1
|
Briançon-Marjollet A, Netchitaïlo M, Fabre F, Belaidi E, Arnaud C, Borel AL, Levy P, Pépin JL, Tamisier R. Intermittent hypoxia increases lipid insulin resistance in healthy humans: A randomized crossover trial. J Sleep Res 2024:e14243. [PMID: 38866393 DOI: 10.1111/jsr.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 06/14/2024]
Abstract
Sympathetic overactivity caused by chronic intermittent hypoxia is a hallmark of obstructive sleep apnea. A high sympathetic tone elicits increases in plasma free fatty acid and insulin. Our objective was to assess the impact of 14 nights of chronic intermittent hypoxia exposure on sympathetic activity, glucose control, lipid profile and subcutaneous fat tissue remodelling in non-obese healthy humans. In this prospective, double-blinded crossover study, 12 healthy subjects were randomized, among them only nine underwent the two phases of exposures of 14 nights chronic intermittent hypoxia versus air. Sympathetic activity was measured by peroneal microneurography (muscle sympathetic nerve activity) before and after each exposure. Fasting glucose, insulin, C-peptide and free fatty acid were assessed at rest and during a multisampling oral glucose tolerance test. We assessed histological remodelling, adrenergic receptors, lipolysis and lipogenesis genes expression and functional changes of the adipose tissue. Two weeks of exposure of chronic intermittent hypoxia versus ambient air significantly increased sympathetic activity (p = 0.04). Muscle sympathetic nerve activity increased from 24.5 [18.9; 26.8] before to 21.7 [13.8; 25.7] after ambient air exposure, and from 20.6 [17.4; 23.9] before to 28.0 [24.4; 31.5] bursts per min after exposure to chronic intermittent hypoxia. After chronic intermittent hypoxia, post-oral glucose tolerance test circulating free fatty acid area under the curve increased (p = 0.05) and free fatty acid sensitivity to insulin decreased (p = 0.028). In adipocyte tissue, intermittent hypoxia increased expression of lipolysis genes (adipocyte triglyceride lipase and hormone-sensitive lipase) and lipogenesis genes (fatty acid synthase; p < 0.05). In this unique experimental setting in healthy humans, chronic intermittent hypoxia induced high sympathetic tone, lipolysis and decreased free fatty acid sensitivity to insulin. This might participate in the trajectory to systemic insulin resistance and diabetes for patients with obstructive sleep apnea.
Collapse
Affiliation(s)
| | - Marie Netchitaïlo
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service de physiologie respiratoire et de l'exercice, CHU Rouen Normandie, Rouen, France
| | - Fanny Fabre
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service anesthésie, Centre Hospitalier de Mayotte (Pôle BACS), Mamoudzou, France
| | - Elise Belaidi
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique UMR5305, Lyon, France
| | - Claire Arnaud
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
| | - Anne-Laure Borel
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Endocrinology, Diabetology, Nutrition, Grenoble, France
| | - Patrick Levy
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| |
Collapse
|
2
|
Das A, Jawla N, Meena V, Gopinath SD, Arimbasseri GA. Lack of vitamin D signalling shifts skeletal muscles towards oxidative metabolism. J Cachexia Sarcopenia Muscle 2024; 15:67-80. [PMID: 38041597 PMCID: PMC10834326 DOI: 10.1002/jcsm.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Mice lacking vitamin D receptor (VDR) exhibit a glycogen storage disorder, disrupting carbohydrate utilization in muscle. Here, we asked if the defective carbohydrate metabolism alters the fat utilization by the skeletal muscles of vdr-/- mice. METHODS To check the effect of high-fat-containing diets on muscle mass and metabolism of vdr-/- mice, we subjected them to two different milk fat-based diets (milk fat diet with 60% of energy from milk fat and milk-based diet [MBD] with 37% of energy from milk fat) and lard-based high-fat diet (HFD) containing 60% of energy from lard fat. Skeletal muscles and pancreas from these mice were analysed using RNA sequencing, quantitative reverse transcription polymerase chain reaction and western blot to understand the changes in signalling and metabolic pathways. Microscopic analyses of cryosections stained with haematoxylin and eosin, BODIPY, succinate dehydrogenase and periodic acid-Schiff reagent were performed to understand changes in morphology and metabolism of muscle fibres and pancreatic islets. RESULTS Transcriptomic analyses showed that the skeletal muscles of vdr-/- mice exhibit upregulation of the fatty acid oxidation pathways, suggesting a shift towards increased lipid utilization even in a carbohydrate-enriched regular chow diet (chow). Two different milk fat-enriched diets restored body weight (12.01 ± 0.33 g in chow vs. 17.99 ± 0.62 g in MBD) and muscle weights (38.58 ± 3.84 mg in chow vs. 110.72 ± 1.96 mg in MBD for gastrocnemius [GAS]) of vdr-/- mice. Muscle ATP levels (0.56 ± 0.18 μmol in chow vs. 1.48 ± 0.08 μmol in MBD) and protein synthesis (0.25 ± 0.04 A.U. in chow vs. 2.02 ± 0.06 A.U. in MBD) were upregulated by MBD. However, despite increasing muscle energy levels, HFD failed to restore the muscle mass and cross-sectional area to that of wild-type (WT) mice (104.95 ± 2.6 mg for WT mice on chow vs. 77.26 ± 1.7 mg for vdr-/- mice on HFD for GAS). Moreover, HFD disrupted glucose homeostasis in vdr-/- mice, while MBD restored it. We further analysed insulin response and pancreatic insulin levels of these mice to show that HFD led to reduced insulin levels in pancreatic beta cells of vdr-/- mice (mean intensity of 1.5 × 10-8 for WT mice on chow vs. 4.3 × 10-9 for vdr-/- mice on HFD). At the same time, MBD restored glucose-stimulated pancreatic insulin response (mean intensity of 9.2 × 10-9 ). CONCLUSIONS Skeletal muscles of vdr-/- mice are predisposed to utilize fatty acids as their primary energy source to circumvent their defective carbohydrate utilization. Thus, HFDs could restore energy levels in the skeletal muscles of vdr-/- mice. This study reveals that when mice are subjected to a lard-based HFD, VDR signalling is essential for maintaining insulin levels in pancreatic islets. Our data show a critical role of VDR in muscle metabolic flexibility and pancreatic insulin response.
Collapse
Affiliation(s)
- Anamica Das
- Molecular Genetics LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Neha Jawla
- Molecular Genetics LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | - Vaidehee Meena
- Molecular Genetics LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | | |
Collapse
|
3
|
St. Clair JR, Westacott MJ, Miranda J, Farnsworth NL, Kravets V, Schleicher WE, Dwulet JM, Levitt CH, Heintz A, Ludin NWF, Benninger RKP. Restoring connexin-36 function in diabetogenic environments precludes mouse and human islet dysfunction. J Physiol 2023; 601:4053-4072. [PMID: 37578890 PMCID: PMC10508056 DOI: 10.1113/jp282114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
The secretion of insulin from β-cells in the islet of Langerhans is governed by a series of metabolic and electrical events, which can fail during the progression of type 2 diabetes (T2D). β-cells are electrically coupled via connexin-36 (Cx36) gap junction channels, which coordinates the pulsatile dynamics of [Ca2+ ] and insulin release across the islet. Factors such as pro-inflammatory cytokines and free fatty acids disrupt gap junction coupling under in vitro conditions. Here we test whether gap junction coupling and coordinated [Ca2+ ] dynamics are disrupted in T2D, and whether recovery of gap junction coupling can recover islet function. We examine islets from donors with T2D, from db/db mice, and islets treated with pro-inflammatory cytokines (TNF-α, IL-1β, IFN-ɣ) or free fatty acids (palmitate). We modulate gap junction coupling using Cx36 over-expression or pharmacological activation via modafinil. We also develop a peptide mimetic (S293) of the c-terminal regulatory site of Cx36 designed to compete against its phosphorylation. Cx36 gap junction permeability and [Ca2+ ] dynamics were disrupted in islets from both human donors with T2D and db/db mice, and in islets treated with pro-inflammatory cytokines or palmitate. Cx36 over-expression, modafinil treatment and S293 peptide all enhanced Cx36 gap junction coupling and protected against declines in coordinated [Ca2+ ] dynamics. Cx36 over-expression and S293 peptide also reduced apoptosis induced by pro-inflammatory cytokines. Critically, S293 peptide rescued gap junction coupling and [Ca2+ ] dynamics in islets from both db/db mice and a sub-set of T2D donors. Thus, recovering or enhancing Cx36 gap junction coupling can improve islet function in diabetes. KEY POINTS: Connexin-36 (Cx36) gap junction permeability and associated coordination of [Ca2+ ] dynamics is diminished in human type 2 diabetes (T2D) and mouse models of T2D. Enhancing Cx36 gap junction permeability protects against disruptions to the coordination of [Ca2+ ] dynamics. A novel peptide mimetic of the Cx36 c-terminal regulatory region protects against declines in Cx36 gap junction permeability. Pharmacological elevation in Cx36 or Cx36 peptide mimetic recovers [Ca2+ ] dynamics and glucose-stimulated insulin secretion in human T2D and mouse models of T2D.
Collapse
Affiliation(s)
- Joshua R St. Clair
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Matthew J Westacott
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Jose Miranda
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nikki L Farnsworth
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Claire H Levitt
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Audrey Heintz
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nurin WF Ludin
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
4
|
Bonet J, Yadav Y, Miles J, Basu A, Cobelli C, Basu R, Dalla Man C. A new oral model of free fatty acid kinetics to assess lipolysis in subjects with and without type 2 diabetes. Am J Physiol Endocrinol Metab 2023; 325:E163-E170. [PMID: 37378622 PMCID: PMC10393336 DOI: 10.1152/ajpendo.00091.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Assessing free fatty acids (FFAs) kinetics and the role of insulin and glucose on FFA lipolysis and disposal may improve our understanding of the pathogenesis of type 2 diabetes (T2D). Some models have been proposed to describe FFA kinetics during an intravenous glucose tolerance test and only one during an oral glucose tolerance test. Here, we propose a model of FFA kinetics during a meal tolerance test and use it to assess possible differences in postprandial lipolysis in individuals with type 2 diabetes (T2D) and individuals with obesity without type 2 diabetes (ND). We studied 18 obese ND and 16 T2D undergoing three meal tolerance tests (MTT) on three occasions (breakfast, lunch, and dinner). We used plasma glucose, insulin, and FFA concentrations collected at breakfast to test a battery of models and selected the best one based on physiological plausibility, ability to fit the data, precision of parameter estimates, and the Akaike parsimony criterion. The best model assumes that the postprandial suppression of FFA lipolysis is proportional to the above basal insulin, while FFA disposal is proportional to FFA concentration. It was used to compare FFA kinetics in ND and T2D along the day. The maximum lipolysis suppression occurred significantly earlier in ND than T2D (39 ± 6 min vs. 102 ± 13 min, 36 ± 4 min vs. 78 ± 11 min, and 38 ± 6 min vs. 84 ± 13 min, P < 0.01, at breakfast, lunch, and dinner, respectively), making lipolysis significantly lower in ND than T2D. This is mainly attributable to the lower insulin concentration in the second group. This novel FFA model allows to assess lipolysis and insulin antilipolytic effect in postprandial conditions.NEW & NOTEWORTHY In this study, we propose a new mathematical model able to quantify postprandial FFA kinetics and adipose tissue insulin sensitivity in both subjects with obesity without type 2 diabetes (ND) and subjects with type 2 diabetes (T2D). Results show that the slower postprandial suppression of lipolysis in T2D contributes to the higher free fatty acid (FFA) concentration that, in turn, may contribute to hyperglycemia.
Collapse
Affiliation(s)
- J. Bonet
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Y. Yadav
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - J. Miles
- University of Kansas Medical Center, Kansas City, Kansas, United States
| | - A. Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - C. Cobelli
- Department of Woman and Child’s Health, University of Padova, Padova, Italy
| | - R. Basu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - C. Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Lewis ST, Greenway F, Tucker TR, Alexander M, Jackson LK, Hepford SA, Loveridge B, Lakey JRT. A Receptor Story: Insulin Resistance Pathophysiology and Physiologic Insulin Resensitization's Role as a Treatment Modality. Int J Mol Sci 2023; 24:10927. [PMID: 37446104 DOI: 10.3390/ijms241310927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Physiologic insulin secretion consists of an oscillating pattern of secretion followed by distinct trough periods that stimulate ligand and receptor activation. Apart from the large postprandial bolus release of insulin, β cells also secrete small amounts of insulin every 4-8 min independent of a meal. Insulin resistance is associated with a disruption in the normal cyclical pattern of insulin secretion. In the case of type-2 diabetes, β-cell mass is reduced due to apoptosis and β cells secrete insulin asynchronously. When ligand/receptors are constantly exposed to insulin, a negative feedback loop down regulates insulin receptor availability to insulin, creating a relative hyperinsulinemia. The relative excess of insulin leads to insulin resistance (IR) due to decreased receptor availability. Over time, progressive insulin resistance compromises carbohydrate metabolism, and may progress to type-2 diabetes (T2D). In this review, we discuss insulin resistance pathophysiology and the use of dynamic exogenous insulin administration in a manner consistent with more normal insulin secretion periodicity to reverse insulin resistance. Administration of insulin in such a physiologic manner appears to improve insulin sensitivity, lower HgbA1c, and, in some instances, has been associated with the reversal of end-organ damage that leads to complications of diabetes. This review outlines the rationale for how the physiologic secretion of insulin orchestrates glucose metabolism, and how mimicking this secretion profile may serve to improve glycemic control, reduce cellular inflammation, and potentially improve outcomes in patients with diabetes.
Collapse
Affiliation(s)
| | - Frank Greenway
- Clinical Trials Unit, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 77808, USA
| | - Tori R Tucker
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
| | - Levonika K Jackson
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Scott A Hepford
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Brian Loveridge
- Well Cell Global, Medical and Scientific Advisory Board, Houston, TX 77079, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92686, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92868, USA
| |
Collapse
|
6
|
Host Metabolic Changes during Mycobacterium Tuberculosis Infection Cause Insulin Resistance in Adult Mice. J Clin Med 2022; 11:jcm11061646. [PMID: 35329973 PMCID: PMC8948975 DOI: 10.3390/jcm11061646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is a highly infectious bacterial disease that primarily attacks the lungs. TB is manifested either as latent TB infection (LTBI) or active TB disease, the latter posing a greater threat to life. The risk of developing active TB disease from LTBI is three times higher in individuals with type 2 diabetes mellitus (T2DM). The association between TB and T2DM is becoming more prominent as T2DM is rapidly increasing in settings where TB is endemic. T2DM is a chronic metabolic disorder characterized by elevated blood glucose, insulin resistance, and relative insulin deficiency. Insulin resistance and stress-induced hyperglycemia have been shown to be increased by TB and to return to normal upon treatment. Previously, we demonstrated that adipocytes (or fat tissue) regulate pulmonary pathology, inflammation, and Mycobacterium tuberculosis (Mtb) load in a murine model of TB. Metabolic disturbances of adipose tissue and/or adipocyte dysfunction contribute to the pathogenesis of T2DM. Thus, pathological adipocytes not only regulate pulmonary pathology, but also increase the risk for T2DM during TB infection. However, the cellular and molecular mechanisms driving the interaction between hyperglycemia, T2DM and TB remain poorly understood. Here, we report the impact of Mtb infection on the development of insulin resistance in mice fed on a regular diet (RD) versus high-fat diet (HFD) and, conversely, the effect of hyperglycemia on pulmonary pathogenesis in juvenile and adult mouse models. Overall, our study demonstrated that Mtb persists in adipose tissue and that Mtb infection induces irregular adipocyte lipolysis and loss of fat cells via different pathways in RD- and HFD-fed mice. In RD-fed mice, the levels of TNFα and HSL (hormone sensitive lipase) play an important role whereas in HFD-fed mice, ATGL (adipose triglyceride lipase) plays a major role in regulating adipocyte lipolysis and apoptosis during Mtb infection in adult mice. We also showed that Mtb infected adult mice that were fed an RD developed insulin resistance similar to infected adult mice that were overweight due to a HFD diet. Importantly, we found that a consequence of Mtb infection was increased lipid accumulation in the lungs, which altered cellular energy metabolism by inhibiting major energy signaling pathways such as insulin, AMPK and mToR. Thus, an altered balance between lipid metabolism and glucose metabolism in adipose tissue and other organs including the lungs may be an important component of the link between Mtb infection and subsequent metabolic syndrome.
Collapse
|
7
|
Kumagai H, Coelho AR, Wan J, Mehta HH, Yen K, Huang A, Zempo H, Fuku N, Maeda S, Oliveira PJ, Cohen P, Kim SJ. MOTS-c reduces myostatin and muscle atrophy signaling. Am J Physiol Endocrinol Metab 2021; 320:E680-E690. [PMID: 33554779 PMCID: PMC8238132 DOI: 10.1152/ajpendo.00275.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity and type 2 diabetes are metabolic diseases, often associated with sarcopenia and muscle dysfunction. MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and has been implicated in metabolic homeostasis. Although MOTS-c improves insulin sensitivity in skeletal muscle, whether MOTS-c impacts muscle atrophy is not known. Myostatin is a negative regulator of skeletal muscle mass and also one of the possible mediators of insulin resistance-induced skeletal muscle wasting. Interestingly, we found that plasma MOTS-c levels are inversely correlated with myostatin levels in human subjects. We further demonstrated that MOTS-c prevents palmitic acid-induced atrophy in differentiated C2C12 myotubes, whereas MOTS-c administration decreased myostatin levels in plasma in diet-induced obese mice. By elevating AKT phosphorylation, MOTS-c inhibits the activity of an upstream transcription factor for myostatin and other muscle wasting genes, FOXO1. MOTS-c increases mTORC2 and inhibits PTEN activity, which modulates AKT phosphorylation. Further upstream, MOTS-c increases CK2 activity, which leads to PTEN inhibition. These results suggest that through inhibition of myostatin, MOTS-c could be a potential therapy for insulin resistance-induced skeletal muscle atrophy as well as other muscle wasting phenotypes including sarcopenia.NEW & NOTEWORTHY MOTS-c, a mitochondrial-derived peptide reduces high-fat-diet-induced muscle atrophy signaling by reducing myostatin expression. The CK2-PTEN-mTORC2-AKT-FOXO1 pathways play key roles in MOTS-c action on myostatin expression.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Ana Raquel Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Junxiang Wan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hemal H Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Amy Huang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Abstract
BACKGROUND Insulin shares a limited physiological concentration range with other endocrine hormones. Not only too low, but also too high systemic insulin levels are detrimental for body functions. MAIN BODY The physiological function and clinical relevance of insulin are usually seen in association with its role in maintaining glucose homeostasis. However, insulin is an anabolic hormone which stimulates a large number of cellular responses. Not only too low, but also excess insulin concentrations are detrimental to the physiological balance. Although the glucoregulatory activity of insulin is mitigated during hyperinsulinemia by dampening the efficiency of insulin signaling ("insulin resistance"), this is not the case for most other hormonal actions of insulin, including the promotion of protein synthesis, de novo lipogenesis, and cell proliferation; the inhibition of lipolysis, of autophagy-dependent cellular turnover, and of nuclear factor E2-related factor-2 (Nrf2)-dependent antioxidative; and other defense mechanisms. Hence, there is no general insulin resistance but selective impairment of insulin signaling which causes less glucose uptake from the blood and reduced activation of endothelial NO synthase (eNOS). Because of the largely unrestricted insulin signaling, hyperinsulinemia increases the risk of obesity, type 2 diabetes, and cardiovascular disease and decreases health span and life expectancy. In epidemiological studies, high-dose insulin therapy is associated with an increased risk of cardiovascular disease. Randomized controlled trials of insulin treatment did not observe any effect on disease risk, but these trials only studied low insulin doses up to 40 IU/day. Proof for a causal link between elevated insulin levels and cardiovascular disease risk comes from Mendelian randomization studies comparing individuals with genetically controlled low or high insulin production. CONCLUSIONS The detrimental actions of prolonged high insulin concentrations, seen also in cell culture, argue in favor of a lifestyle that limits circadian insulin levels. The health risks associated with hyperinsulinemia may have implications for treatment regimens used in type 2 diabetes.
Collapse
|
9
|
Cong GZ, Ghosh KK, Mishra S, Gulyás M, Kovács T, Máthé D, Padmanabhan P, Gulyás B. Targeted pancreatic beta cell imaging for early diagnosis. Eur J Cell Biol 2020; 99:151110. [PMID: 33070042 DOI: 10.1016/j.ejcb.2020.151110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta cells are important in blood glucose level regulation. As type 1 and 2 diabetes are getting prevalent worldwide, we need to explore new methods for early detection of beta cell-related afflictions. Using bioimaging techniques to measure beta cell mass is crucial because a decrease in beta cell density is seen in diseases such as diabetes and thus can be a new way of diagnosis for such diseases. We also need to appraise beta cell purity in transplanted islets for type 1 diabetes patients. Sufficient amount of functional beta cells must also be determined before being transplanted to the patients. In this review, indirect imaging of beta cells will be discussed. This includes membrane protein on pancreatic beta cells whereby specific probes are designed for different imaging modalities mainly magnetic resonance imaging, positron emission tomography and fluorescence imaging. Direct imaging of insulin is also explored though probes synthesized for such function are relatively fewer. The path for successful pancreatic beta cell imaging is fraught with challenges like non-specific binding, lack of beta cell-restricted targets, the requirement of probes to cross multiple lipid layers to bind to intracellular insulin. Hence, there is an urgent need to develop new imaging techniques and innovative probing constructs in the entire imaging chain of bioengineering to provide early detection of beta cell-related pathology.
Collapse
Affiliation(s)
- Goh Zheng Cong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Miklós Gulyás
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskölds väg 20, Uppsala Se-751 85, Sweden
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University Faculty of Medicine, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
10
|
Yang Y, Gao H, Zhou H, Liu Q, Qi Z, Zhang Y, Zhang J. The role of mitochondria-derived peptides in cardiovascular disease: Recent updates. Biomed Pharmacother 2019; 117:109075. [DOI: 10.1016/j.biopha.2019.109075] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/20/2022] Open
|
11
|
Park Y, Kim D, Lee JS, Kim YN, Jeong YK, Lee KG, Choi D. Association between diet and gallstones of cholesterol and pigment among patients with cholecystectomy: a case-control study in Korea. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2017; 36:39. [PMID: 29169372 PMCID: PMC5701373 DOI: 10.1186/s41043-017-0116-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The prevalence of cholesterol gallstones is high in Western populations, while pigment gallstones are common in Asian populations. Dietary factors are suggested to be associated with gallstone risk, but their relationship with gallstone type has not been evaluated. This study investigated the association between diet and risk of cholesterol gallstone or pigment gallstone in a Korean population whose dietary pattern and type of gallstone were changed during the last 30 years. METHODS Patients with cholesterol (n = 40) and pigment (n = 59) gallstones were recruited after laparoscopic cholecystectomy and were compared with those of age- and sex-matched controls without gallstones (n = 99). Dietary intakes were assessed by trained dietitians using a semi-quantitative food frequency questionnaire. Multinomial logistic regression analysis was performed to calculate odds ratios and 95% confidence intervals to examine the associations between diet and risk for type of gallstones adjusted by potential confounders. RESULTS Patients with cholesterol gallstone consumed more lipid, animal lipid, beef, pork, and fried food than those with pigment gallstones and control, while patients with pigment gallstone consumed more carbohydrate and noodles than patients with cholesterol gallstone and control. In multinomial logistic regression analysis using control as reference group, dietary pattern with high consumption of beef, pork, and fried food was associated with risk of cholesterol gallstones, while there was no association between the risk of pigment gallstone and dietary pattern. In addition, control consumed more alcohol than patients with cholesterol and pigment gallstones. CONCLUSIONS The present study suggested consumption of fat from meat and fried foods increased the risk of cholesterol gallstone, and intake of carbohydrate from noodles increased the risk of pigment gallstone.
Collapse
Affiliation(s)
- Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Doyeon Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Ju Seon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Yu Na Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Yoon Kyung Jeong
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Kyeong Geun Lee
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Dongho Choi
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| |
Collapse
|
12
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Kim SJ, Xiao J, Wan J, Cohen P, Yen K. Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 2017; 595:6613-6621. [PMID: 28574175 DOI: 10.1113/jp274472] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrially derived peptides represent a new class of circulating signalling molecules. Humanin, the first member of this class, has been shown to have several metabolic effects such as reducing weight gain and visceral fat and increasing glucose-stimulated insulin release. The discovery of several other new members, such as MOTS-c and SHLP1-6, has further added to this group. These new peptides have also been found to affect metabolism with MOTS-c potently decreasing weight gain in mice on a high-fat diet. This review covers the basic biology of this class of peptides and discusses the relevance to organismal metabolism.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, Printz RL, O'Brien RM, Cherrington AD. Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2017; 2:e91863. [PMID: 28352665 DOI: 10.1172/jci.insight.91863] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin's indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin's direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin's direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip E Williams
- Division of Surgical Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katie C Coate
- Samford University, Department of Nutrition and Dietetics, Birmingham, Alabama, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Shahbazi S, Vahdat Shariatpanahi Z. Prevention of type 2 diabetes mellitus by changes in diet among subjects with abnormal glucose metabolism: a randomized clinical trial. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0548-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
16
|
Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clin Sci (Lond) 2016; 131:247-260. [PMID: 27980130 DOI: 10.1042/cs20160545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptor 120 (GPR120) is a putative target for obesity and diabetes therapies. However, it remains controversial whether resident GPR120 plays a direct regulatory role in islet β-cell insulin secretion. The present study examined this issue in isolated rodent islets and rat β-cell line INS-1E, and assessed the role of GPR120 in islet insulin secretion in obese non-diabetic (OND) and diabetic states. GPR120 expression was detected in rodent islet β-cells. Docosahexaenoic acid (DHA) and synthetic GPR120 agonist GSK137647 (GSK) augmented insulin release from rat/mouse islets and INS-1E; DHA effects were partially mediated by GPR40. GPR120 knockdown and overexpression attenuated and enhanced DHA effects in INS-1E respectively. DHA and GSK improved postprandial hyperglycaemia of diabetic mice. Inhibition of calcium signalling in INS-1E reduced GPR120 activation-induced insulinotropic effects. The insulinotropic effects of DHA/GSK were amplified in OND rat islets, but diminished in diabetic rat islets. GPR120 and peroxisome proliferator-activated receptor γ (PPARγ) expression were elevated in OND islets and palmitic acid (PA)-treated INS-1E, but reduced in diabetic islets and high glucose-treated INS-1E. PPARγ activation increased GPR120 expression in rat islets and INS-1E. DHA and GSK induced protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation in rodent islets and INS-1E, and these effects were altered in OND and diabetic states. Taken together, the present study indicates that (i) GPR120 activation has an insulinotropic influence on β-cells with the involvement of calcium signalling; (ii) GPR120 expression in β-cells and GPR120-mediated insulinotropic effects are altered in OND and diabetic states in distinct ways, and these alterations may be mediated by PPARγ.
Collapse
|
17
|
Quality of life in healthcare higher education professionals. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Pdcd2l Promotes Palmitate-Induced Pancreatic Beta-Cell Apoptosis as a FoxO1 Target Gene. PLoS One 2016; 11:e0166692. [PMID: 27861641 PMCID: PMC5115776 DOI: 10.1371/journal.pone.0166692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023] Open
Abstract
Transcription factor FoxO1 is a key regulator of the insulin-signaling pathway, and is reported to play important roles in pancreatic β cell differentiation, proliferation, apoptosis and stress resistance. The multifunctional nature of FoxO1 is due to its regulation of various downstream targets. Previous studies in our lab identified potential FoxO1 target genes using the ChIP-DSL technique and one of those genes, Pdcd2l, was selected for further study. We found that the expression of Pdcd2l was increased with palmitate treatment; the luciferase assay result revealed that enhanced Pdcd2l promoter activity was responsible for the elevation of Pdcd2l expression. ChIP-PCR was performed to confirm the combination of FoxO1 to Pdcd2l promoter, result showing that FoxO1 could bind to Pdcd2l promoter and this binding was further enhanced after palmitate treatment. Overexpression of FoxO1 significantly induced Pdcd2l promoter activity, leading to increased mRNA level; consistently, interference of FoxO1 abolished the increment of Pdcd2l gene expression triggered by palmitate treatment. In addition, overexpression of Pdcd2l could further increase the percentage of apoptotic cells induced by palmitate incubation, whilst interference of Pdcd2l partially reversed the palmitate-induced apoptosis together with activated Caspase-3, indicating that the latter may play a part in this process. Therefore, in this study, we confirmed the binding of FoxO1 to the Pdcd2l gene promoter and studied the role of Pdcd2l in β cells for the first time. Our results suggested that FoxO1 may exert its activity partially through the regulation of Pdcd2l in palmitate-induced β cell apoptosis and could help to clarify the molecular mechanisms of β cell failure in type 2 diabetes.
Collapse
|
19
|
Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans. Mol Metab 2016; 5:305-316. [PMID: 27069870 PMCID: PMC4812007 DOI: 10.1016/j.molmet.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/01/2023] Open
Abstract
Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. CSF3, the gene encoding G-CSF, is induced in human myotubes by saturated, but not unsaturated, FFAs. CSF3 expression is induced via Toll-like receptor 4-dependent and -independent pathways. Human adipocytes and myotubes treated with G-CSF become insulin-resistant. A CSF3 SNP affects insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. G-CSF emerges as a new player in FFA-induced insulin resistance.
Collapse
|
20
|
Broussard JL, Kolka CM, Castro AVB, Asare Bediako I, Paszkiewicz RL, Szczepaniak EW, Szczepaniak LS, Knutson KL, Kim SP, Bergman RN. Elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation during diet-induced insulin resistance in dogs. Diabetologia 2015; 58:2663-70. [PMID: 26254577 PMCID: PMC4591216 DOI: 10.1007/s00125-015-3721-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS A normal consequence of increased energy intake and insulin resistance is compensatory hyperinsulinaemia through increased insulin secretion and/or reduced insulin clearance. Failure of compensatory mechanisms plays a central role in the pathogenesis of type 2 diabetes mellitus; consequently, it is critical to identify in vivo signal(s) involved in hyperinsulinaemic compensation. We have previously reported that high-fat feeding leads to an increase in nocturnal NEFA concentration. We therefore designed this study to test the hypothesis that elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation for insulin resistance. METHODS Blood sampling was conducted in male dogs to determine 24 h profiles of NEFA at baseline and during high-fat feeding with and without acute nocturnal NEFA suppression using a partial A1 adenosine receptor agonist. RESULTS High-fat feeding increased nocturnal NEFA and reduced insulin sensitivity, effects countered by an increase in acute insulin response to glucose (AIR(g)). Pharmacological NEFA inhibition after 8 weeks of high-fat feeding lowered NEFA to baseline levels and reduced AIR(g) with no effect on insulin sensitivity. A significant relationship emerged between nocturnal NEFA levels and AIR(g). This relationship indicates that the hyperinsulinaemic compensation induced in response to high-fat feeding was prevented when the nocturnal NEFA pattern was returned to baseline. CONCLUSIONS/INTERPRETATION Elevated nocturnal NEFA are an important signal for hyperinsulinaemic compensation during diet-induced insulin resistance.
Collapse
Affiliation(s)
- Josiane L Broussard
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Ana V B Castro
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Edward W Szczepaniak
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Lidia S Szczepaniak
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | | | - Stella P Kim
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| |
Collapse
|
21
|
Farsi PF, Djazayery A, Eshraghian MR, Koohdani F, Saboor-Yaraghi AA, Derakhshanian H, Zarei M, Javanbakht MH, Djalali M. Effects of supplementation with omega-3 on insulin sensitivity and non-esterified free fatty acid (NEFA) in type 2 diabetic patients. ACTA ACUST UNITED AC 2015; 58:335-40. [PMID: 24936727 DOI: 10.1590/0004-2730000002861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to determine the role of omega-3 supplementation on NEFA concentration, insulin sensitivity and resistance, and glucose and lipid metabolism in type 2 diabetic patients. SUBJECTS AND METHODS Forty-four type 2 diabetic patients were randomly recruited into two groups. Group A received 4 g/day omega-3 soft gels, and group B received a placebo for 10 wks. Blood samples were collected after 12-h fast. Physical activity records, three-day food records, and anthropometric measurements were obtained from all participants at the beginning and end of the study. RESULTS Omega-3 supplementation caused a significant reduction in NEFA in the intervention group compared with the placebo group (P = 0.009). Additionally, the administration of omega-3 resulted in significantly greater changes (Diff) for the intervention group in various parameters, such as insulin and Quicki indices compared with the placebo group (P < 0.05). CONCLUSIONS Omega-3 fatty acid supplementation in type 2 diabetic patients improved insulin sensitivity, probably due to the decrease in NEFA concentrations.
Collapse
Affiliation(s)
- Payam Farahbakhsh Farsi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayery
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Eshraghian
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Derakhshanian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol 2014; 13:159. [PMID: 25471221 PMCID: PMC4264548 DOI: 10.1186/s12933-014-0159-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/27/2022] Open
Abstract
The existence of an independent association between elevated triglyceride (TG) levels, cardiovascular (CV) risk and mortality has been largely controversial. The main difficulty in isolating the effect of hypertriglyceridemia on CV risk is the fact that elevated triglyceride levels are commonly associated with concomitant changes in high density lipoprotein (HDL), low density lipoprotein (LDL) and other lipoproteins. As a result of this problem and in disregard of the real biological role of TG, its significance as a plausible therapeutic target was unfoundedly underestimated for many years. However, taking epidemiological data together, both moderate and severe hypertriglyceridaemia are associated with a substantially increased long term total mortality and CV risk. Plasma TG levels partially reflect the concentration of the triglyceride-carrying lipoproteins (TRL): very low density lipoprotein (VLDL), chylomicrons and their remnants. Furthermore, hypertriglyceridemia commonly leads to reduction in HDL and increase in atherogenic small dense LDL levels. TG may also stimulate atherogenesis by mechanisms, such excessive free fatty acids (FFA) release, production of proinflammatory cytokines, fibrinogen, coagulation factors and impairment of fibrinolysis. Genetic studies strongly support hypertriglyceridemia and high concentrations of TRL as causal risk factors for CV disease. The most common forms of hypertriglyceridemia are related to overweight and sedentary life style, which in turn lead to insulin resistance, metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM). Intensive lifestyle therapy is the main initial treatment of hypertriglyceridemia. Statins are a cornerstone of the modern lipids-modifying therapy. If the primary goal is to lower TG levels, fibrates (bezafibrate and fenofibrate for monotherapy, and in combination with statin; gemfibrozil only for monotherapy) could be the preferable drugs. Also ezetimibe has mild positive effects in lowering TG. Initial experience with en ezetimibe/fibrates combination seems promising. The recently released IMPROVE-IT Trial is the first to prove that adding a non-statin drug (ezetimibe) to a statin lowers the risk of future CV events. In conclusion, the classical clinical paradigm of lipids-modifying treatment should be changed and high TG should be recognized as an important target for therapy in their own right. Hypertriglyceridemia should be treated.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| | - Robert Klempfner
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Enrique Z Fisman
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| |
Collapse
|
23
|
Saremi B, Winand S, Friedrichs P, Kinoshita A, Rehage J, Dänicke S, Häussler S, Breves G, Mielenz M, Sauerwein H. Longitudinal profiling of the tissue-specific expression of genes related with insulin sensitivity in dairy cows during lactation focusing on different fat depots. PLoS One 2014; 9:e86211. [PMID: 24465964 PMCID: PMC3897665 DOI: 10.1371/journal.pone.0086211] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/09/2013] [Indexed: 01/13/2023] Open
Abstract
In dairy cows the milk associated energy output in early lactation exceeds the input via voluntary feed intake. To spare glucose for mammary lactose synthesis, peripheral insulin sensitivity (IS) is reduced and fat mobilization is stimulated. For these processes a link between IS and the endocrine functions of adipose tissue (AT) is likely; we thus aimed to characterise the mRNA expression from bovine AT derived proteins and receptors that are related to IS according to the literature in metabolically active tissues plus systemic IS throughout lactation. Conjugated linoleic acids (CLA) reduce milk fat thus decreasing the milk drain of energy and potentially dampening lipolysis, but may also affect IS. Subcutaneous (s.c.) AT and liver from pluriparous cows receiving either control fat or CLA supplement (100 g/day from 1 to 182 days in milk each) were biopsied covering week -3 to 36 relative to parturition. In an additional trial with primiparous cows treated analogously and slaughtered on days in milk 1, 42 or 105, samples from liver, udder, skeletal muscle and 3 visceral and 3 s.c. AT were obtained and assayed for mRNA abundance of adiponectin, its receptors, leptin, leptin receptor, PPARγ, PPARγ2, IL-6, and TNF-α. In pluriparous animals, the mRNA abundance of most of the target genes decreased after parturition in s.c. AT but increased in liver. In primiparous cows, AT depot specific differences were mostly related to retroperitoneal AT; adiponectin receptor 1 and TNF-α were affected predominantly. CLA effects in primiparous cows were largely limited to decreased PPARγ2 mRNA abundance in udder tissue. In pluriparous cows, insulin secretion was increased by CLA resulting in decreased systemic IS but without consistent changes in tissue target mRNA abundance. The temporal gene expression profiles from the adipokines and related receptors support their coactive function in adapting to the needs of lactation.
Collapse
Affiliation(s)
- Behnam Saremi
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Sarah Winand
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Paula Friedrichs
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Asako Kinoshita
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Häussler
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Manfred Mielenz
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Morooka M, Moroi M, Uno K, Ito K, Wu J, Nakagawa T, Kubota K, Minamimoto R, Miyata Y, Okasaki M, Okazaki O, Yamada Y, Yamaguchi T, Hiroe M. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res 2014; 4:1. [PMID: 24382020 PMCID: PMC3880002 DOI: 10.1186/2191-219x-4-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising modality for detecting active lesions of cardiac sarcoidosis (CS). However, determining whether 18F-FDG uptake in the myocardium is physiological is challenging due to metabolic shift in myocardial cells. Although methods for inhibiting physiological myocardial 18F-FDG uptake have been proposed, no standard methods exist. This study therefore aimed to compare the effect of an 18-h fast (long fasting (LF)) with heparin loading plus a 12-h fast (HEP) before 18F-FDG PET scan. METHODS We analyzed the effects of LF and HEP on the inhibition of physiological myocardial 18F-FDG uptake in healthy subjects (18 in HEP and 19 in LF) and in patients with known or suspected CS (96 in HEP and 69 in LF). In CS, the lower uptake of 18F-FDG in the myocardium was evaluated. A visual four-point scale was used to assess myocardial 18F-FDG uptake in comparison with hepatic uptake (1 lower, 2 similar, 3 somewhat higher, 4 noticeably higher). RESULTS Myocardial 18F-FDG uptake was 1.68 ± 1.06 in LF and 3.17 ± 1.16 in HEP in healthy subjects (p < 0.0001), whereas it was 1.48 ± 0.99 in LF and 2.48 ± 1.33 in HEP in CS patients (p < 0.0001). Logistic regression and regression trees revealed the LF was the most effective in inhibiting myocardial 18F-FDG uptake. In addition, serum free fatty acid levels on intravenous 18F-FDG injection were a possible biomarker. CONCLUSIONS LF is effective in inhibiting myocardial 18F-FDG uptake, and consequently, it could be useful for evaluating active lesions of CS in 18F-FDG PET images.
Collapse
Affiliation(s)
| | - Masao Moroi
- Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.
Collapse
|
26
|
Boden G. Does inhibition of β-cell proliferation by free fatty acid in mice explain the progressive failure of insulin secretion in type 2 diabetes? Diabetes 2012; 61:560-1. [PMID: 22354929 PMCID: PMC3282813 DOI: 10.2337/db11-1613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guenther Boden
- Division of Endocrinology, Diabetes, and Metabolism, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
27
|
Chow CC, Periwal V, Csako G, Ricks M, Courville AB, Miller BV, Vega GL, Sumner AE. Higher acute insulin response to glucose may determine greater free fatty acid clearance in African-American women. J Clin Endocrinol Metab 2011; 96:2456-63. [PMID: 21593106 PMCID: PMC3146797 DOI: 10.1210/jc.2011-0532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Obesity and diabetes are more common in African-Americans than whites. Because free fatty acids (FFA) participate in the development of these conditions, studying race differences in the regulation of FFA and glucose by insulin is essential. OBJECTIVE The objective of the study was to determine whether race differences exist in glucose and FFA response to insulin. DESIGN This was a cross-sectional study. SETTING The study was conducted at a clinical research center. PARTICIPANTS Thirty-four premenopausal women (17 African-Americans, 17 whites) matched for age [36 ± 10 yr (mean ± sd)] and body mass index (30.0 ± 6.7 kg/m²). INTERVENTIONS Insulin-modified frequently sampled iv glucose tolerance tests were performed with data analyzed by separate minimal models for glucose and FFA. MAIN OUTCOME MEASURES Glucose measures were insulin sensitivity index (S(I)) and acute insulin response to glucose (AIRg). FFA measures were FFA clearance rate (c(f)). RESULTS Body mass index was similar but fat mass was higher in African-Americans than whites (P < 0.01). Compared with whites, African-Americans had lower S(I) (3.71 ± 1.55 vs. 5.23 ± 2.74 [×10⁻⁴ min⁻¹/(microunits per milliliter)] (P = 0.05) and higher AIRg (642 ± 379 vs. 263 ± 206 mU/liter⁻¹ · min, P < 0.01). Adjusting for fat mass, African-Americans had higher FFA clearance, c(f) (0.13 ± 0.06 vs. 0.08 ± 0.05 min⁻¹, P < 0.01). After adjusting for AIRg, the race difference in c(f) was no longer present (P = 0.51). For all women, the relationship between c(f) and AIRg was significant (r = 0.64, P < 0.01), but the relationship between c(f) and S(I) was not (r = -0.07, P = 0.71). The same pattern persisted when the two groups were studied separately. CONCLUSION African-American women were more insulin resistant than white women, yet they had greater FFA clearance. Acutely higher insulin concentrations in African-American women accounted for higher FFA clearance.
Collapse
Affiliation(s)
- Carson C Chow
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fang J, DuBois DC, He Y, Almon RR, Jusko WJ. Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats. J Pharmacokinet Pharmacodyn 2011; 38:293-316. [PMID: 21394487 DOI: 10.1007/s10928-011-9194-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
Abstract
Influences of methylprednisolone (MPL) and food consumption on body weight (BW), and the effects of MPL on glycemic control including food consumption and the dynamic interactions among glucose, insulin, and free fatty acids (FFA) were evaluated in normal male Wistar rats. Six groups of animals received either saline or MPL via subcutaneous infusions at the rate of 0.03, 0.1, 0.2, 0.3 and 0.4 mg/kg/h for different treatment periods. BW and food consumption were measured twice a week. Plasma concentrations of MPL and corticosterone (CST) were determined at animal sacrifice. Plasma glucose, insulin, and FFA were measured at various times after infusion. Plasma MPL concentrations were simulated by a two-compartment model and used as the driving force in the pharmacodynamic (PD) analysis. All data were modeled using ADAPT 5. The MPL treatments caused reduction of food consumption and body weights in all dosing groups. The steroid also caused changes in plasma glucose, insulin, and FFA concentrations. Hyperinsulinemia was achieved rapidly at the first sampling time of 6 h; significant elevations of FFA were observed in all drug treatment groups; whereas only modest increases in plasma glucose were observed in the low dosing groups (0.03 and 0.1 mg/kg/h). Body weight changes were modeled by dual actions of MPL: inhibition of food consumption and stimulation of weight loss, with food consumption accounting for the input of energy for body weight. Dynamic models of glucose and insulin feedback interactions were extended to capture the major metabolic effects of FFA: stimulation of insulin secretion and inhibition of insulin-stimulated glucose utilization. These models of body weight and glucose regulation adequately captured the experimental data and reflect significant physiological interactions among glucose, insulin, and FFA. These mechanism-based PD models provide further insights into the multi-factor control of this essential metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
29
|
Spruijt-Metz D. Etiology, Treatment and Prevention of Obesity in Childhood and Adolescence: A Decade in Review. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2011; 21:129-152. [PMID: 21625328 PMCID: PMC3102537 DOI: 10.1111/j.1532-7795.2010.00719.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Childhood obesity has become an epidemic on a worldwide scale. This article gives an overview of the progress made in childhood and adolescent obesity research in the last decade, with a particular emphasis on the transdisciplinary and complex nature of the problem. The following topics are addressed: 1) current definitions of childhood and adolescent overweight and obesity; 2) demography of childhood and adolescent obesity both in the US and globally; 3) current topics in the physiology of fat and obesity; 4) psychosocial correlates of childhood and adolescent overweight and obesity; 5) the three major obesity-related behaviors, i.e. dietary intake, physical activity and sleep; 6) genes components of childhood and adolescent obesity; 7) environment and childhood and adolescent obesity; and 8) progress in interventions to prevent and treat childhood obesity. The article concludes with recommendations for future research, including the need for large-scale, high dose and long-term interventions that take into account the complex nature of the problem.
Collapse
Affiliation(s)
- Donna Spruijt-Metz
- Keck School of Medicine, University of Southern California, 1000 S. Fremont, Unit 8, room 4101, Alhambra, CA 91803, 626 4576631, fax: 626 4576633,
| |
Collapse
|
30
|
Kruyt ND, Musters A, Biessels GJ, Devries JH, Coert BA, Vergouwen MDI, Horn J, Roos YB. Beta-cell dysfunction and insulin resistance after subarachnoid haemorrhage. Neuroendocrinology 2011; 93:126-32. [PMID: 21293115 DOI: 10.1159/000324097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/02/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Hyperglycaemia is a common finding and an independent risk factor for increased morbidity and mortality in aneurysmal subarachnoid haemorrhage (SAH). Although in these patients hyperglycaemia is commonly ascribed to insulin resistance, there is little understanding of underlying mechanisms. AIMS To prospectively study temporal disturbances of glucose metabolism after aneurysmal SAH in patients without known abnormalities of glucose metabolism and to explore possible correlations with markers of stress. METHODS In consecutive aneurysmal SAH patients not subjected to insulin therapy, in-hospital and follow-up oral glucose tolerance tests (OGTTs) and assessments of insulin resistance, pancreatic β-cell function, free fatty acids (FFA) and cortisol were performed and compared with reference values. RESULTS We included 13 patients. In the first 2 weeks of admission, median fasting glucose and FFA levels were elevated while insulin levels were not. OGTTs were indicative of glucose intolerance in all patients at days 3 and 7, while on follow-up 1 patient had glucose intolerance and all patients had normal fasting glucose levels. Pancreatic β-cell function was impaired throughout the first week and insulin resistance from day 4 to 10. Levels of cortisol correlated with higher fasting glucose and increased FFA. FFA in turn correlated with pancreatic β-cell dysfunction. CONCLUSIONS Aneurysmal SAH patients have transient abnormalities of glucose metabolism. During the first week, it appears to result predominantly from transient pancreatic β-cell dysfunction, in combination with insulin resistance.
Collapse
Affiliation(s)
- N D Kruyt
- Department of Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Okulicz M. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:217-24. [PMID: 20809411 PMCID: PMC2944953 DOI: 10.1007/s11130-010-0183-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sinigrin (SIN) and allyl isothiocyanate (AITC) are compounds found in high concentrations in Brassica family vegetables, especially in Brussels sprouts. Recently, they have been used as a nutrition supplement for their preventive and medicinal effect on some types of cancer and other diseases. In this research, nutritional significance of parent glucosinolate sinigrin 50 μmol/kg b. w./day and its degradation product allyl isothiocyanate 25 μmol/kg b. w./day and 50 μmol/kg b. w./day was studied by the evaluation of their influence on some parameters of carbohydrate and lipid metabolism in an animal rat model in vivo after their single (4 h) and 2 weeks oral administration. Additionally, the aim of this trial was to evaluate the direct action of AITC on basal and epinephrine-induced lipolysis in isolated rat adipocytes at concentration 1 μM, 10 μM and 100 μM in vitro. Sole AITC after 4 h of its ingestion caused liver triacylglycerols increment at both doses and glycaemia only at the higher dose. Multiple SIN treatment showed its putative bioconversion into AITC. It was found that SIN and AITC multiple administration in the same way strongly disturbed lipid and carbohydrate homeostasis, increasing esterified and total cholesterol, free fatty acids and lowering tracylglycerols in the blood serum. Additionally, AITC at both doses elevated insulinaemia and liver glycogen enhancement. The in vitro experiment revealed that AITC potentiated basal lipolysis process at 10 μM, and had stimulatory effect on epinephrine action at 1 μM and 10 μM. The results of this study demonstrated that the effect of SIN and AITC is multidirectional, indicating its impact on many organs like liver as well as pancreas, intestine in vivo action and rat adipocytes in vitro. Whilst consumption of cruciferous vegetables at levels currently considered "normal" seems to be beneficial to human health, this data suggest that any large increase in intake could conceivably lead to undesirable effect. This effect is potentiated with time of action of the examined compounds, whose influence is rather adverse for the majority of metabolic pathways (liver steatosis at short duration and insulinaemia, cholesterolaemia at long time treatment). Beneficial action of AITC concerned intensified hydrolysis of TG in the blood serum with a simultaneous lipolysis in adipocytes.
Collapse
Affiliation(s)
- Monika Okulicz
- Department of Animal Physiology and Biochemistry, Faculty of Animal Breeding and Biology, University of Life Sciences in Poznań, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
32
|
Alhusaini S, McGee K, Schisano B, Harte A, McTernan P, Kumar S, Tripathi G. Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem Biophys Res Commun 2010; 397:472-8. [DOI: 10.1016/j.bbrc.2010.05.138] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/04/2023]
|
33
|
Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women. Nutrition 2010; 26:686-93. [PMID: 20392600 DOI: 10.1016/j.nut.2009.10.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 10/24/2009] [Indexed: 12/31/2022]
Abstract
Insulin is an important regulator of glucose, lipid, and protein metabolism. It suppresses hepatic glucose and triglyceride production, inhibits adipose tissue lipolysis and whole-body and muscle proteolysis, and stimulates glucose uptake in muscle. In this review we discuss what is currently known about the control of substrate metabolism by insulin in men and women. The data available so far indicate that women are more sensitive to insulin with regards to glucose metabolism (both in the liver and in muscle), whereas there are no differences between men and women in insulin action on lipolysis. Potential differences exist in the regulation of plasma triglyceride concentration and protein metabolism by insulin and in changes in insulin action in response to stimuli (e.g., weight loss and exercise) that are known to alter insulin sensitivity. However, these areas have not been studied comprehensively enough to draw firm conclusions.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Ilene Fennoy
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
35
|
Mostad IL, Bjerve KS, Basu S, Sutton P, Frayn KN, Grill V. Addition of n-3 fatty acids to a 4-hour lipid infusion does not affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus. Metabolism 2009; 58:1753-61. [PMID: 19716144 DOI: 10.1016/j.metabol.2009.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/10/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
Abstract
Fatty acids (FA) can impair glucose metabolism to a varying degree depending on time of exposure and also of type of FA. Here we tested for acute effects of marine n-3 FA on insulin sensitivity, insulin secretion, energy metabolism, and oxidative stress. This was a randomized, double-blind, crossover study in 11 subjects with type 2 diabetes mellitus. A 4-hour lipid infusion (Intralipid [Fresenius Kabi, Halden, Norway], total of 384 mL) was compared with a similar lipid infusion partly replaced by Omegaven (Fresenius Kabi) that contributed a median of 0.1 g fish oil per kilogram body weight, amounting to 0.04 g/kg of marine n-3 FA. Insulin sensitivity was assessed by isoglycemic hyperinsulinemic clamps; insulin secretion (measured after the clamps), by C-peptide glucagon tests; and energy metabolism, by indirect calorimetry. Infusion of Omegaven increased the proportion of n-3 FA in plasma nonesterified fatty acids (NEFA) compared with Intralipid alone (20:5n-3: median, 1.5% [interquartile range, 0.6%] vs -0.2% [0.2%], P = .001; 22:6n-3: 0.8% [0.4%] vs -0.7% [0.2%], P = .001). However, glucose utilization was not affected; neither was insulin secretion or total energy production (P = .966, .210, and .423, respectively, for the differences between the lipid clamps). Omegaven tended to lower oxidation of fat (P = .062) compared with Intralipid only, correlating with the rise in individual n-3 NEFA (r = 0.627, P = .039). The effects of clamping on phospholipid FA composition, leptin, adiponectin, or F(2)-isoprostane concentrations were not affected by Omegaven. Enrichment of NEFA with n-3 FA during a 4-hour infusion of Intralipid failed to affect insulin sensitivity, insulin secretion, or markers of oxidative stress in subjects with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ingrid L Mostad
- Division of Clinical Nutrition, Department of Clinical Service, St. Olavs Hospital, N-7006 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
36
|
Jeong S, Yoon M. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice. Exp Mol Med 2009; 41:397-405. [PMID: 19322024 DOI: 10.3858/emm.2009.41.6.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARalpha agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly increased the expression of PPARalpha target genes involved in fatty acid beta-oxidation in both epididymal adipose tissue and differentiated 3T3-L1 adipocytes. However, mRNA levels of adipose marker genes, such as leptin and TNFalpha, were decreased in epididymal adipose tissue by fenofibrate treatment. Fenofibrate not only reduced circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in obese mice. Blood glucose levels of fenofibrate-treated mice were significantly reduced during intraperitoneal glucose tolerance test compared with obese controls. These results suggest that fenofibrate-induced fatty acid beta-oxidation in visceral adipose tissue may be one of the major factors leading to decreased adipocyte size and improved insulin sensitivity.
Collapse
Affiliation(s)
- Sunhyo Jeong
- Department of Life Sciences, Mokwon University, Daejeon 302-729, Korea
| | | |
Collapse
|
37
|
Brehm BJ, Lattin BL, Summer SS, Boback JA, Gilchrist GM, Jandacek RJ, D'Alessio DA. One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes Care 2009; 32:215-20. [PMID: 18957534 PMCID: PMC2628682 DOI: 10.2337/dc08-0687] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the effects of high-monounsaturated fatty acid (MUFA) and high-carbohydrate (CHO) diets on body weight and glycemic control in men and women with type 2 diabetes. RESEARCH DESIGN AND METHODS Overweight/obese participants with type 2 diabetes (n = 124, age = 56.5 +/- 0.8 years, BMI = 35.9 +/- 0.3 kg/m2, and A1C = 7.3 +/- 0.1%) were randomly assigned to 1 year of a high-MUFA or high-CHO diet. Anthropometric and metabolic parameters were assessed at baseline and after 4, 8, and 12 months of dieting. RESULTS Baseline characteristics were similar between the treatment groups. The overall retention rate for 1 year was 77% (69% for the high-MUFA group and 84% for the high-CHO group; P = 0.06). Based on food records, both groups had similar energy intake but a significant difference in MUFA intake. Both groups had similar weight loss over 1 year (-4.0 +/- 0.8 vs. -3.8 +/- 0.6 kg) and comparable improvement in body fat, waist circumference, diastolic blood pressure, HDL cholesterol, A1C, and fasting glucose and insulin. There were no differences in these parameters between the groups. A follow-up assessment of a subset of participants (n = 36) was conducted 18 months after completion of the 52-week diet. These participants maintained their weight loss and A1C during the follow-up period. CONCLUSIONS In individuals with type 2 diabetes, high-MUFA diets are an alternative to conventional lower-fat, high-CHO diets with comparable beneficial effects on body weight, body composition, cardiovascular risk factors, and glycemic control.
Collapse
Affiliation(s)
- Bonnie J Brehm
- College of Nursing, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
The effect of a high-MUFA, low-glycaemic index diet and a low-fat diet on appetite and glucose metabolism during a 6-month weight maintenance period. Br J Nutr 2008; 101:1846-58. [PMID: 19079942 DOI: 10.1017/s0007114508137710] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We aimed to test the effects of three different weight maintenance diets on appetite, glucose and fat metabolism following an initial low-energy diet (LED) induced body weight loss. Following an 8-week LED and a 2-3-week refeeding period, 131 subjects were randomized to three diets for 6 months: MUFA, moderate-fat (35-45 energy percentage (E%) fat), high in MUFA with low glycaemic index; LF, low fat (20-30 E% fat) or CTR, control (35 E% fat). A meal test study was performed in a subgroup, before and after the 6-month dietary intervention, with forty-two subjects completing both meal tests. No difference in body weight, energy intake or appetite ratings were observed between diets. Both the LF and MUFA diets compared to CTR diet reduced postprandial glycaemia and insulinaemia and lowered fasting insulin from month 0 to month 6. Following the 8-week LED period lower levels of the appetite regulating peptides, pancreatic polypeptide, peptide YY, glucagon-like peptide-1 and glucagon-like peptide-2, along with increased appetite scores were seen in comparison to measurements performed after the 6-month dietary intervention. In conclusion, the two competing diets, MUFA and LF, were equally good with respect to glucose metabolism, whereas the CTR diet resembling the typical Western diet, high in SFA, sugar and high glycaemic carbohydrates, indicated associations to lowering of insulin sensitivity. Lower levels of appetite regulatory peptides along with increased appetite scores following an 8-week LED and 2-3-week refeeding period, suggest that strategies for physiological appetite control following a LED period are needed, in order to prevent weight regain.
Collapse
|
39
|
Suh HN, Huong HT, Song CH, Lee JH, Han HJ. Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol 2008; 295:C1518-27. [DOI: 10.1152/ajpcell.00368.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids serve vital functions as sources of energy, building materials for cellular structures, and modulators of physiological responses. Therefore, this study examined the effect of linoleic acid on glucose production and its related signal pathways in primary cultured chicken hepatocytes. Linoleic acid (double-unsaturated, long chain) increased glucose production in a dose (≥10−4 M)- and time (≥8 h)-dependent manner. Both oleic acid (monounsaturated, long chain) and palmitic acid (saturated, long chain) also increased glucose production, whereas caproic acid (saturated, short chain) failed to increase glucose production. Linoleic acid increased G protein-coupled receptor 40 (GPR40; also known as free fatty acid receptor-1) protein expression and glucose production that was blocked by GPR40-specific small interfering RNA. Linoleic acid increased intracellular calcium concentration, which was blocked by EGTA (extracellular calcium chelator)/BAPTA-AM (intracellular calcium chelator), U-73122 (phospholipase C inhibitor), nifedipine, or methoxyverapamil (L-type calcium channel blockers). Linoleic acid increased cytosolic phospholipase A2 (cPLA2) phosphorylation and the release of [3H]-labeled arachidonic acid. Moreover, linoleic acid increased the level of cyclooxygenase-2 (COX-2) protein expression, which stimulated the synthesis of prostaglandin E2 (PGE2). The increase in PGE2 production subsequently stimulated peroxisome proliferator-activated receptor (PPAR) expression, and MK-886 (PPAR-α antagonist) and GW-9662 (PPAR-δ antagonist) inhibited glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. In addition, linoleic acid-induced glucose production was blocked by inhibition of extracellular and intracellular calcium, cPLA2, COX-2, or PPAR pathways. In conclusion, linoleic acid promoted glucose production via Ca2+/PLC, cPLA2/COX-2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes.
Collapse
|
40
|
Abstract
Plasma free fatty acid (FFA) levels are elevated in obesity. FFAs cause insulin resistance in all major insulin target organs (skeletal muscle, liver, endothelial cells) and have emerged as a major link between obesity, the development of the metabolic syndrome, and atherosclerotic vascular disease. FFAs also produce low-grade inflammation in skeletal muscle, liver, and fat, which may contribute to cardiovascular events. The challenges for the future include the prevention or correction of obesity and elevated plasma FFA levels through methods that include decreased caloric intake and increased caloric expenditure, the development of methods to measure FFAs in small blood samples, and the development of efficient pharmacologic approaches to normalize increased plasma FFA levels.
Collapse
Affiliation(s)
- Guenther Boden
- Department of Medicine, Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Temple University Hospital, 3401 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
41
|
Allagnat F, Alonso F, Martin D, Abderrahmani A, Waeber G, Haefliger JA. ICER-1gamma overexpression drives palmitate-mediated connexin36 down-regulation in insulin-secreting cells. J Biol Chem 2008; 283:5226-34. [PMID: 18073214 DOI: 10.1074/jbc.m708181200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channels formed by the gap junction protein connexin36 (Cx36) contribute to the proper control of insulin secretion. We investigated the impact of chronic hyperlipidemia on Cx36 expression in pancreatic beta-cells. Prolonged exposure to the saturated free fatty acid palmitate reduced the expression of Cx36 in several insulin-secreting cell lines and isolated mouse islets. The effect of palmitate was fully blocked upon protein kinase A (PKA) inhibition by H89 and (Rp)-cAMP, indicating that the cAMP/PKA pathway is involved in the control of Cx36 expression. Palmitate treatment led to overexpression of the inducible cAMP early repressor (ICER-1gamma), which bound to a functional cAMP-response element located in the promoter of the CX36 gene. Inhibition of ICER-1gamma overexpression prevented the Cx36 decrease, as well as the palmitate-induced beta-cell secretory dysfunction. Finally, freshly isolated islets from mice undergoing a long term high fat diet expressed reduced Cx36 levels and increased ICER-1gamma levels. Taken together, these data demonstrate that chronic exposure to palmitate inhibits the Cx36 expression through PKA-mediated ICER-1gamma overexpression. This Cx36 down-regulation may contribute to the reduced glucose sensitivity and altered insulin secretion observed during the pre-diabetic stage and in the metabolic syndrome.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Medicine, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND Various saturated fatty acids have different effects on blood lipids and insulin secretion in experiments. The effect of long-term consumption of specific and different classes of saturated fatty acids on the risk of gallstone disease in humans is unknown. METHODS We prospectively studied consumption of saturated fatty acids and risk of gallstone disease in a cohort of 44,524 US men from 1986 to 2002. Intake of saturated fatty acids was assessed using a validated semiquantitative food frequency questionnaire. Newly diagnosed gallstone disease was ascertained biennially. RESULTS During 584,679 person-years of follow-up, we documented 2350 incident cases of gallstone disease, of which 1387 cases required cholecystectomy. Compared with men in the lowest quintile of dietary intake of long-chain saturated fats, after adjustment for age and other potential risk factors, the relative risk of gallstone disease for men in the highest quintile was 1.24 [95% confidence interval (CI), 1.02, 1.50, P for trend = 0.03], and the relative risk of cholecystectomy for men in the highest quintile was 1.41 (CI, 1.09, 1.82, P for trend = 0.008). Consumption of medium-chain saturated fatty acids or short-chain saturated fatty acids was unrelated to the risk. CONCLUSIONS Our results suggest that a higher consumption of long-chain saturated fatty acids may enhance the risk of gallstone disease in men.
Collapse
|
43
|
Duan SZ, Usher MG, Mortensen RM. Peroxisome Proliferator-Activated Receptor-γ–Mediated Effects in the Vasculature. Circ Res 2008; 102:283-94. [DOI: 10.1161/circresaha.107.164384] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor and transcription factor in the steroid superfamily. PPAR-γ agonists, the thiazolidinediones, are clinically used to treat type 2 diabetes. In addition to its function in adipogenesis and increasing insulin sensitivity, PPAR-γ also plays critical roles in the vasculature. In vascular endothelial cells, PPAR-γ activation inhibits endothelial inflammation by suppressing inflammatory gene expression and therefore improves endothelial dysfunction. In vascular smooth muscle cells, PPAR-γ activation inhibits proliferation and migration and promotes apoptosis. In macrophages, PPAR-γ activation suppresses inflammation by regulating gene expression and increases cholesterol uptake and efflux. A recurring theme in many cell types is the modulation of the innate immunity system particularly through altering the activity of the nuclear factor κB. This system is likely to be even more prominent in modulating disease in vascular cells. The effects of PPAR-γ in the vascular cells translate into the beneficial function of this transcription factor in vascular disorders, including hypertension and atherosclerosis. Both human genetic studies and animal studies using transgenic mice have demonstrated the importance of PPAR-γ in these disorders. However, recent clinical studies have raised significant concerns about the cardiovascular side effects of thiazolidinediones, particularly rosiglitazone. Weighing the potential benefit and harm of PPAR-γ activation and exploring the functional mechanisms may provide a balanced view on the clinical use of these compounds and new approaches to the future therapeutics of vascular disorders associated with diabetes.
Collapse
Affiliation(s)
- Sheng Zhong Duan
- From the Departments of Molecular and Integrative Physiology (S.Z.D., M.G.U., R.M.M.), Pharmacology (R.M.M.), and Internal Medicine (R.M.M.), Metabolism Endocrinology and Diabetes Division, University of Michigan Medical School, Ann Arbor
| | - Michael G. Usher
- From the Departments of Molecular and Integrative Physiology (S.Z.D., M.G.U., R.M.M.), Pharmacology (R.M.M.), and Internal Medicine (R.M.M.), Metabolism Endocrinology and Diabetes Division, University of Michigan Medical School, Ann Arbor
| | - Richard M. Mortensen
- From the Departments of Molecular and Integrative Physiology (S.Z.D., M.G.U., R.M.M.), Pharmacology (R.M.M.), and Internal Medicine (R.M.M.), Metabolism Endocrinology and Diabetes Division, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
44
|
Itou M, Kawaguchi T, Taniguchi E, Sumie S, Oriishi T, Mitsuyama K, Tsuruta O, Ueno T, Sata M. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol 2008; 23:244-51. [PMID: 17944883 DOI: 10.1111/j.1440-1746.2007.05183.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM The pathogenesis of hepatitis C virus (HCV)-associated glucose intolerance remains unclear. Glucagon-like peptide-1 (GLP-1), a gut hormone, synthesizes hepatic glycogen and is inactivated by dipeptidyl peptidase IV (DPPIV). The aims of this study were to investigate the alterations in the expression of GLP-1 and DPPIV in HCV-associated glucose intolerance. METHODS We enrolled patients with HCV- or hepatitis B virus (HBV)-related liver disease (n = 94 and 37, respectively), patients with inflammatory bowel disease (IBD; n = 14) as disease controls, and healthy controls (n = 48). The serum or tissue GLP-1 and DPPIV expression levels were determined by enzyme immunoassay, immunoblotting, or immunostaining. The hepatic glycogen content was assayed by periodic acid-Schiff staining. RESULTS The serum GLP-1 levels were significantly decreased in the HCV group (4.9 +/- 0.3 ng/mL) than those in the controls (7.5 +/- 0.6 ng/mL), the HBV group (7.0 +/- 0.5 ng/mL), or the IBD group (10.8 +/- 1.0 ng/mL, P < 0.01). Although the ileum GLP-1 expression was not significantly different between the controls and the HCV group, the DPPIV expression was significantly increased in the ileum, liver, and serum in the HCV group. Hepatic glycogen content was decreased to a greater extent in the HCV group than that in the HBV group (127.5 +/- 5.3 vs 187.7 +/- 6.6 arbitrary units; n = 19, P < 0.01). CONCLUSION We demonstrated the altered expressions of GLP-1 and DPPIV in patients with HCV-associated glucose intolerance. Since hepatic glycogen synthesis, a GLP-1 action, was impaired, the altered expressions of GLP-1 and DPPIV may be involved in the development of HCV-associated glucose intolerance.
Collapse
Affiliation(s)
- Minoru Itou
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Feinman RD, Fine EJ. Nonequilibrium thermodynamics and energy efficiency in weight loss diets. Theor Biol Med Model 2007; 4:27. [PMID: 17663761 PMCID: PMC1947950 DOI: 10.1186/1742-4682-4-27] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 07/30/2007] [Indexed: 12/13/2022] Open
Abstract
Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.
Collapse
Affiliation(s)
- Richard D Feinman
- Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Eugene J Fine
- Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
46
|
Anan F, Masaki T, Yonemochi H, Takahashi N, Nakagawa M, Eshima N, Saikawa T, Yoshimatsu H. Abdominal visceral fat accumulation is associated with the results of (123)I-metaiodobenzylguanidine myocardial scintigraphy in type 2 diabetic patients. Eur J Nucl Med Mol Imaging 2007; 34:1189-97. [PMID: 17415564 DOI: 10.1007/s00259-007-0421-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/07/2007] [Indexed: 12/14/2022]
Abstract
PURPOSE We tested the hypothesis that increased abdominal visceral accumulation (VFA) is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients not receiving insulin treatment. METHODS The fat distribution was evaluated by measuring the VFA by abdominal computed tomography at the umbilical level. The study group consisted of 24 type 2 diabetic patients with high VFA (> or =100 cm(2), age 60 +/- 8 years, high VFA group). The control group consisted of 19 age-matched type 2 diabetic patients with normal VFA (<100 cm(2), age 60 +/- 7 years, normal VFA group). Cardiovascular autonomic function was assessed by baroreflex sensitivity, heart rate variability, plasma norepinephrine concentrations, and cardiac (123)I-metaiodobenzylguanidine (MIBG) scintigraphy. RESULTS Early and delayed (123)I-MIBG myocardial uptake values were lower (p < 0.005 and p < 0.0001, respectively) and the percent washout rate of (123)I-MIBG was higher (p < 0.0005) in the high VFA group than in the normal VFA group. The fasting plasma insulin concentrations (p < 0.005) and the homeostasis model assessment (HOMA) index values (p < 0.0005) were higher in the high VFA group than in normal VFA group. Multiple regression analysis revealed that the level of VFA was independently predicted by the HOMA index values and the myocardial uptake of (123)I-MIBG during the delayed phase. CONCLUSION Our results demonstrate that the level of VFA is associated with depressed cardiovascular autonomic function and insulin resistance in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Futoshi Anan
- Department of Cardiology, Oita Red Cross Hospital, 3-2-37 Chiyomachi, Oita 870-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cornier MA, Bergman BC, Bessesen DH. The effects of short-term overfeeding on insulin action in lean and reduced-obese individuals. Metabolism 2006; 55:1207-14. [PMID: 16919540 DOI: 10.1016/j.metabol.2006.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 05/29/2006] [Indexed: 11/28/2022]
Abstract
Insulin resistance is clearly associated with obesity. However, the role of excess energy intake per se as opposed to increased fat mass in the development of insulin resistance has not been clearly defined. It may be that the nutrient load provided by short-term overfeeding is sufficient to induce measurable changes in insulin action in skeletal muscle and the liver. We examined the effects of 3 days of overfeeding on insulin action and glucose kinetics in 13 lean (body mass index, 20.9 +/- 2.4 kg/m(2); 6 men, 7 women) and 9 reduced-obese (RO) (body mass index, 29.1 +/- 2.2 kg/m(2); 4 men, 5 women) individuals. A two-step euglycemic hyperinsulinemic clamp study (5 and 40 mU m(-2) min(-1)) with a primed, constant infusion of [6,6-(2)H(2)]glucose was performed after 3 days of a weight-maintenance diet and again after 3 days of overfeeding by 50% (50% carbohydrate, 30% fat, 20% protein). At baseline, lean individuals were more insulin sensitive, as measured by glucose infusion rate, than RO individuals (12.08 +/- 0.8 vs 7.62 +/- 1.0 mg x kg(-1) x min(-1), P < .01) with lean women being more insulin sensitive than lean men (P < .01). Overfeeding resulted in a reduction in glucose infusion rate in lean women (13.37 +/- 1.3 to 11.42 +/- 1.0 mg x kg(-1) x min(-1), P < .05), but no change was noted in lean men or RO individuals. Basal and insulin-stimulated glucose disposal remained unchanged with overfeeding in all groups. Low-dose insulin suppression of endogenous glucose production was impaired after overfeeding in lean women (euenergetic, 1.92 +/- 0.36 to 0.36 +/- 0.16 mg x kg(-1) x min(-1); overfeeding: 2.13 +/- 0.17 to 0.86 +/- 0.12 mg x kg(-1) x min(-1); P = .04) but remained unchanged in the other groups. These findings demonstrate that insulin action is reduced in lean, obese-resistant women after short-term overfeeding primarily because of an inhibition of insulin-mediated suppression of endogenous glucose production, whereas short-term overfeeding does not appear to effect insulin action in lean men and RO individuals. This response may be indirectly involved in the ability of lean women to maintain weight in the face of an obesigenic environment.
Collapse
Affiliation(s)
- Marc-Andre Cornier
- Department of Medicine, Division of Endocrinology, University of Colorado at Denver and Health Sciences Center, Denver, 80045, USA.
| | | | | |
Collapse
|
48
|
Abstract
High levels of free fatty acids have emerged as a major link between obesity and insulin resistance/Type 2 diabetes. In pancreatic β cells, free fatty acids potentiate glucose-stimulated insulin secretion precisely to the extent needed to compensate for the free fatty acid-induced insulin resistance. It is postulated that this prevents the development of Type 2 diabetes mellitus in the majority of obese, insulin-resistant individuals who have free fatty acid-mediated insulin resistance. In individuals with inherited defects of β-cell function (prediabetics), this compensation fails and hyperglycemia develops. Elevated levels of free fatty acids also activate the proinflammatory and proatherogenic nuclear factor κB pathway. Thus, elevated plasma levels of free fatty acid in obese people can produce a low-grade inflammatory state, which may contribute to accelerated atherosclerosis (coronary artery disease, strokes and peripheral arterial disease) and to nonalcoholic steatohepatitis; these conditions are increased in obesity.
Collapse
Affiliation(s)
- Guenther Boden
- a Professor of Medicine, Chief Division Endocrinology/Diabetes/Metabolism Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
49
|
Collins QF, Xiong Y, Lupo EG, Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem 2006; 281:24336-44. [PMID: 16803882 DOI: 10.1074/jbc.m602177200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free fatty acids (FFA) are considered as a causative link between obesity and diabetes. In various animal models and in humans FFA can stimulate hepatic gluconeogenesis. Although the in vivo role of FFA in hepatic gluconeogenesis has been clearly established, the intracellular role of FFA and related signaling pathway remain unclear in the regulation of hepatic gluconeogenic gene transcription. In this study, we have identified p38 mitogen-activated protein kinase (p38) as a critical signaling component in FFA-induced transcription of key gluconeogenic genes. We show in primary hepatocytes that both mid- and long-chain fatty acids (saturated or unsaturated) could activate p38 and increase levels of phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, and peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha) gene transcripts. The FFA-induced expression of PEPCK and PGC-1alpha genes and gluconeogenesis in isolated hepatocytes could be blocked by the inhibition of p38. Furthermore, PGC-1alpha phosphorylation by p38 was necessary for FFA-induced activation of the PEPCK promoter. Additionally, FFA stimulated phosphorylation of cAMP-response element-binding protein (CREB) through p38. The overexpression of the dominant-negative CREB prevented FFA-induced activation of the PEPCK promoter. Finally, we show that FFA activation of p38 requires protein kinase Cdelta. Together, our results indicate that p38 plays a critical role in FFA-induced transcription of gluconeogenic genes, and the known gluconeogenic regulators, PGC-1alpha and CREB, are also integral parts of FFA-stimulated transcription of gluconeogenic genes.
Collapse
Affiliation(s)
- Qu Fan Collins
- Division of Biological Sciences, Endocrine Biology Program, CIIT Centers for Health Research, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
50
|
van Poelje PD, Potter SC, Chandramouli VC, Landau BR, Dang Q, Erion MD. Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes 2006; 55:1747-54. [PMID: 16731838 DOI: 10.2337/db05-1443] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gluconeogenesis is increased in type 2 diabetes and contributes significantly to fasting and postprandial hyperglycemia. We recently reported the discovery of the first potent and selective inhibitors of fructose 1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis. Herein we describe acute and chronic effects of the lead inhibitor, MB06322 (CS-917), in rodent models of type 2 diabetes. In fasting male ZDF rats with overt diabetes, a single dose of MB06322 inhibited gluconeogenesis by 70% and overall endogenous glucose production by 46%, leading to a reduction in blood glucose of >200 mg/dl. Chronic treatment of freely feeding 6-week-old male Zucker diabetic fatty (ZDF) rats delayed the development of hyperglycemia and preserved pancreatic function. Elevation of lactate ( approximately 1.5-fold) occurred after 4 weeks of treatment, as did the apparent shunting of precursors into triglycerides. Profound glucose lowering ( approximately 44%) and similar metabolic ramifications were associated with 2-week intervention therapy of 10-week-old male ZDF rats. In high-fat diet-fed female ZDF rats, MB06322 treatment for 2 weeks fully attenuated hyperglycemia without evidence of metabolic perturbation other than a modest reduction in glycogen stores ( approximately 20%). The studies confirm that excessive gluconeogenesis plays an integral role in the pathophysiology of type 2 diabetes and suggest that FBPase inhibitors may provide a future treatment option.
Collapse
Affiliation(s)
- Paul D van Poelje
- Department of Biochemistry, Metabasis Therapeutics, 11119 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|