kg(-1) Se was also prepared. Over a 12-week feeding trial, about 5 % of Micropterus salmoide fed diet OxSe1.2/V(E)160 showed inflammation and hemorrhage symptoms at the base of dorsal, pectoral, and tail fin. Fish in all treatments survived well (above 90 %). Feed intakes (88.42-89.58 g fish(-1)) of all treatments were comparable. Growth performances (weight gain and specific growth rate) and feed utilization (feed and protein efficiency ratio) were significantly impaired by dietary oil oxidation, and they did not benefit from neither V(E) nor Se supplementation. Regardless of dietary V(E) and Se supplementation, oxidized oil ingestion resulted in markedly decreased hepatosomatic index and intraperitoneal fat ratio. Oxidized oil ingestion also induced markedly lower liver and muscle lipid contents, and these effects could be alleviated by dietary Se supplementation. Dietary oil oxidation stimulated hepatic catalase activities relative to the control, and supplementation of V(E) abrogated this effect. Hepatic reduced glutathione content in the control was markedly higher than that of treatment OxSe1.2/V(E)160, without any significant differences comparing with the other oxidized oil receiving groups. Hepatic glutathione peroxidase activity and liver Se concentration reflected dietary Se profile, whereas liver V(E) level reflected dietary V(E) profile. Compared with the control, fish fed diet OxSe1.2/V(E)160 obtained markedly higher serum, liver and muscle malondialdehyde contents, which droppe significantly with increasing either V(E) or Se supplementation. In conclusion, the overall results in this study suggested that both V(E) and Se inclusion could protect largemouth bass from the oxidative damage challenged by dietary oil oxidation.
Collapse
Affiliation(s)
- Yong-Jun Chen
- Nutrition Laboratory, Institute of Aquatic Economical Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Varady J, Ringseis R, Eder K. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs. Lipids Health Dis 2012; 11:34. [PMID: 22394566 PMCID: PMC3807756 DOI: 10.1186/1476-511x-11-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21), whose expression is induced by peroxisome proliferator-activated receptor α (PPARα), has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P < 0.05), and the protein concentrations of FGF21 in plasma tended to be increased (P < 0.1) in comparison to control pigs. Moreover, pigs fed the oxidized fat had increased transcript levels of the PPARα target genes acyl-CoA oxidase, carnitine palmitoyltransferase-1 and novel organic cation transporter 2 in the liver (P < 0.05), indicative of PPARα activation. Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.
Collapse
Affiliation(s)
- Juliane Varady
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
28
|
Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation. Br J Nutr 2011; 106 Suppl 1:S131-4. [PMID: 22005409 DOI: 10.1017/s0007114511001826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion.
Collapse
|
29
|
Yue H, Wang J, Qi X, Ji F, Liu M, Wu S, Zhang H, Qi G. Effects of dietary oxidized oil on laying performance, lipid metabolism, and apolipoprotein gene expression in laying hens. Poult Sci 2011; 90:1728-36. [DOI: 10.3382/ps.2011-01354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Açıkgöz Z, Bayraktar H, Altan O, Akhisaroglu ST, Kırkpınar F, Altun Z. The effects of moderately oxidised dietary oil with or without vitamin E supplementation on performance, nutrient digestibility, some blood traits, lipid peroxidation and antioxidant defence of male broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1277-1282. [PMID: 21337576 DOI: 10.1002/jsfa.4311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 12/21/2010] [Accepted: 01/01/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND The experiment was conducted to determine the effects of dietary supplementation of oxidised oil with or without vitamin E on performance, nutrient digestibility, some blood traits, lipid peroxidation and antioxidant defence system of male broilers. RESULTS The supplementation of oxidised oil with or without vitamin E to the grower diets did not significantly affect performance, the pH and viscosity values of excreta and nutrient digestibilities in male broilers. Oxidised oil supplementation slightly increased plasma triglyceride and cholesterol concentrations but did not alter plasma glucose concentration. Although malondialdehyde (MDA) and nitric oxide concentrations tended to be higher in the oxidised oil group, these increases were not significant. Birds fed the diet containing oxidised oil had significantly lower superoxide dismutase (SOD) activity. However, no differences were observed in glutathione peroxidase (GSH-Px) activity and uric acid concentrations of broilers fed oxidised oil as compared to the control group. Dietary vitamin E supplementation decreased MDA concentration whereas increasing SOD activity, suggesting that vitamin E supplementation reduced susceptibility to lipid peroxidation. CONCLUSION The results showed that a milder oxidative stress occurred by supplementation of moderately oxidised oil to the diet of broilers and vitamin E supplementation had been helpful in alleviating lipid peroxidation.
Collapse
Affiliation(s)
- Zümrüt Açıkgöz
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Bornova, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
31
|
Regulation of genes involved in lipid metabolism by dietary oxidized fat. Mol Nutr Food Res 2010; 55:109-21. [DOI: 10.1002/mnfr.201000424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/07/2022]
|
32
|
Yen PL, Chen BH, Yang FL, Lu YF. Effects of deep-frying oil on blood pressure and oxidative stress in spontaneously hypertensive and normotensive rats. Nutrition 2010; 26:331-6. [PMID: 19592221 DOI: 10.1016/j.nut.2009.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/17/2009] [Accepted: 04/17/2009] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Ingestion of deep-frying oil has been reported to cause physiologic and histologic changes in experimental animals' tissue, increase the oxidative stress, and possibly lead to death. The purpose of this study was to investigate the effect of deep-frying oil on oxidative stress and blood pressure in spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. METHODS Deep-frying oil was prepared by frying fresh soybean oil at 180 +/- 5 degrees C for 8 h each day, for 4 consecutive days. Male SHR and WKY rats were fed diets containing 15% fresh soybean oil or deep-frying oil (DO) for 10 wk. RESULTS Rats ingesting the DO diet had lower feed efficiency and higher relative liver and kidney weights but deep frying had no significant influence on blood pressure in WKY or SHR rats. The DO diet had no effect on plasma renin activity, aldosterone content, or tissue angiotension-I-converting enzyme activity. WKY rats fed the DO diet showed significantly increased urinary thromboxane B(2) and 8-iso-prostaglandin F(2alpha) excretion, but not urinary 6-keto-prostaglandin F(1alpha) excretion. Diets containing deep-frying oil resulted in increased plasma thiobarbituric acid-reactive substances and nitric oxide contents and decreased plasma total antioxidant capacity in SHR and WKY rats. CONCLUSION The ingestion of deep-frying oil seemed not to influence blood pressure or its related parameters, but altered eicosanoid metabolism and elevated oxidative stress in SHR and WKY rats.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Nutritional Science, Fu Jen Catholic University, Hsinchuang, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Totani N, Morita A, Nishinaka M, Tateishi S, Kida H. A novel body weight-loss promoting oil prepared with vegetable protein. J Oleo Sci 2010; 59:41-8. [PMID: 20032598 DOI: 10.5650/jos.59.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that oil thermally processed with wheat gluten (gluten oil) exhibited safe weight-loss promoting effects in animal experiments. However, as the oil has a high color index, and its chemical properties and smell differ from those of fresh oil, it is uncertain if the oil will find market acceptance. In order to resolve the issue, frying oil was heated with soybean protein under reduced pressure (soybean protein oil), resulting in a product with an appearance, chemical properties and smell comparable to those of fresh oil. This improved oil was mixed (7 wt%) with powdered AIN93G no fat, defined standard diet and fed to 10-week-old Wistar rats ad libitum. The experimental rats grew normally, ingesting the same amount as that of the control rats; however, there was a negative correlation between body weight increases and fecal weight increases. After the 12-week feeding period, all the rats were sacrificed to obtain blood and organs. In the experimental group, liver weight, retroperitoneal fat tissue weight and serum triacylglycerol (TG) levels decreased significantly. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and histological analysis supported the safety of the improved oil. In conclusion, it was found that soybean protein oil inhibited body weight increases without any adverse effects in animal experiments. The oil holds promise as a novel dieting oil that steadily decreases body weight at an appropriate rate.
Collapse
Affiliation(s)
- Nagao Totani
- Department of Nutritional Physiology, Faculty of Nutrition, Kobe-Gakuin University, Kobe, 651-2180, Japan.
| | | | | | | | | |
Collapse
|
34
|
Burenjargal M, Totani N. Cytotoxic Compounds Generated in Heated Oil and Assimilation of Oil in Wistar Rats. J Oleo Sci 2009; 58:1-7. [DOI: 10.5650/jos.58.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Koch A, König B, Spielmann J, Leitner A, Stangl GI, Eder K. Thermally oxidized oil increases the expression of insulin-induced genes and inhibits activation of sterol regulatory element-binding protein-2 in rat liver. J Nutr 2007; 137:2018-23. [PMID: 17709436 DOI: 10.1093/jn/137.9.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of oxidized oils to rats or pigs causes a reduction of their cholesterol concentrations in liver and plasma. The reason for this effect is unknown. We tested the hypothesis that oxidized oils lower cholesterol concentrations by inhibiting the proteolytic activation of sterol regulatory element-binding protein (SREBP)-2 in the liver and transcription of its target genes involved in cholesterol synthesis and uptake through an upregulation of gene expression of insulin-induced genes (Insig). For 6 d, 18 rats were orally administered either sunflower oil (control group) or an oxidized oil prepared by heating sunflower oil. Rats administered the oxidized oil had higher messenger RNA (mRNA) concentrations of acyl-CoA oxidase and cytochrome P450 4A1 in the liver than control rats (P < 0.05), indicative of activation of PPARalpha. Furthermore, rats administered the oxidized oil had higher mRNA concentrations of Insig-1 and Insig-2a, a lower concentration of the mature SREBP-2 in the nucleus, lower mRNA concentrations of the SREBP-2 target genes 3-hydroxy-3-methylglutaryl CoA reductase and LDL receptor in their livers, and a lower concentration of cholesterol in liver, plasma, VLDL, and HDL than control rats (P < 0.05). In conclusion, this study shows that reduced cholesterol concentrations in liver and plasma of rats administered an oxidized oil were due to an inhibition of the activation of SREBP-2 by an upregulation of Insig, which in turn inhibited transcription of proteins involved in hepatic cholesterol synthesis and uptake.
Collapse
Affiliation(s)
- Alexander Koch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University, D-06108 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
36
|
Luci S, König B, Giemsa B, Huber S, Hause G, Kluge H, Stangl GI, Eder K. Feeding of a deep-fried fat causes PPARα activation in the liver of pigs as a non-proliferating species. Br J Nutr 2007; 97:872-82. [PMID: 17381980 DOI: 10.1017/s0007114507669256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have shown that dietary oxidised fats influence the lipid metabolism in rats by activation of PPARα. In this study, we investigated whether a mildly oxidised fat causes activation of PPARα in pigs which are non-proliferators like man. Eighteen pigs were assigned to two groups and received either a diet containing 90 g/kg of a fresh fat or the same diet with 90 g/kg of an oxidised fat prepared by heating for 24 h at 180°C in a deep fryer. Pigs fed the oxidised fat had a higher peroxisome count, a higher activity of catalase and a higher mRNA concentration of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver and a higher concentration of 3-hydroxybutyrate in plasma than pigs fed the fresh fat (P < 0·05). Hepatic mRNA concentrations of acyl-CoA oxidase and carnitine palmitoyltransferase-1 tended to be increased in pigs fed the oxidised fat compared to pigs fed the fresh fat (P < 0·10). Pigs fed the oxidised fat, moreover, had higher mRNA concentrations of sterol regulatory element-binding protein (SREBP)-1 and its target genes acetyl-CoA carboxylase and stearoyl-CoA desaturase in the liver and higher mRNA concentrations of SREBP-2 and its target genes 3-hydroxy-3-methylglutary-CoA reductase and LDL receptor in liver and small intestine. In conclusion, this study shows that even a mildly oxidised fat causes activation of PPARα in the liver of pigs. Up-regulation of SREBP and its target genes in liver and small intestine suggests that the oxidised fat could stimulate synthesis of cholesterol and TAG in these tissues.
Collapse
Affiliation(s)
- Sebastian Luci
- Institute of Agricultural and Nutritional Sciences, Martin-Luther- University of Halle- Wittenberg, Emil-Abderhalden-Strasse 26, D-06108 Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Klopotek A, Hirche F, Eder K. PPAR gamma ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp Biol Med (Maywood) 2006; 231:1365-72. [PMID: 16946405 DOI: 10.1177/153537020623100810] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cholesterol synthesis in animal cells is regulated by sterol regulatory element-binding protein (SREBP)-2. The objective of this study was to investigate whether activation of peroxisome proliferator-activatedreceptor (PPAR)-gamma influences the SREBP-2 dependent cholesterol synthesis in liver and intestinal cells. Therefore, HepG2 and Caco-2 cells were incubated with and without 10 or 30 microM of troglitazone, a synthetic PPAR gamma agonist, for 4 hrs. Incubation with 10 or 30 microM of troglitazone caused a significant, dose-dependent reduction of cholesterol synthesis in both HepG2 and Caco-2 cells (P < 0.05). HepG2 and Caco-2 cells incubated with 10 or 30 microM of troglitazone had also lower mRNA concentrations and lower nuclear protein concentrations of SREBP-2 than untreated control cells (P < 0.05). mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase and LDL receptor were also reduced in HepG2 and Caco-2 cells treated with 30 microM of troglitazone compared to control cells (P < 0.05). In conclusion, this study shows that PPAR gamma activation by troglitazone lowers the cholesterol synthesis in HepG2 and Caco-2 cells by reducing the concentration of nuclear SREBP-2 and successive downregulation of its target genes involved in cholesterol synthesis.
Collapse
Affiliation(s)
- Anett Klopotek
- Institute of Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, D-06108 Halle/Saale, Germany
| | | | | |
Collapse
|
38
|
König B, Eder K. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines. J Nutr Biochem 2005; 17:410-8. [PMID: 16216487 DOI: 10.1016/j.jnutbio.2005.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In rats, oxidized fats activate the peroxisome proliferator-activated receptor alpha (PPARalpha), leading to reduced triglyceride concentrations in liver, plasma and very low density lipoproteins. Oxidation products of linoleic acid constitute an important portion of oxidized dietary fats. This study was conducted to check whether the primary lipid peroxidation product of linoleic acid, 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), might be involved in the PPARalpha-activating effect of oxidized fats. Therefore, we examined the effect of 13-HPODE on the expression of PPARalpha target genes in the rat Fao and the human HepG2 hepatoma cell lines. In Fao cells, 13-HPODE increased the mRNA concentration of the PPARalpha target genes acyl-CoA oxidase (ACO), cytochrome P450 4A1 and carnitine-palmitoyltransferase 1A (CPT1A). Furthermore, the concentration of cellular and secreted triglycerides was reduced in Fao cells treated with 13-HPODE. Because PPARalpha mRNA was not influenced, we conclude that these effects are due to an activation of PPARalpha by 13-HPODE. In contrast, HepG2 cells seemed to be resistant to PPARalpha activation by 13-HPODE because no remarkable induction of the PPARalpha target genes ACO, CPT1A, mitochondrial HMG-CoA synthase and delta9-desaturase was observed. Consequently, cellular and secreted triglyceride levels were not changed after incubation of HepG2 cells with 13-HPODE. In conclusion, this study shows that 13-HPODE activates PPARalpha in rat Fao but not in human HepG2 hepatoma cells.
Collapse
Affiliation(s)
- Bettina König
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle (Saale), Germany.
| | | |
Collapse
|
39
|
Sanibal EAA, Mancini-Filho J. Frying oil and fat quality measured by chemical, physical, and test kit analyses. J AM OIL CHEM SOC 2004. [DOI: 10.1007/s11746-004-0990-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Sülzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J Nutr 2004; 134:1375-83. [PMID: 15173399 DOI: 10.1093/jn/134.6.1375] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidized fats affect animal metabolism in several ways. To gain a comprehensive understanding of the molecular mechanisms underlying the effects of dietary oxidized fats in rats at varying dietary vitamin E concentrations, the gene expression profile of the liver was monitored with an array containing 1176 binding sites for cDNAs. Rats were fed diets with a fresh fat and vitamin E concentrations of 25 or 250 mg alpha-tocopherol/kg (FF25, FF250 rats) or a fat heated at 50 degrees C for 38 d, with vitamin E concentrations of 25 or 250 mg alpha-tocopherol/kg (OF25, OF250 rats) for 63 d. Differences in gene expression were considered to be significant at a ratio of at least 1.4. In the OF25 rats, the expression of 47 genes was altered; in the OF250 rats, the expression of 37 genes was altered, and in the FF250 rats, the expression of 21 genes was altered compared with FF25 rats. In both OF25 and OF250 rats, a series of target genes of the peroxisome proliferator-activated receptor alpha (PPAR alpha) was upregulated. Determination of gene expression of acyl CoA oxidase and activity of catalase confirmed that oxidized fats caused peroxisome proliferation in the liver. In OF25 and OF250 rats, there was also upregulation of 12 and 5 genes involved in xenobiotic metabolism and stress response, of 7 and 7 genes involved in protein metabolism, of 5 and 2 genes encoding intracellular effectors or modulators and of 5 and 6 genes, respectively, encoding activators or repressors of transcription or translation. In conclusion, this study provides indirect evidence that dietary oxidized fats cause an activation of the PPAR alpha, irrespective of the dietary vitamin E concentration. Identification of several other differentially regulated genes may be helpful to understand the effects of oxidized fats on animal metabolism.
Collapse
Affiliation(s)
- Andrea Sülzle
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle/Saale, Germany
| | | | | |
Collapse
|
41
|
Keller U, Brandsch C, Eder K. The effect of dietary oxidized fats on the antioxidant status of erythrocytes and their susceptibility to haemolysis in rats and guinea pigs. J Anim Physiol Anim Nutr (Berl) 2004; 88:59-72. [DOI: 10.1046/j.1439-0396.2003.00461.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Eder K, Keller U, Hirche F, Brandsch C. Thermally oxidized dietary fats increase the susceptibility of rat LDL to lipid peroxidation but not their uptake by macrophages. J Nutr 2003; 133:2830-7. [PMID: 12949373 DOI: 10.1093/jn/133.9.2830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effect of dietary oxidized fats on the lipoprotein profile and the atherogenicity of LDL. Two experiments with male Sprague-Dawley rats were conducted. In Experiment 1, diets with either fresh fat or oxidized fat, prepared by heating at temperatures of 50, 105 or 190 degrees C, containing either 25 or 250 mg alpha-tocopherol equivalents/kg were used. In Experiment 2, diets with fresh or oxidized fat, heated at a temperature of 55 degrees C, containing 25 mg alpha-tocopherol equivalents/kg, were used. In Experiment 1, rats fed all types of oxidized fats had higher concentrations of HDL cholesterol and lower ratios between plasma and HDL cholesterol than rats fed the diet containing the fresh fat. As determined from the lag time, the susceptibility of LDL to copper-induced lipid peroxidation was higher in rats fed oxidized fats heated at 105 or 190 degrees C than in rats fed the diets containing the fresh fat or the oxidized fat treated at 50 degrees C, irrespective of the dietary vitamin E concentration. However, in Experiment 2, the composition of LDL apolipoproteins and uptake of LDL by macrophages were not different between rats fed the fresh fat diet and those fed the oxidized fat diet. We conclude that ingestion of oxidized fats does not adversely affect the lipoprotein profile in the rat model used, and does not cause modifications of apolipoproteins that would lead to enhanced uptake of LDL via macrophage scavenger receptors.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Emil-Abderhalden-Strassse 26, D-06108 Halle/Saale, Germany.
| | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Lipid oxidation is the cause of important deteriorative changes in chemical, sensory and nutritional food properties. In particular, the question of whether oxidized fats in the diet may be detrimental to health is nowadays of the upmost concern, but finding an answer is not easy and requires careful consideration of different aspects of lipid oxidation. RECENT FINDINGS In this review, the most recent works on the formation, nature and evaluation of oxidized dietary lipids are addressed; important issues such as the difficulties encountered in estimating their intake and the relationships between oxidants and antioxidants in the diet are discussed, and the latest studies on health implications of oxidized lipids are summarized. SUMMARY The current literature reflects various important points. At present, there is no information on the intake of oxidized fats, which is essential to know if the amount of oxidized lipids in normal diets is sufficient to cause the physiological effects claimed. Recently, relevant advances in analytical methodologies for quantitation of specific oxidation compounds have been reported, although their application to improve the analytical definition of the oxidized substrate used in nutritional studies is still a goal to be reached. Alternatively, one of the most promising current tendencies in this field is the study of the molecular targets by which dietary oxidized lipids can influence health. Overall, more selected research based on coordinated multidisciplinary studies is needed to define the role of dietary oxidized fats in health.
Collapse
|
44
|
Abstract
We studied the effects of red wine consumption on the FA composition of rat kidney. Four groups of adult male rats were fed a balanced diet for 10 wk. The drinking fluid was water (control), red wine, alcohol-free red wine, or ethanol (12.5%, vol/vol). FA composition, lipid peroxidation, and cytochrome P450 content were determined in the kidney. The antioxidant capacity of plasma was also measured. Ethanol decreased the content of long-chain PUFA, whereas red wine maintained the levels of arachidonic (20:4n-6) and eicosapentaenoic (20:5n-3) acids and alcohol-free red wine significantly increased the levels of 20:4n-6. Lipid peroxidation in the red wine and alcohol-free red wine groups was significantly lower than that of both the control and ethanol groups. The diminished renal lipid peroxidation was associated with an increased antioxidant capacity of plasma. Renal cytochrome P450 was elevated by 50% in the ethanol group and diminished by 20% in the alcohol-free red wine group. These data suggest that moderate red wine consumption could contribute to the preservation of the contents of n-3 and n-6 PUFA, particularly 20:4n-6, in rat kidney. Although ethanol increased the content of cytochrome P450 in the kidney, this effect was eliminated by the nonalcoholic components of red wine.
Collapse
Affiliation(s)
- Julia Araya
- Departamento de Nutrición, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
45
|
Eder K, Suelzle A, Skufca P, Brandsch C, Hirche F. Effects of dietary thermoxidized fats on expression and activities of hepatic lipogenic enzymes in rats. Lipids 2003; 38:31-8. [PMID: 12669817 DOI: 10.1007/s11745-003-1028-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was undertaken to investigate the effect of dietary oxidized fats on the relative mRNA concentrations and the activities of fatty acid synthase (FAS) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver of rats treated with vitamin E or selenium. Two experiments with male Sprague-Dawley rats were carried out. The first experiment included eight groups of rats fed diets with either fresh fat or three different types of oxidized fat, prepared by heating at temperatures of 50, 105, or 190 degrees C, over a period of 6 wk. The diets contained either 25 or 250 mg alpha-tocopherol equivalents per kg. The second experiment included four groups of rats fed diets with fresh fat or oxidized fat, heated at a temperature of 55 degrees C, containing either 70 or 570 microg selenium per kg, over a period of 8 wk. Feeding the diets with oxidized fats led to a significant overall reduction of the relative mRNA concentrations and the activities of FAS and G6PDH in both experiments. The effects of the oxidized fats on mRNA concentrations and activities of these enzymes were independent of the dietary concentrations of vitamin E or selenium. Moreover, in both experiments the rats whose diet contained the oxidized fats had significantly lower concentrations of TG in liver, plasma, and VLDL than the rats whose diet contained fresh fat. The study suggests that oxidized fats contain substances that suppress gene expression of lipogenic enzymes in the liver.
Collapse
Affiliation(s)
- Klaus Eder
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle/Saale, Germany.
| | | | | | | | | |
Collapse
|
46
|
Penumetcha M, Khan-Merchant N, Parthasarathy S. Enhanced solubilization and intestinal absorption of cholesterol by oxidized linoleic acid. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30463-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Eder K, Skufca P, Brandsch C. Thermally oxidized dietary fats increase plasma thyroxine concentrations in rats irrespective of the vitamin E and selenium supply. J Nutr 2002; 132:1275-81. [PMID: 12042446 DOI: 10.1093/jn/132.6.1275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recent study demonstrated that feeding a diet with a thermally oxidized fat increases the concentration of thyroxine in plasma of miniature pigs. This study was undertaken to investigate whether the effect of thermally oxidized fats on plasma thyroid hormones is influenced by the supply of vitamin E or selenium. Two experiments were conducted using male Sprague-Dawley rats. The first experiment included eight groups of rats fed diets with either fresh fat or three different types of oxidized fat prepared by heating at 50 degrees C, 105 degrees C or 190 degrees C for 42 d. The diets contained either 25 or 250 mg alpha-tocopherol equivalents per kg. The second experiment included four groups of rats fed diets with fresh fat or oxidized fat heated at 55 degrees C, containing either 70 or 570 microg selenium per kg for 56 d. Rats fed all types of oxidized fats had higher concentrations of free and total thyroxine in plasma than rats fed the equivalent diets with fresh oil; the concentrations of triiodothyronine and thyroid-stimulating hormone did not differ between rats fed fresh and those fed oxidized fats. The effect of the oxidized fat on the plasma thyroxine concentration was completely independent of the supply of vitamin E (expt. 1) and the supply of selenium (expt. 2). Our results confirm that oxidized dietary fats raise the plasma thyroxine concentration and show that this phenomenon is independent of the vitamin E and selenium status.
Collapse
Affiliation(s)
- Klaus Eder
- Institut für Ernährungswissenschaften, Martin Luther Universität Halle-Wittenberg, D-06108 Halle/Saale, Germany.
| | | | | |
Collapse
|
48
|
Müller C, Friedrichs B, Wingler K, Brigelius-Flohé R. Perturbation of lipid metabolism by linoleic acid hydroperoxide in CaCo-2 cells. Biol Chem 2002; 383:637-48. [PMID: 12033453 DOI: 10.1515/bc.2002.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dietary hydroperoxides are being discussed as potential health hazards contributing to oxidative stress-related diseases. However, how food-born hydroperoxides could exert systemic effects remains elusive in view of the limited chances to be absorbed. Therefore, the metabolic fate of 13-HPODE (13-hydroperoxy octadecadienoic acid), 13-HODE (13-hydroxy octadecadienoic acid) and linoleic acid (LA) was investigated in a CaCo-2 cell monolayer as a model of the intestinal epithelium. [1-14C]-13-HPODE, up to a non-cytotoxic concentration of 100 microM, did not cross the CaCo-2 cell monolayer unreduced if applied to the luminal side. The [1 -14C]-HPODE-derived radioactivity was preferentially recovered from intracellular and released diacylglycerols (DG), phospholipids (PL) and cholesterol esterified with oxidized fatty acids (oxCE). A similar distribution pattern was obtained with 13-HODE. In contrast, LA is preferentially incorporated into triacylglycerols (TG), cholesteryl esters (CE) and PL (but mainly released as TG). 13-HPODE dose-dependently decreased the incorporation of LA into released TG, while LA accumulated in cellular and released DGs, effects similarily exerted by 13-HODE. We concluded that food-born hydroperoxy fatty acids are instantly reduced by the gastrointestinal glutathione peroxidase, which was previously shown to persist in selenium deficiency. Accordingly, modulation of the glutathione peroxidases by selenium deprivation/repletion did not modify the disturbance of the lipid metabolism by 13-HPODE. Thus, hydroperoxy fatty acids disturb intestinal lipid metabolism by being esterified as hydroxy fatty acids into complex lipids, and may render lipoproteins synthesized thereof susceptible to further oxidative modifications.
Collapse
Affiliation(s)
- Cordula Müller
- German Institute of Human Nutrition, University of Potsdam, Bergholz-Rehbrücke
| | | | | | | |
Collapse
|
49
|
Chao PM, Chao CY, Lin FJ, Huang C. Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr 2001; 131:3166-74. [PMID: 11739861 DOI: 10.1093/jn/131.12.3166] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidized LDL (oxLDL) and its component hydroxy fatty acids were shown to activate peroxisome proliferator-activating receptor alpha (PPARalpha) and gamma (PPARgamma). To test the hypothesis that lipid oxidation products in oxidized frying oil (OFO) can activate PPARalpha and up-regulate its target genes, a feeding experiment and a transactivation experiment were conducted. Based on a 2 x 2 factorial design, four groups of Sprague-Dawley male weanling rats were fed diets containing either high (20 g/100 g, HO and HF) or low (5 g/100 g, LO and LF) levels of oxidized frying soybean oil (HO and LO) or fresh soybean oil (HF and LF) for 6 wk. The OFO sample was prepared by frying wheat dough sheets in soybean oil at 205 +/- 5 degrees C for 24 h. OFO dose dependently and significantly increased (P < 0.05) mRNA of acyl-CoA oxidase (ACO) and cytochrome P(450) 4A1(CYP4A1) in liver of rats. Dietary OFO also dose dependently increased liver microsomal CYP4A protein (P < 0.05). The activity of hepatic ACO of the HO group was sixfold that of the HF group (P < 0.05). Plasma total lipids, liver triglycerides, cholesterol and total lipids were reduced in rats fed the LO and HO diets (P < 0.05). Through the ligand binding domain of PPARalpha, the hydrolyzed OFO enhanced the expression of alkaline phosphatase (ALP) reporter gene to a significantly greater extent (P < 0.05) than the hydrolyzed fresh soybean oil in a transactivation assay using a clone of CHO K1 cells stably expressing Gal4-PPARalpha chimeric receptor and UAS4-ALP reporter. The results support our hypothesis that dietary OFO, by activating PPARalpha, up-regulates the expression of PPARalpha downstream genes and alters lipid metabolism in rats.
Collapse
Affiliation(s)
- P M Chao
- Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
50
|
Kettler SI, Eder K, Kettler A, Kirchgessner M. Zinc deficiency and the activities of lipoprotein lipase in plasma and tissues of rats force-fed diets with coconut oil or fish oil. J Nutr Biochem 2000; 11:132-8. [PMID: 10742657 DOI: 10.1016/s0955-2863(99)00084-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.
Collapse
Affiliation(s)
- S I Kettler
- Institute of Nutrition Physiology, Technical University of Munich, Freising, Germany
| | | | | | | |
Collapse
|