1
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Islet-antigen reactive B cells display a unique phenotype and BCR repertoire in autoantibody positive and recent-onset type 1 diabetes patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599914. [PMID: 38979376 PMCID: PMC11230262 DOI: 10.1101/2024.06.20.599914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D. IAR B cells from these donors had altered expression of B cell signaling, pro-inflammatory, infection, and antigen processing and presentation genes. Both AAB and T1D donors demonstrated a significant increase in certain heavy and light chain V genes, and these V genes were enriched in islet-reactivity. Public clones of IAR B cells were restricted almost entirely to AAB and T1D donors. IAR B cells were clonally expanded in the autoimmune donors, particularly the AAB group. Notably, a substantial fraction of IAR B cells in AAB and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell activation during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A. Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A. Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
3
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
4
|
Gilles A, Hu L, Virdis F, Sant’Angelo DB, Dimitrova N, Hedrick JA, Denzin LK. The MHC Class II Antigen-Processing and Presentation Pathway Is Dysregulated in Type 1 Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1630-1642. [PMID: 37811896 PMCID: PMC10872857 DOI: 10.4049/jimmunol.2300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Peptide loading of MHC class II (MHCII) molecules is facilitated by HLA-DM (DM), which catalyzes CLIP release, stabilizes empty MHCII, and edits the MHCII-bound peptide repertoire. HLA-DO (DO) binds to DM and modulates its activity, resulting in an altered set of peptides presented at the cell surface. MHCII-peptide presentation in individuals with type 1 diabetes (T1D) is abnormal, leading to a breakdown in tolerance; however, no direct measurement of the MHCII pathway activity in T1D patients has been performed. In this study, we measured MHCII Ag-processing pathway activity in humans by determining MHCII, MHCII-CLIP, DM, and DO levels by flow cytometry for peripheral blood B cells, dendritic cells, and monocytes from 99 T1D patients and 97 controls. Results showed that MHCII levels were similar for all three APC subsets. In contrast, MHCII-CLIP levels, independent of sex, age at blood draw, disease duration, and diagnosis age, were significantly increased for all three APCs, with B cells showing the largest increase (3.4-fold). DM and DO levels, which usually directly correlate with MHCII-CLIP levels, were unexpectedly identical in T1D patients and controls. Gene expression profiling on PBMC RNA showed that DMB mRNA was significantly elevated in T1D patients with residual C-peptide. This resulted in higher levels of DM protein in B cells and dendritic cells. DO levels were also increased, suggesting that the MHCII pathway maybe differentially regulated in individuals with residual C-peptide. Collectively, these studies show a dysregulation of the MHCII Ag-processing pathway in patients with T1D.
Collapse
Affiliation(s)
- Ambroise Gilles
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA
| | - Lan Hu
- Oncology Informatics & Genomics, Philips North America, Cambridge, MA, 02141
| | - Francesca Virdis
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, Current address: Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Derek B. Sant’Angelo
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| | - Nevenka Dimitrova
- Oncology Informatics and Genomics, Philips North America, Valhalla, NY 10598, Current address: Memorial Sloan-Kettering Cancer Center, New York, NY, 10065
| | | | - Lisa K. Denzin
- Child Health Institute of New Jersey, Department of Pediatrics and Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and Graduate School of Biomedical Sciences, The State University of NJ, New Brunswick, NJ, 08901
| |
Collapse
|
5
|
Jiang K, Fu Y, Kelly JA, Gaffney PM, Holmes LC, Jarvis JN. Comparison of the three-dimensional chromatin structures of adolescent and adult peripheral blood B cells: implications for the study of pediatric autoimmune diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557171. [PMID: 37745336 PMCID: PMC10515843 DOI: 10.1101/2023.09.11.557171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background/Purpose Knowledge of the 3D genome is essential to elucidate genetic mechanisms driving autoimmune diseases. The 3D genome is distinct for each cell type, and it is uncertain whether cell lines faithfully recapitulate the 3D architecture of primary human cells or whether developmental aspects of the pediatric immune system require use of pediatric samples. We undertook a systematic analysis of B cells and B cell lines to compare 3D genomic features encompassing risk loci for juvenile idiopathic arthritis (JIA), systemic lupus (SLE), and type 1 diabetes (T1D). Methods We isolated B cells from healthy individuals, ages 9-17. HiChIP was performed using CTCF antibody, and CTCF peaks were identified. CTCF loops within the pediatric were compared to three datasets: 1) self-called CTCF consensus peaks called within the pediatric samples, 2) ENCODE's publicly available GM12878 CTCF ChIP-seq peaks, and 3) ENCODE's primary B cell CTCF ChIPseq peaks from two adult females. Differential looping was assessed within the pediatric samples and each of the three peak datasets. Results The number of consensus peaks called in the pediatric samples was similar to that identified in ENCODE's GM12878 and primary B cell datasets. We observed <1% of loops that demonstrated significantly differential looping between peaks called within the pediatric samples themselves and when called using ENCODE GM12878 peaks . Significant looping differences were even less when comparing loops of the pediatric called peaks to those of the ENCODE primary B cell peaks. When querying loops found in juvenile idiopathic arthritis, type 1 diabetes, or systemic lupus erythematosus risk haplotypes, we observed significant differences in only 2.2%, 1.0%, and 1.3% loops, respectively, when comparing peaks called within the pediatric samples and ENCODE GM12878 dataset. The differences were even less apparent when comparing loops called with the pediatric vs ENCODE adult primary B cell peak datasets.The 3D chromatin architecture in B cells is similar across pediatric, adult, and EBVtransformed cell lines. This conservation of 3D structure includes regions encompassing autoimmune risk haplotypes. Conclusion Thus, even for pediatric autoimmune diseases, publicly available adult B cell and cell line datasets may be sufficient for assessing effects exerted in the 3D genomic space.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lucy C. Holmes
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - James N. Jarvis
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Genetics, Genomics and Bioinformatics Program, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
6
|
Zhu H, Zhao Z, Xu J, Chen Y, Cai J, Shi C, Zhou L, Zhu Q, Ji L. Comprehensive landscape of the T and B-cell repertoires of newly diagnosed gestational diabetes mellitus. Genomics 2023; 115:110681. [PMID: 37453476 DOI: 10.1016/j.ygeno.2023.110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study conducted a high-throughput sequencing analysis of the T- and B- repertoires in the newly diagnosed GDM patients and evaluated the association between abnormal adaptive immunity and GDM. The unique TCR CDR3 clonotypes were mildly decreased in GDM patients, and the similarity of TCR V-J distributions was higher in the GDM group. Moreover, the usages of the V gene and V-J pair and the frequency distributions of some CDR3 amino acids (AAs) both in BCR and TCR were significantly different between groups. Moreover, the cytokines including IL-4, IL-6, IFN-γ and IL-17A were synchronously elevated in the GDM cases. Our findings provide a comprehensive view of BCR and TCR repertoires at newly diagnosed GDM patients, revealing the mild reduction in unique TCRB CDR3 sequences and slight alteration of the V gene, V-J combination and CDR3 (AA) usages of BCR and TCR. This work provides deep insight into the mechanism of maternal adaptive immunity in GDM and provides novel diagnostic biomarkers and potential immunotherapy targets for GDM.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Internal Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhijia Zhao
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jin Xu
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yanming Chen
- School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jie Cai
- Center for Reproductive Medicine, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315211, PR China
| | - Chaoyi Shi
- Center for Reproductive Medicine, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315211, PR China
| | - Liming Zhou
- Center for Reproductive Medicine, Ningbo Women and Children's Hospital, Ningbo, Zhejiang 315211, PR China
| | - Qiong Zhu
- Department of Pediatrics, Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, School of Medicine, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
7
|
Ingrosso DMF, Quarta MT, Quarta A, Chiarelli F. Prevention of Type 1 Diabetes in Children: A Worthy Challenge? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5962. [PMID: 37297566 PMCID: PMC10252671 DOI: 10.3390/ijerph20115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Nowadays, the development of new immuno-therapeutic drugs has made it possible to alter the course of many autoimmune diseases. Type 1 diabetes is a chronic disease with a progressive dependence on exogenous insulin administration. The ability to intercept individuals at high risk of developing type 1 diabetes is the first step toward the development of therapies that can delay the process of β-cell destruction, thus permitting a better glycemic control and reducing the incidence of ketoacidosis. The knowledge of the main pathogenetic mechanisms underlying the three stages of the disease may be helpful to identify the best immune therapeutic approach. In this review, we aim to give an overview of the most important clinical trials conducted during the primary, secondary and tertiary phases of prevention.
Collapse
Affiliation(s)
| | | | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
8
|
Di Lorenzo B, Pacillo L, Milardi G, Jofra T, Di Cesare S, Gerosa J, Marzinotto I, Zapparoli E, Rivalta B, Cifaldi C, Barzaghi F, Giancotta C, Zangari P, Rapini N, Deodati A, Amodio G, Passerini L, Carrera P, Gregori S, Palma P, Finocchi A, Lampasona V, Cicalese MP, Schiaffini R, Di Matteo G, Merelli I, Barcella M, Aiuti A, Piemonti L, Cancrini C, Fousteri G. Natural history of type 1 diabetes on an immunodysregulatory background with genetic alteration in B-cell activating factor receptor: A case report. Front Immunol 2022; 13:952715. [PMID: 36090979 PMCID: PMC9459137 DOI: 10.3389/fimmu.2022.952715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF–BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF–BAFFR signaling in islet-specific tolerance and T1D progression.
Collapse
Affiliation(s)
- Biagio Di Lorenzo
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giulia Milardi
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Tatiana Jofra
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jolanda Gerosa
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milano, Italy
| | - Beatrice Rivalta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Cristina Cifaldi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Carmela Giancotta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Paola Zangari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Novella Rapini
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Annalisa Deodati
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Laboratory of Clinical Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Riccardo Schiaffini
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Department of Bioinformatics, Institute for Biomedical Technologies National Research Council, Segrate, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Department of Bioinformatics, Institute for Biomedical Technologies National Research Council, Segrate, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, University Vita-Salute San Raffaele, Milan, Italy
- *Correspondence: Alessandro Aiuti, ; Caterina Cancrini, ; Georgia Fousteri, ; Lorenzo Piemonti,
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
- *Correspondence: Alessandro Aiuti, ; Caterina Cancrini, ; Georgia Fousteri, ; Lorenzo Piemonti,
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesú Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- *Correspondence: Alessandro Aiuti, ; Caterina Cancrini, ; Georgia Fousteri, ; Lorenzo Piemonti,
| | - Georgia Fousteri
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
- *Correspondence: Alessandro Aiuti, ; Caterina Cancrini, ; Georgia Fousteri, ; Lorenzo Piemonti,
| |
Collapse
|
9
|
Ramos-Martínez E, Ramos-Martínez I, Valencia J, Ramos-Martínez JC, Hernández-Zimbrón L, Rico-Luna A, Pérez-Campos E, Pérez-Campos Mayoral L, Cerbón M. Modulatory role of prolactin in type 1 diabetes. Horm Mol Biol Clin Investig 2022; 44:79-88. [PMID: 35852366 DOI: 10.1515/hmbci-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Patients with type 1 diabetes mellitus have been reported to have elevated prolactin levels and a possible relationship between prolactin levels and the development of the disease has been proposed. However, some studies show that prolactin mediates beneficial functions in beta cells. Therefore, we review information on the roles of prolactin in type 1 diabetes mellitus.
Content
Here we summarize the functions of prolactin in the immune system and in pancreatic beta cells, in addition, we describe studies related to PRL levels, its regulation and alterations of secretion in patients with type 1 diabetes mellitus.
Summary
Studies in murine models have shown that prolactin protects beta cells from apoptosis, stimulates their proliferation and promotes pancreatic islet revascularization. In addition, some studies in patients with type 1 diabetes mellitus have shown that elevated prolactin levels correlate with better disease control.
Outlook
Prolactin treatment appears to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Jorge Valencia
- Endocrine Research Unit , UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social , Ciudad de México , México
| | - Juan Carlos Ramos-Martínez
- Cardiology Department , Hospital General Regional Lic Ignacio Garcia Tellez IMSS , Mérida , Yucatán , México
| | - Luis Hernández-Zimbrón
- Escuela Nacional de Estudios Superiores, Licenciatura en Optometría, Unidad León , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Anaiza Rico-Luna
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO. Facultad de Medicina , Universidad Autónoma “Benito Juárez” de Oaxaca , Oaxaca , México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana. Instituto Nacional de Perinatología-Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
10
|
Smigoc Schweiger D. Recent Advances in Immune-Based Therapies for Type 1 Diabetes. Horm Res Paediatr 2022; 96:631-645. [PMID: 35533645 DOI: 10.1159/000524866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive destruction of the pancreatic beta cells, leading to a lifelong dependence on insulin. It is associated with an increased morbidity and mortality from diabetes-related complications and a significant treatment burden. However, there has been substantial progress in therapeutic strategies that can affect the course of the disease. SUMMARY This review addresses advances in immunotherapy aimed at preserving residual beta-cell function in individuals with a recent onset of T1D and arresting the disease in pre-symptomatic stages. Recent and ongoing clinical trials have investigated the efficacy and safety of various immunotherapeutic strategies aimed at targeting several mechanisms of autoimmunity, which are thought to be important in disease pathogenesis, and therapies that also address beta-cell health. So far, T-cell-directed therapies that led to a favourable balance between T-effector cell depletion or modulation and preservation or expansion of regulatory T cells have shown the most success. Furthermore, regarding the timing of intervention, teplizumab was the first immunomodulatory agent to demonstrate a significant delay in disease progression in high-risk individuals before clinical onset. KEY MESSAGES As more targeted immune interventions with potentially fewer side effects are closer to the translation into clinical practice, some new challenges may need to be addressed. The use of combination approaches that include immunotherapeutic strategies targeting different aspects of the immune system and interventions that improve beta-cell health may be required, along with the use of individualized patient-tailored approaches, a move towards early intervention, and a focus on patient-reported outcome measures.
Collapse
Affiliation(s)
- Darja Smigoc Schweiger
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Vecchione A, Madley R, Danzl N, Borsotti C, Marharlooei MK, Li HW, Nauman G, Ding X, Ho SH, Fousteri G, Sykes M. T1D patient-derived hematopoietic stem cells are programmed to generate Tph, Tfh, and autoimmunity-associated B cell subsets in human immune system mice. Clin Immunol 2022; 240:109048. [PMID: 35644520 PMCID: PMC9564152 DOI: 10.1016/j.clim.2022.109048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Abstract
Interactions between B cells and CD4+ T cells play a central role in the development of Type 1 Diabetes (T1D). Two helper cell subsets, follicular (Tfh) and peripheral (Tph) helper T cells, are increased in patients with T1D but their role in driving B cell autoimmunity is undefined. We used a personalized immune (PI) mouse model to generate human immune systems de novo from hematopoietic stem cells (HSCs) of patients with T1D or from healthy controls (HCs). Both groups developed Tfh and Tph-like cells, and those with T1D-derived immune systems demonstrated increased numbers of Tph-like and Tfh cells compared to HC-derived PI mice. T1D-derived immune systems included increased proportions of unconventional memory CD27-IgD- B cells and reduced proportions of naïve B cells compared to HC PI mice, resembling changes reported for patients with systemic lupus erythematosus. Our findings suggest that T1D HSCs are genetically programmed to produce increased proportions of T cells that promote the development of unconventional, possibly autoreactive memory B cells. PI mice provide an avenue for further understanding of the immune abnormalities that drive autoantibody pathogenesis and T1D.
Collapse
|
12
|
Mitchell AM, Michels AW. Self-Antigens Targeted by Regulatory T Cells in Type 1 Diabetes. Int J Mol Sci 2022; 23:3155. [PMID: 35328581 PMCID: PMC8954990 DOI: 10.3390/ijms23063155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022] Open
Abstract
While progress has been made toward understanding mechanisms that lead to the development of autoimmunity, there is less knowledge regarding protective mechanisms from developing such diseases. For example, in type 1 diabetes (T1D), the immune-mediated form of diabetes, the role of pathogenic T cells in the destruction of pancreatic islets is well characterized, but immune-mediated mechanisms that contribute to T1D protection have not been fully elucidated. One potential protective mechanism includes the suppression of immune responses by regulatory CD4 T cells (Tregs) that recognize self-peptides from islets presented by human leukocyte antigen (HLA) class II molecules. In this review, we summarize what is known about the antigenic self-peptides recognized by Tregs in the context of T1D.
Collapse
Affiliation(s)
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
13
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
14
|
Teniente-Serra A, Pizarro E, Quirant-Sánchez B, Fernández MA, Vives-Pi M, Martinez-Caceres EM. Identifying Changes in Peripheral Lymphocyte Subpopulations in Adult Onset Type 1 Diabetes. Front Immunol 2021; 12:784110. [PMID: 34938295 PMCID: PMC8685245 DOI: 10.3389/fimmu.2021.784110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
T- and B-lymphocytes play an important role in the pathogenesis of type 1 diabetes (T1D), a chronic disease caused by the autoimmune destruction of the insulin-producing cells in the pancreatic islets. Flow cytometry allows their characterization in peripheral blood, letting to investigate changes in cellular subpopulations that can provide insights in T1D pathophysiology. With this purpose, CD4+ and CD8+ T cells (including naïve, central memory, effector memory and terminally differentiated effector (TEMRA), Th17 and Tregs) and B cells subsets (naïve, unswitched memory, switched memory and transitional B cells) were analysed in peripheral blood of adult T1D patients at disease onset and after ≥2 years using multiparametric flow cytometry. Here we report changes in the percentage of early and late effector memory CD4+ and CD8+ T cells as well as of naïve subsets, regulatory T cells and transitional B cells in peripheral blood of adult patients at onset of T1D when compared with HD. After 2 years follow-up these changes were maintained. Also, we found a decrease in percentage of Th17 and numbers of T cells with baseline. In order to identify potential biomarkers of disease, ROC curves were performed being late EM CD4 T cell subset the most promising candidate. In conclusion, the observed changes in the percentage and/or absolute number of lymphocyte subpopulations of adult T1D patients support the hypothesis that effector cells migrate to the pancreas and this autoimmune process perseveres along the disease. Moreover, multiparametric flow allows to identify those subsets with potential to be considered biomarkers of disease.
Collapse
Affiliation(s)
- Aina Teniente-Serra
- Immunology Division, Clinical Laboratory MetroNord (LCMN), Germans Trias i Pujol University Hospital and Research Institute (IGTP), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Eduarda Pizarro
- Endocrinology Department, Hospital de Mataró, Barcelona, Spain
| | - Bibiana Quirant-Sánchez
- Immunology Division, Clinical Laboratory MetroNord (LCMN), Germans Trias i Pujol University Hospital and Research Institute (IGTP), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Division, Clinical Laboratory MetroNord (LCMN), Germans Trias i Pujol University Hospital and Research Institute (IGTP), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Eva M Martinez-Caceres
- Immunology Division, Clinical Laboratory MetroNord (LCMN), Germans Trias i Pujol University Hospital and Research Institute (IGTP), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
15
|
Piekos SN, Gaddam S, Bhardwaj P, Radhakrishnan P, Guha RV, Oro AE. Biomedical Data Commons (BMDC) prioritizes B-lymphocyte non-coding genetic variants in Type 1 Diabetes. PLoS Comput Biol 2021; 17:e1009382. [PMID: 34543288 PMCID: PMC8483327 DOI: 10.1371/journal.pcbi.1009382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/30/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
The repurposing of biomedical data is inhibited by its fragmented and multi-formatted nature that requires redundant investment of time and resources by data scientists. This is particularly true for Type 1 Diabetes (T1D), one of the most intensely studied common childhood diseases. Intense investigation of the contribution of pancreatic β-islet and T-lymphocytes in T1D has been made. However, genetic contributions from B-lymphocytes, which are known to play a role in a subset of T1D patients, remain relatively understudied. We have addressed this issue through the creation of Biomedical Data Commons (BMDC), a knowledge graph that integrates data from multiple sources into a single queryable format. This increases the speed of analysis by multiple orders of magnitude. We develop a pipeline using B-lymphocyte multi-dimensional epigenome and connectome data and deploy BMDC to assess genetic variants in the context of Type 1 Diabetes (T1D). Pipeline-identified variants are primarily common, non-coding, poorly conserved, and are of unknown clinical significance. While variants and their chromatin connectivity are cell-type specific, they are associated with well-studied disease genes in T-lymphocytes. Candidates include established variants in the HLA-DQB1 and HLA-DRB1 and IL2RA loci that have previously been demonstrated to protect against T1D in humans and mice providing validation for this method. Others are included in the well-established T1D GRS2 genetic risk scoring method. More intriguingly, other prioritized variants are completely novel and form the basis for future mechanistic and clinical validation studies The BMDC community-based platform can be expanded and repurposed to increase the accessibility, reproducibility, and productivity of biomedical information for diverse applications including the prioritization of cell type-specific disease alleles from complex phenotypes.
Collapse
Affiliation(s)
- Samantha N. Piekos
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
- Google Data Commons, Mountain View, California, United States of America
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
| | - Pranav Bhardwaj
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | | | - Ramanathan V. Guha
- Google Data Commons, Mountain View, California, United States of America
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
16
|
Li Y, Sun F, Yue TT, Wang FX, Yang CL, Luo JH, Rong SJ, Xiong F, Zhang S, Wang CY. Revisiting the Antigen-Presenting Function of β Cells in T1D Pathogenesis. Front Immunol 2021; 12:690783. [PMID: 34335595 PMCID: PMC8318689 DOI: 10.3389/fimmu.2021.690783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by the unresolved autoimmune inflammation and islet β cell destruction. The islet resident antigen-presenting cells (APCs) including dendritic cells and macrophages uptake and process the β cell-derived antigens to prime the autoreactive diabetogenic T cells. Upon activation, those autoreactive T cells produce copious amount of IFN-γ, TNF-α and IL-1β to induce β cell stress and death. Autoimmune attack and β cell damage intertwine together to push forward this self-destructive program, leading to T1D onset. However, β cells are far beyond a passive participant during the course of T1D development. Herein in this review, we summarized how β cells are actively involved in the initiation of autoimmune responses in T1D setting. Specifically, β cells produce modified neoantigens under stressed condition, which is coupled with upregulated expression of MHC I/II and co-stimulatory molecules as well as other immune modules, that are essential properties normally exhibited by the professional APCs. At the cellular level, this subset of APC-like β cells dynamically interacts with plasmacytoid dendritic cells (pDCs) and manifests potency to activate autoreactive CD4 and CD8 T cells, by which β cells initiate early autoimmune responses predisposing to T1D development. Overall, the antigen-presenting function of β cells helps to explain the tissue specificity of T1D and highlights the active roles of structural cells played in the pathogenesis of various immune related disorders.
Collapse
Affiliation(s)
- Yang Li
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Tian CJ, Zhang JH, Liu J, Ma Z, Zhen Z. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy. ESC Heart Fail 2021; 8:2637-2646. [PMID: 34013670 PMCID: PMC8318495 DOI: 10.1002/ehf2.13431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperglycaemia is a major aetiological factor in the development of diabetic cardiomyopathy. Excessive hyperglycaemia increases the levels of reactive carbonyl species (RCS), reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the heart and causes derangements in calcium homeostasis, inflammation and immune‐system disorders. Ryanodine receptor 2 (RyR2) plays a key role in excitation–contraction coupling during heart contractions, including rhythmic contraction and relaxation of the heart. Cardiac inflammation has been indicated in part though interleukin 1 (IL‐1) signals, supporting a role for B and T lymphocytes in diabetic cardiomyopathy. Some of the post‐translational modifications of the ryanodine receptor (RyR) by RCS, ROS and RNS stress are known to affect its gating and Ca2+ sensitivity, which contributes to RyR dysregulation in diabetic cardiomyopathy. RyRs and immune‐related molecules are important signalling species in many physiological and pathophysiological processes in various heart and cardiovascular diseases. However, little is known regarding the mechanistic relationship between RyRs and immune‐related molecules in diabetes, as well as the mechanisms mediating complex communication among cardiomyocytes, fibroblasts and immune cells. This review highlights new findings on the complex cellular communications in the pathogenesis and progression of diabetic cardiomyopathy. We discuss potential therapeutic applications targeting RyRs and immune‐related molecules in diabetic complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jing-Hua Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Tianjin, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuang Ma
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Leete P, Morgan NG. Footprints of Immune Cells in the Pancreas in Type 1 Diabetes; to "B" or Not to "B": Is That Still the Question? Front Endocrinol (Lausanne) 2021; 12:617437. [PMID: 33716971 PMCID: PMC7948999 DOI: 10.3389/fendo.2021.617437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Significant progress has been made in understanding the phenotypes of circulating immune cell sub-populations in human type 1 diabetes but much less is known about the equivalent populations that infiltrate the islets to cause beta-cell loss. In particular, considerable uncertainties remain about the phenotype and role of B-lymphocytes in the pancreas. This gap in understanding reflects both the difficulty in accessing the gland to study islet inflammation during disease progression and the fact that the number and proportion of islet-associated B-lymphocytes varies significantly according to the disease endotype. In very young children (especially those <7 years at onset) pancreatic islets are infiltrated by both CD8+ T- and CD20+ B-lymphocytes in roughly equal proportions but it is widely held that the CD8+ T-lymphocytes are responsible for driving beta-cell toxicity. By contrast, the role played by B-lymphocytes remains enigmatic. This is compounded by the fact that, in older children and teenagers (those ≥13 years at diagnosis) the proportion of B-lymphocytes found in association with inflamed islets is much reduced by comparison with those who are younger at diagnosis (reflecting two endotypes of disease) whereas CD8+ T-lymphocytes form the predominant population in both groups. In the present paper, we review the current state of understanding and develop a proposal to stimulate further discussion of the roles played by islet-associated B-lymphocytes in human type 1 diabetes. We cite evidence indicating that sites of direct contact can be found between CD8+ and CD20+-lymphocytes in and around inflamed islets and propose that such interactions may be important in determining the efficiency of beta cell killing.
Collapse
Affiliation(s)
- Pia Leete
- Exeter Centre for Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G. Morgan
- Exeter Centre for Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
19
|
Shi X, Shao F, Li Z, Kang L, Liu J, Kissler S, Zhou Z, Jia L, Zheng P. Regulation of B cell homeostasis by Ptpn22 contributes to type 1 diabetes in NOD mice. Endocrine 2020; 67:535-543. [PMID: 31732921 DOI: 10.1007/s12020-019-02120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE A coding variant in PTPN22 (C1858T) is one of the most important genetic risk factors in type 1 diabetes (T1D). The role of the PTPN22 risk allele in B cells is still incompletely understood and has not been investigated directly in T1D. This study aimed to explore the role of PTPN22 in the homeostasis of B cells and its influence in T1D. METHODS Wild-type (WT) and Ptpn22 inducible knockdown (KD) NOD mice were treated with 200 μg/ml doxycycline at the age of 10 weeks for 1-2 months. B cell compositions in the bone marrow, peritoneal cavity and spleen were examined. The pathogenicity of Ptpn22 KD B cells was explored by adoptive cell transfer. RESULTS Ptpn22 silencing increased the frequency of recirculating mature B cells in the bone marrow, decreased the frequency of B-1a cells in the peritoneal cavity and suppressed the formation of marginal zone B cells and plasma cells in the spleen. Changes in the composition of the peripheral B cell compartment caused by altered cell proliferation while rates of apoptosis were not affected. Significantly, co-transfer of Ptpn22 KD B cells with NY8.3 diabetogenic T cells diminished the frequency of diabetes in recipient NOD.scid mice compared with co-transfer of WT B cells. CONCLUSIONS Our study constitutes the first functional study of Ptpn22 in B cells in NOD mice. Our findings suggest that Ptpn22 variation contributes to T1D by modifying the B cell compartment and support a gain-of-function for the PTPN22 disease variant.
Collapse
Affiliation(s)
- Xiajie Shi
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Feng Shao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Zhixia Li
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Lin Kang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Junbin Liu
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Peilin Zheng
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
20
|
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020; 40:1200-1219. [PMID: 32112452 DOI: 10.1002/med.21654] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.
Collapse
Affiliation(s)
- Selena Le Bagge
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherman S Leung
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mater Clinical School, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Yip L, Fuhlbrigge R, Alkhataybeh R, Fathman CG. Gene Expression Analysis of the Pre-Diabetic Pancreas to Identify Pathogenic Mechanisms and Biomarkers of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:609271. [PMID: 33424774 PMCID: PMC7793767 DOI: 10.3389/fendo.2020.609271] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 Diabetes (T1D) occurs as a result of the autoimmune destruction of pancreatic β-cells by self-reactive T cells. The etiology of this disease is complex and difficult to study due to a lack of disease-relevant tissues from pre-diabetic individuals. In this study, we performed gene expression analysis on human pancreas tissues obtained from the Network of Pancreatic Organ Donors with Diabetes (nPOD), and showed that 155 genes were differentially expressed by ≥2-fold in the pancreata of autoantibody-positive (AA+) at-risk individuals compared to healthy controls. Only 48 of these genes remained changed by ≥2-fold in the pancreata of established T1D patients. Pathway analysis of these genes showed a significant association with various immune pathways. We were able to validate the differential expression of eight disease-relevant genes by QPCR analysis: A significant upregulation of CADM2, and downregulation of TRPM5, CRH, PDK4, ANGPL4, CLEC4D, RSG16, and FCGR2B was confirmed in the pancreata of AA+ individuals versus controls. Studies have already implicated FCGR2B in the pathogenesis of disease in non-obese diabetic (NOD) mice. Here we showed that CADM2, TRPM5, PDK4, and ANGPL4 were similarly changed in the pancreata of pre-diabetic 12-week-old NOD mice compared to NOD.B10 controls, suggesting a possible role for these genes in the pathogenesis of both T1D and NOD disease. The loss of the leukocyte-specific gene, FCGR2B, in the pancreata of AA+ individuals, is particularly interesting, as it may serve as a potential whole blood biomarker of disease progression. To test this, we quantified FCGR2B expression in peripheral blood samples of T1D patients, and AA+ and AA- first-degree relatives of T1D patients enrolled in the TrialNet Pathway to Prevention study. We showed that FCGR2B was significantly reduced in the peripheral blood of AA+ individuals compared to AA- controls. Together, these findings demonstrate that gene expression analysis of pancreatic tissue and peripheral blood samples can be used to identify disease-relevant genes and pathways and potential biomarkers of disease progression in T1D.
Collapse
|
22
|
Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:635-650. [PMID: 31534209 DOI: 10.1038/s41574-019-0254-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the destruction of pancreatic β-cells that is mediated by the immune system. Multiple genetic and environmental factors found in variable combinations in individual patients are involved in the development of T1DM. Genetic risk is defined by the presence of particular allele combinations, which in the major susceptibility locus (the HLA region) affect T cell recognition and tolerance to foreign and autologous molecules. Multiple other loci also regulate and affect features of specific immune responses and modify the vulnerability of β-cells to inflammatory mediators. Compared with the genetic factors, environmental factors that affect the development of T1DM are less well characterized but contact with particular microorganisms is emerging as an important factor. Certain infections might affect immune regulation, and the role of commensal microorganisms, such as the gut microbiota, are important in the education of the developing immune system. Some evidence also suggests that nutritional factors are important. Multiple islet-specific autoantibodies are found in the circulation from a few weeks to up to 20 years before the onset of clinical disease and this prediabetic phase provides a potential opportunity to manipulate the islet-specific immune response to prevent or postpone β-cell loss. The latest developments in understanding the heterogeneity of T1DM and characterization of major disease subtypes might help in the development of preventive treatments.
Collapse
Affiliation(s)
- Jorma Ilonen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Johanna Lempainen
- Institue of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
23
|
Immune heterogeneity of head and tail pancreatic lymph nodes in non-obese diabetic mice. Sci Rep 2019; 9:9778. [PMID: 31278331 PMCID: PMC6611787 DOI: 10.1038/s41598-019-45899-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
The pancreatic lymph node is critical to the pathogenesis of autoimmune diabetes, as it constitutes the initial site for the priming of autoreactive T cells. In this study, we compared the histopathology of the head pancreatic lymph node (HPLN) to the tail pancreatic lymph node (TPLN) in NOD mice. HPLNs and TPLNs were harvested from 4 week-, 8 week-, and 12 week-old NOD mice, and their microvasculature, extracellular matrix, and immune cell subsets were characterized. The percentages of B cells and antigen-presenting cells (APCs) were much higher in the HPLN, as compared to the TPLN. Notably, the HPLNs of 12 week-old mice were characterized by greater expansion of high endothelial venules (HEVs) and lymphatic vessels in comparison to the TPLNs. Finally, we observed a higher density of extracellular matrix (ECM) fibers surrounding the lymphatic vasculature in the HPLNs than in the TPLNs. These data for the first time demonstrate that the HPLN possesses a different immune microanatomy and organization from the TPLN. These novel observations unveil a major phenotypic difference between two types of LNs from the same organ and may highlight an independent fundamental role played by each PLN during the establishment of T1D.
Collapse
|
24
|
Dufort MJ, Greenbaum CJ, Speake C, Linsley PS. Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. JCI Insight 2019; 4:125556. [PMID: 30830868 DOI: 10.1172/jci.insight.125556] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
The rate of decline in insulin secretion after diagnosis with type 1 diabetes (T1D) varies substantially among individuals and with age at diagnosis, but the mechanism(s) behind this heterogeneity are not well understood. We investigated the loss of pancreatic β cell function in new-onset T1D subjects using unbiased whole blood RNA-seq and verified key findings by targeted cell count measurements. We found that patients who lost insulin secretion more rapidly had immune phenotypes ("immunotypes") characterized by higher levels of B cells and lower levels of neutrophils, especially neutrophils expressing primary granule genes. The B cell and neutrophil immunotypes showed strong age dependence, with B cell levels in particular predicting rate of progression in young subjects only. This age relationship suggested that therapy targeting B cells in T1D would be most effective in young subjects with high pretreatment B cell levels, a prediction which was supported by data from a clinical trial of rituximab in new-onset subjects. These findings demonstrate a link between age-related immunotypes and disease outcome in new-onset T1D. Furthermore, our data suggest that greater success could be achieved by targeted use of immunomodulatory therapy in specific T1D populations defined by age and immune characteristics.
Collapse
Affiliation(s)
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
25
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
26
|
Sharif K, Watad A, Coplan L, Amital H, Shoenfeld Y, Afek A. Psychological stress and type 1 diabetes mellitus: what is the link? Expert Rev Clin Immunol 2018; 14:1081-1088. [PMID: 30336709 DOI: 10.1080/1744666x.2018.1538787] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the destruction of insulin-producing β-cells of the pancreas. The current paradigm in this disease's etiopathogenesis points toward the interplay of genetic and environmental factors. Among the environmental variables, dietary factors, intestinal microbiota, toxins, and psychological stress have been implicated in disease onset. Areas covered: This review aims to investigate the relationship between psychological stress and T1DM by presenting evidence from epidemiological studies, animal models, and to provide the mechanism involved in this association. The literature search was conducted through PubMed to identify studies that investigate the connection between stress and T1DM. Experimental designs, such as case-control, and retrospective and prospective cohorts studies, were included. Expert commentary: A wide array of evidence, ranging from epidemiological to animal models, points toward the role of psychological stressors in T1DM pathogenesis. Various mechanisms have been proposed, including the hypothalamic-pituitary-adrenal (HPA) axis, influence of the nervous system on immune cells, and insulin resistance. Further research could investigate the gene-stress interactions to evaluate the risk of T1DM development.
Collapse
Affiliation(s)
- Kassem Sharif
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Abdulla Watad
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Louis Coplan
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Howard Amital
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Yehuda Shoenfeld
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel.,c Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,d Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases , Tel-Aviv University , Tel-Aviv , Israel.,e Head of The Mosaic of Autoimmunity Project , Saint Petersburg State University , Saint Petersburg , Russia
| | - Arnon Afek
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel.,c Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel
| |
Collapse
|
27
|
James EA, Pietropaolo M, Mamula MJ. Immune Recognition of β-Cells: Neoepitopes as Key Players in the Loss of Tolerance. Diabetes 2018; 67:1035-1042. [PMID: 29784651 PMCID: PMC5961411 DOI: 10.2337/dbi17-0030] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
Abstract
Prior to the onset of type 1 diabetes, there is progressive loss of immune self-tolerance, evidenced by the accumulation of islet autoantibodies and emergence of autoreactive T cells. Continued autoimmune activity leads to the destruction of pancreatic β-cells and loss of insulin secretion. Studies of samples from patients with type 1 diabetes and of murine disease models have generated important insights about genetic and environmental factors that contribute to susceptibility and immune pathways that are important for pathogenesis. However, important unanswered questions remain regarding the events that surround the initial loss of tolerance and subsequent failure of regulatory mechanisms to arrest autoimmunity and preserve functional β-cells. In this Perspective, we discuss various processes that lead to the generation of neoepitopes in pancreatic β-cells, their recognition by autoreactive T cells and antibodies, and potential roles for such responses in the pathology of disease. Emerging evidence supports the relevance of neoepitopes generated through processes that are mechanistically linked with β-cell stress. Together, these observations support a paradigm in which neoepitope generation leads to the activation of pathogenic immune cells that initiate a feed-forward loop that can amplify the antigenic repertoire toward pancreatic β-cell proteins.
Collapse
Affiliation(s)
- Eddie A James
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Massimo Pietropaolo
- Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Mark J Mamula
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
28
|
Merriman C, Huang Q, Gu W, Yu L, Fu D. A subclass of serum anti-ZnT8 antibodies directed to the surface of live pancreatic β-cells. J Biol Chem 2017; 293:579-587. [PMID: 29184000 DOI: 10.1074/jbc.ra117.000195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/22/2017] [Indexed: 01/17/2023] Open
Abstract
The islet-specific zinc transporter ZnT8 is a major self-antigen found in insulin granules of pancreatic β-cells. Frequent insulin secretion exposes ZnT8 to the cell surface, but the humoral antigenicity of the surface-displayed ZnT8 remains unknown. Here we show that a membrane-embedded human ZnT8 antigen triggered a vigorous immune response in ZnT8 knock-out mice. Approximately 50% of serum immunoreactivities toward ZnT8 were mapped to its transmembrane domain that is accessible to extracellular ZnT8 antibody (ZnT8A). ZnT8A binding was detected on live rat insulinoma INS-1E cells, and the binding specificity was validated by a CRISPR/Cas9 mediated ZnT8 knock-out. Applying established ZnT8A assays to purified serum antibodies from patients with type 1 diabetes, we detected human ZnT8A bound to live INS-1E cells, whereas a ZnT8 knock-out specifically reduced the surface binding. Our results demonstrate that ZnT8 is a cell surface self-antigen, raising the possibility of a direct involvement in antibody-mediated β-cell dysfunction and cytotoxicity.
Collapse
Affiliation(s)
- Chengfeng Merriman
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Qiong Huang
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Wei Gu
- the Section of Metabolic Disorders, Amgen Inc., Thousand Oaks, California 91320, and
| | - Liping Yu
- the Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045
| | - Dax Fu
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
29
|
De Riva A, Wållberg M, Ronchi F, Coulson R, Sage A, Thorne L, Goodfellow I, McCoy KD, Azuma M, Cooke A, Busch R. Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS One 2017; 12:e0181964. [PMID: 28771521 PMCID: PMC5542673 DOI: 10.1371/journal.pone.0181964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D.
Collapse
Affiliation(s)
- Alessandra De Riva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ronchi
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Richard Coulson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Sage
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kathy D. McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
30
|
Tang A, Li C, Chen Z, Li T. Anti-CD20 monoclonal antibody combined with adenovirus vector-mediated IL-10 regulates spleen CD4+/CD8+ T cells and T-bet/GATA-3 expression in NOD mice. Mol Med Rep 2017; 16:3974-3982. [PMID: 28765956 PMCID: PMC5646977 DOI: 10.3892/mmr.2017.7111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by a selective destruction of insulin-secreting β-cells. Both T cells and B cells serve a crucial role in pathogenesis and development of T1D. CD20 is a specific membrane antigen of B lymphocytes, while interleukin (IL)‑10 is an important cytokine secreted by T helper 2 cells and has a short half‑life in vivo. The combined effect of anti‑CD20 and IL‑10 on immune function of mice with T1D remains unknown. In the present study, 30 non‑obese diabetic (NOD) mice were treated with anti‑CD20 and adenoviral vector‑mediated interleukin‑10 (Ad‑mIL‑10) therapy. Alterations in CD4+, CD8+, CD4+CD25+Foxp3+ T cells, T‑box expressed in T‑cells (T‑bet), GATA‑binding protein‑3 (GATA‑3) interferon‑γ (IFN‑γ) and IL‑4 were detected by flow cytometry, reverse transcription‑quantitative polymerase chain reaction in NOD mice spleen tissue. The present results suggested that anti‑CD20 and IL‑10 treatment in NOD mice can modulate the immune functions by upregulating GATA‑3 and IL‑4 expression as well as downregulating T‑bet and IFN‑γ expression, which are involved in the pathogenesis of T1D. The current findings may provide a potential method for T1D treatment and a novel preventive therapy for T1D. Combination of anti‑CD20 and Ad‑mIL‑10 treatment had not only immune regulatory effects but also protective effects on islet β‑cells in NOD mice with T1DM at the early stages, by regulating T‑bet/GATA‑3 expression and Th1/Th2 cell differentiation, which has the potential for diabetes prevention and therapy.
Collapse
Affiliation(s)
- Aiping Tang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Cheng Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhihong Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Tang Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
31
|
O'Kell AL, Wasserfall C, Catchpole B, Davison LJ, Hess RS, Kushner JA, Atkinson MA. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 2017; 66:1443-1452. [PMID: 28533295 PMCID: PMC5440022 DOI: 10.2337/db16-1551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, U.K
| | - Lucy J Davison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, U.K., and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Rebecka S Hess
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jake A Kushner
- McNair Medical Institute and Department of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
32
|
Parackova Z, Klocperk A, Rataj M, Kayserova J, Zentsova I, Sumnik Z, Kolouskova S, Sklenarova J, Pruhova S, Obermannova B, Petruzelkova L, Lebl J, Kalina T, Sediva A. Alteration of B cell subsets and the receptor for B cell activating factor (BAFF) in paediatric patients with type 1 diabetes. Immunol Lett 2017; 189:94-100. [PMID: 28414179 DOI: 10.1016/j.imlet.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Lately, mounting evidence has shown that B cells play an important role in the pathogenesis of type 1 diabetes (T1D). Here, we present alterations in B cell subsets including BAFF receptor (BAFFR) expression in cohorts of patients with type 1 diabetes (T1D) and their relatives. PATIENTS AND METHODS B cells were studied in 438 patients with T1D (158 at disease onset and 280 with long-term disease), 136 first-degree relatives and 53 healthy controls. The B cell panel included transitional, naïve, MZ-like, switched memory B cells and plasmablasts. We also measured serum BAFF levels as well as BAFFR expression on both B and T cells. Moreover, the effect of BAFF on T and B lymphocytes was analysed in vitro. RESULTS We observed a significant decrease in the proportion of transitional B cells in the patients with T1D, accompanied by an increased proportion of plasmablasts, especially in recent-onset patients and their relatives. While the BAFF serum levels did not differ in the patients with T1D, BAFFR-expressing B and especially T cell numbers were reduced in the T1D cohort, with the exception of patients with recent-onset disease who exhibited a significant increase in the number of BAFFR-expressing T cells. T cell activation and B cell proliferation were more pronounced after activation with BAFF in the T1D cohort compared to controls. CONCLUSION The B cell panel in patients with T1D is characterized by significantly reduced populations of B cells in their early stages of development with a shift towards plasma cells. The dynamics of BAFFR-expressing B and T cells and the more pronounced responsiveness of the T1D T cells to BAFF point to the role of BAFF and T and B cell cooperation in the development of T1D.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Adam Klocperk
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Michal Rataj
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Jana Kayserova
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Irena Zentsova
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Zdenek Sumnik
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Stanislava Kolouskova
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Jana Sklenarova
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Stepanka Pruhova
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Barbora Obermannova
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Lenka Petruzelkova
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Jan Lebl
- Department of Pediatrics, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Anna Sediva
- Department of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
33
|
Saxena A, Yagita H, Donner TW, Hamad ARA. Expansion of FasL-Expressing CD5 + B Cells in Type 1 Diabetes Patients. Front Immunol 2017; 8:402. [PMID: 28439273 PMCID: PMC5383713 DOI: 10.3389/fimmu.2017.00402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Fas ligand drives insulitis in the non-obese diabetic mouse model of type 1 diabetes (T1D) and negatively regulates IL-10-producing (IL-10pos) CD5+ B cells in pancreata. Relevance of these phenomena to the human disease is poorly understood. Here, using splenocytes from T1D, autoantibody (Ab+), and non-diabetic (ND) human subjects, we show that a subpopulation of CD5+ B cells that is characterized by expression of FasL (FasLhiCD5+) was significantly elevated in T1D subjects, many of whom had significantly reduced frequency of IL-10posCD5+ B cells compared to Ab+ subjects. The majority of FasLhiCD5+ B cells did not produce cytokines and were more highly resistant to activation-induced cell death than their IL-10posCD5+ counterparts. These results associate expansion of FasL-expressing CD5+ B cells with T1D and lay the groundwork for future mechanistic studies to understand specific role in disease pathogenesis.
Collapse
Affiliation(s)
- Ankit Saxena
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Thomas W Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdel Rahim A Hamad
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Seay HR, Yusko E, Rothweiler SJ, Zhang L, Posgai AL, Campbell-Thompson M, Vignali M, Emerson RO, Kaddis JS, Ko D, Nakayama M, Smith MJ, Cambier JC, Pugliese A, Atkinson MA, Robins HS, Brusko TM. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 2016; 1:e88242. [PMID: 27942583 DOI: 10.1172/jci.insight.88242] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects (n = 18) and control donors (n = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4+ conventional T cells (Tconv), CD4+ Treg, CD8+ T cells, and B cells. By conducting high-throughput immunosequencing of the TCR β chain (TRB) and B cell receptor (BCR) immunoglobulin heavy chain (IGH) on these samples, we sought to analyze the molecular signature of the lymphocyte populations within these tissues and of T1D. Ultimately, we observed a highly tissue-restricted CD4+ repertoire, while up to 24% of CD8+ clones were shared among tissues. We surveyed our data set for previously described proinsulin- and glutamic acid decarboxylase 65-reactive (GAD65-reactive) receptors, and interestingly, we observed a TRB with homology to a known GAD65-reactive TCR (clone GAD4.13) present in 7 T1D donors (38.9%), representing >25% of all productive TRB within Tconv isolated from the pLN of 1 T1D subject. These data demonstrate diverse receptor signatures at the nucleotide level and enriched autoreactive clones at the amino acid level, supporting the utility of coupling immunosequencing data with knowledge of characterized autoreactive receptors.
Collapse
Affiliation(s)
- Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Erik Yusko
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Stephanie J Rothweiler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Lin Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Marissa Vignali
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Ryan O Emerson
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Dave Ko
- Department of Information Sciences, City of Hope National Medical Center, Duarte, California, USA
| | | | - Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alberto Pugliese
- Diabetes Research Institute and Departments of Medicine, Microbiology, and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Harlan S Robins
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
35
|
Nambam B, Haller MJ. Updates on Immune Therapies in Type 1 Diabetes. EUROPEAN ENDOCRINOLOGY 2016; 12:89-95. [PMID: 29632594 PMCID: PMC5813448 DOI: 10.17925/ee.2016.12.02.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022]
Abstract
Multiple clinical trials investigating the efficacy and safety of immunotherapeutic interventions in new onset type 1 diabetes (T1D) have failed to yield long term clinical benefit. Lack of efficacy has frequently been attributed to an incomplete understanding of the pathways involved in T1D and the use of single immunotherapeutic agents. Recent mechanistic studies have improved our knowledge of the complex etiopathogenesis of T1D. This in turn has provided the framework for new and ongoing clinical trials in new onset T1D patients and at-risk subjects. Focus has also shifted towards the potential benefits of synergistic combinatorial approaches, both in terms of efficacy and the potential for reduced side effects. These efforts seek to develop intervention strategies that will preserve β-cell function, and ultimately prevent and reverse clinical disease.
Collapse
Affiliation(s)
- Bimota Nambam
- Division of Endocrinology, Louisiana State University, Shreveport, US
| | - Michael J Haller
- Division of Endocrinology, University of Florida, Gainesville, US
| |
Collapse
|
36
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
37
|
McGinty JW, Marré ML, Bajzik V, Piganelli JD, James EA. T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep 2015; 15:90. [PMID: 26370701 PMCID: PMC4902156 DOI: 10.1007/s11892-015-0657-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which progressive loss of self-tolerance, evidenced by accumulation of auto-antibodies and auto-reactive T cells that recognize diverse self-proteins, leads to immune-mediated destruction of pancreatic beta cells and loss of insulin secretion. In this review, we discuss antigens and epitopes in T1D and the role that post-translational modifications play in circumventing tolerance mechanisms and increasing antigenic diversity. Emerging data suggest that, analogous to other autoimmune diseases such as rheumatoid arthritis and celiac disease, enzymatically modified epitopes are preferentially recognized in T1D. Modifying enzymes such as peptidyl deiminases and tissue transglutaminase are activated in response to beta cell stress, providing a mechanistic link between post-translational modification and interactions with the environment. Although studies of such responses in the at-risk population have been limited, current data suggests that breakdown in tolerance through post-translational modification represents an important checkpoint in the development of T1D.
Collapse
Affiliation(s)
- John W McGinty
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| | - Meghan L Marré
- Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Veronique Bajzik
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| | - Jon D Piganelli
- Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| |
Collapse
|
38
|
Morgan NG, Leete P, Foulis AK, Richardson SJ. Islet inflammation in human type 1 diabetes mellitus. IUBMB Life 2014; 66:723-34. [PMID: 25504835 DOI: 10.1002/iub.1330] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the selective deletion of pancreatic β-cells in response to an assault mounted within the pancreas by infiltrating immune cells. However, this apparently clear and focussed annunciation conceals a stark reality in which the cellular and molecular events leading to β-cell loss remain poorly understood in humans. This reflects the difficulty of studying these processes in living individuals and the fact that, using pathological specimens, islet inflammation has been analysed in fewer than 200 recent-onset cases of T1DM worldwide, over the past century. Nevertheless, insights have been gained and the composition of the islet infiltrate is being disclosed. This is shown to be primarily lymphocytic in nature, with populations of both CD8+ and CD4+ T cells displaying an autoreactivity against specific islet antigenic peptides. The T cells are often accompanied by influent CD20+ B cells, although new data imply that the proportions of these individual cell types vary and that patients fall into at least two distinct categories having either a hyper-immune (CD20Hi) or a pauci-immune (CD20Lo) phenotype. The overall rate of β-cell decline appears to correlate with these two phenotypes such that hyper-immune patients lose β-cells more quickly and tend to develop disease at an earlier age than those with the pauci-immune profile. In this article, we review the evidence which underpins our current understanding of the aetiology of T1DM and highlight both the established features as well as areas of on-going ambiguity and debate.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | | | | | | |
Collapse
|