1
|
Engle K, Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem Pharmacol 2024; 226:116400. [PMID: 38945275 DOI: 10.1016/j.bcp.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar 500037, India
| | - Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
2
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Qian W, Lu J, Gao C, Liu Q, Li Y, Zeng Q, Zhang J, Wang T, Chen S. Deciphering antifungal and antibiofilm mechanisms of isobavachalcone against Cryptococcus neoformans through RNA-seq and functional analyses. Microb Cell Fact 2024; 23:107. [PMID: 38609931 PMCID: PMC11015616 DOI: 10.1186/s12934-024-02369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China
| | - Qiao Zeng
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Si Chen
- Department of Immunology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Edrich ESM, Duvenage L, Gourlay CW. Alternative Oxidase - Aid or obstacle to combat the rise of fungal pathogens? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149031. [PMID: 38195037 DOI: 10.1016/j.bbabio.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Fungal pathogens present a growing threat to both humans and global health security alike. Increasing evidence of antifungal resistance in fungal populations that infect both humans and plant species has increased reliance on combination therapies and shown the need for new antifungal therapeutic targets to be investigated. Here, we review the roles of mitochondria and fungal respiration in pathogenesis and discuss the role of the Alternative Oxidase enzyme (Aox) in both human fungal pathogens and phytopathogens. Increasing evidence exists for Aox within mechanisms that underpin fungal virulence. Aox also plays important roles in adaptability that may prove useful within dual targeted fungal-specific therapeutic approaches. As improved fungal specific mitochondrial and Aox inhibitors are under development we may see this as an emerging target for future approaches to tackling the growing challenge of fungal infection.
Collapse
Affiliation(s)
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK.
| |
Collapse
|
5
|
Legesse M, Abebe A, Degu S, Alebachew Y, Tadesse S. Synthesis and antimicrobial activity of knipholone analogs. Nat Prod Res 2024; 38:1287-1293. [PMID: 36315255 DOI: 10.1080/14786419.2022.2139696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
In the present study, we use knipholone as a prototype molecule to identify new anti-infective agents. Since knipholone is insoluble in water, which would have a detrimental effect on its bioavailability and efficacy, we synthesized knipholone Mannich base derivatives (2-4) that have better predicted solubility and investigated their in vitro antimicrobial activity against eight pathogenic bacterial and fungal strains. The chemical structures of compounds 1-4 were elucidated from their 1H and 13C NMR data, and their antimicrobial activity evaluation was carried out by a broth microdilution MTT assay. Compound 3 exhibited the strongest efficacy against Staphylococcus epidermidis, with MIC value of 9.7 µg/mL. While 4 exhibited the best activity against Staphylococcus aureus, with an MIC value of 19.5 µg/mL, and was the only one to significantly inhibit the fungus Trichophyton mentagrophytes (MIC = 78.2 µg/mL). The study provides evidence for the antibacterial activity of aminoalkyl derivatives of knipholone.
Collapse
Affiliation(s)
- Melese Legesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonatan Alebachew
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tadesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Nare T, Edavolath P, Gandham NR, Patil R, Mirza S. Antifungal Resistance: It Is Time to Look Outside the Box. Asia Pac J Public Health 2024; 36:283-284. [PMID: 38353115 DOI: 10.1177/10105395241231643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Tejashree Nare
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Dr. D. Y Patil Vidyapeeth, Pune, India
| | - Preethy Edavolath
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Dr. D. Y Patil Vidyapeeth, Pune, India
| | - Nageswari R Gandham
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Dr. D. Y Patil Vidyapeeth, Pune, India
| | - Rajashri Patil
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Dr. D. Y Patil Vidyapeeth, Pune, India
| | - Shahzad Mirza
- Department of Microbiology, Dr. D.Y. Patil Medical College and Hospital, Dr. D. Y Patil Vidyapeeth, Pune, India
| |
Collapse
|
7
|
Jospe-Kaufman M, Ben-Zeev E, Mottola A, Dukhovny A, Berman J, Carmeli S, Fridman M. Reshaping Echinocandin Antifungal Drugs To Circumvent Glucan Synthase Point-Mutation-Mediated Resistance. Angew Chem Int Ed Engl 2024; 63:e202314728. [PMID: 38161189 DOI: 10.1002/anie.202314728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Echinocandins are a class of antifungal drugs that inhibit the activity of the β-(1,3)-glucan synthase complex, which synthesizes fungal cell wall β-(1,3)-glucan. Echinocandin resistance is linked to mutations in the FKS gene, which encodes the catalytic subunit of the glucan synthase complex. We present a molecular-docking-based model that provides insight into how echinocandins interact with the target Fks protein: echinocandins form a ternary complex with both Fks and membrane lipids. We used reductive dehydration of alcohols to generate dehydroxylated echinocandin derivatives and evaluated their potency against a panel of Candida pathogens constructed by introducing resistance-conferring mutations in the FKS gene. We found that removing the hemiaminal alcohol, which drives significant conformational alterations in the modified echinocandins, reduced their efficacy. Conversely, eliminating the benzylic alcohol of echinocandins enhanced potency by up to two orders of magnitude, in a manner dependent upon the resistance-conferring mutation. Strains that have developed resistance to either rezafungin, the most recently clinically approved echinocandin, or its dehydroxylated derivative RZF-1, exhibit high resistance to rezafungin while demonstrating moderate resistance to RZF-1. These findings provide valuable insight for combating echinocandin resistance through chemical modifications.
Collapse
Affiliation(s)
- Moriah Jospe-Kaufman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Efrat Ben-Zeev
- The Whol Drug Discovery institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Austin Mottola
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Anna Dukhovny
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
8
|
Procacci C, Marras L, Maurmo L, Vivanet G, Scalone L, Bertolino G. Antifungal Stewardship in Invasive Fungal Infections, a Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38337088 DOI: 10.1007/5584_2024_798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Invasive fungal infections (IFI) are a group of life-threatening diseases associated with significant morbidity, mortality and high healthcare costs. Some modern management programs known as AFS (antifungal stewardship programs) have now been developed. The purpose of this systematic review is to evaluate the different declinations of antifungal stewardship programs (AFPs). METHODS Articles were systematically reviewed using the PRISMA checklist 2020. EMBASE and MEDLINE/PubMED were searched using the term "antifungal stewardship" (2012-2022 data) on 2 January 2023. Eligible studies were those that described an AFS and included an intervention, performance evaluation and outcome measures. RESULTS A total of 22/796 studies were included. Approximately two-thirds (16) were published between 2018 and 2022. 16 (72.7%) stated a minimal complete AFS team. 12 (54.5%) adopted a non-compulsory AFS approach, 6(27.3%) had an Educational AFS and 4(18.2%) a compulsory AFS. Cost analyses of 12 studies showed a decrease for 7 (31.8%) compared to an increase for 5 (22.7%). In terms of outcomes, 18 studies showed a lower (10;45.5%) or the same (8;36.4%) pre-post intervention mortality rate. CONCLUSION AFS programs seem to be related to lower costs and better outcomes and should thus be implemented in tandem with antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Cataldo Procacci
- Pharmaceutical Department, ASL BAT, Barletta - Adria - Trani, Italy
| | | | - Leonarda Maurmo
- School of Specialization in Hospital Pharmacy, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Vivanet
- Unity of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Giacomo Bertolino
- Pharmaceutical Department, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy.
| |
Collapse
|
9
|
Hirade K, Kusumoto S, Hashimoto H, Shiraga K, Hagiwara S, Oiwa K, Suzuki T, Kinoshita S, Ri M, Komatsu H, Iida S. Low-dose fluconazole as a useful and safe prophylactic option in patients receiving allogeneic hematopoietic stem cell transplantation. Cancer Med 2024; 13:e6815. [PMID: 38213090 PMCID: PMC10905229 DOI: 10.1002/cam4.6815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Invasive fungal infections (IFIs) represent a potentially fatal complication in patients who undergo allogeneic hematopoietic stem cell transplantation (HSCT) if the initiation of therapy is delayed. Some guidelines recommend antifungal prophylaxis or preemptive therapy for these patients depending on the risk of IFIs following allogeneic HSCT. This retrospective study aimed to identify the group of patients who safely undergo allogeneic HSCT with low-dose fluconazole (FLCZ) prophylaxis (100 mg/day). METHODS We retrospectively reviewed 107 patients who underwent their first allogeneic HSCT at Nagoya City University Hospital from January 1, 2010, to December 31, 2019. We analyzed the efficacy of low-dose FLCZ prophylaxis and investigated the relationship between major risk factors and antifungal prophylaxis failure (APF) within 100 days post-transplant. RESULTS Of the 107 patients, 70 received low-dose FLCZ prophylaxis, showing a cumulative incidence of APF of 37.1% and a proven/probable IFI rate of 4.3%. There were no fungal infection-related deaths, including Aspergillus infections, in the FLCZ prophylaxis group. In a multivariable analysis, cord blood transplantation (CBT) (subdistribution hazard ratio (SHR), 3.55; 95% confidence interval (CI), 1.44-8.77; p = 0.006) and abnormal findings on lung CT before transplantation (SHR, 2.24; 95% CI, 1.02-4.92; p = 0.044) were independent risk factors for APF in the FLCZ prophylaxis group. CONCLUSION Low-dose FLCZ prophylaxis is a useful and safe option for patients receiving allogeneic HSCT, except in those undergoing CBT or having any fungal risk features including history of fungal infections, positive fungal markers, and abnormal findings on lung CT before transplantation.
Collapse
Affiliation(s)
- Kentaro Hirade
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Shigeru Kusumoto
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
- Department of Hematology and Cell TherapyAichi Cancer Center HospitalNagoyaJapan
| | - Hiroya Hashimoto
- Clinical Research Management Center of Nagoya City University HospitalNagoyaJapan
| | - Kazuhide Shiraga
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Shinya Hagiwara
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Kana Oiwa
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Tomotaka Suzuki
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Shiori Kinoshita
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Masaki Ri
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Hirokazu Komatsu
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| | - Shinsuke Iida
- Department of Hematology and OncologyNagoya City University Institute of Medical and Pharmaceutical SciencesNagoyaJapan
| |
Collapse
|
10
|
Cui Y, Wang D, Nobile CJ, Dong D, Ni Q, Su T, Jiang C, Peng Y. Systematic identification and characterization of five transcription factors mediating the oxidative stress response in Candida albicans. Microb Pathog 2024; 187:106507. [PMID: 38145792 PMCID: PMC10872297 DOI: 10.1016/j.micpath.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes superficial and systemic infections, particularly in immunocompromised individuals. In response to C. albicans infection, innate immune cells of the host produce and accumulate reactive oxygen species (ROS), which can lead to irreversible damage and apoptosis of fungal cells. Several transcription factors involved in this oxidative stress response have been identified; however, a systematic study to identify the transcription factors that mediate the oxidative stress response has not yet been conducted. Here, we screened a comprehensive transcription factor mutant library consisting of 211 transcription factor deletion mutant strains in the presence and absence of hydrogen peroxide (H2O2), a potent ROS inducer, and identified five transcription factors (Skn7, Dpb4, Cap1, Dal81, and Stp2) that are sensitive to H2O2. Genome-wide transcriptional profiling revealed that H2O2 induces a discrete set of differentially regulated genes among the five identified transcription factor mutant strains. Functional enrichment analysis identified KEGG pathways pertaining to glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, and ribosome synthesis as the most enriched pathways. GO term analysis of the top common differentially expressed genes among the transcription factor mutant strains identified hexose catabolism and iron transport as the most enriched GO terms upon exposure to H2O2. This study is the first to systematically identify and characterise the transcription factors involved in the response to H2O2. Based on our transcriptional profiling results, we found that exposure to H2O2 modulates several downstream genes involved in fungal virulence. Overall, this study sheds new light on the metabolism, physiological functions, and cellular processes involved in the H2O2-induced oxidative stress response in C. albicans.
Collapse
Affiliation(s)
- Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Boyapati N, Willis V, Foster A, Fletcher D. Antifungal Use in Perforated Peptic Ulcer Disease: A Western Australian Perspective. Cureus 2024; 16:e55194. [PMID: 38435215 PMCID: PMC10905060 DOI: 10.7759/cureus.55194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Background Perforated peptic ulcer disease has a high mortality rate, and there is consensus regarding the use of antifungals in the management of immunocompromised patients; however, there is variability in the utilization of antifungals in the non-immunocompromised cohort. This study aims to describe the current practice related to the use of antifungals in perforated peptic ulcer disease in Western Australia and to determine the peri-operative morbidity and mortality in the immunocompromised and non-immunocompromised cohort receiving antifungals. Methods Medical records of patients who underwent surgical repair of perforated peptic ulcer in all Western Australian tertiary hospitals between January 1, 2010, and December 31, 2017, were reviewed retrospectively. Data regarding pre-operative patient factors such as age, gender, and comorbidities, post-operative outcomes such as intra-abdominal sepsis/bleeding, peri-operative antifungal prescription, and abundance of fungal growth on intra-operative samples were collected. Results The study included 359 patients. The antifungal prescription was variable. An American Society of Anesthesiologists (ASA) score of 3 or more, presence of pre-operative shock and acidosis, and level of abundance of fungal growth on intra-operative samples were associated with antifungal prescription. Amongst the non-immunocompromised cohort, receiving antifungals was associated with higher morbidity. Conclusion The use of antifungals for patients with perforated peptic ulcer disease was variable. An ASA score of 3 or greater and pre-operative shock and acidosis are pre-operative factors predisposing patients to receiving antifungals. There was no difference in morbidity or mortality amongst immunocompromised patients regardless of antifungal prescription or non-prescription. However, in the non-immunocompromised cohort, those who received antifungals had a higher morbidity compared to those who did not.
Collapse
Affiliation(s)
| | - Vidya Willis
- General Surgery, Fiona Stanley Hospital, Perth, AUS
| | | | | |
Collapse
|
12
|
Vázquez-Prieto S, Vaamonde A, Paniagua E. An Analysis of the Use of Systemic Antifungals (Fluconazole, Itraconazole, and Terbinafine) in Galicia, Spain, between 2019 and 2022. Diseases 2024; 12:22. [PMID: 38248373 PMCID: PMC10814849 DOI: 10.3390/diseases12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
In the present work, we examined the consumption of systemic antifungals (fluconazole, itraconazole, and terbinafine) in outpatients in the four provinces of Galicia, Spain, between 2019 and 2022. We also described the variability in the use of these types of drugs between these provinces. In addition, we detected any deviation in consumption at a seasonal level and analyzed possible changes during the study period. A descriptive, cross-sectional, and retrospective study of the use of antifungals, expressed in terms of a defined daily dose per 1000 inhabitants per day, was carried out. The results obtained revealed statistically significant differences between provinces and by the active principle consumed in the four Galician provinces (p < 0.001), which can be explained by multiple factors. This study also revealed that there was stable consumption during the study period, with no significant seasonal differences observed. This study represents a contribution to the knowledge about the consumption of antifungals for systemic use in Galicia and serves as a basis for subsequent studies. This will allow us to understand the consumption patterns of these types of drugs and, ultimately, will help to establish stewardship strategies and prevent the development of resistance.
Collapse
Affiliation(s)
- Severo Vázquez-Prieto
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain;
- Núcleo de Investigación en Ciencias de la Salud, Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Antonio Vaamonde
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Económicas y Empresariales, Universidad de Vigo, 36310 Vigo, Spain;
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Zeeshan M, Memon S, Malick A, Naqvi SF, Farooqi J, Ghanchi NK, Jabeen K. Fluconazole-resistant Candida parapsilosis complex candidemia and analysis of mutations in the ERG11 gene from Pakistan. Mycoses 2024; 67:e13677. [PMID: 37990393 DOI: 10.1111/myc.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Recent reports of the emergence of fluconazole resistance in Candida parapsilosis species complex poses a challenge, more specifically in settings where echinocandin-based treatment regime is not feasible. OBJECTIVE This study reported emergence of fluconazole resistance in C. parapsilosis species complex strains isolated from blood cultures. MATERIALS AND METHODS This retrospective observational study was conducted from 2018 to 2020 at a tertiary care laboratory from Pakistan. Fluconazole-resistant C. parapsilosis species complex fungemia cases were identified from laboratory database and clinical details were collected. Identification of C. parapsilosis species complex was done using API 20C AUX and Cornmeal Tween80 agar morphology. Minimum inhibitory concentrations (MICs) were determined using Sensititre YeastONE and interpretation was done with CLSI M60 ED1:2017. ERG11 gene region was amplified and sequenced by Sanger sequencing and analysed by MEGA 11 Software. RESULTS A total of 13 (8.5%) fluconazole-resistant isolates were identified from 152 C. parapsilosis species complex candidemia cases. Fluconazole MICs of resistant isolates ranged between 8 and 256 μg/mL. Analysis of ERG11 gene revealed nonsynonymous mutations at position Y132F in 86% of the fluconazole-resistant isolates. Diabetes and hospitalization were important risk factors for candidemia with fluconazole-resistant C. parapsilosis complex. CONCLUSION This is the first report of the emergence and molecular mechanisms of fluconazole resistance in C. parapsilosis species complex from Pakistan. Y132F mutation in the ERG11 gene was the most common mutation in fluconazole-resistant strains. These findings are concerning and necessitate better diagnostics, newer antifungals, ongoing surveillance and further insights on resistance mechanisms in the country.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Saba Memon
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Ayesha Malick
- Aga Khan University Medical College, Karachi, Pakistan
| | - Syed Faheem Naqvi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Joveria Farooqi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
14
|
Mendoza B, Zheng X, Clements JC, Cotter C, Trinh CT. Potency of CRISPR-Cas Antifungals Is Enhanced by Cotargeting DNA Repair and Growth Regulatory Machinery at the Genetic Level. ACS Infect Dis 2023; 9:2494-2503. [PMID: 37955405 PMCID: PMC10714396 DOI: 10.1021/acsinfecdis.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
The emergence of virulent, resistant, and rapidly evolving fungal pathogens poses a significant threat to public health, agriculture, and the environment. Targeting cellular processes with standard small-molecule intervention may be effective but requires long development times and is prone to antibiotic resistance. To overcome the current limitations of antibiotic development and treatment, this study harnesses CRISPR-Cas systems as antifungals by capitalizing on their adaptability, specificity, and efficiency in target design. The conventional design of CRISPR-Cas antimicrobials, based on induction of DNA double-strand breaks (DSBs), is potentially less effective in fungi due to robust eukaryotic DNA repair machinery. Here, we report a novel design principle to formulate more effective CRISPR-Cas antifungals by cotargeting essential genes with DNA repair defensive genes that remove the fungi's ability to repair the DSB sites of essential genes. By evaluating this design on the model fungus Saccharomyces cerevisiae, we demonstrated that essential and defensive gene cotargeting is more effective than either essential or defensive gene targeting alone. The top-performing CRISPR-Cas antifungals performed as effectively as the antibiotic Geneticin. A gene cotargeting interaction analysis revealed that cotargeting essential genes with RAD52 involved in homologous recombination (HR) was the most synergistic combination. Fast growth kinetics of S. cerevisiae induced resistance to CRISPR-Cas antifungals, where genetic mutations mostly occurred in defensive genes and guide RNA sequences.
Collapse
Affiliation(s)
- Brian
J. Mendoza
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xianliang Zheng
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jared C. Clements
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christopher Cotter
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Cong T. Trinh
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
15
|
Mudenda S, Matafwali SK, Mukosha M, Daka V, Chabalenge B, Chizimu J, Yamba K, Mufwambi W, Banda P, Chisha P, Mulenga F, Phiri M, Mfune RL, Kasanga M, Sartelli M, Saleem Z, Godman B. Antifungal resistance and stewardship: a knowledge, attitudes and practices survey among pharmacy students at the University of Zambia; findings and implications. JAC Antimicrob Resist 2023; 5:dlad141. [PMID: 38130703 PMCID: PMC10733812 DOI: 10.1093/jacamr/dlad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Antifungal resistance (AFR) is a growing global public health concern. Little is currently known about knowledge, attitudes and practices regarding AFR and antifungal stewardship (AFS) in Zambia, and across the globe. To address this evidence gap, we conducted a study through a questionnaire design starting with pharmacy students as they include the next generation of healthcare professionals. Methods A cross-sectional study among 412 pharmacy students from June 2023 to July 2023 using a structured questionnaire. Multivariable analysis was used to determine key factors of influence. Results Of the 412 participants, 55.8% were female, with 81.6% aged between 18 and 25 years. Most students had good knowledge (85.9%) and positive attitudes (86.7%) but sub-optimal practices (65.8%) towards AFR and AFS. Overall, 30.2% of students accessed antifungals without a prescription. Male students were less likely to report a good knowledge of AFR (adjusted OR, AOR = 0.55, 95% CI: 0.31-0.98). Similarly, students residing in urban areas were less likely to report a positive attitude (AOR = 0.35, 95% CI: 0.13-0.91). Fourth-year students were also less likely to report good practices compared with second-year students (AOR = 0.48, 95% CI: 0.27-0.85). Conclusions Good knowledge and positive attitudes must translate into good practices toward AFR and AFS going forward. Consequently, there is a need to provide educational interventions where students have low scores regarding AFR and AFS. In addition, there is a need to implement strategies to reduce inappropriate dispensing of antifungals, especially without a prescription, to reduce AFR in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola PO Box 71191, Zambia
| | - Billy Chabalenge
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka PO Box 31890, Zambia
| | - Joseph Chizimu
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Webrod Mufwambi
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patrick Banda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patience Chisha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Florence Mulenga
- Conservation Department, World Wide Fund For Nature (WWF Zambia Country Office), Lusaka PO Box 50551, Zambia
| | - McLawrence Phiri
- Department of Pharmacy, Maina Soko Medical Center, Woodlands, Lusaka PO Box 320091, Zambia
| | - Ruth Lindizyani Mfune
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maisa Kasanga
- Department of Epidemiology and Biostatistics, Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Brian Godman
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, UK
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
16
|
Orefice I, Balzano S, Romano G, Sardo A. Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds. Life (Basel) 2023; 13:2164. [PMID: 38004303 PMCID: PMC10671881 DOI: 10.3390/life13112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dinoflagellates make up the second largest marine group of marine unicellular eukaryotes in the world ocean and comprise both heterotrophic and autotrophic species, encompassing a wide genetic and chemical diversity. They produce a plethora of secondary metabolites that can be toxic to other species and are mainly used against predators and competing species. Dinoflagellates are indeed often responsible for harmful algal bloom, where their toxic secondary metabolites can accumulate along the food chain, leading to significant damages to the ecosystem and human health. Secondary metabolites from dinoflagellates have been widely investigated for potential biomedical applications and have revealed multiple antimicrobial, antifungal, and anticancer properties. Species from the genus Amphidinium seem to be particularly interesting for the production of medically relevant compounds. The present review aims at summarising current knowledge on the diversity and the pharmaceutical properties of secondary metabolites from the genus Amphidinium. Specifically, Amphidinium spp. produce a range of polyketides possessing cytotoxic activities such as amphidinolides, caribenolides, amphidinins, and amphidinols. Potent antimicrobial properties against antibiotic-resistant bacterial strains have been observed for several amphidinins. Amphidinols revealed instead strong activities against infectious fungi such as Candida albicans and Aspergillus fumigatus. Finally, compounds such as amphidinolides, isocaribenolide-I, and chlorohydrin 2 revealed potent cytotoxic activities against different cancer cell lines. Overall, the wide variety of antimicrobial, antifungal, and anticancer properties of secondary metabolites from Amphidinium spp. make this genus a highly suitable candidate for future medical applications, spanning from cancer drugs to antimicrobial products that are alternatives to currently available antibiotic and antimycotic products.
Collapse
Affiliation(s)
| | | | | | - Angela Sardo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80131 Naples, Italy; (I.O.); (S.B.); (G.R.)
| |
Collapse
|
17
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
18
|
da Silva CR, Silveira MJCB, Soares GC, de Andrade CR, Cabral VPDF, Sá LGDAV, Rodrigues DS, Moreira LEA, Barbosa AD, da Silva LJ, da Silva AR, Gomes AOCV, Cavalcanti BC, de Moraes MO, Nobre Júnior HV, de Andrade Neto JB. Analysis of possible pathways on the mechanism of action of minocycline and doxycycline against strains of Candida spp. resistant to fluconazole. J Med Microbiol 2023; 72. [PMID: 37801011 DOI: 10.1099/jmm.0.001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Janielly Castelo Branco Silveira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | | | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
19
|
Ali I, Barros de Souza A, Cabooter D, De Laet S, Van Eyck K, Dewil R. Treatment of antimicrobial azole compounds via photolysis, electrochemical and photoelectrochemical oxidation: Degradation kinetics and transformation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122220. [PMID: 37467915 DOI: 10.1016/j.envpol.2023.122220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The degradation kinetics and transformation products of pharmaceutical azole drugs from Watch List 2020/1161 (fluconazole, FCZ; miconazole, MCZ; clotrimazole, CTZ; and sulfamethoxazole, SMX) are examined individually and as a mixture in Milli-Q water and simulated wastewater (SWW) upon treatment with three different advanced oxidation processes: (i) photolysis (UV), (ii) electrochemical (eAOP), and (iii) photoelectrochemical (eAOP/UV). For individual pollutant degradation, UV was found to be significantly more effective for SMX and CTZ compared to MCZ and FCZ. Whereas when treating the azole drugs mixture, eAOP/UV was determined to be the most effective treatment method. The degradation efficiency was higher in Milli-Q than in SWW because the treatment efficiency depended on the matrix compositions. The degradation products formed under different processes were identified, and the routes of transformation were proposed. The results of this study can assist in the selection of the most suitable treatment technology depending upon the pollutant or matrix.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Maanstraat 9b, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium
| | | | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Laet
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Maanstraat 9b, 2800, Mechelen, Belgium
| | - Kwinten Van Eyck
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Maanstraat 9b, 2800, Mechelen, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
20
|
Wang Y, Guo X, Zhang X, Chen P, Wang W, Hu S, Ma T, Zhou X, Li D, Yang Y. In Vivo Microevolutionary Analysis of a Fatal Case of Rhinofacial and Disseminated Mycosis Due to Azole-Drug-Resistant Candida Species. J Fungi (Basel) 2023; 9:815. [PMID: 37623586 PMCID: PMC10455694 DOI: 10.3390/jof9080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Ten Candida species strains were isolated from the first known fatal case of rhinofacial and rhino-orbital-cerebral candidiasis. Among them, five strains of Candida parapsilosis complex were isolated during the early stage of hospitalization, while five strains of Candida tropicalis were isolated in the later stages of the disease. Using whole-genome sequencing, we distinguished the five strains of C. parapsilosis complex as four Candida metapsilosis strains and one Candida parapsilosis strain. Antifungal susceptibility testing showed that the five strains of C. parapsilosis complex were susceptible to all antifungal drugs, while five C. tropicalis strains had high minimum inhibitory concentrations to azoles, whereas antifungal-drug resistance gene analysis revealed the causes of azole resistance in such strains. For the first time, we analyzed the microevolutionary characteristics of pathogenic fungi in human hosts and inferred the infection time and parallel evolution of C. tropicalis strains. Molecular clock analysis revealed that azole-resistant C. tropicalis infection occurred during the first round of therapy, followed by divergence via parallel evolution in vivo. The presence/absence variations indicated a potential decrease in the virulence of genomes in strains isolated following antifungal drug treatment, despite the absence of observed clinical improvement in the conditions of the patient. These results suggest that genomic analysis could serve as an auxiliary tool in guiding clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuchen Wang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjing 300457, China;
| | - Xinran Zhang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Ping Chen
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Wenhui Wang
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Shan Hu
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Teng Ma
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| | - Xingchen Zhou
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
- School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dongming Li
- Division of Dermatology and Mycological Lab, Peking University Third Hospital, Beijing 100191, China
| | - Ying Yang
- Bioinformatics Center of AMMS, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China; (Y.W.); (X.Z.)
| |
Collapse
|
21
|
Ambrosio FJ, Scribner MR, Wright SM, Otieno JR, Doughty EL, Gorzalski A, Siao DD, Killian S, Hua C, Schneider E, Tran M, Varghese V, Libuit KG, Pandori M, Sevinsky JR, Hess D. TheiaEuk: a species-agnostic bioinformatics workflow for fungal genomic characterization. Front Public Health 2023; 11:1198213. [PMID: 37593727 PMCID: PMC10428623 DOI: 10.3389/fpubh.2023.1198213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction The clinical incidence of antimicrobial-resistant fungal infections has dramatically increased in recent years. Certain fungal pathogens colonize various body cavities, leading to life-threatening bloodstream infections. However, the identification and characterization of fungal isolates in laboratories remain a significant diagnostic challenge in medicine and public health. Whole-genome sequencing provides an unbiased and uniform identification pipeline for fungal pathogens but most bioinformatic analysis pipelines focus on prokaryotic species. To this end, TheiaEuk_Illumina_PE_PHB (TheiaEuk) was designed to focus on genomic analysis specialized to fungal pathogens. Methods TheiaEuk was designed using containerized components and written in the workflow description language (WDL) to facilitate deployment on the cloud-based open bioinformatics platform Terra. This species-agnostic workflow enables the analysis of fungal genomes without requiring coding, thereby reducing the entry barrier for laboratory scientists. To demonstrate the usefulness of this pipeline, an ongoing outbreak of C. auris in southern Nevada was investigated. We performed whole-genome sequence analysis of 752 new C. auris isolates from this outbreak. Furthermore, TheiaEuk was utilized to observe the accumulation of mutations in the FKS1 gene over the course of the outbreak, highlighting the utility of TheiaEuk as a monitor of emerging public health threats when combined with whole-genome sequencing surveillance of fungal pathogens. Results A primary result of this work is a curated fungal database containing 5,667 unique genomes representing 245 species. TheiaEuk also incorporates taxon-specific submodules for specific species, including clade-typing for Candida auris (C. auris). In addition, for several fungal species, it performs dynamic reference genome selection and variant calling, reporting mutations found in genes currently associated with antifungal resistance (FKS1, ERG11, FUR1). Using genome assemblies from the ATCC Mycology collection, the taxonomic identification module used by TheiaEuk correctly assigned genomes to the species level in 126/135 (93.3%) instances and to the genus level in 131/135 (97%) of instances, and provided zero false calls. Application of TheiaEuk to actual specimens obtained in the course of work at a local public health laboratory resulted in 13/15 (86.7%) correct calls at the species level, with 2/15 called at the genus level. It made zero incorrect calls. TheiaEuk accurately assessed clade type of Candida auris in 297/302 (98.3%) of instances. Discussion TheiaEuk demonstrated effectiveness in identifying fungal species from whole genome sequence. It further showed accuracy in both clade-typing of C. auris and in the identification of mutations known to associate with drug resistance in that organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Steve Killian
- Alameda County Public Health Laboratory, Oakland, CA, United States
| | - Chi Hua
- Public Health Laboratories, Division of Disease Control and Health Statistics, Washington State Department of Health, Shoreline, WA, United States
| | - Emily Schneider
- Public Health Laboratories, Division of Disease Control and Health Statistics, Washington State Department of Health, Shoreline, WA, United States
| | - Michael Tran
- Public Health Laboratories, Division of Disease Control and Health Statistics, Washington State Department of Health, Shoreline, WA, United States
| | - Vici Varghese
- Alameda County Public Health Laboratory, Oakland, CA, United States
| | | | - Mark Pandori
- Nevada State Public Health Laboratory, Reno, NV, United States
- Department of Pathology and Laboratory Medicine, Reno School of Medicine, University of Nevada, Reno, NV, United States
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | | | - David Hess
- Nevada State Public Health Laboratory, Reno, NV, United States
- Department of Pathology and Laboratory Medicine, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
22
|
Deng R, Meng X, Li R, Wang A, Song Y. Asymptomatic Candida glabrata urinary tract infection in an immunocompetent young female: A case report. Medicine (Baltimore) 2023; 102:e33798. [PMID: 37335701 DOI: 10.1097/md.0000000000033798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Fungal urinary tract infections (UTIs) are becoming increasingly common in hospitalized patients and Candida species are the most prevalent organisms. However, recurrent candiduria in young healthy outpatients is rare thus require further examination to find the etiologic factors. CASE PRESENTATION We described a case of recurrent asymptomatic c caused by azole-resistant C. glabrata in a healthy young female who only had previous use of antibiotics without other risk factors. However, after removal of the predisposing factor and the use of sensitive antifungal agents, the patient's urine cultures remained positive. This phenomenon indicated to us that the patient might have an immune-related genetic deficiency. We found a novel caspase-associated recruitment domain-containing protein 9 (CARD9) gene mutation (c.808-11G > T) which might be the cause of recurrent asymptomatic candiduria in this immune-competent young female without any underlying diseases. CONCLUSIONS We report a case of recurrent asymptomatic candiduria caused by azole-resistant Candida glabrata in a young healthy female with a novel CARD9 mutation. A functional study of this mutation should be performed in the future to determine its effect on asymptomatic fungal UTIs.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xingye Meng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Aiping Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
23
|
Sobel JD. Resistance to Fluconazole of Candida albicans in Vaginal Isolates: a 10-Year Study in a Clinical Referral Center. Antimicrob Agents Chemother 2023; 67:e0018123. [PMID: 37093005 PMCID: PMC10190554 DOI: 10.1128/aac.00181-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Review of vaginal isolates of Candida albicans that caused clinical failure in a 10-year collection of vaginal C. albicans specimens obtained in a university vaginitis referral clinic indicated an increase in fluconazole resistance. Factors contributing to azole resistance are discussed, including treatment choice associated with fluconazole-resistant C. albicans vaginal infection.
Collapse
Affiliation(s)
- J. D. Sobel
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
Bosetti D, Neofytos D. Invasive Aspergillosis and the Impact of Azole-resistance. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360857 PMCID: PMC10024029 DOI: 10.1007/s12281-023-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review IA (invasive aspergillosis) caused by azole-resistant strains has been associated with higher clinical burden and mortality rates. We review the current epidemiology, diagnostic, and therapeutic strategies of this clinical entity, with a special focus on patients with hematologic malignancies. Recent Findings There is an increase of azole resistance in Aspergillus spp. worldwide, probably due to environmental pressure and the increase of long-term azole prophylaxis and treatment in immunocompromised patients (e.g., in hematopoietic stem cell transplant recipients). The therapeutic approaches are challenging, due to multidrug-resistant strains, drug interactions, side effects, and patient-related conditions. Summary Rapid recognition of resistant Aspergillus spp. strains is fundamental to initiate an appropriate antifungal regimen, above all for allogeneic hematopoietic cell transplantation recipients. Clearly, more studies are needed in order to better understand the resistance mechanisms and optimize the diagnostic methods to identify Aspergillus spp. resistance to the existing antifungal agents/classes. More data on the susceptibility profile of Aspergillus spp. against the new classes of antifungal agents may allow for better treatment options and improved clinical outcomes in the coming years. In the meantime, continuous surveillance studies to monitor the prevalence of environmental and patient prevalence of azole resistance among Aspergillus spp. is absolutely crucial.
Collapse
Affiliation(s)
- Davide Bosetti
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| |
Collapse
|
25
|
Lv Q, Yan L, Wang J, Feng J, Gao L, Qiu L, Chao W, Qin YL, Jiang Y. Combined Transcriptome and Metabolome Analysis Reveals That the Potent Antifungal Pyrylium Salt Inhibits Mitochondrial Complex I in Candida albicans. Microbiol Spectr 2023; 11:e0320922. [PMID: 36790175 PMCID: PMC10100848 DOI: 10.1128/spectrum.03209-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Based on the structural modification of SM21, xy12, a new pyrylium salt derivative with enhanced antifungal activities, was synthesized. The MICs (MIC90) of xy12 against Candida albicans ranged from 0.125 to 0.25 μg/mL, about 2-fold lower than those of SM21. In addition, xy12 inhibited hypha and biofilm formation in C. albicans in a dose-dependent manner. A total of 3,454 differentially expressed genes and 260 differential metabolites were identified in the xy12-treated C. albicans by RNA-seq and non-targeted metabolomics. By integrating KEGG pathway enrichment analysis, we found that inhibition of oxidative phosphorylation was the important antifungal mechanism of action of xy12. Electron transport through mitochondrial respiratory complexes I to IV is the common process of oxidative phosphorylation. Compared with the sensitivity of the wild-type SC5314 to xy12, decreased sensitivities in mitochondrial complex I (CI)-deficient mutants and increased sensitivities in mitochondrial complex III- and IV-deficient mutants suggested that the antifungal effects of xy12 were dependent on CI. Consistently, xy12 exhibited antagonism with rotenone, an inhibitor of CI, and significantly inhibited the expression and activity of CI. Meanwhile, the phenotypes in the xy12-treated C. albicans were similar to those in the CI-deficient mutants, such as decreased ATP production, reduced mitochondrial membrane potential, loss of mitochondrial DNA, inability to utilize nonfermentative carbon sources, and decreased cell wall N-linked mannoproteins. Collectively, our results revealed that the pyrylium salt xy12 could constrain oxidative phosphorylation by inhibiting mitochondrial complex I in C. albicans, providing a novel lead compound for the development of mitochondria-targeted antifungal drugs. IMPORTANCE The development of new antifungal drugs is critical for solving the problem of antifungal resistance and expanding the limited variety of clinical antifungal drugs. Based on the modification of the pyrylium salt SM21, a new lead compound, xy12, was synthesized which was effective against Candida species both in vitro and in vivo. In this study, conjoined analysis of the transcriptome and metabolome elucidated the antifungal mechanism of action of xy12, which inhibited the activity of mitochondrial complex I in C. albicans. Targeting fungi-specific mitochondrial complex proteins has been reported as a promising antifungal strategy. Our study provided a new lead compound for targeting C. albicans mitochondrial complex I, which could be beneficial for discovering novel antifungal drugs.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia Feng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lu Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Wen Chao
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu-Lin Qin
- Fudan University Minhang Hospital, Shanghai, People’s Republic of China
| | - Yuanying Jiang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Islam MD, Harrison BD, Li JJY, McLoughlin AG, Court DA. Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001272. [PMID: 36748523 PMCID: PMC9993110 DOI: 10.1099/mic.0.001272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
Collapse
Affiliation(s)
- Md Deen Islam
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brian D Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Judy J-Y Li
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Austein G McLoughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
27
|
Study of Prescription-Indication of Outpatient Systemic Anti-Fungals in a Colombian Population. A Cross-Sectional Study. Antibiotics (Basel) 2022; 11:antibiotics11121805. [PMID: 36551462 PMCID: PMC9774786 DOI: 10.3390/antibiotics11121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The inappropriate use of antifungals is associated with greater antimicrobial resistance, costs, adverse events, and worse clinical outcomes. The aim of this study was to determine prescription patterns and approved and unapproved indications for systemic antifungals in a group of patients in Colombia. This was a cross-sectional study on indications for the use of systemic antifungals in outpatients from a drug dispensing database of approximately 9.2 million people affiliated with the Colombian Health System. Sociodemographic, pharmacological, and clinical variables were considered. Descriptive, bivariate, and multivariate analyses were performed. A total of 74,603 patients with antifungal prescriptions were identified; they had a median age of 36.0 years (interquartile range: 22.0−53.0 years), and 67.3% of patients were women. Fluconazole (66.5%) was the most prescribed antifungal for indications such as vaginitis, vulvitis, and vulvovaginitis (35.0%). A total of 29.3% of the prescriptions were used in unapproved indications. A total of 96.3% of ketoconazole users used the medication in unapproved indications. Men (OR: 1.91; CI95%: 1.79−2.04), <18 years of age (OR: 1.20; CI95%: 1.11−1.31), from the Caribbean region (OR: 1.26; CI95%: 1.18−1.34), with chronic obstructive pulmonary disease (OR: 1.80; CI95%: 1.27−2.54), prescriptions made by a general practitioner (OR: 1.17; CI95%: 1.04−1.31), receiving comedications (OR: 1.58; CI95%: 1.48−1.69), and the concomitant use of other antimicrobials (OR: 1.77; CI95%: 1.66−1.88) were associated with a higher probability that the antifungal was used for unapproved indications; deep mycosis (OR: 0.49; CI95%: 0.41−0.58), prescribing fluconazole (OR: 0.06; CI95%: 0.06−0.06), and having diabetes mellitus (OR: 0.33; CI95%: 0.29−0.37), cancer (OR: 0.13; CI95%: 0.11−0.16), or HIV (OR: 0.07; CI95%: 0.04−0.09) reduced this risk. Systemic antifungals were mostly used for the management of superficial mycoses, especially at the gynecological level. In addition, more than a quarter of patients received these medications in unapproved indications, and there was broad inappropriate use of ketoconazole.
Collapse
|
28
|
Li T, Qin Z, Wang D, Xia X, Zhou X, Hu G. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid. World J Microbiol Biotechnol 2022; 39:36. [PMID: 36472665 DOI: 10.1007/s11274-022-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Phenyllactic acid (PLA), a natural antimicrobial substance, has many potential applications in the food, animal feed, pharmaceutical and cosmetic industries. However, its production is limited by the complex reaction steps involved in its chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, enzymatic or whole-cell catalysis was developed as an alternative method for PLA production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value PLA. Specially, the advantages and disadvantages of the using of the three kinds of substrates, which includes phenylpyruvate, phenylalanine and glucose as starting materials by natural or engineered microbes is summarized. Notably, the bio-conversion of PLA often requires the consumption of expensive coenzyme NADH. To overcome the issues of NADH regeneration, efficiently internal cofactor regeneration systems constructed by co-expressing different enzyme combinations composed of lactate dehydrogenase with others for enhancing the PLA production, as well as their possible improvements, are discussed. In particular, the construction of fusion proteins with different linkers can achieve higher PLA yield and more efficient cofactor regeneration than that of multi-enzyme co-expression. Overall, this review provides a comprehensive overview of PLA biosynthesis pathways and strategies for increasing PLA yield through biotechnology, providing future directions for the large-scale commercial production of PLA and the expansion of downstream applications.
Collapse
Affiliation(s)
- Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China
| | - Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China.
| | - Xue Xia
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Xiaojie Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Ge Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
29
|
Abstract
Computational, in silico prediction of resistance-conferring escape mutations could accelerate the design of therapeutics less prone to resistance. This article describes how to use the Resistor algorithm to predict escape mutations. Resistor employs Pareto optimization on four resistance-conferring criteria-positive and negative design, mutational probability, and hotspot cardinality-to assign a Pareto rank to each prospective mutant. It also predicts the mechanism of resistance, that is, whether a mutant ablates binding to a drug, strengthens binding to the endogenous ligand, or a combination of these two factors, and provides structural models of the mutants. Resistor is part of the free and open-source computational protein design software OSPREY.
Collapse
Affiliation(s)
- Nathan Guerin
- Department of Computer Science, Duke University, Durham, North Carolina, USA
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, North Carolina, USA
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
30
|
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. J Funct Biomater 2022; 13:jfb13040242. [PMID: 36412883 PMCID: PMC9680418 DOI: 10.3390/jfb13040242] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall's integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis.
Collapse
|
31
|
Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol 2022; 5:1013. [PMID: 36163459 PMCID: PMC9512779 DOI: 10.1038/s42003-022-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease. Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Theo John Portlock
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK. .,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
32
|
Taynton T, Barlow G, Allsup D. PRO: Biomarker surveillance for invasive fungal infections without antifungal prophylaxis could safely reduce antifungal use in acute leukaemia. JAC Antimicrob Resist 2022; 4:dlac074. [PMID: 35873180 PMCID: PMC9305519 DOI: 10.1093/jacamr/dlac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022] Open
Abstract
Mould-active antifungal prophylaxis is frequently used to prevent invasive fungal infection in patients with acute leukaemia being treated with intensive chemotherapy. Invasive fungal infections are difficult to diagnose, and despite the use of prophylaxis a high proportion of patients still receive therapeutic antifungals. Antifungal medications have important interactions, can cause serious adverse events, and may drive the proliferation of antifungal resistance. The use of two biomarkers, such as galactomannan in combination with the less-specific β-d-glucan, can mitigate the risk of not detecting non-Aspergillus species, as well as improving pooled sensitivity and specificity. We argue that regular biomarkers could be used safely as part of an antifungal stewardship strategy to reduce antifungal use, by both screening for infection in patients not on prophylaxis and ruling out infection in patients treated empirically.
Collapse
Affiliation(s)
- Thomas Taynton
- Hull University Teaching Hospitals NHS Trust, Castle Hill
Hospital, Castle Road, Cottingham, Hull, HU16
5JQ, UK
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical
School, University of Hull, Hull, HU6 7RX,
UK
| | - Gavin Barlow
- Hull University Teaching Hospitals NHS Trust, Castle Hill
Hospital, Castle Road, Cottingham, Hull, HU16
5JQ, UK
- Hull York Medical School, University of York, Heslington,
York, YO10 5DD, UK
| | - David Allsup
- Hull University Teaching Hospitals NHS Trust, Castle Hill
Hospital, Castle Road, Cottingham, Hull, HU16
5JQ, UK
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical
School, University of Hull, Hull, HU6 7RX,
UK
| |
Collapse
|
33
|
Mendoza SR, Liedke SC, de La Noval CR, da Silva Ferreira M, Gomes KX, Honorato L, Nimrichter L, Peralta JM, Guimarães AJ. In vitro and in vivo efficacies of Dectin-1-Fc(IgG)(s) fusion proteins against invasive fungal infections. Med Mycol 2022; 60:6648754. [PMID: 35867978 DOI: 10.1093/mmy/myac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal infections have increased in the last years, particularly associated to an increment in the number of immunocompromised individuals and the emergence of known or new resistant species, despite the difficulties in the often time-consuming diagnosis. The controversial efficacy of the currently available strategies for their clinical management, apart from their high toxicity and severe side effects, have renewed the interest in the research and development of new broad antifungal alternatives. These encompass vaccines and passive immunization strategies with monoclonal antibodies (mAbs), recognizing ubiquitous fungal targets, such as fungal cell wall β-1,3-glucan polysaccharides, which could be used in early therapeutic intervention without the need for the diagnosis at species-level. As additional alternatives, based on the Dectin-1 great affinity to β-1,3-glucan, our group developed broad antibody-like Dectin1-Fc(IgG)(s) from distinct subclasses (IgG2a and IgG2b) and compared their antifungal in vitro and passive immunizations in vivo performances. Dectin1-Fc(IgG2a) and Dectin1-Fc(IgG2b) demonstrated high affinity to laminarin and the fungal cell wall by ELISA, flow cytometry and microscopy. Both Dectin-1-Fc(IgG)(s) inhibited H. capsulatum and C. neoformans growth in a dose-dependent fashion. For C. albicans, such inhibitory effect was observed with concentrations as low as 0.098 and 0.049 µg/mL, respectively, which correlated with the impairment of the kinetics and lengths of germ tubes in comparison to controls. Previous opsonization with Dectin-1-Fc(IgG)(s) enhanced considerably the macrophage antifungal effector functions, increasing the fungi macrophages-interactions and significantly reducing the intraphagosome fungal survival, as lower CFUs were observed. The administration of both Dectin1-Fc(IgG)(s) reduced the fungal burden and mortality in murine histoplasmosis and candidiasis models, in accordance with previous evaluations in aspergillosis model. These results altogether strongly suggested that therapeutic interventions with Dectin-1-Fc(IgG)(s) fusion proteins could directly impact the innate immunity and disease outcome in favor of the host, by direct neutralization, opsonization, phagocytosis, and fungal elimination, providing interesting information on the potential of these new strategies for the control of invasive fungal infections.
Collapse
Affiliation(s)
- S R Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil
| | - S C Liedke
- Laboratório de Diagnóstico Imunológico e Molecular de Doenças Infecciosas e Parasitárias, Federal University of Rio de Janeiro, Brazil
| | - C R de La Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil
| | - M da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil
| | - K X Gomes
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil
| | - L Honorato
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil
| | - L Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil
| | - J M Peralta
- Laboratório de Diagnóstico Imunológico e Molecular de Doenças Infecciosas e Parasitárias, Federal University of Rio de Janeiro, Brazil
| | - A J Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil.,Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Fluminense Federal University, Brazil
| |
Collapse
|
34
|
Kamli MR, Alzahrani EA, Albukhari SM, Ahmad A, Sabir JSM, Malik MA. Combination Effect of Novel Bimetallic Ag–Ni Nanoparticles with Fluconazole against Candida albicans. J Fungi (Basel) 2022; 8:jof8070733. [PMID: 35887488 PMCID: PMC9316949 DOI: 10.3390/jof8070733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of antifungal drug resistance among pathogenic yeast “Candida” has posed an immense global threat to the public healthcare sector. The most notable species of Candida causing most fungal infections is Candida albicans. Furthermore, recent research has revealed that transition and noble metal combinations can have synergistic antimicrobial effects. Therefore, a one-pot seedless biogenic synthesis of Ag-Ni bimetallic nanoparticles (Ag–Ni NPs) using Salvia officinalis aqueous leaf extract is described. Various techniques, such as UV–vis, FTIR, XRD, SEM, EDX, and TGA, were used to validate the production of Ag-Ni NPs. The antifungal susceptibility of Ag-Ni NPs alone and in combination with fluconazole (FLZ) was tested against FLZ-resistant C. albicans isolate. Furthermore, the impacts of these NPs on membrane integrity, drug efflux pumps, and biofilms formation were evaluated. The MIC (1.56 μg/mL) and MFC (3.12 μg/mL) results indicated potent antifungal activity of Ag-Ni NPs against FLZ-resistant C. albicans. Upon combination, synergistic interaction was observed between Ag-Ni NPs and FLZ against C. albicans 5112 with a fractional inhibitory concentration index (FICI) value of 0.31. In-depth studies revealed that Ag-Ni NPs at higher concentrations (3.12 μg/mL) have anti-biofilm properties and disrupt membrane integrity, as demonstrated by scanning electron microscopy results. In comparison, morphological transition was halted at lower concentrations (0.78 μg/mL). From the results of efflux pump assay using rhodamine 6G (R6G), it was evident that Ag-Ni NPs blocks the efflux pumps in the FLZ-resistant C. albicans 5112. Targeting biofilms and efflux pumps using novel drugs will be an alternate approach for combatting the threat of multi-drug resistant (MDR) stains of C. albicans. Therefore, this study supports the usage of Ag-Ni NPs to avert infections caused by drug resistant strains of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham A. Alzahrani
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Soha M. Albukhari
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
- Correspondence:
| |
Collapse
|
35
|
Zhang Y, Li Q, Chao W, Qin Y, Chen J, Wang Y, Liu R, Lv Q, Wang J. Design, Synthesis and Antifungal Evaluation of Novel Pyrylium Salt In Vitro and In Vivo. Molecules 2022; 27:molecules27144450. [PMID: 35889323 PMCID: PMC9315806 DOI: 10.3390/molecules27144450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, discovering new skeleton antifungal drugs is the direct way to address clinical fungal infections. Pyrylium salt SM21 was screened from a library containing 50,240 small molecules. Several studies about the antifungal activity and mechanism of SM21 have been reported, but the structure–activity relationship of pyrylium salts was not clear. To explore the chemical space of antifungal pyrylium salt SM21, a series of pyrylium salt derivatives were designed and synthesized. Their antifungal activity and structure-activity relationships (SAR) were investigated. Compared with SM21, most of the synthesized compounds exhibited equivalent or improved antifungal activities against Candida albicans in vitro. The synthesized compounds, such as XY10, XY13, XY14, XY16 and XY17 exhibited comparable antifungal activities against C. albicans with MIC values ranging from 0.47 to 1.0 μM. Fortunately, a compound numbered XY12 showed stronger antifungal activities and lower cytotoxicity was obtained. The MIC of compound XY12 against C. albicans was 0.24 μM, and the cytotoxicity decreased 20-fold as compared to SM21. In addition, XY12 was effective against fluconazole-resistant C. albicans and other pathogenic Candida species. More importantly, XY12 could significantly increase the survival rate of mice with a systemic C. albicans infection, which suggested the good antifungal activities of XY12 in vitro and in vivo. Our results indicated that structural modification of pyrylium salts could lead to the discovery of new antifungal drugs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
| | - Qiuhao Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
| | - Wen Chao
- Experimental Teaching Center of Basic Medicine College, Navel Medical University, Shanghai 200433, China;
| | - Yulin Qin
- Fudan University Minhang Hospital, Shanghai 201199, China;
| | - Jiayan Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
| | - Yingwen Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
- Correspondence: (R.L.); (Q.L.); (J.W.)
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
- Correspondence: (R.L.); (Q.L.); (J.W.)
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (Y.Z.); (Q.L.); (J.C.); (Y.W.)
- Correspondence: (R.L.); (Q.L.); (J.W.)
| |
Collapse
|
36
|
Mech-Warda P, Giełdoń A, Kawiak A, Maciejewska N, Olszewski M, Makowski M, Chylewska A. Low-Molecular Pyrazine-Based DNA Binders: Physicochemical and Antimicrobial Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123704. [PMID: 35744829 PMCID: PMC9228100 DOI: 10.3390/molecules27123704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Pyrazine and its derivatives are a large group of compounds that exhibit broad biological activity, the changes of which can be easily detected by a substituent effect or a change in the functional group. The present studies combined theoretical research with the density functional theory (DFT) approach (B3LYP/6-311+G**) and experimental (potentiometric and spectrophotometric) analysis for a thorough understanding of the structure of chlorohydrazinopyrazine, its physicochemical and cytotoxic properties, and the site and nature of interaction with DNA. The obtained results indicated that 2-chloro-3-hydrazinopyrazine (2Cl3HP) displayed the highest affinity to DNA. Cytotoxicity studies revealed that the compound did not exhibit toxicity toward human dermal keratinocytes, which supported the potential application of 2Cl3HP in clinical use. The study also attempted to establish the possible equilibria occurring in the aqueous solution and, using both theoretical and experimental methods, clearly showed the hydrophilic nature of the compound. The experimental and theoretical results of the study confirmed the quality of the compound, as well as the appropriateness of the selected set of methods for similar research.
Collapse
Affiliation(s)
- Paulina Mech-Warda
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Artur Giełdoń
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Anna Kawiak
- Institute of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; (N.M.); (M.O.)
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (P.M.-W.); (M.M.)
- Correspondence:
| |
Collapse
|
37
|
Logviniuk D, Jaber QZ, Dobrovetsky R, Kozer N, Ksiezopolska E, Gabaldón T, Carmeli S, Fridman M. Benzylic Dehydroxylation of Echinocandin Antifungal Drugs Restores Efficacy against Resistance Conferred by Mutated Glucan Synthase. J Am Chem Soc 2022; 144:5965-5975. [PMID: 35347986 PMCID: PMC8991007 DOI: 10.1021/jacs.2c00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each year, infections caused by fungal pathogens claim the lives of about 1.6 million people and affect the health of over a billion people worldwide. Among the most recently developed antifungal drugs are the echinocandins, which noncompetitively inhibit β-glucan synthase, a membrane-bound protein complex that catalyzes the formation of the main polysaccharide component of the fungal cell wall. Resistance to echinocandins is conferred by mutations in FKS genes, which encode the catalytic subunit of the β-glucan synthase complex. Here, we report that selective removal of the benzylic alcohol of the nonproteinogenic amino acid 3S,4S-dihydroxy-l-homotyrosine of the echinocandins anidulafungin and rezafungin, restored their efficacy against a large panel of echinocandin-resistant Candida strains. The dehydroxylated compounds did not significantly affect the viability of human-derived cell culture lines. An analysis of the efficacy of the dehydroxylated echinocandins against resistant Candida strains, which contain mutations in the FKS1 and/or FKS2 genes of the parental strains, identified amino acids of the Fks proteins that are likely to reside in proximity to the l-homotyrosine residue of the bound drug. This study describes the first example of a chemical modification strategy to restore the efficacy of echinocandin drugs, which have a critical place in the arsenal of antifungal drugs, against resistant fungal pathogens.
Collapse
Affiliation(s)
- Dana Logviniuk
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noga Kozer
- The Wohl Drug Discovery institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ewa Ksiezopolska
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, Barcelona 08034, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, Barcelona 08034, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain.,Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Madrid 28029, Spain
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
38
|
Nwankwo L, Gilmartin D, Matharu S, Nuh A, Donovan J, Armstrong-James D, Shah A. Experience of Isavuconazole as a Salvage Therapy in Chronic Pulmonary Fungal Disease. J Fungi (Basel) 2022; 8:362. [PMID: 35448593 PMCID: PMC9029347 DOI: 10.3390/jof8040362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Instances of resistant fungal infection are rising in pulmonary disease, with limited therapeutic options. Therapeutic drug monitoring of azole antifungals has been necessary to ensure safety and efficacy but is considered unnecessary for the newest triazole isavuconazole. Aims: To characterise the prevalence of isavuconazole resistance and use in a tertiary respiratory centre. Methods: A retrospective observational analysis (2016−2021) of adult respiratory patients analysing fungal culture, therapeutic drug monitoring, and outcome post-isavuconazole therapy. Results: During the study period, isavuconazole susceptibility testing was performed on 26 Aspergillus spp. isolates. A total of 80.8% of A. fumigatus isolates had isavuconazole (MIC > 1 mg/L, and 73.0% > 2 mg/L) with a good correlation to voriconazole MIC (r = 0.7, p = 0.0002). A total of 54 patients underwent isavuconazole therapy during the study period (median duration 234 days (IQR: 24−499)). A total of 67% of patients tolerated isavuconazole, despite prior azole toxicity in 61.8%, with increased age (rpb = 0.31; p = 0.021) and male sex (φc = 0.30; p = 0.027) being associated with toxicity. A total of 132 isavuconazole levels were performed with 94.8% > 1 mg/L and 72% > 2 mg/L. Dose change from manufacturer’s recommendation was, however, required in 9.3% to achieve a concentration of >2 mg/L. Conclusion: We describe the use of isavuconazole as a salvage therapy in a chronic pulmonary fungal disease setting with a high prevalence of azole resistance. Therapeutic concentrations at standard dosing were high; however, results reinforce antifungal stewardship for optimization.
Collapse
Affiliation(s)
- Lisa Nwankwo
- Pharmacy Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Desmond Gilmartin
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Sheila Matharu
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Ali Nuh
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
| | - Jackie Donovan
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK;
| | - Darius Armstrong-James
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Diseases, Imperial College London, London SW7 2AZ, UK
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London W2 1PG, UK
| |
Collapse
|
39
|
WMR Peptide as Antifungal and Antibiofilm against Albicans and Non-Albicans Candida Species: Shreds of Evidence on the Mechanism of Action. Int J Mol Sci 2022; 23:ijms23042151. [PMID: 35216270 PMCID: PMC8879636 DOI: 10.3390/ijms23042151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Candida species are the most common fungal pathogens infecting humans and can cause severe illnesses in immunocompromised individuals. The increased resistance of Candida to traditional antifungal drugs represents a great challenge in clinical settings. Therefore, novel approaches to overcome antifungal resistance are desired. Here, we investigated the use of an antimicrobial peptide WMR against Candida albicans and non-albicans Candida species in vitro and in vivo. Results showed a WMR antifungal activity on all Candida planktonic cells at concentrations between 25 μM to >50 μM and exhibited activity at sub-MIC concentrations to inhibit biofilm formation and eradicate mature biofilm. Furthermore, in vitro antifungal effects of WMR were confirmed in vivo as demonstrated by a prolonged survival rate of larvae infected by Candida species when the peptide was administered before or after infection. Additional experiments to unravel the antifungal mechanism were performed on C. albicans and C. parapsilosis. The time-killing curves showed their antifungal activity, which was further confirmed by the induced intracellular and mitochondrial reactive oxygen species accumulation; WMR significantly suppressed drug efflux, down-regulating the drug transporter encoding genes CDR1. Moreover, the ability of WMR to penetrate within the cells was demonstrated by confocal laser scanning microscopy. These findings provide novel insights for the antifungal mechanism of WMR against Candida albicans and non-albicans, providing fascinating scenarios for the identification of new potential antifungal targets.
Collapse
|
40
|
Zhao Z, Li X, Cui Z, Tong T, Zhang Y, Zhang Y, Yang X, Keerthiga R, Fu C, Fu A. Synthesis of Hemiprotonic Phenanthroline-Phenanthroline + Compounds with both Antitumor and Antimicrobial Activity. J Med Chem 2022; 65:2532-2547. [PMID: 35073076 DOI: 10.1021/acs.jmedchem.1c01982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Currently, cancer patients with microbial infection are a severe challenge in clinical treatment. To address the problem, we synthesized hemiprotonic compounds based on the unique structure of hemiprotonic nucleotide base pairs in a DNA i-motif. These compounds were produced from phenanthroline (ph) dimerization with phenanthroline as a proton receptor and ammonium as a donor. The biological activity shows that the compounds have a selective antitumor effect through inducing cell apoptosis. The molecular mechanism could be related to specific inhibition of transcription factor PLAGL2 of tumor cells, assessed by transcriptomic analysis. Moreover, results show that the hemiprotonic ph-ph+ has broad-spectrum antibacterial and antifungal activities, and drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, are sensitive to the compound. In animal models of liver cancer with fungal infection, the ph-ph+ retards proliferation of hepatoma cells in tumor-bearing mice and remedies pneumonia and encephalitis caused by Cryptococcus neoformans. The study provides a novel therapeutic candidate for cancer patients accompanied by infection.
Collapse
Affiliation(s)
- Zizhen Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhihong Cui
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Tingting Tong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yingying Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuping Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoxi Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Rajendiran Keerthiga
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
41
|
Dabas Y, Xess I, Pandey M, Ahmed J, Sachdev J, Iram A, Singh G, Mahapatra M, Seth R, Bakhshi S, Kumar R, Jyotsna VP, Mathur S. Epidemiology and Antifungal Susceptibility Patterns of Invasive Fungal Infections (IFIs) in India: A Prospective Observational Study. J Fungi (Basel) 2021; 8:jof8010033. [PMID: 35049974 PMCID: PMC8777790 DOI: 10.3390/jof8010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The epidemiology of invasive fungal infections (IFI) is ever evolving. The aim of the present study was to analyze the clinical, microbiological, susceptibility, and outcome data of IFI in Indian patients to identify determinants of infection and 30-day mortality. Proven and probable/putative IFI (defined according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group and AspICU criteria) from April 2017 to December 2018 were evaluated in a prospective observational study. All recruited patients were antifungal naïve (n = 3300). There were 253 episodes of IFI (7.6%) with 134 (52.9%) proven and 119 (47%) probable/putative infections. There were four major clusters of infection: invasive candidiasis (IC) (n = 53, 20.9%), cryptococcosis (n = 34, 13.4%), invasive aspergillosis (IA) (n = 103, 40.7%), and mucormycosis (n = 62, 24.5%). The significant risk factors were high particulate efficiency air (HEPA) room admission, ICU admission, prolonged exposure to corticosteroids, diabetes mellitus, chronic liver disease (CLD), acquired immunodeficiency syndrome (AIDS), coronary arterial disease (CAD), trauma, and multiorgan involvement (p < 0.5; odds ratio: >1). The all-cause 30-day mortality was 43.4% (n = 110). It varied by fungal group: 52.8% (28/53) in IC, 58.8% (20/34) in cryptococcosis, 39.8% (41/103) in IA, and 33.9% (21/62) in mucormycosis. HEPA room, ICU admission for IC; HEPA rooms, diabetes mellitus for cryptococcosis; hematological malignancies, chronic kidney disease (CKD), sepsis, galactomannan antigen index value ≥1 for IA and nodules; and ground glass opacities on radiology for mucormycosis were significant predictors of death (odds ratio >1). High minimum inhibitory concentration (MIC) values for azoles were observed in C. albicans, C. parapsilosis, C. glabrata, A. fumigatus, A. flavus, R. arrhizus, R. microsporus, and M. circinelloides. For echinocandin, high MIC values were seen in C. tropicalis, C. guillermondii, C. glabrata, and A. fumigatus. This study highlights the shift in epidemiology and also raises concern of high MICs to azoles among our isolates. It warrants regular surveillance, which can provide the local clinically correlated microbiological data to clinicians and which might aid in guiding patient treatment.
Collapse
Affiliation(s)
- Yubhisha Dabas
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Immaculata Xess
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
- Correspondence: ; Tel.: +91-98-1826-8181; Fax: +91-11-2659-3208
| | - Mragnayani Pandey
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Jaweed Ahmed
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Janya Sachdev
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Azka Iram
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Gagandeep Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India; (Y.D.); (M.P.); (J.A.); (J.S.); (A.I.); (G.S.)
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Viveka P. Jyotsna
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
42
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
43
|
Niegowska M, Sanseverino I, Navarro A, Lettieri T. Knowledge gaps in the assessment of antimicrobial resistance in surface waters. FEMS Microbiol Ecol 2021; 97:fiab140. [PMID: 34625810 PMCID: PMC8528692 DOI: 10.1093/femsec/fiab140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted.
Collapse
Affiliation(s)
- Magdalena Niegowska
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
44
|
|
45
|
Fontinha D, Sousa SA, Morais TS, Prudêncio M, Leitão JH, Le Gal Y, Lorcy D, Silva RAL, Velho MFG, Belo D, Almeida M, Guerreiro JF, Pinheiro T, Marques F. Gold(iii) bis(dithiolene) complexes: from molecular conductors to prospective anticancer, antimicrobial and antiplasmodial agents. Metallomics 2021; 12:974-987. [PMID: 32391537 DOI: 10.1039/d0mt00064g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The anticancer, antimicrobial and antiplasmodial activities of six gold(iii) bis(dithiolene) complexes were studied. Complexes 1-6 showed relevant anticancer properties against A2780/A2780cisR ovarian cancer cells (IC50 values of 0.08-2 μM), also being able to overcome cisplatin resistance in A2780cisR cells. Complex 1 also exhibited significant antimicrobial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC) values of 12.1 ± 3.9 μg mL-1) and both Candida glabrata and Candida albicans (MICs of 9.7 ± 2.7 and 19.9 ± 2.4 μg mL-1, respectively). In addition, all complexes displayed antiplasmodial activity against the Plasmodium berghei parasite liver stages, even exhibiting better results than the ones obtained using primaquine, an anti-malarial drug. Mechanistic studies support the idea that thioredoxin reductase, but not DNA, is a possible target of these complexes. Complex 1 is stable under biological conditions, which would be important if this compound is ever to be considered as a drug. Overall, the results obtained evidenced the promising biological activity of complex 1, which might have potential as a novel anticancer, antimicrobial and antiplasmodial agent to be used as an alternative to current therapeutics.
Collapse
Affiliation(s)
- Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Departmento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Departmento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Yann Le Gal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Dominique Lorcy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Rafaela A L Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Mariana F G Velho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal. and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Dulce Belo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Teresa Pinheiro
- iBB-Institute for Bioengineering and Biosciences, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
46
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). J Clin Microbiol 2021; 59:e0178420. [PMID: 33504591 DOI: 10.1128/jcm.01784-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are a rising threat to our immunocompromised patient population, as well as other nonimmunocompromised patients with various medical conditions. However, little progress has been made in the past decade to improve fungal diagnostics. To jointly address this diagnostic challenge, the Fungal Diagnostics Laboratory Consortium (FDLC) was recently created. The FDLC consists of 26 laboratories from the United States and Canada that routinely provide fungal diagnostic services for patient care. A survey of fungal diagnostic capacity among the 26 members of the FDLC was recently completed, identifying the following diagnostic gaps: lack of molecular detection of mucormycosis; lack of an optimal diagnostic algorithm incorporating fungal biomarkers and molecular tools for early and accurate diagnosis of Pneumocystis pneumonia, aspergillosis, candidemia, and endemic mycoses; lack of a standardized molecular approach to identify fungal pathogens directly in formalin-fixed paraffin-embedded tissues; lack of robust databases to enhance mold identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; suboptimal diagnostic approaches for mold blood cultures, tissue culture processing for Mucorales, and fungal respiratory cultures for cystic fibrosis patients; inadequate capacity for fungal point-of-care testing to detect and identify new, emerging or underrecognized, rare, or uncommon fungal pathogens; and performance of antifungal susceptibility testing. In this commentary, the FDLC delineates the most pressing unmet diagnostic needs and provides expert opinion on how to fulfill them. Most importantly, the FDLC provides a robust laboratory network to tackle these diagnostic gaps and ultimately to improve and enhance the clinical laboratory's capability to rapidly and accurately diagnose fungal infections.
Collapse
|
48
|
Huët MAL, Wong LW, Goh CBS, Hussain MH, Muzahid NH, Dwiyanto J, Lee SWH, Ayub Q, Reidpath D, Lee SM, Rahman S, Tan JBL. Investigation of culturable human gut mycobiota from the segamat community in Johor, Malaysia. World J Microbiol Biotechnol 2021; 37:113. [PMID: 34101035 DOI: 10.1007/s11274-021-03083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Although several studies have already been carried out in investigating the general profile of the gut mycobiome across several countries, there has yet to be an officially established baseline of a healthy human gut mycobiome, to the best of our knowledge. Microbial composition within the gastrointestinal tract differ across individuals worldwide, and most human gut fungi studies concentrate specifically on individuals from developed countries or diseased cohorts. The present study is the first culture-dependent community study assessing the prevalence and diversity of gut fungi among different ethnic groups from South East Asia. Samples were obtained from a multi-ethnic semi-rural community from Segamat in southern Malaysia. Faecal samples were screened for culturable fungi and questionnaire data analysis was performed. Culturable fungi were present in 45% of the participants' stool samples. Ethnicity had an impact on fungal prevalence and density in stool samples. The prevalence of resistance to fluconazole, itraconazole, voriconazole and 5-fluorocytosine, from the Segamat community, were 14%, 14%, 11% and 7% respectively. It was found that Jakun individuals had lower levels of antifungal resistance irrespective of the drug tested, and male participants had more fluconazole resistant yeast in their stool samples. Two novel point mutations were identified in the ERG11 gene from one azole resistant Candida glabrata, suggesting a possible cause of the occurrence of antifungal resistant isolates in the participant's faecal sample.
Collapse
Affiliation(s)
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Md Hamed Hussain
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Qasim Ayub
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Genomics Facility, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daniel Reidpath
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,The South East Asia Community Observatory (SEACO), Segamat, Johor, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia. .,Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
49
|
Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS. INFECTION GENETICS AND EVOLUTION 2021; 93:104937. [PMID: 34029724 DOI: 10.1016/j.meegid.2021.104937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A frequent emergence of drug resistance has been observed and posed great threat to global public health recently. This work aimed to investigate the potential synergistic effect and the underlying mechanisms of AgNPs-fluconazole combination more extensively through 2 clinically isolated fluconazole-resistant Candida albicans (C. albicans) strains. METHODS Antifungal properties of AgNPs and fluconazole alone or together against planktonic cells and biofilms were tested. Cellular and molecular targets associated with fluconazole resistance were monitored after AgNPs treatment. Antifungal potential of AgNPs-fluconazole combination was also explored in vivo using a mouse model of disseminated candidiasis. Tissue burden and survival rate were analyzed. RESULTS The results indicated that AgNPs worked synergistically with fluconazole against both planktonic cells of fluconazole-resistant C. albicans and biofilms formed <12 h. AgNPs treatment down-regulated ERG1, ERG11, ERG25, and CDR2, decreased membrane ergosterol levels and membrane fluidity, reduced membrane content of Cdr1p, Cdr2p, and thus efflux bump activity. The elevated ROS production was also a likely cause of the synergistic effect. In vivo, AgNPs and fluconazole combination significantly decreased the fungal burden and improved the survival rate of infected mice. CONCLUSION In conclusion, these results further confirm that AgNPs-fluconazole combination is a hopeful strategy for the treatment of fluconazole-resistant fungal infections.
Collapse
|
50
|
Analysis of the cyp51 genes contribution to azole resistance in Aspergillus section Nigri with the CRISPR-Cas9 technique. Antimicrob Agents Chemother 2021; 65:AAC.01996-20. [PMID: 33685892 PMCID: PMC8092891 DOI: 10.1128/aac.01996-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyp51 contribution to azole resistance has been broadly studied and characterized in Aspergillus fumigatus, whereas it remains poorly investigated in other clinically relevant species of the genus, such as those of section Nigri In this work, we aimed to analyze the impact of cyp51 genes (cyp51A and cyp51B) on the voriconazole (VRC) response and resistance of Aspergillus niger and Aspergillus tubingensis We generated CRISPR-Cas9 cyp51A and cyp51B knock-out mutants from strains with different genetic backgrounds and diverse patterns of azole susceptibility. Single gene deletions of cyp51 genes resulted in 2 to 16-fold decrease of the VRC Minimum Inhibitory Concentration (MIC) values, which were below the VRC Epidemiological Cutoff Value (ECV) established by the Clinical and Laboratory Standards Institute (CLSI) irrespective of their parental strains susceptibilities. Gene expression studies in the tested species confirmed that cyp51A participates more actively than cyp51B in the transcriptional response of azole stress. However, ergosterol quantification revealed that both enzymes comparably impact the total ergosterol content within the cell, as basal and VRC-induced changes to ergosterol content was similar in all cases. These data contribute to our understanding on Aspergillus azole resistance, especially in non-fumigatus species.
Collapse
|