1
|
Zhang J, Han K, Jiao W, Su P, Wang D, Zhu J, Zhu M, Li L. Green mechanochemical activation of solid persulfate to remove PAHs in soil: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134489. [PMID: 38735181 DOI: 10.1016/j.jhazmat.2024.134489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Due to the high biotoxicity and persistence of polycyclic aromatic hydrocarbons (PAHs), the remediation of PAHs-contaminated soil becomes an intractable problem. Persulfate-based advanced oxidation processes are widely used to degrade PAHs in aquatic environment. However, they are not convenient for used in soil due to the heterogeneity and complexity of soil matrix. In this study, a green and convenient ball milling process is introduced to activate persulfate for the remediation of PAHs-contaminated soil. About 82.5% PAHs were removed with 10% wt. Na2S2O8 (PS) addition and ball-milling for 2 h under 500 r/min. The degradation of PAHs is attributed to the attack of radicals (SO4·- and·OH) generated from the activation of PS by mechanochemistry. Moreover, stable Si-O bonds were disrupted during ball-milling process, and formed free electron on the surface of soil particles. This facilitates the electron transfer from oxidants to contaminants. The particle size, surface element composition, functional group, and thermogravimetric analysis confirmed the slight disturbance of ball-milling-assisted PS process on the physical and chemical properties of soil. Therefore, ball-milling assisted PS approach would be a promising technology for the remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Junke Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexiao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Peidong Su
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Daxuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lin Li
- Department of Civil and Architectural Engineering, Tennessee State University, Nashville, TN 37209, United States
| |
Collapse
|
2
|
Brillas E, Oliver R. Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices. CHEMOSPHERE 2024; 355:141766. [PMID: 38527631 DOI: 10.1016/j.chemosphere.2024.141766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcclona, Spain.
| | - Ramon Oliver
- Departament d'Enginyeria Químia, Universitat Politècnica de Catalunya, Avinguda Eduard Maristany16, edifici I, segona planta, Barcelona, Spain.
| |
Collapse
|
3
|
Lin Y, Ge Q, Wan J, Wang Y, Zhu C. Insights into the influence and mechanism of biomass substrate and thermal conversion conditions on FeN doped biochar as a persulfate activator for sulfamethoxazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168101. [PMID: 37884134 DOI: 10.1016/j.scitotenv.2023.168101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Fe-N-doped biochar is a promising material for advanced-oxidation heterogeneous catalysis, but its adsorption-catalytic performance is significantly affected by biomass feedstock compositions and thermal conversion conditions and is not yet conclusive. In this paper, four lignocellulosic biomasses (rice straw, bamboo, poplar wood, and corn stover) were selected as raw materials to prepare Fe-N-biochar as persulfate activators by hydrothermal-thermolysis composite. Their lignocellulosic fractions and elemental contents were detected, and a variety of thermal conversion conditions were investigated for the rice straw-based Fe-N-biochar with the best activation performance among them. It was found that the holocellulose and lignin contents of the biomass affected the catalytic activity of the prepared catalysts with correlation coefficients of 0.57 and -0.93, respectively. Increasing the pyrolysis temperature from 500 °C to 800 °C could increase the ratio of Fe2+/Fe3+ and the relative amounts of CC, graphitized N, and oxidized N in the catalyst by 0.17 %, 7 %, 12 %, and 18 %, respectively. Extending the pyrolysis time from 0.5 to 2 h was able to increase the relative content of CC, graphitized N, and oxidized N by 0.18 %, 3 %, 9 %, and 4 %, respectively. The most catalytically active rice straw-derived Fe-NRBC was able to remove 91.7 % of sulfamethoxazole (SMX) and 93.07 % of TOC mainly via ·SO4- and ·OH in an adsorption-catalytic reaction of 60 min with a k of 0.047 min-1 and the main active sites are FeN, Fe0, pyridine N, oxidized N and CO. Finally, degradation intermediates and pathways were also characterized. This paper is expected to provide a basis for the future targeted regulation of Fe-N biochar for water pollution treatment.
Collapse
Affiliation(s)
- Yining Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiang Ge
- China CEC Engineering Corporation, Changsha 410000, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Congyun Zhu
- China CEC Engineering Corporation, Changsha 410000, China
| |
Collapse
|
4
|
Ahmad I, Alshimaysawee S, Romero-Parra RM, Al-Hamdani MM, Rahimpoor R, Mengelizadeh N, Balarak D. Application of a novel composite of Fe 3O 4@SiO 2/PAEDTC surrounded by MIL-101(Fe) for photocatalytic degradation of penicillin G under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100018-100036. [PMID: 37620704 DOI: 10.1007/s11356-023-29283-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The novel photocatalyst of Fe3O4@SiO2/PAEDTC@MIL-101(Fe) was prepared based on the sol-gel method, and its structure and morphology were determined by SEM mapping, TEM, XRD, FTIR, and N2 adsorption-desorption analyses. The photocatalytic activity of nanocomposite was evaluated in comparison with other particles as well as adsorption and photolysis processes. The effect of operating parameters showed that the complete degradation of penicillin G (PNG) can be provided at a photocatalyst dosage of 0.6 g/L, radiation intensity of 36 W, pH of 5, and time of 60 min. In the optimum condition, 84% TOC removal was attained and the BOD5/COD rate for the treated effluent was above 0.4, which was representative of the high biodegradability of the treated effluent compared to the raw sample. The findings of energy consumption showed that PNG can be easily and effectively treated by the photocatalytic process based on magnetic MIL-101(Fe) with electrical energy per order between 10 and 20.87 kWh/m3. Due to the excellent interaction between the MIL-101(Fe) and Fe3O4@SiO2/PAEDTC, the photocatalyst stability test showed a recyclability of the particles for 5 consecutive reaction cycles with a minimum reduction of 7%. Solution treated with photocatalyst under UV and visible light sources explained that the toxicity of the effluent after treatment is significantly reduced with the growth of Escherichia coli. Scavenging experiments showed that •OH radical and hole (h+) are the main agents in degrading PNG to CO2, H2O, and biodegradable and low-toxicity products. Finally, the findings of the diagnostic analysis and comparative experiments proved that with the interaction of Fe3O4@SiO2, NH2, and MIL-101(Fe), a lower band gap can be prepared for more absorption of photons and pollutant and also more and faster production of active radicals.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | | | - Razzagh Rahimpoor
- Department of Occupational Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Davoud Balarak
- Department of Environmental Health Engineering, Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
5
|
Ramakrishnan RK, Venkateshaiah A, Grübel K, Kudlek E, Silvestri D, Padil VVT, Ghanbari F, Černík M, Wacławek S. UV-activated persulfates oxidation of anthraquinone dye: Kinetics and ecotoxicological assessment. ENVIRONMENTAL RESEARCH 2023; 229:115910. [PMID: 37062479 DOI: 10.1016/j.envres.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) are gaining popularity as a feasible alternative for removing recalcitrant pollutants in an aqueous environment. Persulfates, namely peroxydisulfate (PDS) and peroxymonosulfate (PMS) are the most common sulfate radical donors. Persulfates activation by ultraviolet (UV) irradiation is considered feasible due to the high concentration of radicals produced as well as the lack of catalysts leaching. The research focuses on determining the impact of activated PDS and PMS on the degradation of anthraquinone dye, i.e., Acid Blue 129 (AB129). UV-activated PDS and PMS can quickly degrade the AB129 as well as restrict the formation of by-products. This could explain the reduced ecotoxicity levels of the treated water after degradation, using an aquatic plant (Lemna minor) and a crustacean (Daphnia magna). This, on the other hand, can ensure that the sulfate radical-based processes can be an environmentally friendly technology.
Collapse
Affiliation(s)
- Rohith K Ramakrishnan
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Abhilash Venkateshaiah
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Klaudiusz Grübel
- Department of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biala, Poland
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic.
| | - Vinod V T Padil
- Amrita School for Sustainable Development (AST), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri Campus, Amritapuri, Clappana P. O., Kollam, 690525, Kerala, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic.
| |
Collapse
|
6
|
Zhang H, Yan Z, Wan J, Wang Y, Ye G, Huang S, Zeng C, Yi J. Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: Electron transfer mechanism of non-free radical degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138169. [PMID: 35805828 PMCID: PMC9266466 DOI: 10.3390/ijerph19138169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Nitrophenols are toxic substances that present humans and animals with the risk of deformities, mutations, or cancer when ingested or inhaled. Traditional water treatment technologies have high costs and low p-nitrophenol (PNP) removal efficiency. Therefore, an ultraviolet (UV)-activated granular activated carbon supported nano-zero-valent-iron-cobalt (Co-nZVI/GAC) activated persulfate (PS) system was constructed to efficiently degrade PNP with Co-nZVI/GAC dosage, PS concentration, UV power, and pH as dependent variables and PNP removal rate as response values. A mathematical model between the factors and response values was developed using a central composite design (CCD) model. The model-fitting results showed that the PNP degradation rate was 96.7%, close to the predicted value of 98.05 when validation tests were performed under Co-nZVI/GAC injection conditions of 0.827 g/L, PS concentration of 3.811 mmol/L, UV power of 39.496 W, and pH of 2.838. This study demonstrates the feasibility of the response surface methodology for optimizing the UV-activated Co-nZVI/GAC-activated PS degradation of PNP.
Collapse
|
8
|
Oxone activated TiO2 in presence of UV-LED light for the degradation of moxifloxacin: A mechanistic study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Xiao T, Wang Y, Wan J, Ma Y, Yan Z, Huang S, Zeng C. Fe-N-C catalyst with Fe-N X sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127380. [PMID: 34879571 DOI: 10.1016/j.jhazmat.2021.127380] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Developing high-efficient catalysts is crucial for activating peroxymonosulfate (PMS). Fe-N-C catalysts exhibit excellent performance for PMS activation because of the contribution of doped N, Fe-Nx and Fe3C sites. In our work, a series of Fe-N-C catalysts with high-performance was obtained by pyrolyzing Fe-Zn-MOFs precursors. During pyrolysis process, the change of chemical bonds and formation of active sites in the precursor were elucidated by characterization analysis and related catalytic experiments. Graphitic N, Fe-Nx and Fe3C were confirmed to activate PMS synergistically for ciprofloxacin (CIP) degradation. Besides, the catalytic performance was proportional to the amount of doped iron and calcination temperature. Moreover, the Fe-N-C-3-800/PMS system not only displayed good recycling performance, but also had high anti-interference ability. Integrated with quenching and electron paramagnetic resonance (EPR) experiments, a non-radical pathway dominated by 1O2 was proposed. Furthermore, PMS could bond to Fe-N-C-3-800 to form intermediate for charge transfer, thus accelerate electron transfer between CIP and PMS to realize degradation of CIP. Six main pathways of CIP degradation were proposed, which include bond fission of N-C on piperazine ring and direct oxidation of CIP. This study provided a new idea for the design of heterogeneous carbon catalysts in advanced oxidation field.
Collapse
Affiliation(s)
- Tong Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuhong Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cheng Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Karthick A, Chattopadhyay P. Optimum conditions of zero-valent iron nanoparticle stabilized foam application for diesel-contaminated soil remediation involving three major soil types. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:611. [PMID: 34462822 DOI: 10.1007/s10661-021-09369-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stability of foam, enhanced by nano zero-valent iron (nZVI) and its optimized constituents, may have significant potential for effective treatment of soil contaminated with diesel oil-a major environmental problem. The optimum diesel removal efficiency from distinct types of soil accomplished by the unique application of such foams as well as the optimum conditions of the foaming constituents have not been reported in literature so far. Hence, in this work, the removal of diesel contaminant from different soil types (desert, coastal, clay soil) is optimized, and the optimized results are reported for the first time, using response surface methodology (RSM), for alkylpolyglucoside phosphate (APG-Ph) foam, stabilized by nZVI. The effect of concentrations of APG-Ph (0.02, 0.04, 0.06, 0.08, and 0.1 volume %) and nZVI (2, 3, and 3.5 mg/l) on diesel removal efficacy from soil is studied using Box-Behnken design (BBD) of response surface methodology (RSM). Maximum diesel removal efficiency obtained at a concentration of 0.1 volume % APG-Ph foam with 3.5 mg/l nZVI for desert, coastal, and clay soil is 94.6, 95.3, and 57.5%, respectively. The optimum concentrations of APG-Ph and nZVI are found to be 0.98 volume % and 0.8 mg/l, respectively. Validation of this optimal condition experimentally results in highest removal efficiency of 98.3, 97.2, and 75.9% for desert, coastal, and clay soil respectively. This is in good agreement with the predicted values by RSM (98.67, 97.57, and 76.85%). The maximum diesel removal efficiency predicted at optimal concentration of APG-Ph and nZVI is significantly larger than the results reported in literature in last three years.
Collapse
Affiliation(s)
- Arun Karthick
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Vidyavihar, 333031, Rajasthan, India
| | - Pradipta Chattopadhyay
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Vidyavihar, 333031, Rajasthan, India.
| |
Collapse
|
11
|
Degradation and mineralization of methylene blue dye by peroxymonosulfate/ Mn3O4 nanoparticles using central composite design: Kinetic study. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Wang L, Lan X, Peng W, Wang Z. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124436. [PMID: 33191023 DOI: 10.1016/j.jhazmat.2020.124436] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The identification of reactive radical species using quenching and electron paramagnetic resonance (EPR) tests has attracted extensive attention, but some mistakes or misinterpretations are often present in recent literature. This review aims to clarify the corresponding issues through surveying literature, including the uncertainty about the identity of radicals in the bulk solution or adsorbed on the catalyst surface in quenching tests, selection of proper scavengers, data explanation for incomplete inhibition, the inconsistent results between quenching and EPR tests (e.g., SO4•- is predominant in quenching test while the signal of •OH predominates in EPR test), and the incorrect identification of EPR signals (e.g., SO4•- is identified by indiscernible or incorrect signals). In addition, this review outlines the transformation of radicals for better tracing the origin of radicals. It is anticipated that this review can help in avoiding mistakes while investigating catalytic oxidative mechanism with quenching and EPR tests.
Collapse
Affiliation(s)
- Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Lan
- Shanghai Institute of Quality Inspection and Technical Research, 900 Jiangyue Road, Minhang District, Shanghai 201114, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
13
|
Silva IDN, Damasceno Júnior E, Almeida JMFD, Dias EF, Silva MDSBD, Fernandes NS. Experimental design for optimization of the photocatalytic degradation process of the remazol red dye by the TiO 2/expanded perlite composite. ENVIRONMENTAL TECHNOLOGY 2021; 42:1493-1505. [PMID: 31554491 DOI: 10.1080/09593330.2019.1672794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, the photocatalytic decolorization of remazol red dye (RR) was evaluated using TiO2 based composites supported on the expanded perlite (T-EP-10% and T-EP-30%). The characterization techniques used in this work were IR, XRD, XRF and particle size analysis. In order to optimize the RR discolouration process, a factorial planning was applied. The best experimental conditions are the RR initial concentration of 10 mg L-1, composite T-EP-30% and both PHs showed positive results in the decolorization. The tests performed at pH 2.0 showed 100% removal of RR colour in 180 min and at pH 5.0 100% colour removal was obtained in 120 min. The decolorization process follows a pseudo first-order-kinetics, the kapp of 0.01191 min-1 for the tests at pH 5.0 and 0.00812 min-1 for the tests at pH 2.0. The results of energy cost shown that in both pH 2.0 and 5.0 tests were feasible in efficiency and economically. The energy consumption for the test at pH 2.0 was 0.297 kWhdm3 and final cost of R$ 0.163, while the energy consumption for the test at pH 5.0 was 0.198 kWhdm3 and a final cost of R$ 0.111.
Collapse
Affiliation(s)
- Isabel do Nascimento Silva
- Laboratório de Química Analítica e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Instituto de Química, Natal, Brasil
| | - Elmar Damasceno Júnior
- Laboratório de Química Analítica e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Instituto de Química, Natal, Brasil
| | | | - Elizete Faustino Dias
- Laboratório de Química Analítica e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Instituto de Química, Natal, Brasil
| | | | - Nedja Suely Fernandes
- Laboratório de Química Analítica e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Instituto de Química, Natal, Brasil
| |
Collapse
|
14
|
Zhang Y, Li J, Li L, Zhou Y. Influence of parameters on the photocatalytic bromate removal by F-graphene-TiO 2. ENVIRONMENTAL TECHNOLOGY 2021; 42:248-256. [PMID: 31159659 DOI: 10.1080/09593330.2019.1625960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Batch experiments of photocatalytic bromate removal by F-Graphene-TiO2 (FGT) were conducted under different reaction conditions. The dosage of FGT, initial bromate concentration, pH, water temperature, and the coexisting substances including common halogen anions, oxyacid ion and humic acid factors affecting the efficiencies of bromate reduction were systematically discussed. Increasing the temperature or the dosage of FGT increased the bromate removal efficiency. The efficiency of bromate reduction was significantly increased by decreasing the pH from 6 to 5, because the isoelectric point of FGT samples was found at a pH of approximately 6.0. The coexisting anions, such as chloride ion, bromide ion, nitrate, chlorate and sulfate, had modest inhibitory effects on bromate removal under the experimental conditions, and the inhibitory effect from fluoride ion was relatively larger. These observations indicate that bromate reduction by FGT is a surface-mediated process, the competitive consumption of photogenerated electrons and the competitive adsorption by coexisting anions on FGT samples probably lead to the decreasing of bromate reduction efficiency. And the increase of appropriate dosage can partly eliminate the influence of coexisting ions. Over 90% of 100 μg/L bromate could be removed with a 0.05 g/L dosage of F1.0G0.1T in 15 min under UV irradiation at intensity of 26 μW/cm2 and pH of 5.2. Moreover, the specific roles of photogenerated electron-hole pairs and the mechanism of photocatalytic bromate reduction were also discussed. These findings suggest that photocatalytic bromate removal by FGT/UV can be a promising method for bromate from water.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Civil Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiarong Li
- Department of Civil Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Lindan Li
- Department of Civil Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongchao Zhou
- Department of Civil Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
An Experimental Investigation of Surface Characterization for Zirconia Ceramic Using Electrochemical Discharge Machining Process. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05059-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Study of the Digestate as an Innovative and Low-Cost Adsorbent for the Removal of Dyes in Wastewater. Processes (Basel) 2020. [DOI: 10.3390/pr8070852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.
Collapse
|
17
|
Farzaneh Saadati, Keramati N, Ghazi MM. Optimization of Photocatalytic Degradation of Tetracycline Using Titania Based on Natural Zeolite by Response Surface Approach. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Asgari G, Shabanloo A, Salari M, Eslami F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. ENVIRONMENTAL RESEARCH 2020; 184:109367. [PMID: 32199323 DOI: 10.1016/j.envres.2020.109367] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The present study investigates the synergistic performance of the sonophotolytic-activated ZnO/persulfate (US/UV/ZnO/PS) process in the decolorization of acid blue 113 (AB113) dye from aqueous solution and its feasibility for the treatment of real textile wastewater. Decolorization of AB113 solution was modeled by central composite design-response surface methodology (CCD-RSM) and artificial neural network (ANN) approaches and optimized by CCD-RSM and genetic algorithm (GA) approaches. Statistical metrics indicated that both CCD-RSM and ANN approaches seemed satisfactory. However, the results of statistical fit measures indicated a relative superiority of CCD-RSM as compared to the ANN approach. The results of optimization of the process parameters by CCD-RSM and GA approaches appeared to be similar as follows: pH = 6.1, reaction time = 25 min, US power density = 300 W/L, ZnO = 0.88 g/L and PS = 2.43 mmol/L. The synergistic effect of the hybrid US/UV/ZnO/PS process in comparison with its individual processes (US, UV, ZnO, and PS) was found to be 54.3%. Quenching experiments discovered that and HO are the main oxidizing radicals in a mildly acidic condition of the reaction solution. The removal efficiency of AB113 in the presence of some anions decreased in the order of bicarbonate > sulfate > phosphate > nitrate > chloride. Further, the reusability feasibility of ZnO showed that the ZnO material retained its photocatalytic property after five successive cycles of reusability test, while Zn2+ ion concentration in the reaction solution was measured to be 2.81 mg/L. The findings also indicated that the integrated process application suppresses extremely chemical and electrical costs. The study of the feasibility of the US/UV/ZnO/PS process in the treatment of real textile wastewater was done by determining COD, TOC and BOD5/COD ratio. Results demonstrated that the 96.6 and 97.1% reduction of COD and TOC was achieved after 5 and 7 h reaction time, respectively. The obtained BOD5/COD ratio changed from about 0.15 (for non-treated wastewater) to about 0.61 with increasing reaction time from zero to 90 min. In conclusion, the hybrid US/UV/ZnO/PS system can be proposed as a novel and promising approach to be utilized as a pretreatment technique before a biological treatment process to facilitate the biological treatment of recalcitrant textile wastewater.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Amir Shabanloo
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Mehdi Salari
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran.
| | - Fatemeh Eslami
- Department of Environmental Health Engineering, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
19
|
|
20
|
Synthesis and characterization of γ-Fe2O3 encapsulated NaY zeolites as solid adsorbent for degradation of ceftriaxone through heterogeneous catalytic advanced oxidation processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-019-01809-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Xian G, Niu L, Zhang G, Zhou N, Long Z, Zhi R. An efficient CuO-γFe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism. CHEMOSPHERE 2020; 242:125191. [PMID: 31675588 DOI: 10.1016/j.chemosphere.2019.125191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/25/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
CuO-γFe2O3 was fabricated as a novel and effective persulfate (PS) catalyst to remove bio-refractory organic pollutants. Characterization results showed that CuO-γFe2O3 possessed a relatively large surface area among transition metal oxides which provided favorable adsorption and activation sites for PS to degrade pollutants. There was an obvious synergy between CuO and γFe2O3 in the composite, which played 84.7% role in Acid orange 7 (AO7) removal. Under the optimal conditions (CuO-γFe2O3 dosage = 0.6 g L-1, PS dosage = 0.8 g L-1, unadjusted solution pH), almost complete AO7 was rapidly eliminated in 5 min. Moreover, the wide workable pH range (2-13), good stability (0.82 mg L-1 Cu leached, almost no Fe leached) and reusability (4 times) were the significant virtues of CuO-γFe2O3 for wastewater treatment. Besides, the reaction mechanism mainly based on the interaction among Cu(II/III) and Fe(II/III) species for sulfate radical (SO4-) generation was emphatically elucidated by the analyses of radicals, PS utilization, TOC removal and metal chemical states. Finally, CuO-γFe2O3+PS system displayed desirable removal of multiple organic pollutants with different molecular structures. In light of the prominent advantages of CuO-γFe2O3+PS, this work extended activated PS process in treating refractory organic wastewater.
Collapse
Affiliation(s)
- Guang Xian
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China; Department of Military Installations, Army Logistics University of PLA, Chongqing, 401311, China.
| | - Lijun Niu
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Ningyu Zhou
- Department of Military Installations, Army Logistics University of PLA, Chongqing, 401311, China.
| | - Zeqing Long
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Ran Zhi
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
22
|
Pirsaheb M, Moradi N. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway – a systematic review. RSC Adv 2020; 10:7396-7423. [PMID: 35492163 PMCID: PMC9049958 DOI: 10.1039/c9ra11025a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/06/2020] [Indexed: 12/07/2022] Open
Abstract
Along with the wide production, consumption and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health
- Department of Environmental Health Engineering
- School of Public Health
- Kermanshah University of Medical Sciences
- Kermanshah
| | - Negin Moradi
- Research Center for Environmental Determinants of Health
- Department of Environmental Health Engineering
- School of Public Health
- Kermanshah University of Medical Sciences
- Kermanshah
| |
Collapse
|
23
|
An L, Xiao P. Zero-valent iron/activated carbon microelectrolysis to activate peroxydisulfate for efficient degradation of chlortetracycline in aqueous solution. RSC Adv 2020; 10:19401-19409. [PMID: 35515435 PMCID: PMC9054107 DOI: 10.1039/d0ra03639k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
Tetracycline antibiotics are widely used in human and veterinary medicine; however, their gradual increase in the aquatic environment poses a serious threat to human health and ecosystems. The reactivity of peroxydisulfate (PDS) in the degradation of chlortetracycline (CTC) in aqueous solution using a zero-valent iron/activated carbon (AC) microelectrolysis method (Fe0–AC/PDS) was investigated by batch experiments. The results showed that the effects of different systems were as follows: Fe0–AC/PDS > Fe0/PDS > AC/PDS > Fe0–AC > AC > Fe0 > PDS. In the Fe0–AC/PDS system, the degradation efficiency of CTC could reach 88% under the following optimal experimental conditions: Fe0 dose of 0.4 g L−1, PDS dose of 2 g L−1, pH of 3 and initial CTC concentration of 50 mg L−1. The presence of Cl−, HCO3− and H2PO4− inhibited the degradation of CTC, while humic acid accelerated the degradation rate of CTC. The mineralization of CTC was evaluated from the TOC, with a value of 31.44% in 7 h. Free radical identification experiments showed that SO4−˙ and O2−˙ were involved in the degradation of CTC. The iron and carbon materials had good reusability, and the degradation rate of CTC was still approximately 70% after four cycles. Finally, the possible mechanism for the degradation of CTC by the Fe0–AC/PDS systems was discussed. Based on the above conclusions, Fe0–AC microelectrolysis is a new heterogeneous catalytic method for green and efficient activation of PDS and demonstrates potential applicability in the treatment of wastewater. The microelectrolysis system composed of zero-valent iron and activated carbon can effectively activate persulfate to produce SO4−˙ and O2−˙, which have excellent capacity for degradation of chlortetracycline hydrochloride.![]()
Collapse
Affiliation(s)
- Lu An
- College of Forestry
- Northeast Forestry University
- Harbin 150040
- China
| | - Pengfei Xiao
- College of Forestry
- Northeast Forestry University
- Harbin 150040
- China
| |
Collapse
|
24
|
Arslanoğlu H, Orhan R, Turan MD. Application of Response Surface Methodology for the Optimization of Copper Removal from Aqueous Solution by Activated Carbon Prepared Using Waste Polyurethane. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1705849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hasan Arslanoğlu
- Department of Chemical and Process Engineering, Ahi Evran University, Kırşehir, Turkey
| | - Ramazan Orhan
- Department of Chemical Engineering, Firat University, Elazıg, Turkey
| | - M. Deniz Turan
- Department of Metallurgical and Materials Engineering, Firat University, Elazıg, Turkey
| |
Collapse
|
25
|
Treatment of reactive dyebath wastewater by electrocoagulation process: Optimization and cost-estimation. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0334-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Shokoohi R, Bajalan S, Salari M, Shabanloo A. Thermochemical degradation of furfural by sulfate radicals in aqueous solution: optimization and synergistic effect studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8914-8927. [PMID: 30715710 DOI: 10.1007/s11356-019-04382-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
In this study, thermochemical degradation of furfural by sulfate radical has been investigated to find the best-operating conditions. For this purpose, the response surface methodology (RSM) based on central composite design (CCD) was applied to optimize the five independent variables of thermally activated persulfate (TAP)/nZVI oxidation process including pH, PS concentration, furfural concentration, nZVI dosage, and heat. The ANOVA results ("P > F value" < 0.0001 and [Formula: see text] = 0.9701) showed the obtained quadratic model is acceptable to predict furfural removal. Based on the reduced quadratic model PS concentration, nZVI dosage, and heat revealed the positive effects on removal efficiency, while pH and furfural concentration had a negative effect. Accordingly, 98.4% of furfural could be removed within 60 min of reaction under the optimum conditions: pH 5.26, PS concentration of 20.52 mM, furfural concentration of 84.32 mg/L, nZVI dosage of 1.15 mg/L, and a temperature of 79 °C. In such circumstances, the furfural removal efficiency for TAP, PS/nZVI, PS, and nZVI was 94.5, 9, 3, and 2%, respectively. Therefore, based on the synergy index (SI) values, the combination of PS, nZVI, and heat can lead to a synergistic effect in the performance of the thermochemical process.
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somaye Bajalan
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Salari
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Shabanloo
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
27
|
De S, Hazra T, Dutta A. Sustainable treatment of municipal landfill leachate by combined association of air stripping, Fenton oxidation, and enhanced coagulation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:49. [PMID: 30610395 DOI: 10.1007/s10661-018-7171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The present world has been facing the problem of municipal solid waste disposal with the generation of highly complex and toxic landfill leachate. Thus, in this research work, treatability of landfill leachate had been investigated by the combined approach of air stripping, Fenton oxidation, and enhanced coagulation to comply with discharge standard. At the initial stage of treatment, air stripping of raw leachate was implemented which removes around 51.50% of COD, 74.60% of BOD5, and 97.60% of NH3-N within 36 h of optimum retention time. Following air stripping, Fenton oxidation was applied with an optimum molar ratio of 1.9 of H2O2/Fe+2 which register a maximal removal of 67.70% of COD, 92.30% of BOD5, and 14.90% of Hg. Finally, enhanced coagulation (EC) with in situ formed Mn-Fe hydr(oxides) was employed and optimized by central composite design (CCD) of response surface methodology (RSM). Response surface plots denote an optimum condition of 0.13 M ratio of Mn/Fe, 22.67 mM of coagulant dose, and 7.78 of pH which corresponds to a maximum removal of 55.98% of COD and 77.68% of Hg. FTIR analysis of the precipitates of EC explained that the hydroxyl groups are primarily involved in the process of Hg removal. Moreover, EDAX spectrum also assured the removal of Hg by its existence with Mn-Fe complexes. Thus, the present line of treatment record an overall removal of 90.80% of COD, 98.0% of BOD5, 97.60% of NH3-N, and 82.68% of Hg which proves to be effective for the removal of leachate pollutants.
Collapse
Affiliation(s)
- Sushmita De
- Department of Civil Engineering, Jadavpur University, Kolkata, 700032, India.
| | - Tumpa Hazra
- Department of Civil Engineering, Jadavpur University, Kolkata, 700032, India
| | - Amit Dutta
- Department of Civil Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
28
|
Chawla P, Sharma SK, Toor AP. Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1550392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pankaj Chawla
- Energy Research Center Panjab University, Chandigarh, India
| | | | - Amrit Pal Toor
- Dr. S.S.B. University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, India
| |
Collapse
|
29
|
Sehar S, Naz I, Perveen I, Ahmed S. Superior dye degradation using SnO2-ZnO hybrid heterostructure catalysts. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0159-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Karimifard S, Alavi Moghaddam MR. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:772-797. [PMID: 30021324 DOI: 10.1016/j.scitotenv.2018.05.355] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/22/2023]
Abstract
Response surface methodology (RSM) is a powerful tool in designing the experiments and optimizing different environmental processes. However, when it comes to wastewater treatment and specifically dye-containing wastewater, two questions arise; "Is RSM being used correctly?" and "Are all capabilities of RSM being exploited properly?". The current review paper aims to answer these questions by scrutinizing different physicochemical processes that utilized RSM in dye removal. The literature that applied RSM to adsorption, advanced oxidation processes, coagulation/flocculation and electrocoagulation processes were critically reviewed in this paper. The common errors in applying RSM to physicochemical removal of dyes are identified and some suggestions are made for future studies.
Collapse
Affiliation(s)
- Shahab Karimifard
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran; Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| |
Collapse
|
31
|
Ahmadi M, Ghanbari F. Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6003-6014. [PMID: 29238925 DOI: 10.1007/s11356-017-0936-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 05/28/2023]
Abstract
Several efforts have been carried out to present an efficient method for PMS activation. This work presented the use of UVC-LEDs (light emitting diodes) and US (ultrasound) to activate PMS for decolorization of Direct Orange 26 (DO26). The performance of UVC-LEDs/US/PMS process was effective in a broad range of pH (3.0-9.0). Complete decolorization was obtained in only 12 min in pH = 7.0 and 1.5 mM PMS. Bicarbonate and nitrite ions showed inhibitory effect on decolorization while sulfate, chloride, and nitrate had no significant effect on the performance of the process. Transition metals in homogenous (Fe2+ and Co2+) and heterogeneous forms (Fe3O4 and Co3O4) accelerated decolorization in UVC-LEDs/US/PMS system. The presence of turbidity declined the performance of UVC-LEDs/US/PMS through the prevention of PMS activation by UV and US. Compared to other oxidants (S2O82-, H2O2 and 2Na2CO3.3H2O2), PMS proved the higher function in decolorization of DO26 in UVC-LEDs/US/oxidant system. Scavenging experiments showed that 1O2, HO•, and SO4•- contributed in the degradation of DO26. Moreover, the UVC-LEDs/US/PMS system could markedly increase the biodegradability of real textile wastewater. These results promised an effective process for degradation of organic pollutants from aquatic environment.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan School of Medical Sciences, Abadan, Iran.
| |
Collapse
|
32
|
Aghdasinia H, Arehjani P, Vahid B, Khataee A. Optimization of a textile dye degradation in a recirculating fluidized-bed reactor using magnetite/S 2O 82- process. ENVIRONMENTAL TECHNOLOGY 2017; 38:2486-2496. [PMID: 27911220 DOI: 10.1080/09593330.2016.1267804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Optimization of Acid Orange 7 (AO7) treatment using heterogeneous Fenton-like method in a recirculating fluidized-bed reactor (FBR) was investigated by using central composite design (CCD). Natural magnetite (NM) as Fenton-like catalyst was characterized using scanning electron microscopy. A nonlinear CCD model was obtained for the prediction of dye degradation as a function of experimental variables such as peroxydisulfate concentration (0.1-0.5 mmol/L), initial AO7 concentration (5-25 mg/L), pH (3-9) and NM dosage (0.25-1.25 g/L) after 105 min of treatment. The calculated results by the model were consistent with the experimental results (R2 = 0.959). Furthermore, the model is suitable to estimate the optimum operational conditions and determine the effects of the parameters for maximum AO7 degradation. Eventually, gas chromatography-mass spectroscopy was used for the recognition of the dye degradation by-products.
Collapse
Affiliation(s)
- Hassan Aghdasinia
- a Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering , University of Tabriz , Tabriz , Iran
| | - Parvin Arehjani
- a Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering , University of Tabriz , Tabriz , Iran
| | - Behrouz Vahid
- b Department of Chemical Engineering, Tabriz Branch , Islamic Azad University , Tabriz , Iran
| | - Alireza Khataee
- c Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry , University of Tabriz , Tabriz , Iran
- d Department of Materials Science and Nanotechnology , Near East University , Mersin , Turkey
| |
Collapse
|
33
|
Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO2/ZnO photocatalyst with persulfate. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1179-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Jeon P, Park SM, Baek K. Controlled release of iron for activation of persulfate to oxidize orange G using iron anode. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0062-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Davoodi P, Ghoreishi SM, Hedayati A. Optimization of supercritical extraction of galegine from Galega officinalis L.: Neural network modeling and experimental optimization via response surface methodology. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0304-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Ahmadi M, Ghanbari F. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19350-19361. [PMID: 27370537 DOI: 10.1007/s11356-016-7139-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Khan H, Khalil AK, Khan A, Saeed K, Ali N. Photocatalytic degradation of bromophenol blue in aqueous medium using chitosan conjugated magnetic nanoparticles. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0238-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|