1
|
Chen T, Hou A, Guo P, Peng S, Qin G, Ding A, Hu X, Duan Y, Chen J, Gong L, Xuan L. Novel Jatrophane Diterpenoids from Euphorbia esula Promotes Lipid Clearance by Transcriptional Regulation of PCSK9. J Med Chem 2024; 67:12055-12067. [PMID: 38959380 DOI: 10.1021/acs.jmedchem.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
PCSK9 has been recognized as an efficient target for hyperlipidemia and related cardiovascular/cerebrovascular diseases. However, PCSK9 inhibitors in the clinic are all biological products, and no small molecules are available yet. In the current work, we discovered that the crude extract of Euphorbia esula (E. esula) promoted LDL uptake in vitro and then obtained 8 new and 12 known jatrophane diterpenoids by activity-guided isolation. After summarized their structure-activity relationship of PCSK9 inhibition, we selected compound 11 (C11) with potent activity and high abundance to investigate its mechanism and in vivo efficacy. Mechanistically, C11 bound with HNF1α to influence its nuclear distribution and subsequently inhibit PCSK9 transcription, thereby enhancing LDLR and promoting LDL uptake. Moreover, C11 demonstrated obvious lipid-lowering activity in HFD mouse model. In conclusion, we first revealed the novel application of E. esula in the discovery of a lipid-lowering candidate and highlighted the potential of C11 in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Tong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Aijun Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Pengju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Shou Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guoqing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Aoxue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xianggang Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Yelin Duan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
2
|
Luo F, Das A, Khetarpal SA, Fang Z, Zelniker TA, Rosenson RS, Qamar A. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34:215-222. [PMID: 36746257 DOI: 10.1016/j.tcm.2023.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Optimal management of low-density lipoprotein cholesterol (LDL-C) is a central tenet in the primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). However, significant residual cardiovascular risk remains despite achieving guideline-directed LDL-C levels, in part due to mixed hyperlipidemia with elevated fasting and non-fasting triglyceride-rich lipoprotein levels. Advances in human genetics have identified angiopoietin-like 3 (ANGPTL3) as a promising therapeutic target to lower cardiovascular risk. Evidence accrued from genetic epidemiological studies demonstrate that ANGPTL3 loss of function is strongly associated with lowering of circulating LDL-C, triglyceride-rich lipoproteins and concurrent risk reduction in development of coronary artery disease. Pharmacological inhibition of ANGPTL3 with monoclonal antibodies, antisense oligonucleotides and gene editing are in development with early studies showing their safety and efficacy in lowering in both, LDL-C and TGs, circumventing a key limitation of previous therapies. Monoclonal antibodies targeting ANGPTL3 are approved for clinical use in homozygous familial hypercholesteremia in USA and Europe. Although promising, future studies focusing on long-term beneficial effect in reducing cardiovascular events with inhibition of ANGPTL3 are warranted.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Avash Das
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sumeet A Khetarpal
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Thomas A Zelniker
- Division of Cardiology, Vienna General Hospital and Medical University of Vienna, Austria
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, NY, United States
| | - Arman Qamar
- Section of Interventional Cardiology & Vascular Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, 2650 Ridge Avenue, Evanston, IL, United States.
| |
Collapse
|
3
|
Taher ZA, Taher AA, Radi S. An Update on Dyslipidemia Management and Medications: A Review. Cureus 2024; 16:e56255. [PMID: 38623110 PMCID: PMC11017140 DOI: 10.7759/cureus.56255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Dyslipidemia, characterized by abnormal lipid levels in the bloodstream, is a very common and underappreciated chronic disease associated with a significant cardiovascular disease burden. The management landscape for dyslipidemia has historically been static, with a sparse selection of therapeutic options. This article presents a comprehensive review of contemporary approaches to dyslipidemia management, focusing on therapeutic strategies and emerging interventions. We delineate the most current American Heart Association/American College of Cardiology & Canadian Cardiovascular Society guidelines and examine pivotal clinical trials that are shaping the contemporary approach to dyslipidemia management.
Collapse
Affiliation(s)
- Ziad A Taher
- Department of Medicine, King Abdulaziz Medical City, Jeddah, SAU
| | | | - Suhaib Radi
- Department of Medicine, King Abdulaziz Medical City, Jeddah, SAU
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- College of Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
| |
Collapse
|
4
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Arnold N, Koenig W. Lipid Lowering Drugs in Acute Coronary Syndromes (ACS). Curr Atheroscler Rep 2023; 25:939-946. [PMID: 38015336 PMCID: PMC10770191 DOI: 10.1007/s11883-023-01163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to critically discuss whether more aggressive lipid-lowering strategies are needed in patients with acute coronary syndromes (ACS). RECENT FINDINGS Currently, available data on early (in-hospital/discharge) administration of potent lipid-lowering drugs, such as proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors in patients during the vulnerable post-ACS phase, have clearly demonstrated clinical efficacy of the "strike early and strike strong" approach not only for rapid reduction of low-density lipoprotein cholesterol (LDL-C) to unprecedentedly low levels, but also for associated favorable composition of coronary plaque. Intensive lipid-lowering therapy with rapid achievement of the LDL-C treatment goal in ACS patients seems reasonable. However, whether such profound LDL-C reduction would result in additional benefit on the reduction of future CV events still has to be established. Thus, data addressing CV outcomes in such vulnerable patients at extreme CV risk are urgently needed.
Collapse
Affiliation(s)
- Natalie Arnold
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.
| |
Collapse
|
6
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
7
|
Moreno-Gonzalez MA, Ortega-Rivera OA, Steinmetz NF. Two decades of vaccine development against atherosclerosis. NANO TODAY 2023; 50:101822. [PMID: 37860053 PMCID: PMC10586238 DOI: 10.1016/j.nantod.2023.101822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Atherosclerosis is an immune-mediated chronic inflammatory disease that leads to the development of fatty plaques in the arterial walls, ultimately increasing the risk of thrombosis, stroke, and myocardial infarction. The immune response in this complex disease is both atheroprotective and pro-atherogenic, involving both innate and adaptive immunity. Current treatments include the adjustment of lifestyle factors, cholesterol-lowering drugs such as statins, and immunotherapy, whereas vaccine development has received comparatively little attention. In this review, we discuss the potential of antigen-specific vaccination as a preventative approach based on more than 20 years of research and innovation. Vaccination targets include proteins that are more abundant in atherosclerotic patients, such as oxidized low-density lipoprotein (LDL), apolipoprotein B-100, proprotein convertase subtilisin/kexin type-9 serine protease (PCSK9), cholesteryl ester transfer protein (CETP), and heat shock proteins HSP60 and HSP65. Immunization with such proteins or their peptide epitopes has been shown to induce T-cell activation, produce antigen-specific antibodies, reduce the size of atherosclerotic lesions, and/or reduce serum cholesterol levels. Vaccination against atherosclerosis therefore offers a new strategy to address the burden on healthcare systems caused by cardiovascular disease, the leading cause of death worldwide.
Collapse
Affiliation(s)
- Miguel A. Moreno-Gonzalez
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Oscar A. Ortega-Rivera
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
8
|
Lv F, Cai X, Lin C, Yang W, Hu S, Ji L. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors and the Risk of Fracture: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Calcif Tissue Int 2023:10.1007/s00223-023-01085-0. [PMID: 37099141 DOI: 10.1007/s00223-023-01085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Osteoporosis and hyperlipidemia are closely correlated and statins might be associated with a decreased risk of fracture. We aimed to investigate the association between proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) therapy and the risk of fracture. The PubMed, Cochrane library, and EMBASE databases were systematically searched from the inception dates to October 22, 2022. Randomized clinical trials (RCTs) that addressed to fracture events of participants using alirocumab, evolocumab, bococizumab or inclisiran, with a follow-up of ≥ 24 weeks were included. Meta-analyses were conducted to calculate the odds ratio (OR) with 95% confidence intervals (CIs) for major osteoporotic fracture, hip fracture, osteoporotic non-vertebral fracture, and total fracture. 30 trials assessing PCSK9i among 95, 911 adults were included. There were no significant associations between PCSK9i therapy and the risk of major osteoporotic fracture [OR 1.08 (95% Cl 0.87-1.34), p = 0.49], hip fracture [OR 1.05 (95% Cl 0.73-1.53), p = 0.79], osteoporotic non-vertebral fracture [OR 1.03 (95% Cl 0.80-1.32), p = 0.83], and total fracture [OR 1.03 (95% Cl 0.88-1.19), p = 0.74] over a period of 6-64 months. No significant associations were detected in any of the sensitivity analyses and subgroup analyses stratified by the type of PCSK9i, follow-up duration, age, sex, sample size, and patient profile. Pooled results of our meta-analysis showed that exposure to PCSK9i was not associated with reduced risks of fracture in the short term.
Collapse
Affiliation(s)
- Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
9
|
Frampton JE. Inclisiran: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs 2023; 23:219-230. [PMID: 36869996 DOI: 10.1007/s40256-023-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/05/2023]
Abstract
Inclisiran (Leqvio®) is a first-in-class, subcutaneously administered, small interfering RNA (siRNA) that prevents hepatic synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9), thereby decreasing circulating low-density lipoprotein cholesterol (LDL-C). In the EU, inclisiran is indicated in adults with primary hypercholesterolemia or mixed dyslipidemia, as an adjunct to diet. It is intended for use in patients unable to reach LDL-C goals on maximally tolerated statin therapy, with or without other lipid-lowering therapies (LLTs). In patients who are statin intolerant or for whom a statin is contraindicated, it can be used with or without other LLTs. In clinical trials, twice-yearly injections of inclisiran (after initial doses at days 1 and 90) approximately halved LDL-C levels in patients with, or at high risk of developing, atherosclerotic cardiovascular disease (ASCVD) who had hypercholesterolemia, irrespective of whether or not their existing treatment included a statin. The safety and tolerability profile of the drug was similar to placebo, although mild to moderate, transient injection-site adverse reactions were more frequent with inclisiran. Pending confirmation of the expected reduction in cardiovascular (CV) events with inclisiran, it is a valuable additional/alternative antihyperlipidemic agent to a statin, as its infrequent maintenance dosing regimen confers a convenience advantage over other non-statin LLTs.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
10
|
Serum Low Density Lipoprotein Cholesterol Concentration Is Not Dependent on Cholesterol Synthesis and Absorption in Healthy Humans. Nutrients 2022; 14:nu14245370. [PMID: 36558527 PMCID: PMC9781611 DOI: 10.3390/nu14245370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction. Pharmacological reduction of cholesterol (C) synthesis and C absorption lowers serum low-density lipoprotein C (LDL-C) concentrations. We questioned whether high baseline C synthesis or C absorption translates into high serum LDL-C concentrations or if there was no connection. Therefore, we studied the association between serum LDL-C and C synthesis or C absorption in healthy subjects. Methods. Three published data sets of young subjects on different diets (study 1), mildly hypercholesterolemic subjects without cardiovascular disease (study 2) and healthy controls of the Framingham study (study 3) were used. The three study populations varied in sex, age, and weight. C synthesis and C fractional absorption rate (FAR) were measured with fecal sterol balance and stable isotope techniques (studies 1 and 2). Additionally, serum lathosterol and campesterol concentrations corrected for the serum total C concentration (R_lathosterol and R_campesterol) were used as markers for hepatic C synthesis and C FAR, respectively (studies 1−3). Linear regression analysis was applied to evaluate associations between LDL-C, C synthesis, and C absorption. Results. Seventy-three, 37, and 175 subjects were included in studies 1, 2, and 3, respectively. No statistically significant associations were found between LDL-C and the measured C synthesis and C FAR, nor for R_lathosterol and R_campesterol in any of the study groups. This lack of associations was confirmed by comparing the male subjects of studies 1 and 2. Study 1 subjects had a 50% lower serum LDL-C than the study 2 subjects (p < 0.01), but not a lower C synthesis, C FAR, R-lathosterol, or R_campesterol. Conclusions. Under physiological conditions, C synthesis and C FAR are not major determinants of circulating serum LDL-C concentrations in healthy subjects. The results need to be confirmed in large-scale studies in healthy subjects and patients at risk for cardiovascular disease.
Collapse
|
11
|
Marku A, Da Dalt L, Galli A, Dule N, Corsetto P, Rizzo AM, Moregola A, Uboldi P, Bonacina F, Marciani P, Castagna M, Catapano AL, Norata GD, Perego C. Pancreatic PCSK9 controls the organization of the β-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. [PMID: 35981632 DOI: 10.1016/j.metabol.2022.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts β-cells function. METHODS Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal β-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable β-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated‑calcium dynamics were detected in PCSK9-deficient β-cells. Mechanistically, pancreatic PCSK9 silencing impacts β-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the β-cell secretory pathway, via modulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Algerta Marku
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Lorenzo Da Dalt
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alessandra Galli
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Nevia Dule
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Corsetto
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Angela Maria Rizzo
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Annalisa Moregola
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Patrizia Uboldi
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Fabrizia Bonacina
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alberico Luigi Catapano
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Giuseppe Danilo Norata
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy.
| | - Carla Perego
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy.
| |
Collapse
|
12
|
Buzea CA, Manu P, Dima L, Correll CU. Drug-drug interactions involving combinations of antipsychotic agents with antidiabetic, lipid-lowering, and weight loss drugs. Expert Opin Drug Metab Toxicol 2022; 18:729-744. [PMID: 36369828 DOI: 10.1080/17425255.2022.2147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Patients with severe mental illness (SMI) have a high risk for diabetes, dyslipidemia, and other components of metabolic syndrome. Patients with these metabolic comorbidities and cardiac risk factors should receive not only antipsychotics but also medications aiming to reduce cardiovascular risk. Therefore, many patients may be exposed to clinically relevant drug-drug interactions. AREAS COVERED This narrative review summarizes data regarding the known or potential drug-drug interactions between antipsychotics and medications treating metabolic syndrome components, except for hypertension, which has been summarized elsewhere. A literature search in PubMed and Scopus up to 7/31/2021 was performed regarding interactions between antipsychotics and drugs used to treat metabolic syndrome components, aiming to inform clinicians' choice of medication for patients with SMI and cardiometabolic risk factors in need of pharmacologic interventions. EXPERT OPINION The cytochrome P450 system and, to a lesser extent, the P-glycoprotein transporter is involved in the pharmacokinetic interactions between antipsychotics and some statins or saxagliptin. Regarding pharmacodynamic interactions, the available information is based mostly on small studies, and for newer classes, like PCSK9 inhibitors or SGLT2 inhibitors, data are still lacking. However, there is sufficient information to guide clinicians in the process of selecting safer antipsychotic-cardiometabolic risk reduction drug combinations.
Collapse
Affiliation(s)
- Catalin Adrian Buzea
- Department 5 - Internal Medicine, Carol Davila' University of Medicine and Pharmacy, 37 Dionisie Lupu, Bucharest, Romania.,Cardiology, Clinical Hospital Colentina, 19-21 Stefan cel Mare, Bucharest, Romania
| | - Peter Manu
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Medical Services, South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Nicolae Balcescu Str 59, 500019, Brașov, Romania
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charite Universitaetsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| |
Collapse
|
13
|
Arnold N, Koenig W. PCSK9 Inhibitor Wars: How Does Inclisiran Fit in with Current Monoclonal Antibody Inhibitor Therapy? Considerations for Patient Selection. Curr Cardiol Rep 2022; 24:1657-1667. [PMID: 36087240 PMCID: PMC9729136 DOI: 10.1007/s11886-022-01782-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Treatment of dyslipidemia represents one of the most crucial strategies to reduce risk of atherosclerotic cardiovascular (CV) disease (ASCVD). In this review, we critically summarize our knowledge on emerging cholesterol-lowering therapy, targeting PCSK9, paying particular attention on treatment allocation of two drug groups, currently available for clinical use, namely, anti-PCSK9 monoclonal antibodies (mAbs) and inclisiran, a first-in-class small interfering RNA against PCSK9. RECENT FINDINGS Although both drug classes show a pronounced, but fairly similar reduction in LDL-cholesterol, their long-term safety is still unknown. Compared to mAbs, inclisiran has a more favorable dosing regimen with biannual application that might improve therapeutic adherence significantly. However, a CV outcome trial (CVOT) for inclisiran is still missing. If inclisiran will be safe and effective in ongoing/future CVOTs, it has a huge potential to overcome medication non-compliance, thereby providing a powerful therapeutic option to decrease the burden of ASCVD.
Collapse
Affiliation(s)
- Natalie Arnold
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Wolfgang Koenig
- German Heart Center, Munich, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Sarkar SK, Matyas A, Asikhia I, Hu Z, Golder M, Beehler K, Kosenko T, Lagace TA. Pathogenic gain-of-function mutations in the prodomain and C-terminal domain of PCSK9 inhibit LDL binding. Front Physiol 2022; 13:960272. [PMID: 36187800 PMCID: PMC9515655 DOI: 10.3389/fphys.2022.960272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds and mediates endo-lysosomal degradation of low-density lipoprotein receptor (LDLR), limiting plasma clearance of cholesterol-rich LDL particles in liver. Gain-of-function (GOF) point mutations in PCSK9 are associated with familial hypercholesterolemia (FH). Approximately 30%–40% of PCSK9 in normolipidemic human plasma is bound to LDL particles. We previously reported that an R496W GOF mutation in a region of PCSK9 known as cysteine-histidine–rich domain module 1 (CM1) prevents LDL binding in vitro [Sarkar et al., J. Biol. Chem. 295 (8), 2285–2298 (2020)]. Herein, we identify additional GOF mutations that inhibit LDL association, localized either within CM1 or a surface-exposed region in the PCSK9 prodomain. Notably, LDL binding was nearly abolished by a prodomain S127R GOF mutation, one of the first PCSK9 mutations identified in FH patients. PCSK9 containing alanine or proline substitutions at amino acid position 127 were also defective for LDL binding. LDL inhibited cell surface LDLR binding and degradation induced by exogenous PCSK9-D374Y but had no effect on an S127R-D374Y double mutant form of PCSK9. These studies reveal that multiple FH-associated GOF mutations in two distinct regions of PCSK9 inhibit LDL binding, and that the Ser-127 residue in PCSK9 plays a critical role.
Collapse
Affiliation(s)
- Samantha K. Sarkar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Angela Matyas
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ikhuosho Asikhia
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Zhenkun Hu
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mia Golder
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Tanja Kosenko
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas A. Lagace
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- *Correspondence: Thomas A. Lagace,
| |
Collapse
|
15
|
Chen M, Xiao J, El-Seedi HR, Woźniak KS, Daglia M, Little PJ, Weng J, Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit Rev Food Sci Nutr 2022; 64:2157-2175. [PMID: 36099317 DOI: 10.1080/10408398.2022.2121261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.
Collapse
Affiliation(s)
- Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Plasma levels of LDL cholesterol (LDL-C) are causally associated with cardiovascular risk. Reducing LDL-C results in a decreased incidence of cardiovascular events, proportionally to the absolute reduction in LDL-C. The inhibition of proprotein convertase subtilisin kexin 9 (PCSK) is a highly effective and safe approach to reducing LDL-C levels. In this review, we discuss the available data on the efficacy and safety of inclisiran, a siRNA targeting PCSK9 and propose a clinical profile for the patients who can benefit the most from this approach. RECENT FINDINGS Inclisiran is a small interfering RNA targeting the mRNA of PCSK9 specifically in the liver, owing to the conjugation with triantennary N-acetylgalactosamine. Randomized clinical trials have shown that inclisiran provides robust and durable reductions of PCSK9 and LDL-C levels, with a dosing schedule of once every 6 months after the initial and 3-month doses. These effects are consistent in different categories of patients, including patients with atherosclerotic cardiovascular disease and/or risk equivalent or patients with heterozygous familial hypercholesterolaemia. Ultimately the administration schedule may improve patients' compliance given also the favourable safety profile of the drug. Completion of ongoing outcome clinical trials will provide information on both the expected clinical benefit and the safety of inclisiran administered for longer.
Collapse
|
17
|
Bobrowska B, Krawczyk-Ożóg A, Bartuś S, Rajtar-Salwa R. Effectiveness and safety of proprotein convertase subtilisin/kexin type 9 inhibitors in patients with familial hypercholesterolemia. Our experience in implementing the drug program of the Polish National Health Fund. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:162-166. [PMID: 36051838 PMCID: PMC9421525 DOI: 10.5114/aic.2022.118533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Heterozygous familial hypercholesterolemia (FH) is characterized by an elevated plasma low-density lipoprotein cholesterol (LDL-C) concentration despite intensive statin and ezetimibe therapy, which significantly increases the cardiovascular risk. Aim The study evaluated the efficacy and safety of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, alirocumab and evolocumab, in reducing lipids in patients with FH. Material and methods This was a single-center analysis of 22 patients diagnosed with FH treated with the PCSK9 inhibitors under the drug program of the National Health Fund. The follow-up interviews and laboratory tests were performed at baseline (22 patients), 3 months (22 patients) and 15 months (9 patients) after the first dose of PCSK9 inhibitors. Results The mean (SD) baseline level of the total LDL-C fraction was 4.7 ±1.6 mmol/l in the whole group of patients and was significantly reduced after 3 and 15 months of PCSK9 inhibitors therapy to 1.7 ±1.6 and 1.6 ±1.1 mmol/l, respectively. The average percentage of reduction in LDL-C level was 64.9 ±23.7% after 3 months and 66.9 ±18.4% after 15 months. In comparison with baseline, a significant reduction in total cholesterol was observed at both time points (p <0.0002). There were no adverse cardiovascular events or significant growth in the level of alanine transaminase, creatinine, and creatine kinase throughout the study. Conclusions Patients with FH treated with PCSK9 inhibitors achieved a significant reduction of LDL-C and total cholesterol with the safety of this treatment in follow-up.
Collapse
Affiliation(s)
- Beata Bobrowska
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
| | - Agata Krawczyk-Ożóg
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
- HEART – Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Stanisław Bartuś
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
- 2 Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Renata Rajtar-Salwa
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland
| |
Collapse
|
18
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
19
|
Katzmann JL, Custodis F, Schirmer SH, Laufs U. [Update on PCSK9 inhibition]. Herz 2022; 47:196-203. [PMID: 35445838 DOI: 10.1007/s00059-022-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Lowering of low-density lipoprotein (LDL) cholesterol represents one of the most effective interventions in cardiovascular prevention. Besides the oral treatment with statins, ezetimibe and bempedoic acid, subcutaneously administered inhibitors of proprotein convertase subtilisin-kexin type 9 (PCSK9) have been established as further cornerstones of lipid-lowering treatment. The antibodies evolocumab and alirocumab are administered subcutaneously every 2-4 weeks and lower LDL cholesterol by around 60%, independent of pre-treatment with very good tolerability. Both drugs successfully reduced cardiovascular endpoints in large outcome trials. A novel principle of PCSK9 inhibition is RNA interference, which is exploited by the novel compound inclisiran. Inclisiran is a double-stranded modified RNA molecule, which neutralizes the mRNA of PCSK9 and thus inhibits PCSK9 protein synthesis intracellularly. Inclisiran only needs to be administered every 6 months. The cardiovascular outcome trial ORION‑4 is currently ongoing. In Germany, prescription of PCSK9 inhibitors is regulated by the decision of the Federal Joint Committee. Novel strategies to inhibit PCSK9 function are under development and include orally available drugs and animal experiment concepts on gene editing, which are in different states of evaluation.
Collapse
Affiliation(s)
- Julius L Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland.
| | - Florian Custodis
- Klinik für Innere Medizin II, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - Stephan H Schirmer
- Kardiopraxis Schirmer, Kaiserslautern, Deutschland
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Deutschland
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| |
Collapse
|
20
|
Cicero AF, Fogacci F, Zambon A, Toth PP, Borghi C. Efficacy and safety of inclisiran a newly approved FDA drug: a systematic review and pooled analysis of available clinical studies. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100127. [PMID: 38560059 PMCID: PMC10978220 DOI: 10.1016/j.ahjo.2022.100127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 04/04/2024]
Abstract
Study objective This systematic review and meta-analysis aimed to assess the efficacy and safety profile of treatment with inclisiran, a drug that has been recently approved by the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Design A systematic literature search was conducted in order to identify randomized controlled trials (RCTs) assessing the effect on lipoproteins and the safety profile of inclisiran. Results Data were pooled from 5 RCTs, which included 4226 subjects. Meta-analyses of data suggested that the multiple-dose regimens of inclisiran yielded a significant reduction in serum levels of proprotein convertase subtilisin/kexin type 9 (MD = -78.23%, 95%CI: -86.74, -69.71) and low-density lipoprotein cholesterol (MD = -45.48%, 95%CI: -50.36%, -40.61%) throughout the studies. Furthermore, treatment with inclisiran significantly affected total cholesterol (MD = -13.67%, 95%CI: -20.78%, -6.57%), high-density lipoprotein cholesterol (MD = 8.29%, 95%CI: 4.66%,11.93%), non-HDL cholesterol (MD = -39.45%, 95%CI: -43.6%, -35.31%), apolipoprotein B (MD = -34.58%, 95%CI: -38.78%, -30.78%) and lipoprotein(a) (MD = -20.9%, 95%CI: -25.8%, -15.99%). Multiple-dose regimens of inclisiran were associated with increased risk of injection-site reactions (any reaction: OR = 5.86, 95%CI: 3.44, 9.98; mild reactions: OR = 5.19, 95%CI: 1.68, 16.07; moderate reactions: OR = 13.37, 95%CI: 3.17, 56.46), and bronchitis (OR = 1.58, 95%CI: 1.10, 2.26), while the incidence of the pre-specified exploratory CV endpoint significantly decreased at 18 months (OR = 0.74, 95%CI: 0.58, 0.94). Conclusion and relevance Inclisiran has favourable effects on serum lipid levels and an acceptable safety profile. Further well-designed RCTs are needed to explore its longer-term safety.
Collapse
Affiliation(s)
- Arrigo F.G. Cicero
- Hypertension and Cardiovascular Risk Factors Research Group, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Group, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Alberto Zambon
- IRCCS MultiMedica, Via Milanese 300, 20099 Sesto S. Giovanni, MI, Italy
- Department of Medicine-DIMED, University of Padua, Via Giustiniani 2, 35128 Padua, Italy
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudio Borghi
- Hypertension and Cardiovascular Risk Factors Research Group, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
21
|
Roudaut M, Idriss S, Caillaud A, Girardeau A, Rimbert A, Champon B, David A, Lévêque A, Arnaud L, Pichelin M, Prieur X, Prat A, Seidah NG, Zibara K, Le May C, Cariou B, Si-Tayeb K. PCSK9 regulates the NODAL signaling pathway and cellular proliferation in hiPSCs. Stem Cell Reports 2021; 16:2958-2972. [PMID: 34739847 PMCID: PMC8693623 DOI: 10.1016/j.stemcr.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a key regulator of low-density lipoprotein (LDL) cholesterol metabolism and the target of lipid-lowering drugs. PCSK9 is mainly expressed in hepatocytes. Here, we show that PCSK9 is highly expressed in undifferentiated human induced pluripotent stem cells (hiPSCs). PCSK9 inhibition in hiPSCs with the use of short hairpin RNA (shRNA), CRISPR/cas9-mediated knockout, or endogenous PCSK9 loss-of-function mutation R104C/V114A unveiled its new role as a potential cell cycle regulator through the NODAL signaling pathway. In fact, PCSK9 inhibition leads to a decrease of SMAD2 phosphorylation and hiPSCs proliferation. Conversely, PCSK9 overexpression stimulates hiPSCs proliferation. PCSK9 can interfere with the NODAL pathway by regulating the expression of its endogenous inhibitor DACT2, which is involved in transforming growth factor (TGF) β-R1 lysosomal degradation. Using different PCSK9 constructs, we show that PCSK9 interacts with DACT2 through its Cys-His-rich domain (CHRD) domain. Altogether these data highlight a new role of PCSK9 in cellular proliferation and development.
Collapse
Affiliation(s)
- Meryl Roudaut
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; HCS Pharma, Lille, France
| | - Salam Idriss
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; ER045 - Laboratory of Stem Cells: Maintenance, Differentiation and Pathology, Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Aurore Girardeau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Benoite Champon
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amandine David
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Antoine Lévêque
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lucie Arnaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Matthieu Pichelin
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Xavier Prieur
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Annik Prat
- University of Montreal, Montreal, QC, Canada
| | | | - Kazem Zibara
- ER045 - Laboratory of Stem Cells: Maintenance, Differentiation and Pathology, Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Cedric Le May
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bertrand Cariou
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France.
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France.
| |
Collapse
|
22
|
He LF, Wang C, Zhang YF, Guo CC, Wan Y, Li YX. Effect of Emodin on Hyperlipidemia and Hepatic Lipid Metabolism in Zebrafish Larvae Fed a High-Cholesterol Diet. Chem Biodivers 2021; 19:e202100675. [PMID: 34866324 DOI: 10.1002/cbdv.202100675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Hyperlipidemia (HLP) is a complex pathological condition results from lipid metabolism disorder, which is closely related to obesity, atherosclerosis and steatohepatitis. Emodin (EM), a natural anthraquinone, exhibits prominent hypolipidemic effects. However, its exact mechanism is still unclear. In this study, we successfully established hyperlipidemic zebrafish model induced by 4 % high-cholesterol diet (HCD) for 10 days and explored the anti-hyperlipidemic roles and underlying mechanisms of EM. The results indicated that EM attenuated the mortality and body mass index (BMI) of zebrafish with HLP, and ameliorated abnormal lipid levels involved in TC, TG, LDL-C and HDL-C levels. Besides, EM effectively reduced lipid accumulation in blood vessels and liver, alleviated hepatic histological damage, and inhibited vascular neutrophil inflammation. Finally, the mRNA expression of molecules related to lipid metabolism were studied by using real-time quantitative polymerase chain reaction (RT-qPCR) to investigated the underlying mechanism. Further results found that treatment with EM up-regulated AMPKα, LDLR, ABCA1 and ABCG1, and down-regulated SREBP-2, PCSK9 and HMGCR expression. In conclusion, EM showed a prominent mitigative effect on lipid metabolism disorder in zebrafish larvae with HCD-stimulated HLP, which was associated with the enhancement of LDL-C uptake and reverse cholesterol transport, and inhibition of cholesterol synthesis.
Collapse
Affiliation(s)
- Lin-Feng He
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Cheng Wang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Ya-Fang Zhang
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Chao-Cheng Guo
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yan Wan
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yun-Xia Li
- National Key Laboratory of Southwestern Chinese Medicine Resources & Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education & School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| |
Collapse
|
23
|
Xia XD, Peng ZS, Gu HM, Wang M, Wang GQ, Zhang DW. Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Front Cardiovasc Med 2021; 8:764038. [PMID: 34782856 PMCID: PMC8589637 DOI: 10.3389/fcvm.2021.764038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of low-density lipoprotein receptor (LDLR) and plays a central role in regulating plasma levels of LDL cholesterol levels, lipoprotein(a) and triglyceride-rich lipoproteins, increasing the risk of cardiovascular disease. Additionally, PCSK9 promotes degradation of major histocompatibility protein class I and reduces intratumoral infiltration of cytotoxic T cells. Inhibition of PCSK9 increases expression of LDLR, thereby reducing plasma levels of lipoproteins and the risk of cardiovascular disease. PCSK9 inhibition also increases cell surface levels of major histocompatibility protein class I in cancer cells and suppresses tumor growth. Therefore, PCSK9 plays a vital role in the pathogenesis of cardiovascular disease and cancer, the top two causes of morbidity and mortality worldwide. Monoclonal anti-PCSK9 antibody-based therapy is currently the only available treatment that can effectively reduce plasma LDL-C levels and suppress tumor growth. However, high expenses limit their widespread use. PCSK9 promotes lysosomal degradation of its substrates, but the detailed molecular mechanism by which PCSK9 promotes degradation of its substrates is not completely understood, impeding the development of more cost-effective alternative strategies to inhibit PCSK9. Here, we review our current understanding of PCSK9 and focus on the regulation of its expression and functions.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhong-Sheng Peng
- School of Economics, Management and Law, University of South China, Hengyang, China
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maggie Wang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Momtazi-Borojeni AA, Pirro M, Xu S, Sahebkar A. PCSK9 inhibition-based therapeutic approaches: an immunotherapy perspective. Curr Med Chem 2021; 29:980-999. [PMID: 34711156 DOI: 10.2174/0929867328666211027125245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (PCSK9-I) are novel therapeutic tools to decrease cardiovascular risk. These agents work by lowering the low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients who are statin resistant/intolerant. Current clinically approved and investigational PCSK9-I act generally by blocking PCSK9 activity in the plasma or suppressing its expression or secretion by hepatocytes. The most widely investigated method is the disruption of PCSK9/LDL receptor (LDLR) interaction by fully-humanized monoclonal antibodies (mAbs), evolocumab and alirocumab, which have been approved for the therapy of hypercholesterolemia and atherosclerotic cardiovascular disease (CVD). Besides, a small interfering RNA called inclisiran, which specifically suppresses PCSK9 expression in hepatocytes, is as effective as mAbs but with administration twice a year. Because of the high costs of such therapeutic approaches, several other PCSK9-I have been surveyed, including peptide-based anti-PCSK9 vaccines and small oral anti-PCSK9 molecules, which are under investigation in preclinical and phase I clinical studies. Interestingly, anti-PCSK9 vaccination has been found to serve as a more widely feasible and more cost-effective therapeutic tool over mAb PCSK9-I for managing hypercholesterolemia. The present review will discuss LDL-lowering and cardioprotective effects of PCSK9-I, mainly immunotherapy-based inhibitors including mAbs and vaccines, in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, 06129. Italy
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
25
|
Pirillo A, Catapano AL, Norata GD. Monoclonal Antibodies in the Management of Familial Hypercholesterolemia: Focus on PCSK9 and ANGPTL3 Inhibitors. Curr Atheroscler Rep 2021; 23:79. [PMID: 34698927 PMCID: PMC8549899 DOI: 10.1007/s11883-021-00972-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
Purpose of Review Familial hypercholesterolemia (FH) is a monogenic disorder characterized by high plasma levels of low-density lipoprotein cholesterol (LDL-C) since birth and a high risk of premature cardiovascular disease. The genetic defect is carried in only one allele in heterozygous FH (HeFH) or in both in the most severe homozygous FH (HoFH). Current guidelines recommend to reduce substantially LDL-C levels in these high-risk patients, with the need to use association therapy combining agents with different mechanisms of action. As most cases of FH are attributable to mutations in the gene encoding the low-density lipoprotein receptor (LDLR), statins, even in combination with ezetimibe, are less effective in reducing LDL-C plasma levels in FH patients, who require a more intensive approach with additional lipid-lowering agents. Additional targets playing key roles in regulating LDL-C levels are represented by PCSK9 and ANGPTL3. Recent Findings Two monoclonal antibodies (mAbs) targeting PCSK9, evolocumab and alirocumab, significantly reduce LDL-C levels in HeFH patients. In patients with HoFH, the efficacy of mAbs to PCSK9 is strictly related to the presence of a residual LDLR activity; thus, patients carrying null mutations do not respond to the therapy with these mAbs, whereas some effects can be appreciated in HoFH bearing defective mutations. Conversely, evinacumab, the mAb targeting ANGPTL3, is highly effective in reducing LDL-C levels even in HoFH patients carrying null LDLR mutations, thanks to its LDLR-independent mechanism of action. Summary Monoclonal antibodies inhibiting PCSK9 have shown a robust effect in FH patients presenting a residual LDLR activity, while ANGPTL3 inhibitors appear to be promising even in patients carrying null LDLR mutations.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giuseppe D Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Da Dalt L, Castiglioni L, Baragetti A, Audano M, Svecla M, Bonacina F, Pedretti S, Uboldi P, Benzoni P, Giannetti F, Barbuti A, Pellegatta F, Indino S, Donetti E, Sironi L, Mitro N, Catapano AL, Norata GD. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J 2021; 42:3078-3090. [PMID: 34252181 PMCID: PMC8380058 DOI: 10.1093/eurheartj/ehab431] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Aims PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. Methods and results Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. Conclusion PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Patrizia Benzoni
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Federica Giannetti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy
| | - Fabio Pellegatta
- Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| | - Serena Indino
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Elena Donetti
- Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133 Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via balzaretti, 9, 20133 Milan, Italy.,Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Via Massimo Gorki, 50, 20092 Cinisello Balsamo, Italy
| |
Collapse
|
27
|
Tam J, Thankam F, Agrawal DK, Radwan MM. Critical Role of LOX-1-PCSK9 Axis in the Pathogenesis of Atheroma Formation and Its Instability. Heart Lung Circ 2021; 30:1456-1466. [PMID: 34092505 DOI: 10.1016/j.hlc.2021.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is a major contributor to annual deaths globally. Atherosclerosis is a prominent risk factor for CVD. Although significant developments have been recently made in the prevention and treatment, the molecular pathology of atherosclerosis remains unknown. Interestingly, the recent discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) introduced a new avenue to explore the molecular pathogenesis and novel management strategies for atherosclerosis. Initial research focussed on the PCSK9-mediated degradation of low density lipoprotein receptor (LDLR) and subsequent activation of pro-inflammatory pathways by oxidised low density lipoprotein (ox-LDL). Recently, PCSK9 and lectin-like oxidised low-density lipoprotein receptor-1 (LOX-1) were shown to positively amplify each other pro-inflammatory activity and gene expression in endothelial cells, macrophages and vascular smooth muscle cells. In this literature review, we provide insight into the reciprocal relationship between PCSK9 and LOX-1 in the pathogenesis of atheroma formation and plaque instability in atherosclerosis. Further understanding of the LOX-1-PCSK9 axis possesses tremendous translational potential to design novel management approaches for atherosclerosis.
Collapse
Affiliation(s)
- Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Mohamed M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
28
|
Ji E, Lee S. Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22115770. [PMID: 34071276 PMCID: PMC8199089 DOI: 10.3390/ijms22115770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, and its prevalence is increasing due to the aging of societies. Atherosclerosis, a type of chronic inflammatory disease that occurs in arteries, is considered to be the main cause of cardiovascular diseases such as ischemic heart disease or stroke. In addition, the inflammatory response caused by atherosclerosis confers a significant effect on chronic inflammatory diseases such as psoriasis and rheumatic arthritis. Here, we review the mechanism of action of the main causes of atherosclerosis such as plasma LDL level and inflammation; furthermore, we review the recent findings on the preclinical and clinical effects of antibodies that reduce the LDL level and those that neutralize the cytokines involved in inflammation. The apolipoprotein B autoantibody and anti-PCSK9 antibody reduced the level of LDL and plaques in animal studies, but failed to significantly reduce carotid inflammation plaques in clinical trials. The monoclonal antibodies against PCSK9 (alirocumab, evolocumab), which are used as a treatment for hyperlipidemia, lowered cholesterol levels and the incidence of cardiovascular diseases. Antibodies that neutralize inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have shown promising but contradictory results and thus warrant further research.
Collapse
Affiliation(s)
- Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, Seoul 05505, Korea;
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, Seoul 05505, Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
29
|
Fan TY, Yang YX, Zeng QX, Wang XL, Wei W, Guo XX, Zhao LP, Song DQ, Wang YX, Wang L, Hong B. Structure-activity relationship and biological evaluation of berberine derivatives as PCSK9 down-regulating agents. Bioorg Chem 2021; 113:104994. [PMID: 34052738 DOI: 10.1016/j.bioorg.2021.104994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein and its deficiency markedly enhanced the survival rate of patient with cardiovascular diseases (CVDs). Forty berberine (BBR) derivatives were synthesized and evaluated for their activities on down-regulating the transcription of PCSK9 in HepG2 cells, taking BBR as the lead. Structure-activity relationship (SAR) analysis revealed that 2,3-dimethoxy moiety might be beneficial for activity. Among them, 9k displayed the most potent activity with IC50 value of 9.5 ± 0.5 μM, better than that of BBR. Also, it significantly decreased PCSK9 protein level at cellular level, as well as in the liver and serum of mice in vivo. Furthermore, 9k markedly increased LDLR expression and LDL-C clearance via down-regulating PCSK9 protein. The mechanism of action of 9k is targeting HNF1α and/or Sp1 cluster modulation upstream of PCSK9, a different one from BBR. Therefore, 9k might have the potential to be a novel PCSK9 transcriptional inhibitor for the treatment of atherosclerosis, worthy for further investigation.
Collapse
Affiliation(s)
- Tian-Yun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Yu-Xin Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Qing-Xuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Xue-Lei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Wei Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Xi-Xi Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Li-Ping Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China
| | - Yan-Xiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China.
| | - Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China.
| | - Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10050, China.
| |
Collapse
|
30
|
Lütjohann D, Stellaard F, Bölükbasi B, Kerksiek A, Parhofer KG, Laufs U. Anti-PCSK 9 antibodies increase the ratios of the brain-specific oxysterol 24S-hydroxycholesterol to cholesterol and to 27-hydroxycholesterol in the serum. Br J Clin Pharmacol 2021; 87:4252-4261. [PMID: 33792095 DOI: 10.1111/bcp.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS The serum ratios of the brain-specific oxysterol 24S-hydroxycholesterol (24S-OHC) to cholesterol and to 27-OHC reflect brain cholesterol turnover. We studied the effect of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9ab) that enhance low-density lipoprotein receptor activity on serum cholesterol and oxysterol concentrations. METHODS Twenty-eight hypercholesterolaemic patients (15 males and 13 females) responding insufficiently to maximally tolerated statin and/or ezetimibe therapy were additionally subcutanously treated biweekly with either the PCSK9ab alirocumab (150 mg, n = 13) or evolocumab (140 mg, n = 15). Fasting serum cholesterol was measured by gas chromatography and the oxysterols 24S-OHC and 27-OHC using gas chromatography-mass spectrometry before, after 1-month (n = 28) and after 3-month (n = 13) treatment. RESULTS As expected, PCSK9ab treatment lowered serum cholesterol and oxysterol levels after 1 month. The serum ratio of 24S-OHC to cholesterol increased after 1 month by 17 ± 28% (mean ± standard deviation; 95% confidence interval [CI]: 5.8 to 28%; P < .01) and 24S-OHC to 27-OHC by 15 ± 39% (95% CI: 0.2 to 30%; P < .01). Within 3 months, 24S-OHC to cholesterol increased by 2.8 μg g-1 mo-1 (95% CI: 2.1 to 3.6; P < .01) and 24S-OHC to 27-OHC by 0.019 mo-1 (95% CI: 0.007 to 0.032; P < .01). CONCLUSION The serum ratios of 24S-OHC to cholesterol and to 27-OHC increased after treatment with PCSK9ab. We hypothesize that this is caused by a reduced entrance of 27-OHC into the brain, increased synthesis of brain cholesterol, increased production of 24S-OHC and its secretion across the blood-brain barrier.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Frans Stellaard
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Bediha Bölükbasi
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Anja Kerksiek
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Klaus G Parhofer
- Medizinische Klinik IV-Campus Großhadern, Klinikum der Universität München, Munich, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany.,Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Masagalli JN, BasavanaGowda MK, Chae HS, Choi WJ. Synthesis of Moracin C and Its Derivatives with a 2-arylbenzofuran Motif and Evaluation of Their PCSK9 Inhibitory Effects in HepG2 Cells. Molecules 2021; 26:1327. [PMID: 33801308 PMCID: PMC7958322 DOI: 10.3390/molecules26051327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key factor in several cardiovascular diseases, as it is responsible for the elevation of circulating low-density lipoprotein cholesterol (LDL-C) levels in blood plasma by direct interaction with the LDL receptor. The development of orally available drugs to inhibit this PCSK9-LDLR interaction is a highly desirable objective. Here, we report the synthesis of naturally occurring moracin compounds and their derivatives with a 2-arylbenzofuran motif to inhibit PCSK9 expression. In addition, we discuss a short approach involving the three-step synthesis of moracin C and a divergent method to obtain various analogs from one starting material. Among the tested derivatives, compound 7 (97.1%) was identified as a more potent inhibitor of PCSK9 expression in HepG2 cells than berberine (60.9%). These results provide a better understanding of the structure-activity relationships of moracin derivatives for the inhibition of PCSK9 expression in human hepatocytes.
Collapse
Affiliation(s)
| | | | | | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul 04620, Korea; (J.N.M.); (M.K.B.); (H.-S.C.)
| |
Collapse
|
32
|
Abstract
Statins remain the drugs of choice in patients at risk of or with atherosclerotic cardiovascular disease (ASCVD). Statins have limitations that drive the development of investigational agents to manage dyslipidemias and/or reduce ASCVD risk. There are a few small-molecule drugs that have the potential to mitigate ASCVD risk either alone or in combination with statins. Most lipid-modifying drugs in clinical development are biologic agents that target specific enzymes or genetic-based protein synthesis. Limitations of the biologic agents include complex mechanisms of action and manufacturing processes with indications in select patients with genetic dyslipidemia or who have failed traditional therapies. The ultimate clinical utility of the new and investigational agents will become established over the next several years.
Collapse
Affiliation(s)
- James M Backes
- Clinical & Medical Center Affairs, Assistant Director - Atherosclerosis & LDL-Apheresis Center, University of Kansas Medical Center, KU School of Pharmacy, 2010 Becker Drive, Lawrence, KS 66047, USA
| | - Daniel E Hilleman
- Pharmacy Practice, Creighton University School of Pharmacy & Health, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
33
|
Pirillo A, Catapano AL, Norata GD. Recent insights into low-density lipoprotein metabolism and therapy. Curr Opin Clin Nutr Metab Care 2021; 24:120-126. [PMID: 33394716 DOI: 10.1097/mco.0000000000000727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Elevated levels of low-density lipoprotein cholesterol (LDL-C) are causal to atherosclerosis and, thus, the reduction of LDL-C represents a major objective for the prevention of cardiovascular disease. Aim of this review is to provide an overview on novel strategies to lower LDL-C. RECENT FINDINGS Although inhibiting liver cholesterol biosynthesis by statins is used as the main therapeutic approach to increase hepatic LDL-receptor expression and lower plasma cholesterol levels, novel insights into lipid and lipoprotein biology have led to the development of additional lipid-lowering therapies that can be used in combination with or as an alternative to statins in patients with statin-intolerance. New approaches include bempedoic acid, proprotein convertase subtilisin/kexin type 9 inhibitors, and angiopoietin-like protein 3 inhibitors. SUMMARY In the last decade, several novel therapeutic approaches have been tested and some of them have been approved as lipid-lowering agents. Some drugs are already available in clinical practice, whereas others are at late stages of development.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo
- IRCCS MultiMedica, Sesto S. Giovanni
| | - Alberico L Catapano
- IRCCS MultiMedica, Sesto S. Giovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Giuseppe D Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| |
Collapse
|
34
|
Katzmann JL, Gouni-Berthold I, Laufs U. PCSK9 Inhibition: Insights From Clinical Trials and Future Prospects. Front Physiol 2020; 11:595819. [PMID: 33304274 PMCID: PMC7701092 DOI: 10.3389/fphys.2020.595819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In 2003, clinical observations led to the discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism. Functional studies demonstrated that PCSK9 binds to the low-density lipoprotein (LDL) receptor directing it to its lysosomal degradation. Therefore, carriers of gain-of-function mutations in PCSK9 exhibit decreased expression of LDL receptors on the hepatocyte surface and have higher LDL cholesterol (LDL-C) levels. On the contrary, loss-of-function mutations in PCSK9 are associated with low LDL-C concentrations and significantly reduced lifetime risk of cardiovascular disease. These insights motivated the search for strategies to pharmacologically inhibit PCSK9. In an exemplary rapid development, fully human monoclonal antibodies against PCSK9 were developed and found to effectively reduce LDL-C. Administered subcutaneously every 2-4 weeks, the PCSK9 antibodies evolocumab and alirocumab reduce LDL-C by up to 60% in a broad range of populations either as monotherapy or in addition to statins. Two large cardiovascular outcome trials involving a total of ∼46,000 cardiovascular high-risk patients on guideline-recommended lipid-lowering therapy showed that treatment with evolocumab and alirocumab led to a relative reduction of cardiovascular risk by 15% after 2.2 and 2.8 years of treatment, respectively. These findings expanded the armamentarium of pharmacological approaches to address residual cardiovascular risk associated with LDL-C. Furthermore, the unprecedented low LDL-C concentrations achieved (e.g., 30 mg/dL in the FOURIER study) suggest that the relationship between LDL-C and cardiovascular risk is without a lower threshold, and without associated adverse events during the timeframe of the studies. The side effect profile of PCSK9 antibodies is favorable with few patients exhibiting injection-site reactions. Currently, the access to PCSK9 antibodies is limited by high treatment costs. The development of novel approaches to inhibit PCSK9 such as the use of small interfering RNA to inhibit PCSK9 synthesis seems promising and may soon become available.
Collapse
Affiliation(s)
| | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes, and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|