1
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
2
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
3
|
Zhao Z, Chen Y, Sun T, Jiang C. Nanomaterials for brain metastasis. J Control Release 2024; 365:833-847. [PMID: 38065414 DOI: 10.1016/j.jconrel.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Mellinger A, Lubitz LJ, Gazaille C, Leneweit G, Bastiat G, Lépinoux-Chambaud C, Eyer J. The use of liposomes functionalized with the NFL-TBS.40-63 peptide as a targeting agent to cross the in vitro blood-brain barrier and target glioblastoma cells. Int J Pharm 2023; 646:123421. [PMID: 37722495 DOI: 10.1016/j.ijpharm.2023.123421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Glioblastoma is the most common and aggressive brain tumor. Current treatments do not allow to cure the patients. This is partly due to the blood-brain barrier (BBB), which limits the delivery of drugs to the pathological site. To overcome this, we developed liposomes functionalized with a neurofilament-derived peptide, NFL-TBS.40-63 (NFL), known for its highly selective targeting of glioblastoma cells. First, in vitro BBB model was developed to check whether the NFL can also promote barrier crossing in addition to its active targeting capacity. Permeability experiments showed that the NFL peptide was able to cross the BBB. Moreover, when the BBB was in a pathological situation, i.e., an in vitro blood-brain tumor barrier (BBTB), the passage of the NFL peptide was greater while maintaining its glioblastoma targeting capacity. When the NFL peptide was associated to liposomes, it enhanced their ability to be internalized into glioblastoma cells after passage through the BBTB, compared to liposomes without NFL. The cellular uptake of liposomes was limited in the endothelial cell monolayer in comparison to the glioblastoma one. These data indicated that the NFL peptide is a promising cell-penetrating peptide tool when combined with drug delivery systems for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Adélie Mellinger
- GlioCure SA, Angers, France; Univ Angers, Inserm, CNRS, MINT, Angers, France.
| | | | | | | | | | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, Angers, France.
| |
Collapse
|
5
|
Cooper I, Last D, Ravid O, Rand D, Matsree E, Omesi L, Shemesh C, Liberman M, Zach L, Furman O, Daniels D, Liraz-Zaltsman S, Mardor Y, Sharabi S. BBB opening by low pulsed electric fields, depicted by delayed-contrast MRI, enables efficient delivery of therapeutic doxorubicin doses into mice brains. Fluids Barriers CNS 2023; 20:67. [PMID: 37737197 PMCID: PMC10515428 DOI: 10.1186/s12987-023-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pharmacological treatment of CNS diseases is limited due to the presence of the blood-brain barrier (BBB). Recent years showed significant advancement in the field of CNS drug delivery enablers, with technologies such as MR-guided focused ultrasound reaching clinical trials. This have inspired researchers in the field to invent novel brain barriers opening (BBo) technologies that are required to be simple, fast, safe and efficient. One such technology, recently developed by us, is BDF (Barrier Disrupting Fields), based on low pulsed electric fields (L-PEFs) for opening the BBB in a controlled, safe, reversible and non-invasive manner. Here, we conducted an in vivo study to show that BDF is a feasible technology for delivering Doxorubicin (Doxo) into mice brain. Means for depicting BBBo levels were developed and applied for monitoring the treatment and predicting response. Overall, the goals of the presented study were to demonstrate the feasibility for delivering therapeutic Doxo doses into naïve and tumor-bearing mice brains and applying delayed-contrast MRI (DCM) for monitoring the levels of BBBo. METHODS L-PEFs were applied using plate electrodes placed on the intact skull of naïve mice. L-PEFs/Sham mice were scanned immediately after the procedure by DCM ("MRI experiment"), or injected with Doxo and Trypan blue followed by delayed (4 h) perfusion and brain extraction ("Doxo experiment"). Doxo concentrations were measured in brain samples using confocal microscopy and compared to IC50 of Doxo in glioma cell lines in vitro. In order to map BBBo extent throughout the brain, pixel by pixel MR image analysis was performed using the DCM data. Finally, the efficacy of L-PEFs in combination with Doxo was tested in nude mice bearing intracranial human glioma tumors. RESULTS Significant amount of Doxo was found in cortical regions of all L-PEFs-treated mice brains (0.50 ± 0.06 µg Doxo/gr brain) while in Sham brains, Doxo concentrations were below or on the verge of detection limit (0.03 ± 0.02 µg Doxo/gr brain). This concentration was x97 higher than IC50 of Doxo calculated in gl261 mouse glioma cells and x8 higher than IC50 of Doxo calculated in U87 human glioma cells. DCM analysis revealed significant BBBo levels in the cortical regions of L-PEFs-treated mice; the average volume of BBBo in the L-PEFs-treated mice was x29 higher than in the Sham group. The calculated BBBo levels dropped exponentially as a function of BBBo threshold, similarly to the electric fields distribution in the brain. Finally, combining non-invasive L-PEFs with Doxo significantly decreased brain tumors growth rates in nude mice. CONCLUSIONS Our results demonstrate significant BBBo levels induced by extra-cranial L-PEFs, enabling efficient delivery of therapeutic Doxo doses into the brain and reducing tumor growth. As BBBo was undetectable by standard contrast-enhanced MRI, DCM was applied to generate maps depicting the BBBo levels throughout the brain. These findings suggest that BDF is a promising technology for efficient drug delivery into the brain with important implications for future treatment of brain cancer and additional CNS diseases.
Collapse
Affiliation(s)
- Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- School of Psychology, Reichman University, Herzliya, Israel.
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Erez Matsree
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Liora Omesi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Meir Liberman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Leor Zach
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Orit Furman
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Yael Mardor
- School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Shirley Sharabi
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, 52621, Israel.
| |
Collapse
|
6
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
7
|
Fang C, Zhang Z, Han Y, Xu H, Zhu Z, Du Y, Hou P, Yuan L, Shao A, Zhang A, Lou M. URB2 as an important marker for glioma prognosis and immunotherapy. Front Pharmacol 2023; 14:1113182. [PMID: 37033651 PMCID: PMC10080038 DOI: 10.3389/fphar.2023.1113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Glioma is the most common primary brain tumor and primary malignant tumor of the brain in clinical practice. Conventional treatment has not significantly altered the prognosis of patients with glioma. As research into immunotherapy continues, glioma immunotherapy has shown great potential. Methods: The clinical data were acquired from the Chinese Glioma Genome Atlas (CGGA) database and validated by the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAP) database, and Western blot (WB) analysis. By Cox regression analyses, we examined the association between different variables and overall survival (OS) and its potential as an independent prognostic factor. By constructing a nomogram that incorporates both clinicopathological variables and the expression of URB2, we provide a model for the prediction of prognosis. Moreover, we explored the relationship between immunity and URB2 and elucidated its underlying mechanism of action. Results: Our study shows that URB2 likely plays an oncogenic role in glioma and confirms that URB2 is a prognostic independent risk factor for glioma. Furthermore, we revealed a close relationship between immunity and URB2, which suggests a new approach for the immunotherapy of glioma. Conclusion: URB2 can be used for prognosis prediction and immunotherapy of glioma.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongquan Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinpin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Hasan I, Roy S, Guo B, Du S, Tao W, Chang C. Recent progress in nanomedicines for imaging and therapy of brain tumors. Biomater Sci 2023; 11:1270-1310. [PMID: 36648496 DOI: 10.1039/d2bm01572b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, a malignant brain tumor is one of the most life-threatening diseases with poor prognosis, high risk of recurrence, and low survival rate for patients because of the existence of the blood-brain barrier (BBB) and the lack of efficient diagnostic and therapeutic paradigms. So far, many researchers have devoted their efforts to innovating advanced drugs to efficiently cross the BBB and selectively target brain tumors for optimal imaging and therapy outcomes. Herein, we update the most recent developments in nanomedicines for the diagnosis and treatment of brain tumors in preclinical mouse models. The special focus is on burgeoning drug delivery carriers to improve the specificity of visualization and to enhance the efficacy of brain tumor treatment. Also, we highlight the challenges and perspectives for the future development of brain tumor theranostics. This review is expected to receive wide attention from researchers, professors, and students in various fields to participate in future advancements in preclinical research and clinical translation of brain tumor nanomedicines.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Wei Tao
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen, 518116, P. R. China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
9
|
Quantitative monitoring and modelling of retrodialysis drug delivery in a brain phantom. Sci Rep 2023; 13:1900. [PMID: 36732612 PMCID: PMC9894834 DOI: 10.1038/s41598-023-28915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A vast number of drug molecules are unable to cross the blood-brain barrier, which results in a loss of therapeutic opportunities when these molecules are administered by intravenous infusion. To circumvent the blood-brain barrier, local drug delivery devices have been developed over the past few decades such as reverse microdialysis. Reverse microdialysis (or retrodialysis) offers many advantages, such as a lack of net volume influx to the intracranial cavity and the ability to sample the tumour's micro-environment. However, the translation of this technique to efficient drug delivery has not been systematically studied. In this work, we present an experimental platform to evaluate the performance of microdialysis devices in reverse mode in a brain tissue phantom. The mass of model drug delivered is measured by computing absorbance fields from optical images. Concentration maps are reconstructed using a modern and open-source implementation of the inverse Abel transform. To illustrate our method, we assess the capability of a commercial probe in delivering methylene blue to a gel phantom. We find that the delivery rate can be described by classical microdialysis theory, except at low dialysate flow rates where it is impacted by gravity, and high flow rates where significant convection to the gel occurs. We also show that the flow rate has an important impact not only on the overall size of the drug plume, but also on its shape. The numerical tools developed for this study have been made freely available to ensure that the method presented can be used to rapidly and inexpensively optimise probe design and protocol parameters before proceeding to more in-depth studies.
Collapse
|
10
|
Childhood Brain Tumors: A Review of Strategies to Translate CNS Drug Delivery to Clinical Trials. Cancers (Basel) 2023; 15:cancers15030857. [PMID: 36765816 PMCID: PMC9913389 DOI: 10.3390/cancers15030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Brain and spinal tumors affect 1 in 1000 people by 25 years of age, and have diverse histological, biological, anatomical and dissemination characteristics. A mortality of 30-40% means the majority are cured, although two-thirds have life-long disability, linked to accumulated brain injury that is acquired prior to diagnosis, and after surgery or chemo-radiotherapy. Only four drugs have been licensed globally for brain tumors in 40 years and only one for children. Most new cancer drugs in clinical trials do not cross the blood-brain barrier (BBB). Techniques to enhance brain tumor drug delivery are explored in this review, and cover those that augment penetration of the BBB, and those that bypass the BBB. Developing appropriate delivery techniques could improve patient outcomes by ensuring efficacious drug exposure to tumors (including those that are drug-resistant), reducing systemic toxicities and targeting leptomeningeal metastases. Together, this drug delivery strategy seeks to enhance the efficacy of new drugs and enable re-evaluation of existing drugs that might have previously failed because of inadequate delivery. A literature review of repurposed drugs is reported, and a range of preclinical brain tumor models available for translational development are explored.
Collapse
|
11
|
Markowicz-Piasecka M, Darłak P, Markiewicz A, Sikora J, Kumar Adla S, Bagina S, Huttunen KM. Current approaches to facilitate improved drug delivery to the central nervous system. Eur J Pharm Biopharm 2022; 181:249-262. [PMID: 36372271 DOI: 10.1016/j.ejpb.2022.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Although many pharmaceuticals have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been effectively administered. It is due to the fact that the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) restrict them from crossing the brain to exert biological activity. This article reviews the current approaches aiming to improve penetration across these barriers for effective drug delivery to the CNS. These issues are summarized into direct systemic delivery and invasive delivery, including the BBB disruption and convection enhanced delivery. Furthermore, novel drug delivery systems used at the nanoscale, including polymeric nanoparticles, liposomes, nanoemulsions, dendrimers, and micelles are discussed. These nanocarriers could contribute to a breakthrough in the treatment of many different CNS diseases. However, further broadened studies are needed to assess the biocompatibility and safety of these medical devices.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Patrycja Darłak
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Agata Markiewicz
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland; Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic.
| | - Sreelatha Bagina
- Charles River Discovery Research Services Finland Oy, Neulaniementie 4, 70210 Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland.
| |
Collapse
|
12
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
13
|
Cheng W, Su YL, Hsu HH, Lin YH, Chu LA, Huang WC, Lu YJ, Chiang CS, Hu SH. Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs. ACS NANO 2022; 16:4014-4027. [PMID: 35225594 DOI: 10.1021/acsnano.1c09601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | | | | |
Collapse
|
14
|
Cui J, Xu Y, Tu H, Zhao H, Wang H, Di L, Wang R. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm Sin B 2022; 12:1100-1125. [PMID: 35530155 PMCID: PMC9069319 DOI: 10.1016/j.apsb.2021.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Haiyan Tu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Huacong Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Honglan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
- Corresponding author. Tel./fax: +86 15852937869.
| |
Collapse
|
15
|
Kang JH, Turabee MH, Lee DS, Kwon YJ, Ko YT. Temperature and pH-responsive in situ hydrogels of gelatin derivatives to prevent the reoccurrence of brain tumor. Biomed Pharmacother 2021; 143:112144. [PMID: 34509823 DOI: 10.1016/j.biopha.2021.112144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with a median survival time of approximately 12-16 months. Because of its highly aggressive and heterogeneous nature it is very difficult to remove by surgical resection. Herein we have reported dual stimuli-responsive and biodegradable in situ hydrogels of oligosulfamethazine-grafted gelatin and loaded with anticancer drug paclitaxel (PTX) for preventing the progress of Glioblastoma. The oligosulfamethazine (OSM) introduced to the gelatin backbone for the formation of definite and stable in situ hydrogel. The hydrogels transformed from a sol to a gel state upon changes in stimuli. pH and temperature and retained a distinct shape after subcutaneous administration in BALB/c mice. The viscosity of the sol state hydrogels was tuned by varying the feed molar ratio between gelatin and OSM. The porosity of the hydrogels was confirmed to be lower in higher degree OSM by SEM. Sustained release of PTX from hydrogels in physiological environments (pH 7.4) was further retarded up to 63% in 9th days in tumor environments (pH 6.5). While the empty hydrogels were non-toxic in cultured cells, the hydrogels loaded with PTX showed antitumor efficacy in orthotopic-GBM xenograft mice. Collectively, the gelatin-OSM formed porous hydrogels and released the cargo in a sustained manner in tumor environments efficiently suppressing the progress of GBM. Thus, gelatin-OSM hydrogels are a potential candidate for the direct delivery of therapeutics to the local areas in brain diseases.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea
| | - Md Hasan Turabee
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, 16419 Suwon, South Korea
| | - Young Jik Kwon
- Department of Chemical Engineering and Materials Science, University of California, 92697 Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, 92697 Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, 92697 Irvine, CA, United States; Department of Biomedical Engineering, University of California, 92697 Irvine, CA, United States
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea.
| |
Collapse
|
16
|
iTAGPred: A Two-Level Prediction Model for Identification of Angiogenesis and Tumor Angiogenesis Biomarkers. Appl Bionics Biomech 2021; 2021:2803147. [PMID: 34616486 PMCID: PMC8490072 DOI: 10.1155/2021/2803147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 12/09/2022] Open
Abstract
A crucial biological process called angiogenesis plays a vital role in migration, growth, and wound healing of endothelial cells and other processes that are controlled by chemical signals. Angiogenesis is the process that controls the growth of blood vessels within tissues while angiogenesis proteins play a significant role in the proper working of this process. The balancing of these signals is necessary for the proper working of angiogenesis. Unbalancing of these signals increases blood vessel formation, which causes abnormal growth or several diseases including cancer. The proposed work focuses on developing a two-layered prediction model using different classifiers like random forest (RF), neural network, and support vector machine. The first level performs in silico identification of angiogenesis proteins based on the primary structure. In the case the protein is an angiogenesis protein, then the second level predicts whether the protein is linked with tumor angiogenesis or not. The performance of the model is evaluated through various validation techniques. The model was evaluated using k-fold cross-validation, independent, self-consistency, and jackknife testing. The overall accuracy using an RF classifier for angiogenesis at the first level was 97.8% and for tumor angiogenesis at the second level was 99.5%, ANN showed 94.1% accuracy for angiogenesis and 79.9% for tumor angiogenesis, and the accuracy of SVM for angiogenesis was 78.8% and for tumor angiogenesis was 65.19%.
Collapse
|
17
|
Serris I, Serris P, Frey KM, Cho H. Development of 3D-Printed Layered PLGA Films for Drug Delivery and Evaluation of Drug Release Behaviors. AAPS PharmSciTech 2020; 21:256. [PMID: 32888114 DOI: 10.1208/s12249-020-01790-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
3D printing has been widely used to rapidly manufacture a variety of solid dosage forms on-demand, without sacrificing precision. This study used extrusion-based 3D printing to prepare single-layered, tri-layered, and core-in-shell poly(lactic-co-glycolic acid) (PLGA) films carrying paclitaxel and rapamycin in combination or lidocaine alone. Each layer was composed of either low molecular weight (MW) PLGA or high MW PLGA. In vitro drug release kinetics of paclitaxel, rapamycin, and lidocaine for PLGA films were assessed and compared with PLGA-polyethylene glycol (PEG)-PLGA hydrogel discs. Regardless of the structure of PLGA film, paclitaxel (half-time: 54-63 days) was released faster than when compared with rapamycin (half-time: 74-80 days). In contrast, single-layered PLGA-PEG-PLGA discs released rapamycin (half-time 5.7 h) at a more rapid rate than paclitaxel (half-time: 7.3 h). Single-layered PLGA-PEG-PLGA discs enabled a faster drug release than PLGA films, noting that the disc matrices dissolve in water in 24 h. Similarly, lidocaine incorporated in PLGA films (half-time: 13-36 days) exhibited slower release patterns than that in PLGA-PEG-PLGA discs (half-time: 2.6 h). In vitro drug release patterns were explained using molecular models that simulate drug-polymer interactions. Analysis of models suggested that drug-polymer interactions, location of each drug in the polymeric matrix, and solubility of drugs in water were major factors that determine drug release behaviors from the polymeric films and discs.
Collapse
|
18
|
Abstract
Background:
Drug delivery to cancerous brain is a challenging task as it is
surrounded by an efficient protective barrier. The main hurdles for delivery of bioactive
molecules to cancerous brain are blood brain barrier (BBB), the invasive nature of gliomas,
drug resistance, and difficult brain interstitium transportation. Therefore, treatment
of brain cancer with the available drug regimen is difficult and has shown little improvement
in recent years.
Methods:
We searched about recent advancements in the use of nanomedicine for effective
treatment of the brain cancer. We focused on the use of liposomes, nanoparticles,
polymeric micelles, and dendrimers to improve brain cancer therapy.
Results:
Nanomedicines are well suited for the treatment of brain cancer owing to their
highly acceptable biological, chemical, and physical properties. Smaller size of nanomedicines
also enhances their anticancer potential and penetration into blood brain barrier
(BBB).
Conclusion:
Recently, nanomedicine based approaches have been developed and investigated
for effective treatment of brain cancer. Some of these have been translated into
clinical practice, in order to attain therapeutic needs of gliomas. Future advancements in
nanomedicines will likely produce significant changes in methods and practice of brain
cancer therapy.
Collapse
Affiliation(s)
- Shivani Verma
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Puneet Utreja
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| | - Lalit Kumar
- I. K. Gujral Punjab Technical University, Jalandhar-Punjab 144601, India
| |
Collapse
|
19
|
Ullah I, Chung K, Bae S, Li Y, Kim C, Choi B, Nam HY, Kim SH, Yun CO, Lee KY, Kumar P, Lee SK. Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma. Mol Pharm 2020; 17:1193-1204. [PMID: 31944768 DOI: 10.1021/acs.molpharmaceut.9b01215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive tumor with no curative treatment. The tumor recurrence after resection often requires chemotherapy or radiation to delay the infiltration of tumor remnants. Intracerebral chemotherapies are preferentially being used to prevent tumor regrowth, but treatments remain unsuccessful because of the poor drug distribution in the brain. In this study, we investigated the therapeutic efficacy of cancer-targeting arginyl-glycyl-aspartic tripeptide (RGD) conjugated paclitaxel (PTX)-loaded nanoparticles (NPs) against GBM by nose-to-brain delivery. Our results demonstrated that RGD-modified PTX-loaded NPs showed cancer-specific delivery and enhanced anticancer effects in vivo. The intranasal (IN) inoculation of RGD-PTX-loaded NPs effectively controls the tumor burden (75 ± 12% reduction) by inducing apoptosis and/or inhibiting cancer cell proliferation without affecting the G0 stage of normal brain cells. Our data provide therapeutic evidence supporting the use of intranasally delivered cancer-targeted PTX-loaded NPs for GBM therapy.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Sumin Bae
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Yan Li
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,National Cancer Center, Gyeonggi-do, Goyang 10408, Korea
| | - Chunggu Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Boyoung Choi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea.,Samyang Biopharmaceuticals Co., Seoul 13488, Korea
| | | | - Sun Hwa Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Chae-Ok Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Kuen Yong Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven 06510, United States
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019; 24:molecules24234312. [PMID: 31779126 PMCID: PMC6930669 DOI: 10.3390/molecules24234312] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal form of brain tumor, being characterized by the rapid growth and invasion of the surrounding tissue. The current standard treatment for glioblastoma is surgery, followed by radiotherapy and concurrent chemotherapy, typically with temozolomide. Although extensive research has been carried out over the past years to develop a more effective therapeutic strategy for the treatment of GBM, efforts have not provided major improvements in terms of the overall survival of patients. Consequently, new therapeutic approaches are urgently needed. Overcoming the blood–brain barrier (BBB) is a major challenge in the development of therapies for central nervous system (CNS) disorders. In this context, the intranasal route of drug administration has been proposed as a non-invasive alternative route for directly targeting the CNS. This route of drug administration bypasses the BBB and reduces the systemic side effects. Recently, several formulations have been developed for further enhancing nose-to-brain transport, mainly with the use of nano-sized and nanostructured drug delivery systems. The focus of this review is to provide an overview of the strategies that have been developed for delivering anticancer compounds for the treatment of GBM while using nasal administration. In particular, the specific properties of nanomedicines proposed for nose-to-brain delivery will be critically evaluated. The preclinical and clinical data considered supporting the idea that nasal delivery of anticancer drugs may represent a breakthrough advancement in the fight against GBM.
Collapse
|
21
|
Dagdeviren C, Ramadi KB, Joe P, Spencer K, Schwerdt HN, Shimazu H, Delcasso S, Amemori KI, Nunez-Lopez C, Graybiel AM, Cima MJ, Langer R. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci Transl Med 2019; 10:10/425/eaan2742. [PMID: 29367347 DOI: 10.1126/scitranslmed.aan2742] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
Recent advances in medications for neurodegenerative disorders are expanding opportunities for improving the debilitating symptoms suffered by patients. Existing pharmacologic treatments, however, often rely on systemic drug administration, which result in broad drug distribution and consequent increased risk for toxicity. Given that many key neural circuitries have sub-cubic millimeter volumes and cell-specific characteristics, small-volume drug administration into affected brain areas with minimal diffusion and leakage is essential. We report the development of an implantable, remotely controllable, miniaturized neural drug delivery system permitting dynamic adjustment of therapy with pinpoint spatial accuracy. We demonstrate that this device can chemically modulate local neuronal activity in small (rodent) and large (nonhuman primate) animal models, while simultaneously allowing the recording of neural activity to enable feedback control.
Collapse
Affiliation(s)
- Canan Dagdeviren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Khalil B Ramadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pauline Joe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin Spencer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helen N Schwerdt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hideki Shimazu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastien Delcasso
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carlos Nunez-Lopez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,IQS School of Engineering, Ramon Llull University, 08017 Barcelona, Spain
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Fukusumi H, Handa Y, Shofuda T, Kanemura Y. Evaluation of the susceptibility of neurons and neural stem/progenitor cells derived from human induced pluripotent stem cells to anticancer drugs. J Pharmacol Sci 2019; 140:331-336. [PMID: 31501056 DOI: 10.1016/j.jphs.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023] Open
Abstract
Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons.
Collapse
Affiliation(s)
- Hayato Fukusumi
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Yukako Handa
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
23
|
Guo Q, Zhu Q, Miao T, Tao J, Ju X, Sun Z, Li H, Xu G, Chen H, Han L. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J Control Release 2019; 303:117-129. [DOI: 10.1016/j.jconrel.2019.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
|
24
|
Abstract
Gliomas are the most common malignancies of the brain and have a mean survival of 12 months with only 5-10% of the patients surviving for more than 5 years, independent of treatment after diagnosis. Conventional treatment modalities have found the modest success in reducing tumor burden and metastases. Presence of different biological barriers and drug-resistance efflux transporters are crucial for tumor recurrence and treatment failure. Nanotechnology may amend these circumstances by targeting residual infiltrating malignant cells with minimal damage to normal cells, on-demand release and an improved cellular uptake by tumor cells. This review highlights the current status and advances in nanotechnology for treatment of gliomas.
Collapse
|
25
|
Electrotaxis of Glioblastoma and Medulloblastoma Spheroidal Aggregates. Sci Rep 2019; 9:5309. [PMID: 30926929 PMCID: PMC6441013 DOI: 10.1038/s41598-019-41505-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/26/2019] [Indexed: 11/08/2022] Open
Abstract
Treatment of neuroepithelial cancers remains a daunting clinical challenge, particularly due to an inability to address rampant invasion deep into eloquent regions of the brain. Given the lack of access, and the dispersed nature of brain tumor cells, we explore the possibility of electric fields inducing directed tumor cell migration. In this study we investigate the properties of populations of brain cancer undergoing electrotaxis, a phenomenon whereby cells are directed to migrate under control of an electrical field. We investigate two cell lines for glioblastoma and medulloblastoma (U87mg & DAOY, respectively), plated as spheroidal aggregates in Matrigel-filled electrotaxis channels, and report opposing electrotactic responses. To further understand electrotactic migration of tumor cells, we performed RNA-sequencing for pathway discovery to identify signaling that is differentially affected by the exposure of direct-current electrical fields. Further, using selective pharmacological inhibition assays, focused on the PI3K/mTOR/AKT signaling axis, we validate whether there is a causal relationship to electrotaxis and these mechanisms of action. We find that U87 mg electrotaxis is abolished under pharmacological inhibition of PI3Kγ, mTOR, AKT and ErbB2 signaling, whereas DAOY cell electrotaxis was not attenuated by these or other pathways evaluated.
Collapse
|
26
|
Erfle P, Riewe J, Bunjes H, Dietzel A. Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels. MICROMACHINES 2019; 10:mi10040220. [PMID: 30934803 PMCID: PMC6523713 DOI: 10.3390/mi10040220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Nanoparticles as an application platform for active ingredients offer the advantage of efficient absorption and rapid dissolution in the organism, even in cases of poor water solubility. Active substances can either be presented directly as nanoparticles or can be integrated in a colloidal carrier system (e.g., lipid nanoparticles). For bottom-up nanoparticle production minimizing particle contamination, precipitation processes provide an adequate approach. Microfluidic systems ensure a precise control of mixing for the precipitation, which enables a tunable particle size definition. In this work, a gas/liquid Taylor flow micromixer made of chemically inert glass is presented, in which the organic phases are injected through a symmetric inlet structure. The 3D structuring of the glass was performed by femtosecond laser ablation. Rough microchannel walls are typically obtained by laser ablation but were smoothed by a subsequent annealing process resulting in lower hydrophilicity and even rounder channel cross-sections. Only with such smooth channel walls can a substantial reduction of fouling be obtained, allowing for stable operation over longer periods. The ultrafast mixing of the solutions could be adjusted by simply changing the gas volume flow rate. Narrow particle size distributions are obtained for smaller gas bubbles with a low backflow and when the rate of liquid volume flow has a small influence on particle precipitation. Therefore, nanoparticles with adjustable sizes of down to 70 nm could be reliably produced in continuous mode. Particle size distributions could be narrowed to a polydispersity value of 0.12.
Collapse
Affiliation(s)
- Peer Erfle
- Technische Universität Braunschweig , Institute of Microtechnology, 38124 Braunschweig, Germany.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
| | - Juliane Riewe
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, 38106 Braunschweig, Germany.
| | - Heike Bunjes
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, 38106 Braunschweig, Germany.
| | - Andreas Dietzel
- Technische Universität Braunschweig , Institute of Microtechnology, 38124 Braunschweig, Germany.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, 38106 Braunschweig, Germany.
| |
Collapse
|
27
|
Su BC, Pan CY, Chen JY. Antimicrobial Peptide TP4 Induces ROS-Mediated Necrosis by Triggering Mitochondrial Dysfunction in Wild-Type and Mutant p53 Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11020171. [PMID: 30717309 PMCID: PMC6406555 DOI: 10.3390/cancers11020171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptide tilapia piscidin 4 (TP4) from Oreochromis niloticus exhibits potent bactericidal and anti-tumorigenic effects. In a variety of cancers, the mutation status of p53 is a decisive factor for therapeutic sensitivity. Therefore, we investigated the impact of p53 status on TP4-induced cytotoxicity in glioblastoma cell lines and the molecular mechanisms that govern cytotoxic effects. Both U87MG (wild-type/WT p53) and U251 (mutant p53) glioblastoma cell lines were sensitive to TP4-induced cytotoxicity. The necrosis inhibitors Necrostatin-1 and GSK’872 attenuated TP4-induced cytotoxicity, and TP4 treatment induced the release of cyclophilin A, a biomarker of necrosis. Moreover, TP4 induced mitochondrial hyperpolarization and dysfunction, which preceded the elevation of intracellular reactive oxygen species, DNA damage, and necrotic cell death in both U87MG and U251 glioblastoma cells. p38 was also activated by TP4, but did not contribute to cytotoxicity. SB202190, a specific p38 inhibitor, enhanced TP4-induced oxidative stress, mitochondrial dysfunction, and cytotoxicity, suggesting a protective role of p38. Furthermore, TP4-induced cytotoxicity, oxidative stress, phosphorylation of p38, and DNA damage were all attenuated by the mitochondrial-targeted reactive oxygen species (ROS) scavenger MitoTEMPO, or the reactive oxygen species scavenger N-acetyl-L-cysteine. Based on these data, we conclude that TP4 induces necrosis in both WT and mutant p53 glioblastoma cells through a mitochondrial ROS-dependent pathway.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
28
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Turabee MH, Jeong TH, Ramalingam P, Kang JH, Ko YT. N,N,N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym 2019; 203:302-309. [DOI: 10.1016/j.carbpol.2018.09.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023]
|
30
|
Lu WJ, Wu GJ, Chen RJ, Chang CC, Lien LM, Chiu CC, Tseng MF, Huang LT, Lin KH. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest. Food Funct 2018; 9:4500-4507. [PMID: 30083664 DOI: 10.1039/c8fo00728d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Licochalcone A (LA), an active ingredient of licorice, has multiple biological activities, including antioxidative and anti-inflammatory activities. Although LA exerts antitumor effects in various cancer cells, its role in gliomas remains unclear. Therefore, this study determined whether LA inhibits glioma cell growth in vitro and in vivo. The present data revealed that LA effectively inhibited the growth of U87 glioma cells by inducing cell cycle arrest in the G0/G1 and G2/M phases; cell cycle arrest was attributed to the LA-mediated reduction of mRNA and protein levels of cyclins and cyclin-dependent kinases. Moreover, subcutaneous (flank) and orthotopic (brain) tumor models were used to determine the role of LA in gliomas. LA significantly alleviated tumor growth in both models. These findings indicate that LA exerts antitumor effects in gliomas in vitro and in vivo and that it is a potential agent for treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Wan Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281:42-57. [PMID: 29753958 DOI: 10.1016/j.jconrel.2018.05.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive and deadliest central nervous system tumors, and the current standard treatment is surgery followed by radiotherapy with concurrent chemotherapy. Nevertheless, the survival period is notably low. Although ample research has been performed to develop an effective therapeutic strategy for treating GBM, the success of extending patients' survival period and quality of life is limited. This review focuses on the strategies developed to address the challenges associated with drug delivery in GBM, particularly nanomedicine. The first part describes major obstacles to the development of effective GBM treatment strategies. The second part focuses on the conventional chemotherapeutic nanomedicine strategies, their limitations and the novel and advanced strategies of nanomedicine, which could be promising for GBM treatment. We also highlighted the prominence of nanomedicine clinical translation. The near future looks bright following the beginning of clinical translation of nanochemotherapy for GBM.
Collapse
Affiliation(s)
- Lakshmi Pallavi Ganipineni
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium.
| |
Collapse
|
32
|
Hyder F, Manjura Hoque S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6387217. [PMID: 29375280 PMCID: PMC5742516 DOI: 10.1155/2017/6387217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pHe) is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - S. Manjura Hoque
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
33
|
Chen VCH, Hsieh YH, Chen LJ, Hsu TC, Tzang BS. Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J Cell Mol Med 2017; 22:1167-1178. [PMID: 29105282 PMCID: PMC5783874 DOI: 10.1111/jcmm.13372] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is recognized as a most aggressive brain cancer with the worst prognosis and survival time. Owing to the anatomic location of gliomas, surgically removing the tumour is very difficult and avoiding damage to vital brain regions during radiotherapy is impossible. Therefore, therapeutic strategies for malignant glioma must urgently be improved. Recent studies have demonstrated that selective serotonin reuptake inhibitors (SSRIs) have cytotoxic effect on certain cancers. Considering as a more superior SSRI, escitalopram oxalate exhibits favourable tolerability and causes generally mild and temporary adverse events. However, limited information is revealed about the influence of escitalopram oxalate on GBM. Therefore, an attempt was made herein to explore the effects of escitalopram oxalate on GBM. The experimental results revealed that escitalopram oxalate significantly inhibits the proliferation and invasive ability of U‐87MG cells and significantly reduced the expressions of cell cycle inhibitors such as Skp2, P57, P21 and P27. Notably, escitalopram oxalate also induced significant apoptotic cascades in U‐87MG cells and autophagy in GBM8401 cells. An animal study indicated that escitalopram oxalate inhibits the proliferation of xenografted glioblastoma in BALB/c nude mice. These findings implied that escitalopram oxalate may have potential in treatment of glioblastomas.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- Department of Psychiatry, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsien Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Jeng Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Tsai-Ching Hsu
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Dayawansa S, Konda S, Lesley WS, Noonan PT, Huang JH. Improving Forward Infusion Pressure during Brain Tumor Embolization with the Double Catheter and Coil Technique. Neurointervention 2017; 12:116-121. [PMID: 28955514 PMCID: PMC5613043 DOI: 10.5469/neuroint.2017.12.2.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Endovascular embolization or embosurgery of brain tumors can be used to reduce neoplasm vascularity prior to surgical resection. Two challenges with embosurgery relate to insufficient perfusion pressure into the tumor and inadvertent escape of infused agents into parenchymal branches of the adjacent brain. This report describes a multi-catheter and coil technique to improve tumor perfusion and prevent reflux into normal branches.
Collapse
Affiliation(s)
- Sam Dayawansa
- Neurosurgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,College of Medicine, Texas A&M Health Sciences Center, Temple, TX, USA
| | - Sneha Konda
- College of Medicine, Texas A&M Health Sciences Center, Temple, TX, USA
| | - Walter S Lesley
- Neurosurgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,NeuroInterventional Surgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,College of Medicine, Texas A&M Health Sciences Center, Temple, TX, USA
| | - Patrick T Noonan
- Neurosurgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,NeuroInterventional Surgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,College of Medicine, Texas A&M Health Sciences Center, Temple, TX, USA
| | - Jason H Huang
- Neurosurgery, Baylor Scott & White Neuroscience Institute, Temple, USA.,College of Medicine, Texas A&M Health Sciences Center, Temple, TX, USA
| |
Collapse
|
35
|
Dai W, Wang X, Song G, Liu T, He B, Zhang H, Wang X, Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115:23-45. [PMID: 28285944 DOI: 10.1016/j.addr.2017.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Combination therapy is one of the important treatment strategies for cancer at present. However, the outcome of current combination therapy based on the co-administration of conventional dosage forms is suboptimal, due to the short half-lives of chemodrugs, their deficient tumor selectivity and so forth. Nanotechnology-based targeted delivery systems show great promise in addressing the associated problems and providing superior therapeutic benefits. In this review, we focus on the combination of therapeutic strategies between different nanomedicines or drug-loaded nanocarriers, rather than the co-delivery of different drugs via a single nanocarrier. We introduce the general concept of various targeting strategies of nanomedicines, present the principles of combination antitumor therapy with dual-nanomedicines, analyze their advantages and limitations compared with co-delivery strategies, and overview the recent advances of combination therapy based on targeted nanomedicines. Finally, we reviewed the challenges and future perspectives regarding the selection of therapeutic agents, targeting efficiency and the gap between the preclinical and clinical outcome.
Collapse
Affiliation(s)
- Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyou Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Ge Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Tongzhou Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
36
|
Abstract
Malignant brain tumors represent one of the most devastating forms of cancer with abject survival rates that have not changed in the past 60years. This is partly because the brain is a critical organ, and poses unique anatomical, physiological, and immunological barriers. The unique interplay of these barriers also provides an opportunity for creative engineering solutions. Cancer immunotherapy, a means of harnessing the host immune system for anti-tumor efficacy, is becoming a standard approach for treating many cancers. However, its use in brain tumors is not widespread. This review discusses the current approaches, and hurdles to these approaches in treating brain tumors, with a focus on immunotherapies. We identify critical barriers to immunoengineering brain tumor therapies and discuss possible solutions to these challenges.
Collapse
|
37
|
Abstract
Benzodiazepines represent the first-line treatment for the acute management of epileptic seizures and status epilepticus. The emergency use of benzodiazepines must be timely, and because most seizures occur outside of the hospital environment, there is a significant need for delivery methods that are easy for nonclinical caregivers to use and administer quickly and safely. In addition, the ideal route of administration should be reliable in terms of absorption. Rectal diazepam is the only licensed formulation in the USA, whereas rectal diazepam and buccal midazolam are currently licensed in the EU. However, the sometimes unpredictable absorption with rectal and buccal administration means they are not ideal routes. Several alternative routes are currently being explored. This is a narrative review of data about delivery methods for benzodiazepines alternative to the intravenous and oral routes for the acute treatment of seizures. Unconventional delivery options such as direct delivery to the central nervous system or inhalers are reported. Data show that intranasal diazepam or midazolam and the intramuscular auto-injector for midazolam are as effective as rectal or intravenous diazepam. Head-to-head comparisons with buccal midazolam are urgently needed. In addition, the majority of trials focused on children and adolescents, and further trials in adults are warranted.
Collapse
Affiliation(s)
- Marco Mula
- Atkinson Morley Regional Neuroscience Centre, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK.
- Institute of Medical and Biomedical Sciences, St George's University of London, London, UK.
| |
Collapse
|
38
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
39
|
Rinaldi M, Caffo M, Minutoli L, Marini H, Abbritti RV, Squadrito F, Trichilo V, Valenti A, Barresi V, Altavilla D, Passalacqua M, Caruso G. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies. Int J Mol Sci 2016; 17:ijms17060984. [PMID: 27338365 PMCID: PMC4926513 DOI: 10.3390/ijms17060984] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/26/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) represent reactive products belonging to the partial reduction of oxygen. It has been reported that ROS are involved in different signaling pathways to control cellular stability. Under normal conditions, the correct function of redox systems leads to the prevention of cell oxidative damage. When ROS exceed the antioxidant defense system, cellular stress occurs. The cellular redox impairment is strictly related to tumorigenesis. Tumor cells, through the generation of hydrogen peroxide, tend to the alteration of cell cycle phases and, finally to cancer progression. In adults, the most common form of primary malignant brain tumors is represented by gliomas. The gliomagenesis is characterized by numerous molecular processes all characterized by an altered production of growth factor receptors. The difficulty to treat brain cancer depends on several biological mechanisms such as failure of drug delivery through the blood-brain barrier, tumor response to chemotherapy, and intrinsic resistance of tumor cells. Understanding the mechanisms of ROS action could allow the formulation of new therapeutic protocols to treat brain gliomas.
Collapse
Affiliation(s)
- Mariagrazia Rinaldi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Herbert Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Rosaria Viola Abbritti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, 98125 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Marcello Passalacqua
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| | - Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Neurosurgical Clinic, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
40
|
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS NANO 2016; 10:4209-18. [PMID: 26967254 PMCID: PMC5257033 DOI: 10.1021/acsnano.5b07573] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The blood-brain barrier (BBB) is partially disrupted in brain tumors. Despite the gaps in the BBB, there is an inadequate amount of pharmacological agents delivered into the brain. Thus, the low delivery efficiency renders many of these agents ineffective in treating brain cancer. In this report, we proposed an "autocatalytic" approach for increasing the transport of nanoparticles into the brain. In this strategy, a small number of nanoparticles enter into the brain via transcytosis or through the BBB gaps. After penetrating the BBB, the nanoparticles release BBB modulators, which enables more nanoparticles to be transported, creating a positive feedback loop for increased delivery. Specifically, we demonstrated that these autocatalytic brain tumor-targeting poly(amine-co-ester) terpolymer nanoparticles (ABTT NPs) can readily cross the BBB and preferentially accumulate in brain tumors at a concentration of 4.3- and 94.0-fold greater than that in the liver and in brain regions without tumors, respectively. We further demonstrated that ABTT NPs were capable of mediating brain cancer gene therapy and chemotherapy. Our results suggest ABTT NPs can prime the brain to increase the systemic delivery of therapeutics for treating brain malignancies.
Collapse
Affiliation(s)
- Liang Han
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Derek K. Kong
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Ming-qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Chao Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Peng Yuan
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Liyuan Li
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daofeng Tian
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Qiang Cai
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Chunlin Ye
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Daniel Holden
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - June-Hee Park
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Xiaobin Gao
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Jean-Leon Thomas
- Department of Neurology, Yale University, New Haven, CT 06510, USA
| | | | - Richard E. Carson
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06510, USA
| | | | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Correspondence: Jiangbing Zhou, 310 Cedar Street, FMB 410, New Haven, CT 06510, Tel: 203-785-5327,
| |
Collapse
|
41
|
Liu KH, Yang ST, Lin YK, Lin JW, Lee YH, Wang JY, Hu CJ, Lin EY, Chen SM, Then CK, Shen SC. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 2016; 6:5088-101. [PMID: 25671301 PMCID: PMC4467135 DOI: 10.18632/oncotarget.3243] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 12/24/2022] Open
Abstract
The efficacy of glioblastoma chemotherapy is not satisfactory; therefore, a new medication is expected to improve outcomes. As much evidence shows that antidepressants decrease cancer incidence and improve patients' quality of life, we therefore attempted to explore the potential for fluoxetine to be used to treat GBM and its possible underlying mechanism. The expression level of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) was determined using immunohistochemical staining and PCR analysis. The mechanism of fluoxetine-induced apoptosis of gliomas was elucidated. Computer modeling and a binding assay were conducted to investigate the interaction of fluoxetine with the AMPAR. The therapeutic effect of fluoxetine was evaluated using an animal model. We found that fluoxetine directly bound to AMPAR, thus inducing transmembrane Ca2+ influx. The rise in the intracellular calcium concentration ([Ca2+]i) causes mitochondrial Ca2+ overload, thereby triggering apoptosis. AMPARs are excessively expressed in glioma tissues, suggesting that fluoxetine specifically executes glioma cells. Our in vivo study revealed that fluoxetine suppressed the growth of glioblastomas in brains of Nu/Nu mice, an effect similar to that produced by temozolomide. Our preclinical studies suggest fluoxetine, a commonly used antidepressant, might be selectively toxic to gliomas and could provide a new approach for managing this disease.
Collapse
Affiliation(s)
- Kao-Hui Liu
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Shun-Tai Yang
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yen-Kuang Lin
- Taipei Medical University, Biostatistics Center, Taipei, Taiwan
| | - Jia-Wei Lin
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yi-Hsuan Lee
- National Yang-Ming University, Department and Institute of Physiology, Taipei, Taiwan
| | - Jia-Yi Wang
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Taipei Medical University, College of Medicine, School of Medicine, Department of Physiology, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Medical University-Shuang Ho Hospital, School of Medicine, Department of Neurology, Taipei, Taiwan
| | - En-Yuan Lin
- Taipei Medical University Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Shu-Mei Chen
- Taipei Medical University-Wan Fang Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Chee-Kin Then
- Taipei Medical University, College of Medicine, School of Medicine, Taipei, Taiwan
| | - Shing-Chuan Shen
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| |
Collapse
|
42
|
Abstract
This chapter will review the challenges in pharmacotherapy in primary brain tumors that include the presence of the blood-brain barrier, a blood-tumor barrier, active drug efflux pumps, and high plasma protein binding of agents. The approaches to improve the delivery of drugs to the brain will be discussed. Often the management of brain tumors involves the use of corticosteroids and enzyme-inducing antiseizure medications that can have significant drug interactions that may impact the efficacy or toxicity of drugs used to treat these patients. Various techniques used to assess drug distribution to the brain will be reviewed.
Collapse
|
43
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
44
|
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 2015; 29:732-45. [PMID: 25838542 PMCID: PMC4387715 DOI: 10.1101/gad.257394.114] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | - Emily S Day
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Youjia Hua
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Liangliang Hao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chian-Yu Peng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Timothy J Merkel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Markus A Queisser
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Carissa Ritner
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Hailei Zhang
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Lynda Chin
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA; Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - John A Kessler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Marcus E Peter
- Division Hematology/Oncology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Chicago, Illinois 60611, USA; The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA; International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA;
| |
Collapse
|
45
|
Transendothelial Transport and Its Role in Therapeutics. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:309404. [PMID: 27355037 PMCID: PMC4897564 DOI: 10.1155/2014/309404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 12/17/2022]
Abstract
Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients.
Collapse
|
46
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
47
|
Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 2014; 5:209ra152. [PMID: 24174328 DOI: 10.1126/scitranslmed.3006839] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a neurologically debilitating disease that culminates in death 14 to 16 months after diagnosis. An incomplete understanding of how cataloged genetic aberrations promote therapy resistance, combined with ineffective drug delivery to the central nervous system, has rendered GBM incurable. Functional genomics efforts have implicated several oncogenes in GBM pathogenesis but have rarely led to the implementation of targeted therapies. This is partly because many "undruggable" oncogenes cannot be targeted by small molecules or antibodies. We preclinically evaluate an RNA interference (RNAi)-based nanomedicine platform, based on spherical nucleic acid (SNA) nanoparticle conjugates, to neutralize oncogene expression in GBM. SNAs consist of gold nanoparticles covalently functionalized with densely packed, highly oriented small interfering RNA duplexes. In the absence of auxiliary transfection strategies or chemical modifications, SNAs efficiently entered primary and transformed glial cells in vitro. In vivo, the SNAs penetrated the blood-brain barrier and blood-tumor barrier to disseminate throughout xenogeneic glioma explants. SNAs targeting the oncoprotein Bcl2Like12 (Bcl2L12)--an effector caspase and p53 inhibitor overexpressed in GBM relative to normal brain and low-grade astrocytomas--were effective in knocking down endogenous Bcl2L12 mRNA and protein levels, and sensitized glioma cells toward therapy-induced apoptosis by enhancing effector caspase and p53 activity. Further, systemically delivered SNAs reduced Bcl2L12 expression in intracerebral GBM, increased intratumoral apoptosis, and reduced tumor burden and progression in xenografted mice, without adverse side effects. Thus, silencing antiapoptotic signaling using SNAs represents a new approach for systemic RNAi therapy for GBM and possibly other lethal malignancies.
Collapse
Affiliation(s)
- Samuel A Jensen
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu L, Li X, Janagam DR, Lowe TL. Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm Res 2013; 31:531-40. [PMID: 23996470 DOI: 10.1007/s11095-013-1196-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022]
Abstract
Pediatric brain tumors are most common cancers in childhood and among the leading causes of death in children. Chemotherapy has been used as adjuvant (i.e. after) or neoadjuvant (i.e. before) therapy to surgery and radiotherapy for the management of pediatric brain tumors for more than four decades and gained more attention in the recent two decades. Although chemotherapy has demonstrated its effectiveness in the management of some pediatric brain tumors, failure or inactiveness of chemotherapy is commonly met in the clinics and clinical trials. Some of these failures might be attributed to the blood-brain barrier (BBB), limiting the penetration of systemically administered chemotherapeutics into pediatric brain tumors. Therefore, various strategies have been developed and used to address this issue. Herein, we review different methods reported in the literature to circumvent the BBB for enhancing the present of chemotherapeutics in the brain to treat pediatric brain tumors.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | | | | | | |
Collapse
|
49
|
Zeng HQ, Lü L, Wang F, Luo Y, Lou SF. Focused ultrasound-induced blood-brain barrier disruption enhances the delivery of cytarabine to the rat brain. J Chemother 2013; 24:358-63. [PMID: 23174101 DOI: 10.1179/1973947812y.0000000043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the feasibility of using focused ultrasound (FUS) with microbubbles for targeted delivery of cytarabine to the brain. Sprague-Dawly rats (weighing 200-250 g) received focused ultrasound with intravenous injection microbubbles. At 0, 2, 4, 8, and 24 hours (n=5 for each time point) after sonication, animals received intravenous administration of cytarabine at a normal dose of 4 mg/kg body weight. Additional five rats were given with a high dose (50 mg/kg body weight) of cytarabine alone. Blood-brain barrier (BBB) permeability and cerebral cytarabine were determined. FUS in conjunction with microbubbles caused a transient BBB opening. Sonication exposure promoted cytarabine accumulation at the sonicated site. Animals injected with a normal dose of cytarabine 2 hours after sonication had similar concentrations of cerebral cytarabine compared to those with higher cytarabine without sonication. FUS can temporarily open the BBB and thus facilitate the penetration of systemic cytarabine into the brain.
Collapse
Affiliation(s)
- Han-Qing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
50
|
Fokas E, Steinbach JP, Rödel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta Rev Cancer 2012; 1835:61-75. [PMID: 23142311 DOI: 10.1016/j.bbcan.2012.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Brain metastases (BM) occur in 20% to 40% of patients with cancer and result in significant morbidity and poor survival. The main therapeutic options include surgery, whole brain radiotherapy, stereotactic radiosurgery and chemotherapy. Although significant progress has been made in diagnostic and therapeutic methods, the prognosis in these patients remains poor. Furthermore, the poor penetrability of chemotherapy agents through the blood brain barrier (BBB) continues to pose a challenge in the management of this disease. Preclinical evidence suggests that new targeted treatments can improve local tumor control but our clinical experience with these agents remains limited. In addition, several clinical studies with these novel agents have produced disappointing results. This review will examine the knowledge of targeted therapies in BM. The preclinical and clinical evidence of their use in BM induced by breast cancer, non-small cell lung cancer and melanoma will be presented. In addition, we will discuss the role of antiangiogenic and radiosensitising agents in the treatment of BM and the current strategies available to increase BBB permeability. A better understanding of the mechanism of action of these agents will help us to identify the best targets for testing in future clinical studies.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | |
Collapse
|