1
|
Khoramipour K, Rajizadeh MA, Akbari Z, Arjmand M. The effect of high-intensity interval training on type 2 diabetic muscle: A metabolomics-based study. Heliyon 2024; 10:e34917. [PMID: 39170342 PMCID: PMC11336285 DOI: 10.1016/j.heliyon.2024.e34917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Background This study aimed to investigate the effect of eight weeks of high-intensity interval training (HIIT) on muscle metabolism in rats with type 2 diabetes (T2D) using metabolomics approaches. Methods 20 male Wistar rats at the age of 8 weeks-were assigned to four groups of five, each in the group randomly: control (CTL), type 2 diabetes (DB), HIIT (EX), and type 2 diabetes + HIIT (DBX). T2D was induced by two months of a high-fat diet plus a single dose of streptozotocin (35 mg/kg). Rats in the EX and DBX groups performed eight weeks of HIIT (running at 80-100 % of Vmax, 4-10 intervals). NMR spectroscopy was used to determine the changes in the muscle metabolome profile after training. Results Changes in metabolite abundance following exercise revealed distinct clustering in multivariate analysis. The essential metabolite changes between the DB and CTL groups were arginine metabolism, purine metabolism, phosphate pathway, amino sugar metabolism, glutathione metabolism, and aminoacyl-tRNA biosynthesis. However, Arginine biosynthesis, pyrimidine metabolism, aminoacyl-tRNA biosynthesis, and alanine, aspartate, and glutamate metabolism were altered between the DBX and DB groups. Conclusion These results suggest that eight weeks of HIIT could reverse metabolic changes induced by T2D in rat muscles, contributing to reduced FBG and HOMA-IR levels.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences Kerman, Iran
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Akbari
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Arjmand
- Metabolomics Lab, Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Tan Y, Yan Z, Yin J, Cao J, Xie B, Zhang F, Zhang W, Xiong W. Elucidating the role of genetically determined metabolites in Diabetic Retinopathy: insights from a mendelian randomization analysis. Acta Diabetol 2024:10.1007/s00592-024-02345-7. [PMID: 39090426 DOI: 10.1007/s00592-024-02345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
AIMS Diabetic retinopathy (DR) results from complex genetic and metabolic interactions. Unraveling the links between blood metabolites and DR can advance risk prediction and therapy. METHODS Leveraging Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC), we analyzed 10,413 DR cases and 308,633 controls. Data was sourced from the Metabolomics GWAS server and the FinnGen project. RESULTS Our research conducted a comprehensive MR analysis across 486 serum metabolites to investigate their causal role in DR. After stringent selection and validation of instrumental variables, we focused on 480 metabolites for analysis. Our findings revealed 38 metabolites potentially causally associated with DR. Specifically, 4-androsten-3beta,17beta-diol disulfate 2 was identified as significantly associated with a reduced risk of DR (OR = 0.471, 95% CI = 0.324-0.684, p = 7.87 × 10- 5), even after rigorous adjustments for multiple testing. Sensitivity analyses further validated the robustness of this association, and linkage disequilibrium score regression analyses showed no significant genetic correlation between this metabolite and DR, suggesting a specific protective effect against DR. CONCLUSIONS Our study identifies 4-androsten-3beta,17beta-diol disulfate 2, a metabolite of androgens, as a significant protective factor against diabetic retinopathy, suggesting androgens as potential therapeutic targets.
Collapse
Affiliation(s)
- Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
- Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Zuyun Yan
- The Third Xiangya Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jiayang Yin
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Jiamin Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Bingyu Xie
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Feng Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China
| | - Wenhua Zhang
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China.
| | - Wei Xiong
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha City, 410013, Hunan Province, China.
| |
Collapse
|
3
|
Liu J, Liu S, Hui P, Teng S, Xie J, Sun Y. Ferrous ascorbate as a potential biomarker for diabetic retinopathy: a vitreous humour metabolomics study. BMC Ophthalmol 2024; 24:270. [PMID: 38914965 PMCID: PMC11194985 DOI: 10.1186/s12886-024-03530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND This study aimed to explore differences in vitreous humour metabolites and metabolic pathways between patients with and without diabetic retinopathy (DR) and identify potential metabolite biomarkers. METHODS Clinical data and vitreous fluid samples were collected from 125 patients (40 without diabetes, 85 with DR). The metabolite profiles of the vitreous fluid samples were analysed using ultra-high performance liquid chromatography, Q-Exactive mass spectrometry, and multivariate statistical analysis. A machine learning model based on Least Absolute Shrinkage and Selection Operator Regularized logistic regression was used to build a risk scoring model based on selected metabolite levels. Candidate metabolites were regressed to glycated haemoglobin levels by a logistic regression model. RESULTS Twenty differential metabolites were identified between the DR and control groups and were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes pathways (arginine biosynthesis; tricarboxylic acid cycle; alanine, aspartate, and glutamate metabolism; tyrosine metabolism; and D-glutamate metabolism). Ferrous ascorbate significantly contributes to poorer glycaemic control outcomes, offering insights into potential new pathogenic pathways in DR. CONCLUSIONS Disorders in the metabolic pathways of arginine biosynthesis, tricarboxylic acid cycle, alanine, aspartate, glutamate metabolism, tyrosine metabolism, and D-glutamate metabolism were associated with DR. Risk scores based on vitreous fluid metabolites can be used for the diagnosis and management of DR. Ferrous ascorbate can provide insights into potential new pathogenic pathways for DR.
Collapse
Affiliation(s)
- Jinmeng Liu
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Shuang Liu
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Peng Hui
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Siying Teng
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Jinghui Xie
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China
| | - Yabin Sun
- Ophthalmology Department, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin province, China.
| |
Collapse
|
4
|
He M, Hou G, Liu M, Peng Z, Guo H, Wang Y, Sui J, Liu H, Yin X, Zhang M, Chen Z, Rensen PCN, Lin L, Wang Y, Shi B. Lipidomic studies revealing serological markers associated with the occurrence of retinopathy in type 2 diabetes. J Transl Med 2024; 22:448. [PMID: 38741137 DOI: 10.1186/s12967-024-05274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE The duration of type 2 diabetes mellitus (T2DM) and blood glucose levels have a significant impact on the development of T2DM complications. However, currently known risk factors are not good predictors of the onset or progression of diabetic retinopathy (DR). Therefore, we aimed to investigate the differences in the serum lipid composition in patients with T2DM, without and with DR, and search for potential serological indicators associated with the development of DR. METHODS A total of 622 patients with T2DM hospitalized in the Department of Endocrinology of the First Affiliated Hospital of Xi'an JiaoTong University were selected as the discovery set. One-to-one case-control matching was performed according to the traditional risk factors for DR (i.e., age, duration of diabetes, HbA1c level, and hypertension). All cases with comorbid chronic kidney disease were excluded to eliminate confounding factors. A total of 42 pairs were successfully matched. T2DM patients with DR (DR group) were the case group, and T2DM patients without DR (NDR group) served as control subjects. Ultra-performance liquid chromatography-mass spectrometry (LC-MS/MS) was used for untargeted lipidomics analysis on serum, and a partial least squares discriminant analysis (PLS-DA) model was established to screen differential lipid molecules based on variable importance in the projection (VIP) > 1. An additional 531 T2DM patients were selected as the validation set. Next, 1:1 propensity score matching (PSM) was performed for the traditional risk factors for DR, and a combined 95 pairings in the NDR and DR groups were successfully matched. The screened differential lipid molecules were validated by multiple reaction monitoring (MRM) quantification based on mass spectrometry. RESULTS The discovery set showed no differences in traditional risk factors associated with the development of DR (i.e., age, disease duration, HbA1c, blood pressure, and glomerular filtration rate). In the DR group compared with the NDR group, the levels of three ceramides (Cer) and seven sphingomyelins (SM) were significantly lower, and one phosphatidylcholine (PC), two lysophosphatidylcholines (LPC), and two SMs were significantly higher. Furthermore, evaluation of these 15 differential lipid molecules in the validation sample set showed that three Cer and SM(d18:1/24:1) molecules were substantially lower in the DR group. After excluding other confounding factors (e.g., sex, BMI, lipid-lowering drug therapy, and lipid levels), multifactorial logistic regression analysis revealed that a lower abundance of two ceramides, i.e., Cer(d18:0/22:0) and Cer(d18:0/24:0), was an independent risk factor for the occurrence of DR in T2DM patients. CONCLUSION Disturbances in lipid metabolism are closely associated with the occurrence of DR in patients with T2DM, especially in ceramides. Our study revealed for the first time that Cer(d18:0/22:0) and Cer(d18:0/24:0) might be potential serological markers for the diagnosis of DR occurrence in T2DM patients, providing new ideas for the early diagnosis of DR.
Collapse
Affiliation(s)
- Mingqian He
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Guixue Hou
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China
| | - Mengmeng Liu
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Zhaoyi Peng
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Guo
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Yue Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Hui Liu
- Biobank, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Yin
- Chengdu HuiXin Life Technology, Chengdu, Sichuan, 610091, P.R. China
| | - Meng Zhang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Ziyi Chen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Patrick C N Rensen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RA, The Netherlands
| | - Liang Lin
- BGI-SHENZHEN, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
- , Building NO.7, BGI Park, No. 21 Hongan 3rd Street, Yantian District, Shenzhen, Guangdong, 518083, P.R. China.
| | - Yanan Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an JiaoTong university, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bingyin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an JiaoTong University, No.277, West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China.
| |
Collapse
|
5
|
Hsieh YT, Yang CM. Vitreomacular traction in diabetic retinopathy. Jpn J Ophthalmol 2024; 68:12-18. [PMID: 38001367 DOI: 10.1007/s10384-023-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/22/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE Vitreomacular traction (VMT) has unique presentations in eyes with diabetic retinopathy (DR). This study aimed to investigate the characteristics and clinical course of VMT in DR. STUDY DESIGN A retrospective case series. METHODS Thirty eyes from 30 patients with DR and concurrent VMT were retrospectively enrolled. Baseline and final best-corrected visual acuity (BCVA) and optical coherence tomography (OCT) characteristics were reported. Linear regression models were used to analyze the correlating factors for visual outcome. RESULTS Of the 30 eyes, a thickened posterior hyaloid membrane was noted in all cases and multi-layered traction from different directions in 14 eyes (46.7%). Twenty-one eyes (70%) had tractional macular retinoschisis, seven (23.3%) had foveal detachment, five (16.7%) had a lamellar macular hole, and three (10%) had a full-thickness macular hole, including two with macular hole retinal detachment. Three eyes had spontaneous release of the VMT within 3 months of observation. For the remaining 27 eyes receiving operations, the VMT, full-thickness macular hole, and serous foveal detachment all resolved postoperatively with residual macular schisis in 6 eyes (22.2%) only. None of the baseline OCT characteristics were associated with postoperative BCVA (P > .05). CONCLUSIONS VMT in DR had a thickened posterior hyaloid, and many of them had multi-layered traction and/or concurrent macular retinoschisis. Lamellar macular hole, full-thickness macular hole, or concurrent retinal detachment may also occur. Spontaneous resolution of VMT rarely occurred, and those who underwent operation for VMT had improved vision and macular structures with resolution of the macular hole and retinal detachment.
Collapse
Affiliation(s)
- Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, 7 Zhongshan S. Rd., Zhongzheng Dist., Taipei, 10002, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, 7 Zhongshan S. Rd., Zhongzheng Dist., Taipei, 10002, Taiwan.
- College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Yagin FH, Yasar S, Gormez Y, Yagin B, Pinar A, Alkhateeb A, Ardigò LP. Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics. Metabolites 2023; 13:1204. [PMID: 38132885 PMCID: PMC10745306 DOI: 10.3390/metabo13121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetic retinopathy (DR), a common ocular microvascular complication of diabetes, contributes significantly to diabetes-related vision loss. This study addresses the imperative need for early diagnosis of DR and precise treatment strategies based on the explainable artificial intelligence (XAI) framework. The study integrated clinical, biochemical, and metabolomic biomarkers associated with the following classes: non-DR (NDR), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) in type 2 diabetes (T2D) patients. To create machine learning (ML) models, 10% of the data was divided into validation sets and 90% into discovery sets. The validation dataset was used for hyperparameter optimization and feature selection stages, while the discovery dataset was used to measure the performance of the models. A 10-fold cross-validation technique was used to evaluate the performance of ML models. Biomarker discovery was performed using minimum redundancy maximum relevance (mRMR), Boruta, and explainable boosting machine (EBM). The predictive proposed framework compares the results of eXtreme Gradient Boosting (XGBoost), natural gradient boosting for probabilistic prediction (NGBoost), and EBM models in determining the DR subclass. The hyperparameters of the models were optimized using Bayesian optimization. Combining EBM feature selection with XGBoost, the optimal model achieved (91.25 ± 1.88) % accuracy, (89.33 ± 1.80) % precision, (91.24 ± 1.67) % recall, (89.37 ± 1.52) % F1-Score, and (97.00 ± 0.25) % the area under the ROC curve (AUROC). According to the EBM explanation, the six most important biomarkers in determining the course of DR were tryptophan (Trp), phosphatidylcholine diacyl C42:2 (PC.aa.C42.2), butyrylcarnitine (C4), tyrosine (Tyr), hexadecanoyl carnitine (C16) and total dimethylarginine (DMA). The identified biomarkers may provide a better understanding of the progression of DR, paving the way for more precise and cost-effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Seyma Yasar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Yasin Gormez
- Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Sivas Cumhuriyet University, Sivas 58140, Turkey;
| | - Burak Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | - Abdulvahap Pinar
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Turkey; (F.H.Y.); (A.P.)
| | | | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway;
| |
Collapse
|
7
|
Tian Y, Cheng W, Wang H, Zeng C, Chen X. Ascorbic acid protects retinal pigment epithelial cells from high glucose by inhibiting the NF-κB signal pathway through MALAT1/IGF2BP3 axis. Diabet Med 2023; 40:e15050. [PMID: 36661363 DOI: 10.1111/dme.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common complication of diabetes with nocuous effects on patients' eye health, typically accompanies by excessive inflammation and oxidative stress. Insulin-like growth factor-2 messenger RNA-binding protein 3 (IGF2BP3) was engaged with inflammation, whereas its precise role in the DR process was unclear. And enhanced lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and decreased ascorbic acid (AA) were also found in DR. This study was to explore the regulatory role and mechanism of IGF2BP3, MALAT1 and AA in the high glucose (HG)-induced retinal pigment epithelial (RPE) cell injury. METHODS ARPE-19 cells were treated with HG to establish the in vitro RPE cell injury model. The mRNA and protein levels of the gene were evaluated by qRT-PCR or Western blot. Immunofluorescence detected the translocation condition of the p65 protein. Inflammatory factor levels were detected by ELISA assays. Apoptosis was detected by flow cytometry. The binding interaction of IGF2BP3 and MALAT1 was validated by RIP-qPCR assays. RESULTS In HG-induced RPE cell injury, IGF2BP3 expression, inflammatory response and apoptosis were enhanced. Next, the IGF2BP3 activated the NF-κB signalling to promote the RPE cell injury development. MALAT1 could directly bind with IGF2BP3 and up-regulate its expression. In addition, AA ameliorated the HG-induced RPE cell injury through the regulation of MALAT1. CONCLUSION Ascorbic acid ameliorated HG-induced RPE cell injury by repressing the NF-κB signalling pathway via modulating the MALAT1/IGF2BP3 axis.
Collapse
Affiliation(s)
- Yanming Tian
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wubo Cheng
- Department of Ophthalmology, People's Hospital of Hechuan District, Chongqing, P.R. China
| | - Haiyan Wang
- Department of Endocrine, Xinjiang 474th Hospital, Urumqi, Beijing Road, P.R. China
| | - Chengcheng Zeng
- Department of Ophthalmology, ChangZheng Hospital Affiliated to Naval Military Medical University, Shanghai, P.R. China
| | - Xueyi Chen
- Department of Ophthalmology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
8
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
9
|
Abnormal Levels of Serum Ferroptosis-Related Biomarkers in Diabetic Retinopathy. J Ophthalmol 2022; 2022:3353740. [PMID: 36620526 PMCID: PMC9822742 DOI: 10.1155/2022/3353740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to measure the concentrations of ferroptosis-related biomarkers, namely, iron (Fe), lipid peroxide (LPO), reactive oxygen species (ROS), glutathione peroxidase-4 (GPX4), and glutathione (GSH) in DR in the attempt to evaluate the diagnostic performance of these biomarkers. Methods This study included 30 NPDR patients, 30 PDR patients, and 30 healthy subjects matched in age and sex. The concentrations of Fe, LPO, ROS, GPX4, and GSH in serum of the subjects were measured. Results Compared with the normal group, GPX4 and GSH concentrations were significantly lower, and LPO, Fe, and ROS concentrations were significantly higher in DR patients. Compared with the PDR group, the NPDR group had higher concentrations of LPO, Fe, and ROS and lower concentrations of GPX4 and GSH, but there was no statistical difference in Fe, GPX4, and GSH. ROC curve shows that ferroptosis-related biomarkers have accumulated accuracy in NPDR and PDR. Conclusion This study shows that ferroptosis-related biomarkers may be involved in the pathological process of DR and can be used as one of the biomarkers of DR.
Collapse
|
10
|
Wang R, Jian Q, Hu G, Du R, Xu X, Zhang F. Integrated Metabolomics and Transcriptomics Reveal Metabolic Patterns in Retina of STZ-Induced Diabetic Retinopathy Mouse Model. Metabolites 2022; 12:metabo12121245. [PMID: 36557283 PMCID: PMC9782096 DOI: 10.3390/metabo12121245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR), as the leading cause of vision loss in the working-age population, exhibits unique metabolite profiles in human plasma and vitreous. However, those in retina are not fully understood. Here, we utilized liquid and gas chromatography-tandem mass spectrometry technology to explore metabolite characteristics of streptozotocin (STZ)-induced diabetic mice retina. A total of 145 metabolites differed significantly in diabetic retinas compared with controls. These metabolites are mainly enriched in the Warburg effect, and valine, leucine and isoleucine degradation pathways. To further identify underlying regulators, RNA sequencing was performed to integrate metabolic enzyme alterations with metabolomics in STZ-induced diabetic retina. Retinol metabolism and tryptophan metabolism are the shared pathways enriched by metabolome and transcriptome. Additionally, transcriptomic analysis identified 71 differentially expressed enzyme-related genes including Hk2, Slc7a5, Aldh1a3 and Tph integrated with altered metabolic pathways. In addition, single nucleotide polymorphisms within 6 out of 71 genes are associated with increased diabetes risk. This study lays the foundation for mechanism research and the therapeutic target development of DR.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Guangyi Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Rui Du
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (X.X.); (F.Z.)
| | - Fang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (X.X.); (F.Z.)
| |
Collapse
|
11
|
Wang Z, Tang J, Jin E, Zhong Y, Zhang L, Han X, Liu J, Cheng Y, Hou J, Shi X, Qi H, Qian T, Yuan L, Hou X, Yin H, Liang J, Zhao M, Huang L, Qu J. Serum Untargeted Metabolomics Reveal Potential Biomarkers of Progression of Diabetic Retinopathy in Asians. Front Mol Biosci 2022; 9:871291. [PMID: 35755823 PMCID: PMC9224596 DOI: 10.3389/fmolb.2022.871291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose: To reveal molecular mechanisms of diabetic retinopathy (DR) in Asians and facilitate the identification of new therapeutic targets through untargeted metabolomics. To determine the differences in serum metabolites and metabolic pathways between different stages of diabetic retinopathy in patients with type 2 diabetic mellitus (T2DM) and proliferative DR (PDR) and non-proliferative DR (NPDR) and identify differential metabolites between T2DM and DR (NPDR and PDR) patients. Methods: This prospective observational registration study described the differential metabolites between 45 T2DM patients and 15 control cases with no significant differences in clinical characteristics. Their biospecimens and clinical information were collected and recorded in their medical reports. DR phenotypes of the subjects were verified by retina specialists. Serum metabolites were analyzed using high-resolution mass spectrometry with liquid chromatography. Untargeted metabolomics was performed on serum samples from 15 T2DM patients, 15 non-proliferative diabetic retinopathy patients, 15 proliferative diabetic retinopathy patients, and 15 diabetic controls. Discriminatory metabolic features were identified through partial least squares discriminant analysis (PLS-DA), hierarchical clustering analysis (HCA), and generalized linear regression models. Result: Through untargeted metabolomics, 931 features (523 in positive and 408 in negative modes) with 102 common metabolites highly relevant to the presence of DR were detected. In the adjusted analysis, 67 metabolic features differed significantly between T2DM and NPDR patients. Pathway analysis revealed alterations in metabolisms of amino acids and fatty acids. Glutamate, phosphatidylcholine, and 13-hydroperoxyoctadeca-9,11-dienoic acid (13-PHODE) were key contributors to these pathway differences. A total of 171 features distinguished PDR patients from T2DM patients, and pathway analysis revealed alterations in amino acid metabolism, fatty acid metabolism, nitrogen metabolism, and tricarboxylic acid cycle. Aspartate, glutamate, glutamine, ornithine, N-acetyl-l-glutamate, N-acetyl-l-aspartate, citrate, succinate, N-(L-arginino)succinate, 2-oxoglutarate, 13-hydroperoxyoctadeca-9,11-dienoic acid, methionine, lysine, threonine, phenylalanine, N(pi)-methyl-l-histidine, phosphatidylcholine, and linoleate were major contributors to the pathway differences. Between NPDR patients and PDR patients, there were 79 significant differential metabolites. Enrichment pathway analysis showed changes in amino acid metabolism, fatty acid metabolism, pantothenate, and CoA biosynthesis. Aspartate, glutamine, N-acetyl-l-glutamate, N-acetyl-l-aspartate, pantothenate, dihomo-gamma-linolenate, docosahexaenoic acid, and icosapentaenoic acid were key factors for the differences of these pathways. Conclusion: This study demonstrated that the pathways of arginine biosynthesis metabolism, linoleic acid metabolism, alanine, aspartate, and glutamate metabolism, as well as d-glutamine and d-glutamate metabolism, were dysregulated in DR patients of the Asian population. Increased levels of glutamate, aspartate, glutamine, N-acetyl-l-glutamate, and N-acetyl-l-aspartate and decreased levels of dihomo-gamma-linolenate, docosahexaenoic, and icosapentaenoic were considered as the metabolic profile that could distinguish PDR from NPDR in Asians. Phosphatidylcholine and 13-PHODE were identified as two major novel metabolite markers in advanced stages of DR in our study.
Collapse
Affiliation(s)
- Zongyi Wang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiyang Tang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Enzhong Jin
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yusheng Zhong
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Linqi Zhang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xinyao Han
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jia Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yong Cheng
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jing Hou
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xuan Shi
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Huijun Qi
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tong Qian
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Yuan
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xianru Hou
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Hong Yin
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jianhong Liang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
13
|
Guo C, Jiang D, Xu Y, Peng F, Zhao S, Li H, Jin D, Xu X, Xia Z, Che M, Lai M, Huang R, Wang H, Zheng C, Mao G. High-Coverage Serum Metabolomics Reveals Metabolic Pathway Dysregulation in Diabetic Retinopathy: A Propensity Score-Matched Study. Front Mol Biosci 2022; 9:822647. [PMID: 35372500 PMCID: PMC8970305 DOI: 10.3389/fmolb.2022.822647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a major diabetes-related disease linked to metabolism. However, the cognition of metabolic pathway alterations in DR remains scarce. We aimed to corroborate alterations of metabolic pathways identified in prior studies and investigate novel metabolic dysregulations that may lead to new prevention and treatment strategies for DR. Methods: In this case-control study, we tested 613 serum metabolites in 69 pairs of type 2 diabetic patients (T2DM) with DR and propensity score-matched T2DM without DR via ultra-performance liquid chromatography-tandem mass spectrometry system. Metabolic pathway dysregulation in DR was thoroughly investigated by metabolic pathway analysis, chemical similarity enrichment analysis (ChemRICH), and integrated pathway analysis. The associations of ChemRICH-screened key metabolites with DR were further estimated with restricted cubic spline analyses. Results: A total of 89 differentially expressed metabolites were identified by paired univariate analysis and partial least squares discriminant analysis. We corroborated biosynthesis of unsaturated fatty acids, glycine, serine and threonine metabolism, glutamate and cysteine-related pathways, and nucleotide-related pathways were significantly perturbed in DR, which were identified in prior studies. We also found some novel metabolic alterations associated with DR, including the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives in DR. Conclusions: The results suggest that the metabolism disorder in DR can be better understood through integrating multiple biological knowledge databases. The progression of DR is associated with the disturbance of thiamine metabolism and tryptophan metabolism, decreased trehalose, and increased choline and indole derivatives.
Collapse
Affiliation(s)
- Chengnan Guo
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Depeng Jiang
- Department of Community Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yixi Xu
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Fang Peng
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shuzhen Zhao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Dongzhen Jin
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xin Xu
- Department of Nursing, School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Zhezheng Xia
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mingzhu Che
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Mengyuan Lai
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Ruogu Huang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chao Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chao Zheng, , orcid org/0000-0003-3814-4643; Guangyun Mao, , orcid.org/0000-0002-4548-7524
| | - Guangyun Mao
- Division of Epidemiology and Health Statistics, Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Evidence-Based Medicine and Clinical Epidemiological Research, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Center on Clinical Research, The Eye Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chao Zheng, , orcid org/0000-0003-3814-4643; Guangyun Mao, , orcid.org/0000-0002-4548-7524
| |
Collapse
|
14
|
Wang H, Li S, Wang C, Wang Y, Fang J, Liu K. Plasma and Vitreous Metabolomics Profiling of Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:17. [PMID: 35133401 PMCID: PMC8842420 DOI: 10.1167/iovs.63.2.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine the differences of metabolites and metabolic pathways between patients with proliferative diabetic retinopathy (PDR) and without diabetes (nondiabetic controls) in plasma and vitreous, respectively, and to characterize the relationship between plasma and vitreous metabolic profiles. Methods Liquid chromatography/tandem mass spectrometry technology was performed to distinct metabolite profiles of plasma and vitreous. A total of 139 plasma samples from 88 patients with PDR and 51 nondiabetic controls, as well as 74 vitreous samples from 51 patients with PDR and 23 nondiabetic controls, were screened. Pathway analysis was performed using MetaboAnalyst 5.0. Pearson correlation analysis was used to investigate the correlation of metabolites in vitreous and plasma. Results After adjusting for age, fasting blood glucose, and urea, in vitreous metabolomes, a total of 76 features distinguished patients with PDR from controls. Fifteen differential metabolites were found in plasma metabolites. Pantothenate and CoA biosynthesis was the common metabolic pathway altered in both plasma and vitreous. Aromatic amino acid metabolism pathways were dysregulated in vitreous of PDR. For four metabolic features, there were positive correlations between vitreous and plasma. Conclusions Despite great differences between the metabolic profiles of plasma and vitreous in PDR cases, there are also similarities in the change of metabolites and metabolic pathways. Exploring the relationship of metabolomics between vitreous and plasma may help provide new understanding of the mechanism of PDR.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shu Li
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Chingyi Wang
- Shanghai Runer Ophthalmology Clinic Co., Ltd., Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
15
|
Sanhueza Salas LF, García-Venzor A, Beltramone N, Capurro C, Toiber D, Silberman DM. Metabolic Imbalance Effect on Retinal Müller Glial Cells Reprogramming Capacity: Involvement of Histone Deacetylase SIRT6. Front Genet 2021; 12:769723. [PMID: 34804128 PMCID: PMC8599966 DOI: 10.3389/fgene.2021.769723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal Müller glial cells (MGs) are among the first to demonstrate metabolic changes during retinal disease and are a potential source of regenerative cells. In response to a harmful stimulus, they can dedifferentiate acquiring neural stem cells properties, proliferate and migrate to the damaged retinal layer and differentiate into lost neurons. However, it is not yet known how this reprogramming process is regulated in mammals. Since glucose and oxygen are important regulatory elements that may help directing stem cell fate, we aimed to study the effect of glucose variations and oxidative stress in Müller cells reprogramming capacity and analyze the participation the histone deacetylase SIRT6, as an epigenetic modulator of this process. We found that the combination of high glucose and oxidative stress induced a decrease in the levels of the marker glutamine synthetase, and an increase in the migration capacity of the cells suggesting that these experimental conditions could induce some degree of dedifferentiation and favor the migration ability. High glucose induced an increase in the levels of the pluripotent factor SOX9 and a decrease in SIRT6 levels accompanied by the increase in the acetylation levels of H3K9. Inhibiting SIRT6 expression by siRNA rendered an increase in SOX9 levels. We also determined SOX9 levels in retinas from mice with a conditional deletion of SIRT6 in the CNS. To further understand the mechanisms that regulate MGs response under metabolic impaired conditions, we evaluated the gene expression profile and performed Gene Ontology enrichment analysis of Müller cells from a murine model of Diabetes. We found several differentially expressed genes and observed that the transcriptomic change involved the enrichment of genes associated with glucose metabolism, cell migration, development and pluripotency. We found that many functional categories affected in cells of diabetic animals were directly related to SIRT6 function. Transcription factors enrichment analysis allowed us to predict several factors, including SOX9, that may be involved in the modulation of the differential expression program observed in diabetic MGs. Our results underline the heterogeneity of Müller cells response and the challenge that the study of metabolic impairment in vivo represents.
Collapse
Affiliation(s)
- L Francisco Sanhueza Salas
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo García-Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Natalia Beltramone
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Capurro
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dafne Magalí Silberman
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Ye P, Zhang X, Xu Y, Xu J, Song X, Yao K. Alterations of the Gut Microbiome and Metabolome in Patients With Proliferative Diabetic Retinopathy. Front Microbiol 2021; 12:667632. [PMID: 34566901 PMCID: PMC8457552 DOI: 10.3389/fmicb.2021.667632] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Diabetic retinopathy (DR) has been reported to associate with gut microbiota alterations in murine models and thus “gut-retina-axis” has been proposed. However, the role of gut microbiome and the associated metabolism in DR patients still need to be elucidated. In this study, we collected fecal samples from 45 patients with proliferative diabetic retinopathy (PDR) and 90 matched diabetic patients (1:2 according to age, sex, and duration of diabetes) without DR (NDR) and performed 16S rRNA gene sequencing and untargeted metabolomics. We observed significantly lower bacterial diversity in the PDR group than that in the NDR group. Differential gut bacterial composition was also found, with significant depletion of 22 families (e.g., Coriobacteriaceae, Veillonellaceae, and Streptococcaceae) and enrichment of two families (Burkholderiaceae and Burkholderiales_unclassified) in the PDR group as compared with the NDR group. There were significantly different fecal metabolic features, which were enriched in metabolic pathways such as arachidonic acid and microbial metabolism, between the two groups. Among 36 coabundance metabolite clusters, 11 were positively/negatively contributed to PDR using logistic regression analysis. Fifteen gut microbial families were significantly correlated with the 11 metabolite clusters. Furthermore, a fecal metabolite-based classifier was constructed to distinguish PDR patients from NDR patients accurately. In conclusion, PDR is associated with reduced diversity and altered composition of gut microbiota and specific microbe-metabolite interplay. Our findings help to better understand the disease pathogenesis and provide novel diagnostic and therapeutic targets for PDR.
Collapse
Affiliation(s)
- Panpan Ye
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Eye Hospital, Zhejiang University, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufeng Xu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Eye Hospital, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Eye Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Song
- Department of Endocrinology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Eye Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Marcovecchio ML. Importance of Identifying Novel Biomarkers of Microvascular Damage in Type 1 Diabetes. Mol Diagn Ther 2021; 24:507-515. [PMID: 32613289 DOI: 10.1007/s40291-020-00483-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvascular complications of type 1 diabetes, which primarily include diabetic kidney disease, retinopathy, and neuropathy, are characterized by damage to the microvasculature of the kidney, retina, and neurons. The pathogenesis of these complications is multifactorial, and several pathways are implicated. These complications are often silent during their early stages, and once symptoms develop, there might be little to be done to cure them. Thus, there is a strong need for novel biomarkers to identify individuals at risk of microvascular complications at an early stage and guide the implementation of new therapeutic options for preventing their development and progression. Recent advancements in proteomics, metabolomics, and other 'omics' have led to the identification of several potential biomarkers of microvascular complications. However, biomarker discovery has met several challenges and, up to now, there are no new biomarkers that have been implemented into clinical practice. This highlights the need for further work in this area to move towards better diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Level 8, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
18
|
Abstract
Purpose Diabetic retinopathy (DR), a common microvascular complication of diabetes, is the leading cause of acquired blindness in the working-age population. Individuals with diabetes still develop DR despite appropriate glycemic and blood pressure control, highlighting the pressing need to identify useful biomarkers for risk stratification. The purpose of this review is to systematically summarize potential metabolic biomarkers and pathways of DR, which could facilitate developing an understanding of the disease mechanisms, as well as new therapeutic measures. Methods We searched PubMed and Web of Science for relevant metabolomics studies on humans published before September 30, 2020. Information regarding authors, title, publication date, study subjects, analytical platforms, methods of statistical analysis, biological samples, directions of change of potential metabolic biomarkers, and predictive values of metabolic biomarker panels was extracted, and the quality of the studies was assessed. Pathway analysis, including enrichment analysis and topology analysis, was derived from integrating differential metabolites using MetaboAnalyst 3.0, based on the Kyoto Encyclopedia of Genes and Genomes and Human Metabolome Database. Results We found nine studies focused on the identification of potential biomarkers. Repeatedly identified metabolites including l-glutamine, l-lactic acid, pyruvic acid, acetic acid, l-glutamic acid, d-glucose, l-alanine, l-threonine, citrulline, l-lysine, and succinic acid were found to be potential biomarkers of DR. It was observed that l-glutamine and citrulline changed in all biological samples. Dysregulation of metabolic pathways involved amino acid and energy metabolism. Conclusions This review summarizes potential biomarkers and metabolic pathways, providing insights into new pathogenic pathways for this microvascular complication of diabetes.
Collapse
Affiliation(s)
- Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Wu H, Wang M, Li X, Shao Y. The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Hum Cell 2021; 34:1617-1628. [PMID: 34324139 DOI: 10.1007/s13577-021-00580-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
Emergent studies reveal the roles of inflammatory cells and cytokines in the development of diabetic retinopathy (DR), which is gradually portrayed as a chronic inflammatory disease accompanied by metabolic disorder. Through the pathogenesis of DR, macrophages or microglia play a critical role in the inflammation, neovascularization, and neurodegeneration of the retina. Conventionally, macrophages are generally divided into M1 and M2 phenotypes which mainly rely on glycolysis and oxidative phosphorylation, respectively. Recently, studies have found that nutrients (including glucose and lipids) and metabolites (such as lactate), can not only provide energy for cells, but also act as signaling molecules to regulate the function and fate of cells. In this review, we discussed the intrinsic correlations among the metabolic status, polarization, and function of macrophage/microglia in DR. Hyperglycemia and hyperlipidemia could induce M1-like and M2-like macrophages polarization in different phases of DR. Targeting the regulation of microglial metabolic profile might be a promising therapeutic strategy to modulate the polarization and function of macrophages/microglia, thus attenuating the progression of DR.
Collapse
Affiliation(s)
- Honglian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
20
|
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, Xie J. Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Front Immunol 2021; 12:679897. [PMID: 34367139 PMCID: PMC8339999 DOI: 10.3389/fimmu.2021.679897] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Intestinal microbiota dysbiosis is an established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an attractive alternative UC treatment strategy, considering the potential adverse effects of synthetic drugs used to treat UC. Kaempferol (Kae) is an anti-inflammatory and antioxidant flavonoid derived from a variety of medicinal plants. In this study, we determined the efficacy and mechanism of action of Kae as an anti-UC agent in dextran sulfate sodium (DSS)-induced colitis mice. DSS challenge in a mouse model of UC led to weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by pretreatment with Kae. In addition, intestinal permeability was shown to improve using fluorescein isothiocyanate (FITC)-dextran administration. DSS-induced destruction of the intestinal barrier was also significantly prevented by Kae administration via increases in the levels of ZO-1, occludin, and claudin-1. Furthermore, Kae pretreatment decreased the levels of IL-1β, IL-6, and TNF-α and downregulated transcription of an array of inflammatory signaling molecules, while it increased IL-10 mRNA expression. Notably, Kae reshaped the intestinal microbiome by elevating the Firmicutes to Bacteroidetes ratio; increasing the linear discriminant analysis scores of beneficial bacteria, such as Prevotellaceae and Ruminococcaceae; and reducing the richness of Proteobacteria in DSS-challenged mice. There was also an evident shift in the profile of fecal metabolites in the Kae treatment group. Serum LPS levels and downstream TLR4-NF-κB signaling were downregulated by Kae supplementation. Moreover, fecal microbiota transplantation from Kae-treated mice to the DSS-induced mice confirmed the effects of Kae on modulating the gut microbiota to alleviate UC. Therefore, Kae may exert protective effects against colitis mice through regulating the gut microbiota and TLR4-related signaling pathways. This study demonstrates the anti-UC effects of Kae and its potential therapeutic mechanisms, and offers novel insights into the prevention of inflammatory diseases using natural products.
Collapse
Affiliation(s)
- Yifan Qu
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, China
- Clinical Laboratory, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xinyi Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengying Xu
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, China
| | - Shimin Zhao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuemei Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiming Xie
- Clinical Laboratory, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
21
|
Nerve influence on the metabolism of type I and type II diabetic corneal stroma: an in vitro study. Sci Rep 2021; 11:13627. [PMID: 34211074 PMCID: PMC8249404 DOI: 10.1038/s41598-021-93164-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Corneal innervation plays a major role in the pathobiology of diabetic corneal disease. However, innervation impact has mainly been investigated in the context of diabetic epitheliopathy and wound healing. Further studies are warranted in the corneal stroma-nerve interactions. This study unravels the nerve influence on corneal stroma metabolism. Corneal stromal cells were isolated from healthy (HCFs) and diabetes mellitus (Type1DM and Type2 DM) donors. Cells were cultured on polycarbonate membranes, stimulated by stable Vitamin C, and stroma-only and stroma-nerve co-cultures were investigated for metabolic alterations. Innervated compared to stroma-only constructs exhibited significant alterations in pyrimidine, glycerol phosphate shuttle, electron transport chain and glycolysis. The most highly altered metabolites between healthy and T1DMs innervated were phosphatidylethanolamine biosynthesis, and pyrimidine, methionine, aspartate metabolism. Healthy and T2DMs main pathways included aspartate, glycerol phosphate shuttle, electron transport chain, and gluconeogenesis. The metabolic impact on T1DMs and T2DMs was pyrimidine, purine, aspartate, and methionine. Interestingly, the glucose-6-phosphate and oxaloacetate was higher in T2DMs compared to T1DMs. Our in vitro co-culture model allows the examination of key metabolic pathways corresponding to corneal innervation in the diabetic stroma. These novel findings can pave the way for future studies to fully understand the metabolic distinctions in the diabetic cornea.
Collapse
|
22
|
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17:195-206. [PMID: 33469209 PMCID: PMC9053333 DOI: 10.1038/s41574-020-00451-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus has profound effects on multiple organ systems; however, the loss of vision caused by diabetic retinopathy might be one of the most impactful in a patient's life. The retina is a highly metabolically active tissue that requires a complex interaction of cells, spanning light sensing photoreceptors to neurons that transfer the electrochemical signal to the brain with support by glia and vascular tissue. Neuronal function depends on a complex inter-dependency of retinal cells that includes the formation of a blood-retinal barrier. This dynamic system is negatively affected by diabetes mellitus, which alters normal cell-cell interactions and leads to profound vascular abnormalities, loss of the blood-retinal barrier and impaired neuronal function. Understanding the normal cell signalling interactions and how they are altered by diabetes mellitus has already led to novel therapies that have improved visual outcomes in many patients. Research highlighted in this Review has led to a new understanding of retinal pathophysiology during diabetes mellitus and has uncovered potential new therapeutic avenues to treat this debilitating disease.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Department of Molecular and Integrative Physiology, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Paolo S Silva
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
23
|
Dong Y, Liu Y, Yu J, Qi S, Liu H. Mapping research trends in diabetic retinopathy from 2010 to 2019: A bibliometric analysis. Medicine (Baltimore) 2021; 100:e23981. [PMID: 33545985 PMCID: PMC7837830 DOI: 10.1097/md.0000000000023981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Although many publications in diabetic retinopathy (DR) have been reported, there is no bibliometric analysis. Purpose: To perform a bibliometric analysis in the field of diabetic retinopathy (DR) research, to characterize the current international status of DR research, to identify the most effective factors involved in this field, and to explore research hotspots in DR research. Methods: Based on the Web of Science Core Collection (WoSCC), a bibliometric analysis was conducted to investigate the publication trends in research related to DR. Knowledge maps were constructed by VOSviewer v.1.6.10 to visualize the publications, the distribution of countries, international collaborations, author productivity, source journals, cited references and keywords, and research hotspots in this field. Results: In total, 11,839 peer-reviewed papers were retrieved on DR from 2010 to 2019, and the annual research output increased with time. The United States ranks highest among countries with the most publications. The most active institution is the University of Melbourne. Wong, TY contributed the largest number of publications in this field. Investigative Ophthalmology & Visual Science was the most prolific journal in DR research. The top-cited references mainly investigated the use of anti-vascular endothelial growth factor (VEGF) medications in the management of DR, and the keywords formed 6 clusters: Discussion: With the improvement of living standard, DR has gradually become one of the important causes of blindness, and has become a hot spot of public health research in many countries. The application of deep learning and artificial intelligence in diabetes screening and anti-VEGF medications in the management of DR have been the research hotspots in recent 10 years. Conclusions: Based on data extracted from the WoSCC, this study provides a broad view of the current status and trends in DR research and may provide clinicians and researchers with insight into DR research and valuable information to identify potential collaborators and partner institutions and better predict their dynamic directions.
Collapse
Affiliation(s)
- Yi Dong
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University
| | - Yanli Liu
- Ophthalmology Department, Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin, China
| | - Jianguo Yu
- Ophthalmology Department, Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin, China
| | - Shixin Qi
- Ophthalmology Department, Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin, China
| | - Huijuan Liu
- Ophthalmology Department, Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin, China
| |
Collapse
|
24
|
Silverberg EL, Sterling TW, Williams TH, Castro G, Rodriguez de la Vega P, Barengo NC. The Association between Social Determinants of Health and Self-Reported Diabetic Retinopathy: An Exploratory Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020792. [PMID: 33477729 PMCID: PMC7832397 DOI: 10.3390/ijerph18020792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
One-third of Americans with diabetes will develop diabetic retinopathy (DR), the leading cause of blindness in working-age Americans. Social determinants of health (SDOHs) are conditions in a person’s environment that may impact health. The objective of this study was to determine whether there is an association between SDOHs and DR in patients with type II diabetes. This cross-section study used data from the 2018 Behavioral Risk Factor Surveillance System (BRFSS). This study included people with self-reported diabetes in the US in 2018 (n = 60,703). Exposure variables included homeownership, marital status, income, health care coverage, completed level of education, and urban vs. rural environment. The outcome variable was DR. Logistic regression analysis were applied to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Alaskan Native/Native American (OR 2.11; 95% CI: 1.14–3.90), out of work (OR 2.82; 95% CI: 1.62–4.92), unable to work (OR 2.14; 95% CI: 1.57–2.91), did not graduate high school (OR 1.91; 95% CI: 1.30–2.79), only graduated high school (OR 1.43; 95% CI 1.08–1.97), or only attended college or technical school without graduating (OR 1.42; 95% CI: 1.09–1.86) were SDOHs associated with DR in patients with diabetes. Health care providers should identify these possible SDOHs affecting their diabetic patients.
Collapse
Affiliation(s)
- Emily L. Silverberg
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
| | - Trevor W. Sterling
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
| | - Tyler H. Williams
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
| | - Grettel Castro
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
| | - Pura Rodriguez de la Vega
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
| | - Noël C. Barengo
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (E.L.S.); (T.W.S.); (T.H.W.); (G.C.); (P.R.d.l.V.)
- Department of Public Health, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Department of Epidemiology and Public Health, College of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
- Correspondence: ; Tel.: +1-305-842-8793
| |
Collapse
|
25
|
Tomita Y, Cagnone G, Fu Z, Cakir B, Kotoda Y, Asakage M, Wakabayashi Y, Hellström A, Joyal JS, Talukdar S, Smith LEH, Usui Y. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia 2021; 64:70-82. [PMID: 33099660 PMCID: PMC7718434 DOI: 10.1007/s00125-020-05309-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS Proliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR. METHODS We analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27-80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration. RESULTS We identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024). CONCLUSIONS/INTERPRETATION These results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR. Graphical abstract.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Gael Cagnone
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yumi Kotoda
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University Hospital, Tokyo, Japan
| | | | - Ann Hellström
- Pediatric Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University Hospital, Tokyo, Japan.
| |
Collapse
|
26
|
Yun JH, Kim JM, Jeon HJ, Oh T, Choi HJ, Kim BJ. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 2020; 15:e0241365. [PMID: 33119699 PMCID: PMC7595280 DOI: 10.1371/journal.pone.0241365] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, and it is the consequence of microvascular retinal changes due to high glucose levels over a long time. Metabolomics profiling is a rapidly evolving method used to identify the metabolites in biological fluids and investigate disease progression. In this study, we used a targeted metabolomics approach to quantify the serum metabolites in type 2 diabetes (T2D) patients. Diabetes patients were divided into three groups based on the status of their complications: non-DR (NDR, n = 143), non-proliferative DR (NPDR, n = 123), and proliferative DR (PDR, n = 51) groups. Multiple logistic regression analysis and multiple testing corrections were performed to identify the significant differences in the metabolomics profiles of the different analysis groups. The concentrations of 62 metabolites of the NDR versus DR group, 53 metabolites of the NDR versus NPDR group, and 30 metabolites of the NDR versus PDR group were found to be significantly different. Finally, sixteen metabolites were selected as specific metabolites common to NPDR and PDR. Among them, three metabolites including total DMA, tryptophan, and kynurenine were potential makers of DR progression in T2D patients. Additionally, several metabolites such as carnitines, several amino acids, and phosphatidylcholines also showed a marker potential. The metabolite signatures identified in this study will provide insight into the mechanisms underlying DR development and progression in T2D patients in future studies.
Collapse
Affiliation(s)
- Jun Ho Yun
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-Min Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Jeong Jeon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Taekeun Oh
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences & Department of Anatomy and Cell Biology, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (BJK); (HJC)
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- * E-mail: (BJK); (HJC)
| |
Collapse
|
27
|
Nazifova-Tasinova N, Radeva M, Galunska B, Grupcheva C. Metabolomic analysis in ophthalmology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:236-246. [PMID: 32690974 DOI: 10.5507/bp.2020.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Modern science takes into account phenotype complexity and establishes approaches to track changes on every possible level. Many "omics" studies have been developed over the last decade. Metabolomic analysis enables dynamic measurement of the metabolic response of a living system to a variety of stimuli or genetic modifications. Important targets of metabolomics is biomarker development and translation to the clinic for personalized diagnosis and a greater understanding of disease pathogenesis. The current review highlights the major aspects of metabolomic analysis and its applications for the identification of relevant predictive, diagnostic and prognostic biomarkers for some ocular diseases including dry eye, keratoconus, retinal diseases, macular degeneration, and glaucoma. To date, possible biomarker candidates for dry eye disease are lipid metabolites and androgens, for keratoconus cytokeratins, urea, citrate cycle, and oxidative stress metabolites. Palmitoylcarnitine, sphingolipids, vitamin D related metabolites, and steroid precursors may be used for distinguishing glaucoma patients from healthy controls. Dysregulation of amino acid and carnitine metabolism is critical in the development and progression of diabetic retinopathy. Further work is needed to discover and validate metabolic biomarkers as a powerful tool for understanding the molecular mechanisms of ocular diseases, to provide knowledge on their etiology and pathophysiology and opportunities for personalized clinical intervention at an early stage.
Collapse
Affiliation(s)
- Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvoboditel street, 9000 Varna, Bulgaria
| | - Mladena Radeva
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Medical University of Varna, 15 Doyran street, 9000 Varna, Bulgaria
| | - Bistra Galunska
- Department of Biochemistry, Molecular medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, 84 Tzar Osvoboditel street, 9000 Varna, Bulgaria
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Medical University of Varna, 15 Doyran street, 9000 Varna, Bulgaria
| |
Collapse
|
28
|
Wan H, Cai Y, Wang Y, Fang S, Chen C, Chen Y, Xia F, Wang N, Guo M, Lu Y. The unique association between the level of peripheral blood monocytes and the prevalence of diabetic retinopathy: a cross-sectional study. J Transl Med 2020; 18:248. [PMID: 32571335 PMCID: PMC7310136 DOI: 10.1186/s12967-020-02422-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The attraction and influx of monocytes into the retina has been considered a critical step in the development of diabetic retinopathy (DR). However, large population studies about the association between peripheral blood monocyte levels, an inexpensive and easily measurable laboratory index, and DR are limited. Thus, we aimed to investigate the association between peripheral blood monocyte levels and DR. METHODS A total of 3223 participants out of 3277 adults with diabetes were enrolled from seven communities in China in this cross-sectional survey. Participants underwent several medical examinations, including the measurement of anthropometric factors, blood pressure, routinely analyzed leukocyte characteristics, glucose, lipid profiles, urine albumin/creatinine ratio and fundus photographs. RESULTS The prevalence of DR among the participants in the highest quartile of peripheral blood monocyte levels significantly decreased by 41% (OR 0.59; 95% CI 0.43, 0.81) compared with the participants in the first quartile (P for trend < 0.05). However, there were no associations between the monocyte level and the prevalence of cardiovascular and cerebrovascular diseases (CVD) and diabetic kidney disease (DKD) (both P for trend > 0.05). Associations between leukocyte, neutrophil and lymphocyte levels and DR were also not found (all P for trend > 0.05). These associations were all fully adjusted for age, sex, education status, duration of diabetes history, current smoking, BMI, HbA1c, dyslipidemia, systolic blood pressure and insulin therapy. CONCLUSION Decreased peripheral blood monocyte levels were associated with increased odds of DR after adjusting for potential confounders in diabetic adults. However, causation remains to be demonstrated.
Collapse
Affiliation(s)
- Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Cai
- Department of Endocrinology, The Fifth Affiliated Hospital of Kunming Medical University, Yunnan Honghe Prefecture Central Hospital (Ge Jiu People's Hospital), Yunnan, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Minghao Guo
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
29
|
Wang X, Li Y, Xie M, Deng L, Zhang M, Xie X. Urine metabolomics study of Bushen Huoxue Prescription on diabetic retinopathy rats by UPLC–Q‐exactive Orbitrap–MS. Biomed Chromatogr 2020; 34:e4792. [DOI: 10.1002/bmc.4792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yang Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese Medicine Chengdu China
| | - Mengjun Xie
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese Medicine Chengdu China
| | - Liping Deng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese Medicine Chengdu China
| | - Mei Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
30
|
Adki KM, Kulkarni YA. Potential Biomarkers in Diabetic Retinopathy. Curr Diabetes Rev 2020; 16:971-983. [PMID: 32065092 DOI: 10.2174/1573399816666200217092022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetic retinopathy is one of the important complications of diabetes. In major cases, diabetic retinopathy is unnoticed until the irreversible damage to eye occurs and leads to blurred vision and, eventually, blindness. OBJECTIVE The pathogenesis and diagnosis of diabetic retinopathy are very complex and not fully understood. Currently, well-established laser techniques and medications are available, but these treatment options have their own shortcomings on biological systems. Biomarkers can help to overcome this problem due to easy, fast and economical options for diagnosis of diabetic retinopathy. METHODS The search terms used were "Diabetic retinopathy", "Biomarkers in diabetic retinopathy", "Novel biomarkers in diabetic retinopathy" and "Potential biomarkers of diabetic retinopathy" by using different scientific resources and databases like EBSCO, ProQuest, PubMed and Scopus. Eligibility criteria included biomarkers involved in diabetic retinopathy in the detectable range. Exclusion criteria included the repetition and duplication of the biomarker in diabetic retinopathy. RESULTS Current review and literature study revealed that biomarkers of diabetic retinopathy can be categorized as inflammatory: tumor necrosis factor-α, monocyte chemoattractant protein-1, transforming growth factor- β; antioxidant: nicotinamide adenine dinucleotide phosphate oxidase; nucleic acid: poly ADP ribose polymerase- α, Apelin, Oncofetal; enzyme: ceruloplasmin, protein kinase C; and miscellaneous: erythropoietin. These biomarkers have a great potential in the progression of diabetic retinopathy hence can be used in the diagnosis and management of this debilitating disease. CONCLUSION Above mentioned biomarkers play a key role in the pathogenesis of diabetic retinopathy; hence they can also be considered as potential targets for new drug development.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai-400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai-400056, India
| |
Collapse
|
31
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
32
|
Tao S, Zheng W, Liu Y, Li L, Li L, Ren Q, Shi M, Liu J, Jiang J, Ma H, Huang Z, Xia Z, Pan J, Wei T, Wang Y, Li P, Lan T, Ma L, Fu P. Analysis of serum metabolomics among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls. RSC Adv 2019; 9:18713-18719. [PMID: 35516902 PMCID: PMC9064812 DOI: 10.1039/c9ra01561b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has a rising prevalence and diabetic nephropathy (DN) is a major complication of T2DM. Metabolomics could provide novel insights into the pathogenesis, so we aimed to explore serum metabolomic profiles from DN to T2DM. Serum samples were collected from 14 biopsy-proven DNs, 14 age/gender-matched T2DMs without renal diseases (DM), 14 age/gender-matched healthy controls (CTRL) and household contacts of DM group (HH). Serum metabolomics was analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC/MS) assays. There were a total of 1470 metabolites identified from all serum samples. 45 metabolites with significantly different intensity were found between DN and DM, e.g., biliverdin and taurine were reduced while l-arginine was increased in DN comparing to DM. DN could be distinguished from age/gender matched DM patients by l-arginine (AUC = 0.824) or taurine levels (AUC = 0.789). The metabolic pathways affected by metabolite distinctions between DN and DM also existed, among which taurine and hypotaurine metabolism exhibited the highest pathway impact. l-Methionine, deethylatrazine, l-tryptophan and fumaric acid were reduced in DM comparing with those of CTRL, but had no different intensity in DM and HH groups. The changes were demonstrated in the metabolomic profiles of biopsy-proven DN compared to DM. Biopsy-proven DN patients could be distinguished from age/gender matched DM by l-arginine or taurine levels in serum metabolomic profiles. Taurine and hypotaurine metabolism pathway had the highest impact in pathway set enrichment analysis, which potentially affected the pathogenesis of DN from T2DM. Metabolites between healthy controls (CTRL)/type 2 diabetes mellitus without renal diseases (DM), and DM/diabetic nephropathy (DN).![]()
Collapse
Affiliation(s)
- Sibei Tao
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Wen Zheng
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital of Sichuan University Chengdu 610041 China
| | - Yuan Liu
- Chinese Health Service Management Department, West China Hospital of Sichuan University Chengdu 610041 China
| | - Ling Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Lingzhi Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Qian Ren
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Min Shi
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Liu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Jiang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Huichao Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Zhuo Huang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Zijing Xia
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Jing Pan
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Tiantian Wei
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Yan Wang
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Peiyun Li
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Tian Lan
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| | - Liang Ma
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Beijing 10000 China
| | - Ping Fu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University No. 37 Guoxue alley Chengdu 610041 China +86 28 85164167
| |
Collapse
|
33
|
Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal 2019; 174:414-421. [PMID: 31212142 DOI: 10.1016/j.jpba.2019.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 01/22/2023]
Abstract
Patients with a long duration of diabetes mellitus (DM) usually have accompanied complications such as diabetic retinopathy (DR), which is a leading cause of blindness and visual impairment among working-age persons in developed countries; nevertheless, some patients have no complications. Thus, various studies, including genomic, transcriptomic, and proteomic studies, have been conducted to identify potential biomarkers for predicting DR and to reveal the underlying disease mechanism. Although metabolomics could be a powerful tool for characterizing aqueous eye fluids and revealing the metabolic signatures of common ocular diseases such as DR, studies about its relationship with DR are limited. Moreover, to our knowledge, no previous study has applied a metabolomic approach to investigate the aqueous humor in DR. Therefore, we performed an NMR-based metabolomic study of the aqueous humor of patients with DM and cataract (DM, n = 13), DR and cataract (DR, n = 14), and senile cataract (CON, n = 7) to investigate the metabolic alterations accompanying the development of DR. Principal component analysis, average change analysis, and heatmap analysis revealed that lactate, succinate, 2-hydroxybutyrate, asparagine, dimethylamine, histidine, threonine, and glutamine were the most altered metabolites that potentially play roles in the development and progression of DR. The highly activated alanine, aspartate, and glutamate metabolic pathway was selected using pathway analysis. The phenotypic metabolomic analyses of the aqueous humor indicated an alteration in the metabolic pathways of energy metabolism and amino acids in DR patients which was to some extent suggestive of the pathophysiological process of mitochondrial dysfunction and oxidative stress/endothelial damage. It provides a proof of concept that metabolomic analysis using the aqueous humor of DM patients may be a reliable method to improve the accuracy of predicting the development and progression of DR.
Collapse
Affiliation(s)
- Huiyi Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Bijun Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China.
| | - Xia Liu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Department of Preventative Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
| |
Collapse
|
34
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|