1
|
Yalcinkaya A, Öztaş YE, Sabuncuoğlu S. Sterols in Inflammatory Diseases: Implications and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:261-275. [PMID: 38036884 DOI: 10.1007/978-3-031-43883-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The characteristic steroid skeleton, with its 4-ringed 17-carbon structure, is one of the most recognizable organic compounds in biochemistry. In the presence of a hydroxyl ion bound to the third carbon, this structure is defined as a "sterol" (chemical formula: C17H28O). The hydroxyl group provides a hydrophilic site for the otherwise hydrophobic molecule, yielding an amphipathic lipid, which is a vital property for cellular function. It is crucial to remark that the term "steroid" describes a larger group of compounds that often retain the hydroxyl group but are primarily characterized by methyl groups, double bonds in the rings, and an aliphatic side-chain extending from the 17th carbon. In addition to serving various structural roles in the cellular membrane, sterols and steroids contribute to cellular and systemic functions as messengers, hormones, and regulators of several critical metabolic pathways.Sterol nomenclature is often confusing, partly due to structural complexity and partly due to the sheer number of different compounds that fall under the definition. Fortunately, the foremost sterols of interest in biochemistry are much fewer, and therefore, these lipids have been defined and studied vigorously. With the renaissance of lipid research during the 1990s and 2000s, many different metabolites of sterols, and more specifically phytosterols, were found to be associated with various diseases and conditions, including cardiovascular disease, hypercholesterolemia, cancer, obesity, inflammation, diabetes, and inborn errors of metabolism; thus, it is evident that the ever-evolving research in this field has been, and will continue to be, exceedingly productive.With respect to inflammation and inflammatory diseases, plant-based sterols (i.e., phytosterols) have gained considerable fame due to their anti-inflammatory and cholesterol-lowering effects demonstrated by experimental and clinical research. Besides, the exceptional pharmacological benefits of these sterols, which operate as antioxidant, antidiabetic, and anti-atherosclerotic agents, have been the subject of various investigations. While the underlying mechanisms necessitate further research, the possible function of phytosterols in improving health outcomes is an important topic to explore.In this regard, the current review aims to offer comprehensive information on the therapeutic potential of plant-based sterols in the context of human health, with a focus on preclinical effects, bioavailability, and clinical use.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yeşim Er Öztaş
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
|
3
|
He WS, Li L, Wang H, Rui J, Cui D. Synthesis and cholesterol-reducing potential of water-soluble phytosterol derivative. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
4
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
5
|
|
6
|
Fumeron F, Bard JM, Lecerf JM. Interindividual variability in the cholesterol-lowering effect of supplementation with plant sterols or stanols. Nutr Rev 2018; 75:134-145. [PMID: 28158760 DOI: 10.1093/nutrit/nuw059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a causal role in atherosclerosis. One way to reduce LDL-C levels is to inhibit cholesterol absorption. Plant sterols and stanols compete with cholesterol for absorption in the intestine and induce an average decrease in LDL-C by 5% to 15% in a dose-dependent manner, but not in all individuals. This review focuses on the interindividual variability in response to dietary supplementation with plant sterols and stanols. Dietary plant sterols and stanols have no significant effects on LDL-C in substantial numbers of individuals. Higher responses, in absolute value and percentage of LDL-C, are observed in individuals with higher cholesterol absorption and a lower rate of cholesterol synthesis. Some data provide evidence of the influence of genetics on the response to plant sterols and stanols. Further studies in large populations are required to extend these conclusions about genetic influences.
Collapse
Affiliation(s)
- Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| | - Jean-Marie Bard
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| | - Jean-Michel Lecerf
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
7
|
Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content. Br J Nutr 2018; 119:599-609. [DOI: 10.1017/s0007114517003853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AbstractThe aim of the study was to investigate how the dietary sterol composition, including cholesterol, phytosterol:cholesterol ratio and phytosterols, affect the absorption, biliary excretion, retention, tissue storage and distribution of cholesterol and individual phytosterols in Atlantic salmon (Salmo salar L.). A feeding trial was conducted at two different temperatures (6 and 12°C), using nine different diets with varying contents of phytosterols, cholesterol and phytosterol:cholesterol ratio. Cholesterol retention values were clearly dependent on dietary cholesterol, and showed that fish fed cholesterol levels <1000 mg/kg feed produced considerable quantities of cholesterol de novo. Despite this production, cholesterol content increased with increasing dietary cholesterol in liver, plasma, bile, muscle, adipose tissue and whole fish at 12°C, and in plasma, bile and whole fish at 6°C. The tissue sterol composition generally depended on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content in itself. Campesterol and brassicasterol appeared to be the phytosterols with the highest intestinal absorption in Atlantic salmon. There was a high biliary excretion of campesterol, but not of brassicasterol, which accumulated in tissues and particularly in adipose tissue, with 2-fold-higher retention at 12°C compared with 6°C. Campesterol had the second highest retention of the phytosterols in the fish, but with no difference between the two temperatures. Other phytosterols had very low retention. Although brassicasterol retention decreased with increasing dietary phytosterols, campesterol retention decreased with increasing dietary cholesterol, indicating differences in the uptake mechanisms for these two sterols.
Collapse
|
8
|
Abstract
Early nutrition may have long-lasting metabolic impacts in adulthood. Even though breast milk is the gold standard, most infants are at least partly formula-fed. Despite obvious improvements, infant formulas remain perfectible to reduce the gap between breastfed and formula-fed infants. Improvements such as reducing the protein content, modulating the lipid matrix and adding prebiotics, probiotics and synbiotics, are discussed regarding metabolic health. Numerous questions remain to be answered on how impacting the infant formula composition may modulate the host metabolism and exert long-term benefits. Interactions between early nutrition (composition of human milk and infant formula) and the gut microbiota profile, as well as mechanisms connecting gut microbiota to metabolic health, are highlighted. Gut microbiota stands as a key actor in the nutritional programming but additional well-designed longitudinal human studies are needed.
Collapse
|
9
|
Vinha AF, Barreira JCM, Costa ASG, Oliveira MBPP. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Compr Rev Food Sci Food Saf 2016; 15:947-981. [PMID: 33401830 DOI: 10.1111/1541-4337.12220] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022]
Abstract
The current global food system must adapt to the expected growth of world population (about 9 billion individuals by 2050). This adaptation will probably include an increased consumption of edible wild foods, due to their richness in micronutrients and bioactive compounds, besides providing a cost-effective and sustainable way of improving caloric food security. A striking example of such natural matrices is the Quercus genus, which has the additional advantage of being widespread throughout the Northern Hemisphere. In a traditional sense, Quercus fruits (acorns) were mainly used in animal feeding, despite their potentially important role on the rural economy. But this preconception is changing. In fact, their nutritional value, high contents in phytochemical compounds, biological activity (such as antioxidant, anticarcinogenic, and cardioprotective properties) and use in the treatment of specific diseases (such as atherosclerosis, diabetes, or Alzheimer's disease) have raised the interest in integrating acorns into the human diet. Accordingly, this comprehensive overview was designed to provide an evidence-based review of the literature, with the objective to achieve useful conclusions regarding the nutritional properties, methodologies of extraction, identification, and characterization of a wide variety of bioactive compounds and scientifically validated bioactivities in Quercus species worldwide. The industrial by-products from acorn oil extraction or flour production are also included. Data regarding the analytical techniques, individual compounds, and their bioactivities, are organized in tables. The reported data are discussed and directions for further investigations are suggested, highlighting the use of acorns in food, nutraceutical, and pharmaceutical applications.
Collapse
Affiliation(s)
- Ana F Vinha
- REQUIMTE/LAQV, Dept. of Chemical Sciences, Faculty of Pharmacy, Univ. of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Center), Univ. Fernando Pessoa, Praça 9 de Abril, 349, 4249-004, Porto, Portugal
| | - João C M Barreira
- REQUIMTE/LAQV, Dept. of Chemical Sciences, Faculty of Pharmacy, Univ. of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Mountain Research Centre (CIMO), ESA, Polytechnic Inst. of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Anabela S G Costa
- REQUIMTE/LAQV, Dept. of Chemical Sciences, Faculty of Pharmacy, Univ. of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Dept. of Chemical Sciences, Faculty of Pharmacy, Univ. of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
10
|
Ubeyitogullari A, Ciftci ON. Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Adv 2016. [DOI: 10.1039/c6ra20675a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phytosterol nanoparticles with reduced crystallinity were generated by impregnation of the phytosterols into nanoporous starch aerogels using supercritical carbon dioxide.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science and Technology
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Ozan N. Ciftci
- Department of Food Science and Technology
- University of Nebraska-Lincoln
- Lincoln
- USA
| |
Collapse
|
11
|
Abayomi SF, Adeleke A, Bukunola OA, Olugbenga OO, Kuburat TO, Emmanuel OA. Separate and co-administration of Amaranthus spinosus and vitamin C modulates cardiovascular disease risk in high fat diet-fed experimental rats. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jpp2014.0340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Lin X, Racette SB, Ma L, Wallendorf M, Spearie CA, Ostlund RE. Plasma biomarker of dietary phytosterol intake. PLoS One 2015; 10:e0116912. [PMID: 25668184 PMCID: PMC4323197 DOI: 10.1371/journal.pone.0116912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI). Therefore, we sought to identify a plasma biomarker of DPI. Methods and Findings Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P < 0.0001). Plasma campesterol and 5-α-cholestanol levels varied greatly among subjects at the same DPI level, but were positively correlated at each DPI level in both studies (r > 0.600; P < 0.01). Conclusion The ratio of plasma campesterol to the coordinately regulated endogenous cholesterol metabolite 5-α-cholestanol is a biomarker of dietary phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
| | - Susan B. Racette
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
- Program in Physical Therapy, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
| | - Lina Ma
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
| | - Michael Wallendorf
- Division of Biostatistics, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
| | - Catherine Anderson Spearie
- Lifestyle Intervention Research Core, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Institute for Clinical and Translational Sciences, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO, 63110, United States of America
- * E-mail:
| |
Collapse
|
13
|
Liu Y, Lei L, Wang X, Ma KY, Li YM, Wang L, Man SW, Huang Y, Chen ZY. Plasma cholesterol-raising potency of dietary free cholesterol versus cholesteryl ester and effect of β-sitosterol. Food Chem 2015; 169:277-82. [DOI: 10.1016/j.foodchem.2014.07.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
|
14
|
Liu Y, Guan L, Zhao Y, Lei L, Wang X, Ma KY, Li YM, Wang L, Man SW, Wang J, Huang Y, Chen ZY. Fatty acid moieties have little effect on cholesterol-lowering potency of plant sterol esters. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuwei Liu
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Lei Guan
- R&D; Nestle; Beijing P. R. China
| | | | - Lin Lei
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Xiaobo Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Yuk Man Li
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Lijun Wang
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Sun Wa Man
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | | | - Yu Huang
- School of Biomedical Sciences; Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences; The Chinese University of Hong Kong; Shatin NT, Hong Kong, P. R. China
| |
Collapse
|
15
|
Aldini R, Micucci M, Cevenini M, Fato R, Bergamini C, Nanni C, Cont M, Camborata C, Spinozzi S, Montagnani M, Roda G, D'Errico-Grigioni A, Rosini F, Roda A, Mazzella G, Chiarini A, Budriesi R. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study. PLoS One 2014; 9:e108112. [PMID: 25268769 PMCID: PMC4182327 DOI: 10.1371/journal.pone.0108112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/18/2014] [Indexed: 01/04/2023] Open
Abstract
Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.
Collapse
Affiliation(s)
- Rita Aldini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Matteo Micucci
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Monica Cevenini
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Massimiliano Cont
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cecilia Camborata
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Silvia Spinozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Marco Montagnani
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Giulia Roda
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | | | - Francesca Rosini
- DIMES Department, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Giuseppe Mazzella
- Department of Medicine and Surgery, University of Bologna, Policlinico S Orsola, Bologna, Italy
| | - Alberto Chiarini
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotecnology, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Bertolami A, Botelho PB, Macedo LF, Abdalla DS, Faludi AA, Galasso M, Castro IA. Effect of plant sterols compared with ezetimibe on oxidative stress in patients treated with statins. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Chen J, Jiao R, Jiang Y, Bi Y, Chen ZY. Algal sterols are as effective as β-sitosterol in reducing plasma cholesterol concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:675-681. [PMID: 24380496 DOI: 10.1021/jf404955n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present study examined the cholesterol-lowering activity of sterol extract (SE) derived from alga Schizochytrium sp. and its interaction with gene expression of transporters, receptors, and enzymes involved in cholesterol absorption and metabolism. GC-MS analyses found that SE was a mixture of various sterols including lathosterol, ergosterol, stigmasterol, 24-ethylcholesta-5,7,22-trienol, stigmasta-7,24(24(1))-dien-3β-ol, and cholesterol. Results showed that SE at doses of 0.06 and 0.30 g/kg diet were able to decrease plasma cholesterol concentration by 19.5 and 34%, respectively, compared with the control, in hamsters maintained on a 0.1% high-cholesterol diet. SE at a dose of 0.30 g/kg diet was as effective as β-sitosterol in reducing plasma total cholesterol (TC). SE-induced reduction in plasma TC was accompanied by down-regulation of intestinal acyl-CoA:cholesterol acyltransferase 2 (ACAT2) and hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and up-regulation of hepatic low-density lipoprotein (LDL) receptor. Addition of SE to the diet increased the excretion of total fecal sterols. It was concluded that SE possessed the same cholesterol-lowering activity as β-sitosterol and the underlying mechanisms were mediated by increasing sterol excretion and decreasing cholesterol absorption and synthesis.
Collapse
Affiliation(s)
- Jingnan Chen
- Lipids Technology and Engineering, School of Food Science and Engineering, Henan University of Technology , Lianhua Road, Zhengzhou, Henan, China
| | | | | | | | | |
Collapse
|
18
|
Liang Y, Chen J, Zuo Y, Ma KY, Jiang Y, Huang Y, Chen ZY. Blueberry anthocyanins at doses of 0.5 and 1 % lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet. Eur J Nutr 2013; 52:869-75. [PMID: 22684634 DOI: 10.1007/s00394-012-0393-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of blueberry anthocyanins by examining its effect on fecal sterol excretion and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism. METHODS Hamsters were divided into three groups and fed a 0.1 % cholesterol diet containing 0 % (CTL), 0.5 % (BL), and 1.0 % (BH) blueberry anthocyanins, respectively, for six weeks. Plasma total cholesterol (TC), triacylglycerols (TAG), and non-high-density lipoproteins cholesterol (non-HDL-C) were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. GC analysis was used to quantify hepatic cholesterol and fecal acidic and neutral sterols. RESULTS Dietary supplementation of 0.5 and 1.0 % blueberry anthocyanins for 6 weeks decreased plasma TC concentration by 6-12 % in a dose-dependent manner. This was accompanied by increasing the excretion of fecal neutral and acidic sterols by 22-29 % and 41-74 %, respectively. Real-time PCR analyses demonstrated that incorporation of blueberry anthocyanins into diet down-regulated the genes of NPC1L1, ACAT-2, MTP, and ABCG 8. In addition, blueberry anthocyanins were also able to down-regulate the gene expression of hepatic HMG-CoA reductase. CONCLUSION The cholesterol-lowering activity of blueberry anthocyanins was most likely mediated by enhancing the excretion of sterols accompanied with down-regulation on gene expression of intestinal NPC1L1, ACAT-2, MTP, and ABCG 8.
Collapse
Affiliation(s)
- Yintong Liang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Hąc-Wydro K, Lenartowicz R, Dynarowicz-Łątka P. The influence of plant stanol (β-sitostanol) on inner leaflet of human erythrocytes membrane modeled with the Langmuir monolayer technique. Colloids Surf B Biointerfaces 2013; 102:178-88. [DOI: 10.1016/j.colsurfb.2012.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
20
|
Phillips KM, Ruggio DM, Exler J, Patterson KY. Sterol composition of shellfish species commonly consumed in the United States. Food Nutr Res 2012; 56:18931. [PMID: 23115546 PMCID: PMC3484358 DOI: 10.3402/fnr.v56i0.18931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 01/13/2023] Open
Abstract
Background Shellfish can be a component of a healthy diet due to a low fat and high protein content, but the cholesterol content of some species is often cited as a reason to limit their consumption. Data on levels of non-cholesterol sterols in commonly consumed species are lacking. Objective Shellfish were sampled and analyzed to update sterol data in the United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference. Design Using a nationwide sampling plan, raw shrimp and sea scallops, canned clams, and steamed oysters, blue crab, and lobster were sampled from 12 statistically selected supermarkets across the United States in 2007–08. For each species, four composites were analyzed, each comprised of samples from three locations; shrimp and scallops from six single locations were also analyzed separately. Using validated analytical methodology, 14 sterols were determined in total lipid extracts after saponification and derivatization to trimethylsilyethers, using gas chromatography for quantitation and mass spectrometry for confirmation of components. Results Crab, lobster, and shrimp contained significant cholesterol (96.2–27 mg/100 g); scallops and clams had the lowest concentrations (23.4–30.1 mg/100 g). Variability in cholesterol among single-location samples of shrimp was low. The major sterols in the mollusks were brassicasterol (12.6–45.6 mg/100 g) and 24-methylenecholesterol (16.7–41.9 mg/100 g), with the highest concentrations in oysters. Total non-cholesterol sterols were 46.5–75.6 mg/100 g in five single-location scallops samples, but 107 mg/100 g in the sixth, with cholesterol also higher in that sample. Other prominent non-cholesterol sterols in mollusks were 22-dehydrocholesterol, isofucosterol, clionasterol, campesterol, and 24-norcholesta-5,22-diene-3β-ol (4–21 mg/100 g). Conclusions The presence of a wide range of sterols, including isomeric forms, in shellfish makes the analysis and quantitation of sterols in marine species more complex than in animal and plant tissues. The detailed sterol composition reported herein provides data that may be useful in research on the impact of shellfish consumption on dietary risk factors.
Collapse
|
21
|
Capsaicinoids lower plasma cholesterol and improve endothelial function in hamsters. Eur J Nutr 2012; 52:379-88. [DOI: 10.1007/s00394-012-0344-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
|
22
|
Lin X, Racette SB, Lefevre M, Ma L, Spearie CA, Steger-May K, Ostlund RE. Combined effects of ezetimibe and phytosterols on cholesterol metabolism: a randomized, controlled feeding study in humans. Circulation 2011; 124:596-601. [PMID: 21768544 PMCID: PMC3304455 DOI: 10.1161/circulationaha.110.006692] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/09/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Both ezetimibe and phytosterols inhibit cholesterol absorption. We tested the hypothesis that the combination of ezetimibe and phytosterols is more effective than ezetimibe alone in altering cholesterol metabolism. METHODS AND RESULTS Twenty-one mildly hypercholesterolemic subjects completed a randomized, double-blind, placebo-controlled, triple-crossover study. Each subject received a phytosterol-controlled diet plus (1) ezetimibe placebo+phytosterol placebo, (2) 10 mg/d ezetimibe+phytosterol placebo, and (3) 10 mg/d ezetimibe+2.5 g phytosterols for 3 weeks each. All meals were prepared in a metabolic kitchen. Primary outcomes were intestinal cholesterol absorption, fecal cholesterol excretion, and low-density lipoprotein cholesterol levels. The combined treatment resulted in significantly lower intestinal cholesterol absorption (598 mg/d; 95% confidence interval [CI], 368 to 828) relative to control (2161 mg/d; 95% CI, 1112 to 3209) and ezetimibe alone (1054 mg/d; 95% CI, 546 to 1561; both P<0.0001). Fecal cholesterol excretion was significantly greater (P<0.0001) with combined treatment (962 mg/d; 95% CI, 757 to 1168) relative to control (505 mg/d; 95% CI, 386 to 625) and ezetimibe alone (794 mg/d; 95% CI, 615 to 973). Plasma low-density lipoprotein cholesterol values during treatment with control, ezetimibe alone, and ezetimibe+phytosterols averaged 129 mg/dL (95% CI, 116 to 142), 108 mg/dL (95% CI, 97 to 119), and 101 mg/dL (95% CI, 90 to 112; (P<0.0001 relative to control). CONCLUSION The addition of phytosterols to ezetimibe significantly enhanced the effects of ezetimibe on whole-body cholesterol metabolism and plasma low-density lipoprotein cholesterol. The large cumulative action of combined dietary and pharmacological treatment on cholesterol metabolism emphasizes the potential importance of dietary phytosterols as adjunctive therapy for the treatment of hypercholesterolemia. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00863265.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Susan B. Racette
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Michael Lefevre
- Center for Advanced Nutrition, Utah State University, Logan, UT
| | - Lina Ma
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Karen Steger-May
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Orozco MI, Priego-Capote F, Luque de Castro MD. Influence of deep frying on the unsaponifiable fraction of vegetable edible oils enriched with natural antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7194-7202. [PMID: 21644588 DOI: 10.1021/jf2015792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The influence of deep frying, mimicked by 20 heating cycles at 180 °C (each cycle from ambient temperature to 180 °C maintained for 5 min), on the unsaponifiable fraction of vegetable edible oils represented by three characteristic families of compounds (namely, phytosterols, aliphatic alcohols, and triterpenic compounds) has been studied. The target oils were extra virgin olive oil (with intrinsic content of phenolic antioxidants), refined sunflower oil enriched with antioxidant phenolic compounds isolated from olive pomace, refined sunflower oil enriched with an autoxidation inhibitor (dimethylpolysiloxane), and refined sunflower oil without enrichment. Monitoring of the target analytes as a function of both heating cycle and the presence of natural antioxidants was also evaluated by comparison of the profiles after each heating cycle. Identification and quantitation of the target compounds were performed by gas cromatography-mass spectrometry in single ion monitoring mode. Analysis of the heated oils revealed that the addition of natural antioxidants could be an excellent strategy to decrease degradation of lipidic components of the unsaponifiable fraction with the consequent improvement of stability.
Collapse
Affiliation(s)
- Mara I Orozco
- Department of Analytical Chemistry, University of Córdoba , E-14071 Córdoba, Spain
| | | | | |
Collapse
|
24
|
Effect of phytosterols and their oxidation products on lipoprotein profiles and vascular function in hamster fed a high cholesterol diet. Atherosclerosis 2011; 219:124-33. [PMID: 21719014 DOI: 10.1016/j.atherosclerosis.2011.06.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/23/2011] [Accepted: 06/02/2011] [Indexed: 12/13/2022]
Abstract
Human diets contain phytosterols and their oxidation products. We investigated effect of β-sitosterol (Si), stigmasterol (St), β-sitosterol oxidation products (SiOP) and stigmasterol oxidation products (StOP) on plasma total cholesterol and their interaction with the gene expression of enzymes, proteins and transporters involved in cholesterol absorption and metabolism. Sixty male hamsters were fed the control diet or one of four experimental diets containing 0.1% Si, 0.1% SiOP, 0.1% St and 0.1% StOP, respectively, for six weeks. SiOP and StOP groups had the relative liver weights greater than their corresponding non-oxidized forms, indicating they were possibly toxic. Results showed both Si and St groups reduced while SiOP and StOP hamsters lost the capacity of lowering plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL) and triacylglycerols (TG) compared with the control group. Si and St but not SiOP and StOP were anti-atherosclerotic. RT-PCR analysis demonstrated Si and St but not SiOP and StOP down-regulated mRNA levels of intestinal acyl CoA: cholesterol acyltransferase (ACAT2) and microsomal triglyceride protein (MTP). Aortas from Si and St hamsters relaxed better than those from the control and their corresponding SiOP and StOP-treated hamsters. It was concluded that Si and St not SiOP and StOP were beneficial in improving lipoprotein profile and aortic function.
Collapse
|
25
|
Orozco-Solano M, Ruiz-Jimenez J, Luque De Castro MD. Characterization of fatty alcohol and sterol fractions in olive tree. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7539-7546. [PMID: 20550122 DOI: 10.1021/jf100751r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The determination of sterols and fatty alcohols is a part of the study of the metabolomic profile of the unsaponifiable fraction in olive tree. Leaves and drupes from three varieties of olive tree (Arbequina, Picual, and Manzanilla) were used. The content of the target compounds was studied in five ripeness stages and three harvesting periods for olive drupes and leaves, respectively. A method based on ultrasound-assisted extraction and derivatization for the individual identification and quantitation of sterols and fatty alcohols, involving chromatographic separation and mass spectrometry detection by selected ion monitoring, was used. The concentrations of alcohols and sterols in the drupes ranged between 0.1 and 1086.9 mug/g and between 0.1 and 5855.3 mug/g, respectively, which are higher than in leaves. Statistical studies were developed to show the relationship between the concentration of the target analytes and variety, ripeness stage, and harvesting period.
Collapse
Affiliation(s)
- Mara Orozco-Solano
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Spain
| | | | | |
Collapse
|
26
|
Lin X, Ma L, Racette SB, Anderson Spearie CL, Ostlund RE. Phytosterol glycosides reduce cholesterol absorption in humans. Am J Physiol Gastrointest Liver Physiol 2009; 296:G931-5. [PMID: 19246636 PMCID: PMC2670661 DOI: 10.1152/ajpgi.00001.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (P<0.0001) and phytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.
Collapse
Affiliation(s)
- Xiaobo Lin
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Lina Ma
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Susan B. Racette
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Catherine L. Anderson Spearie
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Richard E. Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Program in Physical Therapy, and Center for Applied Research Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Fruhwirth GO, Hermetter A. Production technology and characteristics of Styrian pumpkin seed oil. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700257] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Fruhwirth GO, Hermetter A. Seeds and oil of the Styrian oil pumpkin: Components and biological activities. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200700105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Martirosyan DM, Miroshnichenko LA, Kulakova SN, Pogojeva AV, Zoloedov VI. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis 2007; 6:1. [PMID: 17207282 PMCID: PMC1779269 DOI: 10.1186/1476-511x-6-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/05/2007] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the Nation's leading killer for both men and women among all racial and ethnic groups. Development and progression of CVD is linked to the presence of risk factors such as hyperlipidemia, hypertension, obesity, and diabetes mellitus. It is known that cholesterol is an indicator of increased risk of heart attack and stroke. Low-density cholesterol (LDL) above 130 mg/dl high-density cholesterol (HDL) cholesterol below 35 mg/dl and total blood cholesterol above 200 mg/dl are indicators of problematic cholesterol. Proper ranges of cholesterol are important in the prevention of CVD. It has been suggested that a reduction in the consumption of saturated and an increase in unsaturated fatty acids is beneficial and prevents CVD. Amaranth grain contains tocotrienols and squalene compounds, which are known to affect cholesterol biosynthesis. The cholesterol precursors squalene, lanosterol and other methyl sterols, reflect cholesterol synthesis 123, whereas plant sterols and cholestanol, a metabolite of cholesterol, reflect the efficiency of cholesterol absorption in normal and hyperlipidemic populations 456. Qureshi with co-authors 7 showed that feeding of chickens with amaranth oil decreases blood cholesterol levels, which are supported by the work of others 8. Previously, we have shown that Amaranth oil modulates the cell membrane fluidity 9 and stabilized membranes that could be one reason as to why it is beneficial to those who consume it. It is known that in hypertension, the cell membrane is defective and hence, the movement of the Na and K ions across the cell membranes could defective that could contribute to the development of increase in blood pressure. Based on these properties of amaranth oil we hypothesize that it could be of significant benefit for patients with CVD.
Collapse
Affiliation(s)
| | | | - Svetlana N Kulakova
- State Institute of Nutrition of the Russian Academy of Medical Sciences, Moscow, Russia
| | - Ala V Pogojeva
- State Institute of Nutrition of the Russian Academy of Medical Sciences, Moscow, Russia
| | | |
Collapse
|