1
|
Huang C, Huang Y, Pan L, Li L, Ling X, Wang C, Xiao Q, Zhai N, Long Y, Mo W, Lin F, Huang Y. A novel duplication mutation of SLC2A1 gene causing glucose transporter 1 deficiency syndrome. Gene 2024; 928:148762. [PMID: 39009233 DOI: 10.1016/j.gene.2024.148762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Chaoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Yunhua Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Liqiu Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Linlin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Xiaoting Ling
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Chenghan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Qingxing Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Ningneng Zhai
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Yan Long
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China
| | - Wuning Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China.
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China.
| | - Yifang Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning 530021, Guangxi, China.
| |
Collapse
|
2
|
Olivotto S, Freddi A, Previtali R, Mauri A, Cereda C, De Amicis R, Bertoli S, Doneda C, Veggiotti P. Stroke and Stroke-Like Episodes: Recurrent Manifestations in GLUT1 Deficiency Syndrome. Pediatr Neurol 2024; 157:118-126. [PMID: 38914025 DOI: 10.1016/j.pediatrneurol.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Since the initial description of glucose transporter-1 deficiency syndrome (Glut1-DS) the phenotype of the condition has expanded, even leading to the recognition of atypical manifestations. We report on eight patients with Glut1-DS who experienced at least one episode of acute focal neurological deficits. METHODS We conducted a retrospective analysis, collecting clinical, electrophysiological, neuroradiological, and genetic information. We focused in particular on three well-documented cases. RESULTS Among 42 patients with Glut1-DS, eight individuals aged between six and 38 years presented with an acute onset of neurological disturbances: dysarthria/aphasia, oral dyskinesia, swallowing difficulties, paresthesia, facial palsy, hemi/monoplegia, vomiting, headache, and behavioral disturbances. When performed, magnetic resonance imaging (MRI) revealed signs of venous congestion and hypoperfusion and electroencephalography showed focal contralateral slowing. Deficits were transient in all patients but one. Four patients (50%) were on a ketogenic diet (KD), and two of these patients had lower than usual ketonemia levels during the episode. In two patients, MRI demonstrated the presence of an ischemic brain lesion. CONCLUSIONS In Glut1-DS, stroke-like episodes are a recurrent manifestation, particularly during early adulthood, and they were reported in 19% of the patients in our cohort. Stroke mimics should be considered a key feature of Glut1-DS, as other paroxysmal disorders. It remains to be established whether a KD can prevent the recurrence of episodes and, if so, at what level of ketosis. Further observations are needed to confirm the correlation between Glut1-DS and ischemic stroke.
Collapse
Affiliation(s)
- Sara Olivotto
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy
| | | | - Roberto Previtali
- University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessia Mauri
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy; IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy; IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, Milan, Italy
| | - Chiara Doneda
- Pediatric Radiology and Neuroradiology Unit, Buzzi Children's Hospital, Milan, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
De Giorgis V, Bhatia KP, Boespflug-Tanguy O, Gras D, Marina AD, Desurkar A, Toledo M, Miller I, Rotstein M, Schneider SA, Tarquinio DC, Weber Y, Brandabur M, Mayhew J, Koutsoukos T, De Vivo DC. Triheptanoin Did Not Show Benefit versus Placebo for the Treatment of Paroxysmal Movement Disorders in Glut1 Deficiency Syndrome: Results of a Randomized Phase 3 Study. Mov Disord 2024; 39:1386-1396. [PMID: 38725190 DOI: 10.1002/mds.29822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Paroxysmal movement disorders are common in Glut1 deficiency syndrome (Glut1DS). Not all patients respond to or tolerate ketogenic diets. OBJECTIVES The objective was to evaluate the effectiveness and safety of triheptanoin in reducing the frequency of disabling movement disorders in patients with Glut1DS not receiving a ketogenic diet. METHODS UX007G-CL301 was a randomized, double-blind, placebo-controlled, phase 3 crossover study. After a 6-week run-in, eligible patients were randomized 1:1 to the first sequence (triheptanoin/placebo or placebo/triheptanoin) titration plus maintenance, followed by washout and the opposite sequence titration plus maintenance. The placebo (safflower oil) matched the appearance, taste, and smell of triheptanoin. Open-label triheptanoin was administered in the extension. The frequency of disabling paroxysmal movement disorder events per 4 weeks (recorded by diary during maintenance; primary endpoint) was assessed by Wilcoxon rank-sum test. RESULTS Forty-three patients (children, n = 16; adults, n = 27) were randomized and treated. There was no difference between triheptanoin and placebo in the mean (interquartile range) number of disabling paroxysmal movement disorder events (14.3 [4.7-38.3] vs. 11.8; [3.2-28.7]; Hodges-Lehmann estimated median difference: 1.46; 95% confidence interval, -1.12 to 4.36; P = 0.2684). Treatment-emergent adverse events were mild/moderate in severity and included diarrhea, vomiting, upper abdominal pain, headache, and nausea. Two patients discontinued the study because of non-serious adverse events that were predominantly gastrointestinal. The study was closed early during the open-label extension because of lack of effectiveness. Seven patients continued to receive triheptanoin compassionately. CONCLUSION There were no significant differences between the triheptanoin and placebo groups in the frequency of disabling movement disorder events during the double-blind maintenance period. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Odile Boespflug-Tanguy
- Service de Neurologie Pédiatrique, Centre de Référence Leucodystrophies et Leucoencephalopathies de Cause Rare (LEUKOFRANCE), APHP Robert-Debré, Paris, France
| | - Domitille Gras
- Service de Neurologie Pédiatrique, Centre de Référence Leucodystrophies et Leucoencephalopathies de Cause Rare (LEUKOFRANCE), APHP Robert-Debré, Paris, France
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Archana Desurkar
- Neurology Department, Sheffield Children's National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, Miami Children's Hospital, Miami, Florida, USA
| | - Michael Rotstein
- Pediatric Movement Disorders Service, The Pediatric Neurology Unite and Child Development Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | | | - Yvonne Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Section of Epileptology, Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Jill Mayhew
- Ultragenyx Pharmaceutical Inc., Novato, California, USA
| | | | - Darryl C De Vivo
- Department of Neurology and Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Gertler TS, Blackford R. Bringing nutritional ketosis to the table as an option for healing the pediatric brain. Front Nutr 2024; 11:1408327. [PMID: 38933892 PMCID: PMC11199727 DOI: 10.3389/fnut.2024.1408327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Our core premise is that personalized variations of a ketogenic diet are likely to benefit pediatric patients with neuropsychiatric symptoms across multiple domains. Although pediatric epilepsy is currently a well-accepted indication for a strict ketogenic diet, there is a dearth of knowledge and therefore clinical guidelines upon which to recommend nutritional ketosis for pervasive pediatric conditions such as autism spectrum disorder and ADHD, even when comorbid epilepsy is present. However, there are published cohort studies and current clinical trials implementing medical ketogenic therapies for cognitive impairment, psychiatric comorbidities, motor disability, and even neuroinflammation. As holistic practitioners, it is imperative that we consider the health of a child in its entirety - and additionally offer the ketogenic diet as a therapeutic option when it may be synergistic in treating extra-neurologic diseases such as obesity. While there are uniquely pediatric potential adverse side effects such as linear growth deceleration and micronutrient deficiencies, previous trials in epilepsy and our center's experience have already proven the ketogenic diet to be a low-risk intervention when optimized with appropriate patient monitoring and support.
Collapse
Affiliation(s)
- Tracy S. Gertler
- Division of Pediatric Neurology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Robyn Blackford
- Division of Clinical Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Liu Z, Cao X, Ma Z, Xu L, Wang L, Li J, Xiao M, Jiang X. Enhanced Sampling Molecular Dynamics Simulations Reveal Transport Mechanism of Glycoconjugate Drugs through GLUT1. Int J Mol Sci 2024; 25:5486. [PMID: 38791523 PMCID: PMC11122603 DOI: 10.3390/ijms25105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.
Collapse
Affiliation(s)
- Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xueting Cao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Trefz F, Frauendienst-Egger G, Dienel G, Cannet C, Schmidt-Mader B, Haas D, Blau N, Himmelreich N, Spraul M, Freisinger P, Dobrowolski S, Berg D, Pilotto A. Does hyperphenylalaninemia induce brain glucose hypometabolism? Cerebral spinal fluid findings in treated adult phenylketonuric patients. Mol Genet Metab 2024; 142:108464. [PMID: 38537426 DOI: 10.1016/j.ymgme.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Despite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls. The CSF concentrations and CSF/plasma ratios for glucose and lactate were found to be below normal, similar to what has been reported for glucose transporter1 (GLUT1) deficiency patients who exhibit many of the same clinical symptoms as untreated PKU patients. CSF glucose and lactate levels were negatively correlated with CSF phenylalanine (Phe), while CSF glutamine and glutamate levels were positively correlated with CSF Phe levels. Plasma glucose levels were negatively correlated with plasma Phe concentrations in PKU subjects, which partly explains the reduced CSF glucose concentrations. Although brain glucose concentrations are unlikely to be low enough to impair brain glucose utilization, it is possible that the metabolism of Phe in the brain to produce phenyllactate, which can be transported across the blood-brain barrier to the blood, may consume glucose and/or lactate to generate the carbon backbone for glutamate. This glutamate is then converted to glutamine and carries the Phe-derived ammonia from the brain to the blood. While this mechanism remains to be tested, it may explain the correlations of CSF glutamine, glucose, and lactate concentrations with CSF Phe.
Collapse
Affiliation(s)
- Friedrich Trefz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | | | - Brigitte Schmidt-Mader
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dorothea Haas
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Nenad Blau
- University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | - Peter Freisinger
- Klinikum Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Steven Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States
| | - Daniela Berg
- Department of Neurology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
7
|
Horckmans S, Van Paesschen W. GLUT-1 transporter deficiency presenting as hemiplegic migraine in an adult. Acta Neurol Belg 2024; 124:699-700. [PMID: 37733158 DOI: 10.1007/s13760-023-02387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
|
8
|
Varesio C, Zanaboni MP, Pasca L, Provenzi L, Ferraris C, Tagliabue A, Pezzotti E, Carpani A, Veggiotti P, DE Giorgis V. Novel insight into GLUT1 deficiency syndrome: screening for emotional and behavioral problems in youths following ketogenic diet. Minerva Pediatr (Torino) 2024; 76:189-196. [PMID: 33820407 DOI: 10.23736/s2724-5276.21.05923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glucose transporter type 1 deficiency syndrome (GLUT1DS) is a rare disorder with a broad spectrum of neurological manifestations. The ketogenic diet (KD) is, to date, the gold standard treatment. Behavioral problems, well recognized in patients with chronic conditions, have not been, so far, deeply investigated in GLUT1DS patients. We performed an exploratory study to assess the risk of emotional and behavioral problems and investigated the potential role of influencing factors related to the pathology itself or KD treatment. METHODS This was a mono-center retrospective study involving youths with GLUT1Ds treated with KD and a group of migraine patients age- and gender-matched. Patients were included if the main caregiver completed the Child Behavior Check List 6-18 (CBCL). Descriptive statistics for demographic and clinical data and questionnaire scores were computed. Correlational analyses were used to assess the potential associations of clinical variables and age and time from KD introduction with CBCL scores in GLUT1DS patients. RESULTS We enrolled nine youths with GLUT1DS and 9 with migraine. In the GLUT1DS group, none of the mean scores of the CBCL items fell within the borderline/clinical range, except for social problems located in the borderline range. Investigation for influencing factors revealed the patient's age related to withdrawn/depressive (r=0.709, P=0.032) and social problems (r=.684, P=0.042). Time from the introduction of KD was related to social problems (r=.827, P=0.006). From the comparison with the scores obtained from migraine patients, significantly higher scores emerged in the latter group in internalizing problems (Z=-2.48, P=0.01), externalizing problems (Z=-3.49, P<0.001), anxious/depressed subscale (Z=-2.37, P=0.014), somatic complaints subscale (Z=-2.624, P=0.008), aggressive behavior subscale (Z=-2.539, P=0.011). CONCLUSIONS Although highly exploratory in its nature, this study provides a novel insight into GLUT1DS. Our data suggested that the risk for internalizing problems in GLUT1DS youths was related to higher age and higher time elapsed from KD introduction. They occurred at a sub-clinical level, making them difficult to detect, if not expressly and systematically investigated.
Collapse
Affiliation(s)
- Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy -
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy -
| | - Martina P Zanaboni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Provenzi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Cinzia Ferraris
- Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia, Pavia, Italy
| | - Anna Tagliabue
- Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia, Pavia, Italy
| | - Elena Pezzotti
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Adriana Carpani
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Pierangelo Veggiotti
- Unit of Pediatric Neurology, Vittore Buzzi Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Valentina DE Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
9
|
Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res 2024; 23:653-662. [PMID: 38170682 DOI: 10.1021/acs.jproteome.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
Collapse
Affiliation(s)
- Hongen Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - ShuWen Lv
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoping Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Man Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
10
|
Al-Bishri WM. Glucose transporter 1 deficiency, AMP-activated protein kinase activation and immune dysregulation in autism spectrum disorder: Novel biomarker sources for clinical diagnosis. Saudi J Biol Sci 2023; 30:103849. [PMID: 38020228 PMCID: PMC10654234 DOI: 10.1016/j.sjbs.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The neurophysiological basis of autism spectrum disorder (ASD) is still uncertain. Nevertheless, studies support the hypotheses that oxidative stress, neuroinflammation, immune dysregulation, and metabolic stress are contributors. In this study, the serum levels of 3-nitrotyrosine (3-NT), hypoxia-inducible factor 1 α (HIF-1 α), heat shock protein 70 (HSP-70), interleukin-17A (IL-17A), IL-35, vitamin D3 (VITD), glucose transporter-1 (GUT1), and AMP-activated protein kinase (AMPK) were estimated in Saudi ASD children versus age-matched neurotypical controls, aiming to investigate whether these parameters have potential roles in the pathophysiologic mechanisms of ASD and hoping to find a reliable marker for early ASD diagnosis. This study included 25 ASD children and 25 typically developing children (3-11 years old). The diagnosis of ASD cases was made based on the Autism Diagnostic Observation Schedule (ADOS) and the Statistical Manual of Mental Disorders (DSM-5). ASD subjects were commonly male and revealed an intelligence quotient (IQ) < 70.The results detected that ASD children have remarkable greater serum levels of nitrosative stress (3-NT), hypoxia (HIF-1 α), inflammatory (HSP-70, IL-17A, and AMPK) biomarkers and lower serum levels of anti-inflammatory (IL-35 and VITD) and metabolic stress (GUT-1) biomarkers versus age-matched controls (P ≤ 0.0001). Pearson's correlation study revealed that 3-NT was positively associated with HIF-1 α and HSP-70. HIF-1 α was also positively correlated with HSP-70. AMPK was positively associated with GUT-1, however, IL-17A was negatively correlated with IL-35 and VITD.Limitation:No specific therapeuticdrugs were administered in this study, and further studies are required to confirm the role of the selected biomarkers in ASD managements. Conclusion Changes in concentrations of different biomarkers indicate that they are involved in oxidative stress, metabolic stress, immune dysregulation and ASD pathogenesis. Hence, these parameters can prove to be promising biomarkers as well as therapeutic targets for the timely diagnosis and treatment of ASD patients.
Collapse
Affiliation(s)
- Widad M. Al-Bishri
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80327, Saudi Arabia
| |
Collapse
|
11
|
Ünalp A, Güzin Y, Ünay B, Tosun A, Çavuşoğlu D, Tekin HG, Kurul SH, Arhan E, Edizer S, Öztürk G, Yiş U, Yılmaz Ü. Retracted: Clinical and genetic evaluations of rare childhood epilepsies in Turkey's national cohort. Epileptic Disord 2023; 25:924. [PMID: 37584621 DOI: 10.1002/epd2.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 12/25/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Aycan Ünalp, Yiğithan Güzin, Bülent Ünay, Ayşe Tosun, Dilek Çavuşoğlu, Hande Gazeteci Tekin, Semra Hız Kurul, Ebru Arhan, Selvinaz Edizer, Gülten Öztürk, Uluç Yiş, Ünsal Yılmaz, Turkish Rare Epilepsies Study Group, Clinical and genetic evaluations of rare childhood epilepsies in Turkey's national cohort, Epileptic Disorders, 2023, (https://doi.org/10.1002/epd2.20150) The above article, published online on 16 August 2023 on Wiley Online Library (www.onlinelibrary.wiley.com), has been retracted by agreement between the authors, the Editor-in-Chief, Sándor Beniczky, and John Wiley & Sons Ltd. The authors asked for a retraction based on an experimental error which would alter the results of the study if corrected.
Collapse
|
12
|
Pervaiz I, Mehta Y, Sherill K, Patel D, Al-Ahmad AJ. Ketone bodies supplementation restores the barrier function, induces a metabolic switch, and elicits beta-hydroxybutyrate diffusion across a monolayer of iPSC-derived brain microvascular endothelial cells. Microvasc Res 2023; 150:104585. [PMID: 37437687 DOI: 10.1016/j.mvr.2023.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Glucose constitutes the main source of energy for the central nervous system (CNS), its entry occurring at the blood-brain barrier (BBB) via the presence of glucose transporter 1 (GLUT1). However, under food intake restrictions, the CNS can utilize ketone bodies (KB) as an alternative source of energy. Notably, the relationship between the BBB and KBs and its effect on their glucose metabolism remains poorly understood. In this study, we investigated the effect of glucose deprivation on the brain endothelium in vitro, and supplementation with KBs using induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial cell-like cells (iBMECs). Glucose-free environment significantly decreased cell metabolic activity and negatively impacted the barrier function. In addition, glucose deprivation did not increase GLUT1 expression but also resulted in a decrease in glucose uptake and glycolysis. Supplementation of glucose-deprived iBMECs monolayers with KB showed no improvement and even worsened upon treatment with acetoacetate. However, under a hypoglycemic condition in the presence of KBs, we noted a slight improvement of the barrier function, with no changes in glucose uptake. Notably, hypoglycemia and/or KB pre-treatment elicited a saturable beta-hydroxybutyrate diffusion across iBMECs monolayers, such diffusion occurred partially via an MCT1-dependent mechanism. Taken together, our study highlights the importance of glucose metabolism and the reliance of the brain endothelium on glucose and glycolysis for its function, such dependence is unlikely to be covered by KBs supplementation. In addition, KB diffusion at the BBB appeared induced by KB pre-treatment and appears to involve an MCT1-dependent mechanism.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, United States of America.
| | - Yash Mehta
- Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, United States of America
| | - Kinzie Sherill
- Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, United States of America
| | - Dhavalkumar Patel
- Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, United States of America
| | - Abraham J Al-Ahmad
- Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy Department of Pharmaceutical Sciences, Amarillo, TX, United States of America; Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center - Jerry H. Hodge School of Pharmacy, Amarillo, TX, United States of America.
| |
Collapse
|
13
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
14
|
Málaga I, Avila A, Primeaux S, Park JY, Pascual JM. A concise study of acetazolamide in glucose transporter type 1 deficiency (G1D) epilepsy. Epilepsia 2023; 64:e184-e189. [PMID: 37335529 PMCID: PMC10715686 DOI: 10.1111/epi.17684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Epilepsy constitutes the most common paroxysmal manifestation of glucose transporter type 1 deficiency (G1D) and is generally considered medication-refractory. It can also prove therapeutic diet-resistant. We examined acetazolamide effects in G1D motivated by several longstanding and recent observations: First, the electrographic spike-waves characteristic of absence seizures often resemble those of G1D and, since the 1950s, they have occasionally been treated successfully with acetazolamide, well before G1D was segregated from absence epilepsy as a distinct syndrome. Second, synaptic inhibitory neuron failure characterizes G1D and, in other experimental models, this can be ameliorated by drugs that modify cellular chloride gradient such as acetazolamide. Third, acetazolamide potently stimulates model cell glucose transport in vitro. Seventeen antiepileptic drug or therapeutic diet-refractory individuals with G1D treated with acetazolamide were thus identified via medical record review complemented by worldwide individual survey. Acetazolamide was tolerated and decreased seizures in 76% of them, with 58% of all persons studied experiencing seizure reductions by more than one-half, including those who first manifested myoclonic-astatic epilepsy or infantile spams. Eighty-eight percent of individuals with G1D continued taking acetazolamide for over 6 months, indicating sustained tolerability and efficacy. The results provide a novel avenue for the treatment and mechanistic investigation of G1D.
Collapse
Affiliation(s)
- Ignacio Málaga
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Adrian Avila
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sharon Primeaux
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jason Y. Park
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Juan M. Pascual
- Rare Brain Disorders Program, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Eugene McDermott Center for Human Growth & Development / Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
15
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
16
|
Suades A, Qureshi A, McComas SE, Coinçon M, Rudling A, Chatzikyriakidou Y, Landreh M, Carlsson J, Drew D. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat Commun 2023; 14:4070. [PMID: 37429918 DOI: 10.1038/s41467-023-39711-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.
Collapse
Affiliation(s)
- Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Aziz Qureshi
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Sarah E McComas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Mathieu Coinçon
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Axel Rudling
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Yurie Chatzikyriakidou
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
17
|
Tayebi N, Leon‐Ricardo B, McCall K, Mehinovic E, Engelstad K, Huynh V, Turner TN, Weisenberg J, Thio LL, Hruz P, Williams RSB, De Vivo DC, Petit V, Haller G, Gurnett CA. Quantitative determination of SLC2A1 variant functional effects in GLUT1 deficiency syndrome. Ann Clin Transl Neurol 2023; 10:787-801. [PMID: 37000947 PMCID: PMC10187726 DOI: 10.1002/acn3.51767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE The goal of this study is to demonstrate the utility of a growth assay to quantify the functional impact of single nucleotide variants (SNVs) in SLC2A1, the gene responsible for Glut1DS. METHODS The functional impact of 40 SNVs in SLC2A1 was quantitatively determined in HAP1 cells in which SLC2A1 is required for growth. Donor libraries were introduced into the endogenous SLC2A1 gene in HAP1-Lig4KO cells using CRISPR/Cas9. Cell populations were harvested and sequenced to quantify the effect of variants on growth and generate a functional score. Quantitative functional scores were compared to 3-OMG uptake, SLC2A1 cell surface expression, CADD score, and clinical data, including CSF/blood glucose ratio. RESULTS Nonsense variants (N = 3) were reduced in cell culture over time resulting in negative scores (mean score: -1.15 ± 0.17), whereas synonymous variants (N = 10) were not depleted (mean score: 0.25 ± 0.12) (P < 2e-16). Missense variants (N = 27) yielded a range of functional scores including slightly negative scores, supporting a partial function and intermediate phenotype. Several variants with normal results on either cell surface expression (p.N34S and p.W65R) or 3-OMG uptake (p.W65R) had negative functional scores. There is a moderate but significant correlation between our functional scores and CADD scores. INTERPRETATION Cell growth is useful to quantitatively determine the functional effects of SLC2A1 variants. Nonsense variants were reliably distinguished from benign variants in this in vitro functional assay. For facilitating early diagnosis and therapeutic intervention, future work is needed to determine the functional effect of every possible variant in SLC2A1.
Collapse
Affiliation(s)
- Naeimeh Tayebi
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Brian Leon‐Ricardo
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Kevin McCall
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Elvisa Mehinovic
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
| | - Kristin Engelstad
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Vincent Huynh
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tychele N. Turner
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
| | - Judy Weisenberg
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Liu L. Thio
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Paul Hruz
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Darryl C. De Vivo
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Gabe Haller
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
- Department of Neurological SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | |
Collapse
|
18
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Yonamine CY, Passarelli M, Suemoto CK, Pasqualucci CA, Jacob-Filho W, Alves VAF, Marie SKN, Correa-Giannella ML, Britto LR, Machado UF. Postmortem Brains from Subjects with Diabetes Mellitus Display Reduced GLUT4 Expression and Soma Area in Hippocampal Neurons: Potential Involvement of Inflammation. Cells 2023; 12:cells12091250. [PMID: 37174649 PMCID: PMC10177173 DOI: 10.3390/cells12091250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is an important risk factor for dementia, which is a common neurodegenerative disorder. DM is known to activate inflammation, oxidative stress, and advanced glycation end products (AGEs) generation, all capable of inducing neuronal dysfunctions, thus participating in the neurodegeneration progress. In that process, disturbed neuronal glucose supply plays a key role, which in hippocampal neurons is controlled by the insulin-sensitive glucose transporter type 4 (GLUT4). We investigated the expression of GLUT4, nuclear factor NF-kappa B subunit p65 [NFKB (p65)], carboxymethyllysine and synapsin1 (immunohistochemistry), and soma area in human postmortem hippocampal samples from control, obese, and obese+DM subjects (41 subjects). Moreover, in human SH-SY5Y neurons, tumor necrosis factor (TNF) and glycated albumin (GA) effects were investigated in GLUT4, synapsin-1 (SYN1), tyrosine hydroxylase (TH), synaptophysin (SYP) proteins, and respective genes; NFKB binding activity in the SLC2A4 promoter; effects of increased histone acetylation grade by histone deacetylase 3 (HDAC3) inhibition. Hippocampal neurons (CA4 area) of obese+DM subjects displayed reduced GLUT4 expression and neuronal soma area, associated with increased expression of NFKB (p65). Challenges with TNF and GA decreased the SLC2A4/GLUT4 expression in SH-SY5Y neurons. TNF decreased SYN1, TH, and SYP mRNAs and respective proteins, and increased NFKB binding activity in the SLC2A4 promoter. Inhibition of HDAC3 increased the SLC2A4 expression and the total neuronal content of CRE-binding proteins (CREB/ICER), and also counterbalanced the repressor effect of TNF upon these parameters. This study revealed reduced postmortem human hippocampal GLUT4 content and neuronal soma area accompanied by increased proinflammatory activity in the brains of DM subjects. In isolated human neurons, inflammatory activation by TNF reduced not only the SLC2A4/GLUT4 expression but also the expression of some genes related to neuronal function (SYN1, TH, SYP). These effects may be related to epigenetic regulations (H3Kac and H4Kac status) since they can be counterbalanced by inhibiting HDAC3. These results uncover the improvement in GLUT4 expression and/or the inhibition of HDAC3 as promising therapeutic targets to fight DM-related neurodegeneration.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marisa Passarelli
- Laboratório de Lipides (LIM-10) do HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil
| | - Claudia Kimie Suemoto
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | | | - Wilson Jacob-Filho
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Venâncio Avancini Ferreira Alves
- Laboratório de Investigação Médica em Patologia Hepática, (LIM14) do Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
20
|
Barthold M, Jurkutat A, Goetz R, Schubring L, Spiegler J, Fries AS, Kiesel L, Klepper J. Timing of Ketogenic Dietary Therapy (KDT) Introduction and Its Impact on Cognitive Profiles in Children with Glut1-DS—A Preliminary Study. CHILDREN 2023; 10:children10040681. [PMID: 37189930 DOI: 10.3390/children10040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
The aim of this research was to characterize cognitive abilities in patients with Glut1-Deficiency syndrome (Glut1DS) following ketogenic diet therapy (KDT). Methods: The cognitive profiles of eight children were assessed using the Wechsler Intelligence Scale (WISC-IV). The effect of ketogenic diet therapy (KDT) on individual subareas of intelligence was analyzed considering the potential influence of speech motor impairments. Results: Patients with Glut1DS showed a wide range of cognitive performance levels. Some participants showed statistically and clinically significant discrepancies between individual subdomains of intelligence. Both variables, KDT initiation as well as duration, had a positive effect on the overall IQ score. Significant correlations were partially found between the time of KDT initiation and the level of IQ scores, depending on the presence of expressive language test demands of the respective subtests of the WISC-IV. Accordingly, the participants benefited les in the linguistic cognitive domain. The discrepancies in cognitive performance profiles of patients with Glut1DS can be attributed to the possibility of a negative distortion of the results due to the influence of speech motor impairments. Conclusions: The individual access skills of test persons should be more strongly considered in test procedures for the assessment of intelligence to reduce the negative influence of motor deficits on test performance. Specific characterization and systematization of the speech disorder are indispensable for determining the severity of speech motor impairment in Glut1DS. Therefore, a stronger focus on dysarthria during diagnosis and therapy is necessary.
Collapse
Affiliation(s)
- Martina Barthold
- Department of Special Education and Therapy in Language and Communication Disorders, Julius Maximilians University, 97074 Wuerzburg, Germany
| | - Anne Jurkutat
- Department of Special Education and Therapy in Language and Communication Disorders, Julius Maximilians University, 97074 Wuerzburg, Germany
| | - Regina Goetz
- Department of Special Education and Therapy in Language and Communication Disorders, Julius Maximilians University, 97074 Wuerzburg, Germany
| | - Lucia Schubring
- Department of Neuropediatrics, Children’s Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany
| | - Juliane Spiegler
- Department of Neuropediatrics and Social Pediatrics, Children’s Hospital and Polyclinic Wuerzburg, 97080 Wuerzburg, Germany
| | - Ann-Sophie Fries
- Department of Special Education and Therapy in Language and Communication Disorders, Julius Maximilians University, 97074 Wuerzburg, Germany
| | - Lucia Kiesel
- Department of Neuropediatrics, Children’s Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany
| | - Joerg Klepper
- Department of Neuropediatrics, Children’s Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany
| |
Collapse
|
21
|
Varesio C, De Giorgis V, Veggiotti P, Nardocci N, Granata T, Ragona F, Pasca L, Mensi MM, Borgatti R, Olivotto S, Previtali R, Riva A, Mancardi MM, Striano P, Cavallin M, Guerrini R, Operto FF, Pizzolato A, Di Maulo R, Martino F, Lodi A, Marini C. GLUT1-DS Italian registry: past, present, and future: a useful tool for rare disorders. Orphanet J Rare Dis 2023; 18:63. [PMID: 36944981 PMCID: PMC10029278 DOI: 10.1186/s13023-023-02628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND GLUT1 deficiency syndrome is a rare, genetically determined neurological disorder for which Ketogenic Dietary Treatment represents the gold standard and lifelong treatment. Patient registries are powerful tools providing insights and real-world data on rare diseases. OBJECTIVE To describe the implementation of a national web-based registry for GLUT1-DS. METHODS This is a retrospective and prospective, multicenter, observational registry developed in collaboration with the Italian GLUT1-DS association and based on an innovative, flexible and configurable cloud computing technology platform, structured according to the most rigorous requirements for the management of patient's sensitive data. The Glut1 Registry collects baseline and follow-up data on the patient's demographics, history, symptoms, genotype, clinical, and instrumental evaluations and therapies. RESULTS Five Centers in Italy joined the registry, and two more Centers are currently joining. In the first two years of running, data from 67 patients (40 females and 27 males) have been collected. Age at symptom onset was within the first year of life in most (40, 60%) patients. The diagnosis was formulated in infancy in almost half of the cases (34, 51%). Symptoms at onset were mainly paroxysmal (mostly epileptic seizure and paroxysmal ocular movement disorder) or mixed paroxysmal and fixed symptoms (mostly psychomotor delay). Most patients (53, 79%) are currently under Ketogenic dietary treatments. CONCLUSIONS We describe the principles behind the design, development, and deployment of the web-based nationwide GLUT1-DS registry. It represents a stepping stone towards a more comprehensive understanding of the disease from onset to adulthood. It also represents a virtuous model from a technical, legal, and organizational point of view, thus representing a possible paradigmatic example for other rare disease registry implementation.
Collapse
Affiliation(s)
- Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation (Member of ERN-Epicare), Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation (Member of ERN-Epicare), Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, Vittore Buzzi Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience Fondazione, IRCCS Istituto Neurologico Carlo Besta (Member of ERN-Epicare), Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience Fondazione, IRCCS Istituto Neurologico Carlo Besta (Member of ERN-Epicare), Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience Fondazione, IRCCS Istituto Neurologico Carlo Besta (Member of ERN-Epicare), Milan, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation (Member of ERN-Epicare), Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Martina Maria Mensi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation (Member of ERN-Epicare), Pavia, Italy
| | - Renato Borgatti
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation (Member of ERN-Epicare), Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sara Olivotto
- Pediatric Neurology Unit, Vittore Buzzi Hospital, Milan, Italy
| | - Roberto Previtali
- Department of Biomedical and Clinical Sciences, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini (Member of ERN-Epicare), Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini (Member of ERN-Epicare), Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
| | - Mara Cavallin
- Neuroscience Department, Meyer Children's University Hospital (Member of ERN-Epicare), Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's University Hospital (Member of ERN-Epicare), Florence, Italy
| | - Francesca Felicia Operto
- Child Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | | | | | | | - Andrea Lodi
- Associazione Italiana Glut1 aps, Milan, Italy
| | - Carla Marini
- Child Neurology and Psychiatric Unit, Salesi Children's Hospital, Ancona, Italy
| |
Collapse
|
22
|
Maximum dose, safety, tolerability and ketonemia after triheptanoin in glucose transporter type 1 deficiency (G1D). Sci Rep 2023; 13:3465. [PMID: 36859467 PMCID: PMC9977760 DOI: 10.1038/s41598-023-30578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Augmentation of anaplerosis, or replenishment of carbon lost during intermediary metabolic transitions, is desirable in energy metabolism defects. Triheptanoin, the triglyceride of 7-carbon heptanoic acid, is anaplerotic via direct oxidation or 5-carbon ketone body generation. In this context, triheptanoin can be used to treat Glucose transporter type 1 deficiency encephalopathy (G1D). An oral triheptanoin dose of 1 g/Kg/day supplies near 35% of the total caloric intake and impacted epilepsy and cognition in G1D. This provided the motivation to establish a maximum, potentially greater dose. Using a 3 + 3 dose-finding approach useful in oncology, we studied three age groups: 4-6, 6.8-10 and 11-16 years old. This allowed us to arrive at a maximum tolerated dose of 45% of daily caloric intake for each group. Safety was ascertained via analytical blood measures. One dose-limiting toxicity, occurring in 1 of 6 subjects, was encountered in the middle age group in the context of frequently reduced gastrointestinal tolerance for all groups. Ketonemia following triheptanoin was determined in another group of G1D subjects. In them, β-ketopentanoate and β-hydroxypentanoate concentrations were robustly but variably increased. These results enable the rigorous clinical investigation of triheptanoin in G1D by providing dosing and initial tolerability, safety and ketonemic potential.ClinicalTrials.gov registration: NCT03041363, first registration 02/02/2017.
Collapse
|
23
|
Porthukaran A, Zak M, Moharir M, Mamak E, Sinopoli KJ. Neuropsychological Outcome of Glucose Transporter-1 Deficiency Syndrome: a Case Study of Identical Twin Boys Without Intellectual Disability. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2022. [DOI: 10.1007/s40817-022-00130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Pai B, Tome-Garcia J, Cheng WS, Nudelman G, Beaumont KG, Ghatan S, Panov F, Caballero E, Sarpong K, Marcuse L, Yoo J, Jiang Y, Schaefer A, Akbarian S, Sebra R, Pinto D, Zaslavsky E, Tsankova NM. High-resolution transcriptomics informs glial pathology in human temporal lobe epilepsy. Acta Neuropathol Commun 2022; 10:149. [PMID: 36274170 PMCID: PMC9590125 DOI: 10.1186/s40478-022-01453-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiology of epilepsy underlies a complex network dysfunction between neurons and glia, the molecular cell type-specific contributions of which remain poorly defined in the human disease. In this study, we validated a method that simultaneously isolates neuronal (NEUN +), astrocyte (PAX6 + NEUN-), and oligodendroglial progenitor (OPC) (OLIG2 + NEUN-) enriched nuclei populations from non-diseased, fresh-frozen human neocortex and then applied it to characterize the distinct transcriptomes of such populations isolated from electrode-mapped temporal lobe epilepsy (TLE) surgical samples. Nuclear RNA-seq confirmed cell type specificity and informed both common and distinct pathways associated with TLE in astrocytes, OPCs, and neurons. Compared to postmortem control, the transcriptome of epilepsy astrocytes showed downregulation of mature astrocyte functions and upregulation of development-related genes. To gain further insight into glial heterogeneity in TLE, we performed single cell transcriptomics (scRNA-seq) on four additional human TLE samples. Analysis of the integrated TLE dataset uncovered a prominent subpopulation of glia that express a hybrid signature of both reactive astrocyte and OPC markers, including many cells with a mixed GFAP + OLIG2 + phenotype. A further integrated analysis of this TLE scRNA-seq dataset and a previously published normal human temporal lobe scRNA-seq dataset confirmed the unique presence of hybrid glia only in TLE. Pseudotime analysis revealed cell transition trajectories stemming from this hybrid population towards both OPCs and reactive astrocytes. Immunofluorescence studies in human TLE samples confirmed the rare presence of GFAP + OLIG2 + glia, including some cells with proliferative activity, and functional analysis of cells isolated directly from these samples disclosed abnormal neurosphere formation in vitro. Overall, cell type-specific isolation of glia from surgical epilepsy samples combined with transcriptomic analyses uncovered abnormal glial subpopulations with de-differentiated phenotype, motivating further studies into the dysfunctional role of reactive glia in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Balagopal Pai
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Tome-Garcia
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wan Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, 10029, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodia Caballero
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kwadwo Sarpong
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiyeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Jiang
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anne Schaefer
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, 10029, USA
| | - Dalila Pinto
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nadejda M Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
The Evolution of Ketosis: Potential Impact on Clinical Conditions. Nutrients 2022; 14:nu14173613. [PMID: 36079870 PMCID: PMC9459968 DOI: 10.3390/nu14173613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.
Collapse
|
26
|
Pervaiz I, Zahra FT, Mikelis C, Al-Ahmad AJ. An in vitro model of glucose transporter 1 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells. J Neurochem 2022; 162:483-500. [PMID: 35943296 DOI: 10.1111/jnc.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Glucose is an important source of energy for the central nervous system. Its uptake at the blood-brain barrier (BBB) is mostly mediated via glucose transporter 1 (GLUT1), a facilitated transporter encoded by the SLC2A1 gene. GLUT1 Deficiency Syndrome (GLUT1DS) is a haploinsufficiency characterized by mutations in the SLC2A1 gene, resulting in impaired glucose uptake at the BBB and clinically characterized by epileptic seizures and movement disorder. A major limitation is an absence of in vitro models of the BBB reproducing the disease. This study aimed to characterize an in vitro model of GLUT1DS using human pluripotent stem cells (iPSCs). Two GLUT1DS clones were generated (GLUT1-iPSC) from their original parental clone iPS(IMR90)-c4 by CRISPR/Cas9 and differentiated into brain microvascular endothelial cells (iBMECs). Cells were characterized in terms of SLC2A1 expression, changes in the barrier function, glucose uptake and metabolism, and angiogenesis. GLUT1DS iPSCs and iBMECs showed comparable phenotype to their parental control, with exception of reduced GLUT1 expression at the protein level. Although no major disruption in the barrier function was reported in the two clones, a significant reduction in glucose uptake accompanied by an increase in glycolysis and mitochondrial respiration was reported in both GLUT1DS-iBMECs. Finally, impaired angiogenic features were reported in such clones compared to the parental clone. Our study provides the first documented characterization of GLUT1DS-iBMECs generated by CRISPR-Cas9, suggesting that GLUT1 truncation appears detrimental to brain angiogenesis and brain endothelial bioenergetics, but maybe not be detrimental to iBMECs differentiation and barriergenesis. Our future direction is to further characterize the functional outcome of such truncated product, as well as its impact on other cells of the neurovascular unit.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Fatema Tuz Zahra
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Constantinos Mikelis
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Abraham Jacob Al-Ahmad
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| |
Collapse
|
27
|
Inherited metabolic diseases mimicking hereditary spastic paraplegia (HSP): a chance for treatment. Neurogenetics 2022; 23:167-177. [DOI: 10.1007/s10048-022-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
|
28
|
Jiwani R, Robbins R, Neri A, Renero J, Lopez E, Serra MC. Effect of Dietary Intake Through Whole Foods on Cognitive Function: Review of Randomized Controlled Trials. Curr Nutr Rep 2022; 11:146-160. [PMID: 35334104 PMCID: PMC11110908 DOI: 10.1007/s13668-022-00412-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review evaluated recent randomized controlled trials (RCTs) examining the chronic intake of whole foods associated with the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurogenerative Delay (MIND), and ketogenic (KETO) diets on cognitive function. RECENT FINDINGS We identified RCTs related to olive oil (N = 3), nuts (N = 7), fatty fish (N = 1), lean meats (N = 4), fruits and vegetables (N = 9), legumes (N = 1), and low-fat dairy (N = 4), with 26/29 reporting positive results on at least one measure of cognition. We also identified 6 RCTs related to whole food-induced KETO diets, with half reporting positive effects on cognition. Variations in study design (i.e., generally the studies are < 6 months and include middle-aged and older, cognitively intact participants) and small sample sizes make it difficult to draw conclusions across studies; however, the current evidence from RCTs generally supports individual component intakes of these dietary patterns as an effective, nonpharmacological approach to improve cognitive health in adults.
Collapse
Affiliation(s)
- Rozmin Jiwani
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - Ronna Robbins
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Alfonso Neri
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jose Renero
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Emme Lopez
- Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica C Serra
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
29
|
One Molecule for Mental Nourishment and More: Glucose Transporter Type 1—Biology and Deficiency Syndrome. Biomedicines 2022; 10:biomedicines10061249. [PMID: 35740271 PMCID: PMC9219734 DOI: 10.3390/biomedicines10061249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Glucose transporter type 1 (Glut1) is the main transporter involved in the cellular uptake of glucose into many tissues, and is highly expressed in the brain and in erythrocytes. Glut1 deficiency syndrome is caused mainly by mutations of the SLC2A1 gene, impairing passive glucose transport across the blood–brain barrier. All age groups, from infants to adults, may be affected, with age-specific symptoms. In its classic form, the syndrome presents as an early-onset drug-resistant metabolic epileptic encephalopathy with a complex movement disorder and developmental delay. In later-onset forms, complex motor disorder predominates, with dystonia, ataxia, chorea or spasticity, often triggered by fasting. Diagnosis is confirmed by hypoglycorrhachia (below 45 mg/dL) with normal blood glucose, 18F-fluorodeoxyglucose positron emission tomography, and genetic analysis showing pathogenic SLC2A1 variants. There are also ongoing positive studies on erythrocytes’ Glut1 surface expression using flow cytometry. The standard treatment still consists of ketogenic therapies supplying ketones as alternative brain fuel. Anaplerotic substances may provide alternative energy sources. Understanding the complex interactions of Glut1 with other tissues, its signaling function for brain angiogenesis and gliosis, and the complex regulation of glucose transportation, including compensatory mechanisms in different tissues, will hopefully advance therapy. Ongoing research for future interventions is focusing on small molecules to restore Glut1, metabolic stimulation, and SLC2A1 transfer strategies. Newborn screening, early identification and treatment could minimize the neurodevelopmental disease consequences. Furthermore, understanding Glut1 relative deficiency or inhibition in inflammation, neurodegenerative disorders, and viral infections including COVID-19 and other settings could provide clues for future therapeutic approaches.
Collapse
|
30
|
Striano P, Auvin S, Collins A, Horvath R, Scheffer IE, Tzadok M, Miller I, Koenig MK, Lacy A, Davis R, Garcia-Cazorla A, Saneto RP, Brandabur M, Blair S, Koutsoukos T, De Vivo D. A randomized, double-blind trial of triheptanoin for drug-resistant epilepsy in glucose transporter I deficiency syndrome (Glut1DS). Epilepsia 2022; 63:1748-1760. [PMID: 35441706 PMCID: PMC9546029 DOI: 10.1111/epi.17263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Evaluate efficacy and long-term safety of triheptanoin in patients >1 year old, not on a ketogenic diet, with drug-resistant seizures associated with Glucose Transporter Type 1 Deficiency Syndrome (Glut1DS). METHODS UX007G-CL201 was a randomized, double-blind, placebo-controlled trial. Following a 6-week baseline period, eligible patients were randomized 3:1 to triheptanoin or placebo. Dosing was titrated to 35% total daily calories over 2 weeks. After an 8-week placebo-controlled period, all patients received open-label triheptanoin through Week 52. RESULTS The study included 36 patients (15 children; 13 adolescents; 8 adults). A median 12.6% reduction in overall seizure frequency was observed in the triheptanoin arm relative to baseline and a 13.5% difference was observed relative to placebo (p = .58). In patients with absence seizures only (n = 9), a median 62.2% reduction in seizure frequency was observed in the triheptanoin arm relative to baseline. Only one patient with absence seizures only was present in the control group, preventing comparison. No statistically significant differences in seizure frequency were observed. Common treatment-emergent adverse events (TEAEs) included diarrhea, vomiting, abdominal pain, and nausea, most mild or moderate in severity. No serious AEs were considered treatment related. One patient discontinued due to status epilepticus. SIGNIFICANCE Triheptanoin did not significantly reduce seizure frequency in patients with Glut1DS not on the ketogenic diet. Treatment was associated with mild to moderate GI treatment-related events; most resolved following dose reduction or interruption and/or medication for treatment. Triheptanoin was not associated with any long-term safety concerns when administered at dose levels up to 35% total daily caloric intake for up to one year.
Collapse
Affiliation(s)
- Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Stéphane Auvin
- Robert-Debré University Hospital and Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ingrid E Scheffer
- Austin and Royal Children's Hospital, Florey and Murdoch Institutes, University of Melbourne, Melbourne, Vic., Australia
| | - Michal Tzadok
- Pediatric Neurology Units, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Ian Miller
- Miami Children's Research Institute, Miami, Florida, USA
| | | | - Adrian Lacy
- Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Ronald Davis
- Neurology & Epilepsy Research Center, DBO Pediatric Neurology, P.A., Orlando, Florida, USA
| | | | - Russell P Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington/ Seattle Children's Hospital, Seattle, Washington, USA
| | | | - Susan Blair
- Ultragenyx Pharmaceutical Inc., Novato, California, USA
| | | | - Darryl De Vivo
- Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Nelson AR. Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer’s Disease. Front Aging Neurosci 2022; 14:858429. [PMID: 35517047 PMCID: PMC9062225 DOI: 10.3389/fnagi.2022.858429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900’s by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aβ and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.
Collapse
|
32
|
Diagnostic and Clinical Manifestation Differences of Glucose Transporter Type 1 Deficiency Syndrome in a Family with SLC2A1 Gene Mutation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063279. [PMID: 35328965 PMCID: PMC8950241 DOI: 10.3390/ijerph19063279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023]
Abstract
Glucose transporter type 1 deficiency syndrome is a rare genetic disease that manifests neurological symptoms such as mental impairment or movement disorders, mostly seen in pediatric patients. Here, we highlight the main symptoms, diagnostic difficulties, and genetic correlations of this disease based on different clinical presentations between the members of a family carrying the same mutation. In this report, we studied siblings—a 5-year-old girl and a 6-year-old boy—who were admitted to a pediatric ward with various neurological symptoms. Different diagnostic procedures such as lumbar puncture, electroencephalography, and MRI of the brain were performed on these patients. Whole genome sequencing identified mutations in the SLC2A1 and GLUT1-DS genes, following which a ketogenic diet was implemented. This diet modification resulted in a good clinical response. Our case report reveals patients with the same genetic mutations having distinctive clinical manifestations.
Collapse
|
33
|
Zhang M, Zhou Y, Xie Z, Luo S, Zhou Z, Huang J, Zhao B. New Developments in T Cell Immunometabolism and Therapeutic Implications for Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:914136. [PMID: 35757405 PMCID: PMC9226440 DOI: 10.3389/fendo.2022.914136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a serious public health threat. Despite the increasing incidence rate of T1D worldwide, our understanding of why T1D develops and how T cells lose their self-tolerance in this process remain limited. Recent advances in immunometabolism have shown that cellular metabolism plays a fundamental role in shaping T cell responses. T cell activation and proliferation are supported by metabolic reprogramming to meet the increased energy and biomass demand, and deregulation in immune metabolism can lead to autoimmune disorders. Specific metabolic pathways and factors have been investigated to rectify known deficiencies in several autoimmune diseases, including T1D. Most therapeutic strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact but primarily target those autoreactive T cells with hyperactivated metabolism. In this review, we provide an overview of metabolic reprogramming used by T cells, summarize the recent findings of key metabolic pathways and regulators modulating T cell homeostasis, differentiation, and function in the context of T1D, and discuss the opportunities for metabolic intervention to be employed to suppress autoreactive T cells and limit the progression of β-cell destruction.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| |
Collapse
|
34
|
Soliani L, Martorell L, Yubero D, Verges C, Petit V, Ortigoza‐Escobar JD. Paroxysmal Non-Kinesigenic Dyskinesia: Utility of the Quantification of GLUT1 in Red Blood Cells. Mov Disord Clin Pract 2021; 9:252-254. [PMID: 35146065 PMCID: PMC8810440 DOI: 10.1002/mdc3.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età pediatricaBolognaItaly,Dipartimento di Scienze Mediche e Chirurgiche (DIMEC)Università di BolognaBolognaItaly
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Delia Yubero
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Carla Verges
- Rehabilitation Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | | | - Juan Darío Ortigoza‐Escobar
- Movement Disorders Unit, Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,European Reference Network for Rare Neurological Diseases (ERN‐RND)TübingenGermany
| |
Collapse
|
35
|
Hu Q, Shen Y, Su T, Liu Y, Xu S. Clinical and Genetic Characteristics of Chinese Children With GLUT1 Deficiency Syndrome: Case Report and Literature Review. Front Genet 2021; 12:734481. [PMID: 34880899 PMCID: PMC8645975 DOI: 10.3389/fgene.2021.734481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: GLUT1 deficiency syndrome (GLUT1-DS) is a rare, treatable neurometabolic disorder. However, its diagnosis may be challenging due to the various and evolving phenotypes. Here we report the first Chinese familial cases with genetically confirmed GLUT1-DS and analyze the characteristics of Chinese children with GLUT1-DS from clinical, laboratory, and genetic aspects. Methods: We reported a Chinese family with three members affected with GLUT1-DS and searched for relevant articles up to September 2020 from PubMed, WOS, CNKI, and WanFang databases. A total of 30 Chinese patients diagnosed with GLUT1-DS (three newly identified patients in one family and 27 previously reported ones) were included and analyzed in this study. Results: The median age of onset of the 30 patients (male: 18, female: 12) was 8.5 months (range, 33 days to 10 years). Epileptic seizures were found in 25 patients, most with generalized tonic–clonic and focal ones. Movement disorders were found in 20 patients—frequently with ataxia and dystonia, developmental delay in 25 patients, and microcephaly only in six patients. The cerebrospinal fluid (CSF) analysis showed decreased CSF glucose (median: 1.63 mmol/L, range: 1.1–2.6 mmol/L) and glucose ratio of CSF to blood (median: 0.340; range: 0.215–0.484). The genetic testing performed in 28 patients revealed 27 cases with pathogenic variations of the SLC2A1 gene, including 10 missense, nine frameshift, three nonsense, three large fragment deletions, and two splice-site mutations. Most patients had a good response to the treatment of ketogenic diet or regular diet with increased frequency. Although three patients in this Chinese family carried the same pathogenic mutation c.73C > T (p.Q25X) in the SLC2A1 gene, their symptoms and responses to treatment were not exactly the same. Conclusion: The clinical manifestations of GLUT1-DS are heterogeneous, even among family members sharing the same mutation. For children with unexplained epileptic seizures, developmental delay, and complex movement disorders, detection of low CSF glucose or SLC2A1 gene mutations is helpful for the diagnosis of GLUT1-DS. Early initiation of ketogenic diet treatment significantly improves the symptoms and prognosis of GLUT1-DS.
Collapse
Affiliation(s)
- Qingqing Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuechi Shen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Akao Y, Kuranaga Y, Heishima K, Sugito N, Morikawa K, Ito Y, Soga T, Ito T. Plant hvu-MIR168-3p enhances expression of glucose transporter 1 (SLC2A1) in human cells by silencing genes related to mitochondrial electron transport chain complex I. J Nutr Biochem 2021; 101:108922. [PMID: 34856354 DOI: 10.1016/j.jnutbio.2021.108922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Diet is a crucial factor for preventing most diseases. Edible plant extracts are known to contain exosome-like nanoparticles, in which food-derived plant microRNAs are included and may serve as a novel functional component in human health. Here, we demonstrated that hvu-MIR168-3p included in the nanoparticles of rice aleurone cells down-regulated the expression of the genes related to mitochondrial electron transport chain complex I in human cells. Subsequently, hvu-MIR168-3p enhanced protein and RNA expression levels of glucose transporter I and caused a decrease in the blood glucose level, which findings were obtained by in vitro and in vivo experiments, respectively. These findings suggest that a cross-kingdom relationship between plants and humans with respect to hvu-MIR168-3p exists and may contribute to preventive medicine for GLUT1-related dysfunctions including glucose metabolism, aging, and tumor immunology.
Collapse
Affiliation(s)
- Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan.
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan
| | - Kohei Morikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomohiro Ito
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
37
|
Zhao G, Li H, Gao J, Cai M, Xu H, Shi Y, Wang H, Wang H. Insight into the Different Channel Proteins of Human Red Blood Cell Membranes Revealed by Combined dSTORM and AFM Techniques. Anal Chem 2021; 93:14113-14120. [PMID: 34657412 DOI: 10.1021/acs.analchem.1c02382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membrane proteins tend to interact with each other in the cell membranes to form protein clusters and perform the corresponding physiological functions. However, because channel proteins are involved in many biological functions, their distribution and nano-organization in these protein clusters are unclear. To study the distribution patterns and relationships between the different channel proteins, we identified the locations of glucose transporter 1 (Glut1) and Band3 (anion transporter 1) precisely in the topography of the cytoplasmic side of the human red blood cell (hRBC) membranes using combined atomic force microscopy (AFM) and single-molecule localization microscopy (SMLM). The AFM results revealed that membrane proteins interacted with each other and aggregated into protein islands. The SMLM results showed that Glut1 and Band3 tended to form protein clusters in the hRBC membranes, and there was a strong colocalization between the two proteins. The results of the combined AFM and SMLM method indicated that the protein clusters of Glut1 and Band3 were mainly located in the protein islands of topography, and the protein islands in topography also interacted with each other to assemble into larger protein clusters or functional microdomains.
Collapse
Affiliation(s)
- Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Maiorana A, Caviglia S, Greco B, Alfieri P, Cumbo F, Campana C, Bernabei SM, Cusmai R, Mosca A, Dionisi-Vici C. Ketogenic diet as elective treatment in patients with drug-unresponsive hyperinsulinemic hypoglycemia caused by glucokinase mutations. Orphanet J Rare Dis 2021; 16:424. [PMID: 34635134 PMCID: PMC8507241 DOI: 10.1186/s13023-021-02045-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hyperinsulinemic hypoglycemia (HI) is the most frequent cause of recurrent hypoglycemia in children. Despite diagnostic and therapeutic advances, it remains an important cause of morbidity, leading to neurological complications, such as psychomotor retardation and epilepsy. Patients with diffuse drug-unresponsive HI manifest neurological impairment and neurobehavioral problems, even though surgically treated with a near-total pancreatectomy. Based on the analogies between HI and GLUT1 deficiency, both presenting with neuroglycopenia and lack of alternative cerebral energy sources, we administered a ketogenic diet (KD) in three drug-unresponsive GCK-HI patients with the aim of preserving neurodevelopment and avoiding the need of a near-total pancreatectomy. They presented recurrent symptomatic hypoglycemia, intellectual disability and refractory epilepsy. Patients were treated with classical KD for 79, 27 and 18 months, respectively. Results All patients became asymptomatic in a few days and showed an important improvement of the alert state. Epilepsy disappeared and no appearance of novel hypoglycemic lesions was detected with a brain MRI. Cognitive and adaptive abilities rapidly improved and normalized. IQ rose significantly from 81 to 111 (p = 0.04) in patient 1, from 82 vs 95 (p = 0.04) in patient 2, from 60 to 90 (p = 0.04) in patient 3. Conclusions We demonstrated the safety and efficacy of KD in the treatment of drug-unresponsive GCK-HI at a short and long-term. The neuroprotective effects of KD determined the recovery from epilepsy and intellectual disabilities and averted the need of a near-total pancreatectomy. All patients and their families reported an improvement of physical and psychosocial well-being, with a substantial improvement of their quality of life. These results might change the course and the quality of life of these patients and their families, having a relevant impact on human lives. Therefore, KD might be considered the elective treatment in unresponsive forms of GCK-HI. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02045-3.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Stefania Caviglia
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Benedetta Greco
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesca Cumbo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carmen Campana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Silvia Maria Bernabei
- Division of Artificial Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonella Mosca
- Department of Hepatology, Gastroenterology and Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
39
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
40
|
GLUT1 Deficiency Syndrome-Early Treatment Maintains Cognitive Development? (Literature Review and Case Report). Genes (Basel) 2021; 12:genes12091379. [PMID: 34573360 PMCID: PMC8472230 DOI: 10.3390/genes12091379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Glucose transporter type 1 (GLUT1) is the most important energy carrier of the brain across the blood-brain barrier, and a genetic defect of GLUT1 is known as GLUT1 deficiency syndrome (GLUT1DS). It is characterized by early infantile seizures, developmental delay, microcephaly, ataxia, and various paroxysmal neurological phenomena. In most cases, GLUT1DS is caused by heterozygous single-nucleotide variants (SNVs) in the SLC2A1 gene that provoke complete or severe impairment of the functionality and/or expression of GLUT1 in the brain. Despite the rarity of these diseases, GLUT1DS is of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms, especially if it is started as early as possible. We present a clinical phenotype, biochemical analysis, electroencephalographic and neuropsychological features of an 11-month-old boy with myoclonic seizures, hypogammaglobulinemia, and mildly impaired gross motor development. Using sequence analysis and deletion/duplication testing, deletion of an entire coding sequence in the SLC2A1 gene was detected. Early introduction of a modified Atkins diet maintained a seizure-free period without antiseizure medications and normal cognitive development in the follow-up period. Our report summarizes the clinical features of GLUT1 syndromes and discusses the importance of early identification and molecular confirmation of GLUT1DS as a treatable metabolic disorder.
Collapse
|
41
|
Bozkurt T, Alanay Y, Isik U, Sezerman U. Re-analysis of whole-exome sequencing data reveals a novel splicing variant in the SLC2A1 in a patient with GLUT1 Deficiency Syndrome 1 accompanied by hemangioma: a case report. BMC Med Genomics 2021; 14:197. [PMID: 34332575 PMCID: PMC8325841 DOI: 10.1186/s12920-021-01045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND GLUT1 Deficiency Syndrome 1 (GLUT1DS1) is a neurological disorder caused by either heterozygous or homozygous mutations in the Solute Carrier Family 2, Member 1 (SLC2A1) gene. SLC2A1 encodes Glucose transporter type 1 (GLUT1) protein, which is the primary glucose transporter at the blood-brain barrier. A ketogenic diet (KD) provides an alternative fuel for brain metabolism to treat impaired glucose transport. By reanalyzing exome data, we identified a de novo heterozygous SLC2A1 variant in a girl with epilepsy. After reversed phenotyping with neurometabolic tests, she was diagnosed with GLUT1DS1 and started on a KD. The patient's symptoms responded to the diet. Here, we report a patient with GLUT1DS1 with a novel SLC2A1 mutation. She also has a hemangioma which has not been reported in association with this syndrome before. CASE PRESENTATION A 5-year 8-month girl with global developmental delay, spasticity, intellectual disability, dysarthric speech, abnormal eye movements, and hemangioma. The electroencephalography (EEG) result revealed that she had epilepsy. Magnetic resonance imaging (MRI) showed that non-specific white matter abnormalities. Whole Exome Sequencing (WES) was previously performed, but the case remained unsolved. The re-analysis of WES data revealed a heterozygous splicing variant in the SLC2A1 gene. Segregation analysis with parental DNA samples indicated that the variant occurred de novo. Lumbar puncture (LP) confirmed the diagnosis, and the patient started on a KD. Her seizures responded to the KD. She has been seizure-free since shortly after the initiation of the diet. She also had decreased involuntary movements, her speech became more understandable, and her vocabulary increased after the diet. CONCLUSIONS We identified a novel de novo variant in the SLC2A1 gene in a patient who previously had a negative WES result. The patient has been diagnosed with GLUT1DS1. The syndrome is a treatable condition, but the differential diagnosis is not an easy process due to showing a wide range of phenotypic spectrum and the overlapping symptoms with other neurological diseases. The diagnosis necessitates a genomic testing approach. Our findings also highlight the importance of re-analysis to undiagnosed cases after initial WES to reveal disease-causing variants.
Collapse
Affiliation(s)
- Tugce Bozkurt
- Biostatistics and Bioinformatics Program, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Isik
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Sezerman
- Biostatistics and Bioinformatics Program, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
42
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
43
|
Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021; 12:1835-1853. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) is a prime focus for clinicians to maintain the homeostatic function in health and deliver the theranostics in brain cancer and number of neurological diseases. The structural hierarchy and in situ biochemical signaling of BBB neurovascular unit have been primary targets to recapitulate into the in vitro modules. The microengineered perfusion systems and development in 3D cellular and organoid culture have given a major thrust to BBB research for neuropharmacology. In this review, we focus on revisiting the nanoparticles based bimolecular engineering to enable them to maneuver, control, target, and deliver the theranostic payloads across cellular BBB as nanorobots or nanobots. Subsequently we provide a brief outline of specific case studies addressing the payload delivery in brain tumor and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, multiple sclerosis, etc.). In addition, we also address the opportunities and challenges across the nanorobots' development and design. Finally, we address how computationally powered machine learning (ML) tools and artificial intelligence (AI) can be partnered with robotics to predict and design the next generation nanorobots to interact and deliver across the BBB without causing damage, toxicity, or malfunctions. The content of this review could be references to multidisciplinary science to clinicians, roboticists, chemists, and bioengineers involved in cutting-edge pharmaceutical design and BBB research.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | - Poonam Janapareddy
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Divya Elsa Mathews
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), 24404 Doha, Qatar
| | | | | | - Julien Abinahed
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | - Abdulla Al Ansari
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
44
|
Danti FR, Invernizzi F, Moroni I, Garavaglia B, Nardocci N, Zorzi G. Pediatric Paroxysmal Exercise-Induced Neurological Symptoms: Clinical Spectrum and Diagnostic Algorithm. Front Neurol 2021; 12:658178. [PMID: 34140924 PMCID: PMC8203909 DOI: 10.3389/fneur.2021.658178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Paroxysmal exercise-induced neurological symptoms (PENS) encompass a wide spectrum of clinical phenomena commonly presenting during childhood and characteristically elicited by physical exercise. Interestingly, few shared pathogenetic mechanisms have been identified beyond the well-known entity of paroxysmal exercise-induced dyskinesia, PENS could be part of more complex phenotypes including neuromuscular, neurodegenerative, and neurometabolic disease, epilepsies, and psychogenetic disorders. The wide and partially overlapping phenotypes and the genetic heterogeneity make the differential diagnosis frequently difficult and delayed; however, since some of these disorders may be treatable, a prompt diagnosis is mandatory. Therefore, an accurate characterization of these symptoms is pivotal for orienting more targeted biochemical, radiological, neurophysiological, and genetic investigations and finally treatment. In this article, we review the clinical, genetic, pathophysiologic, and therapeutic landscape of paroxysmal exercise induced neurological symptoms, focusing on phenomenology and differential diagnosis.
Collapse
Affiliation(s)
- Federica Rachele Danti
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico C. Besta, Milan, Italy
| | - Nardo Nardocci
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanna Zorzi
- Unit of Child Neurology, Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
45
|
Bushueva OO, Antipenko EA. [Update on the etiology and pathogenesis of muscle dystonia]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:127-133. [PMID: 34037366 DOI: 10.17116/jnevro2021121041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle dystonia is one of the most common extrapyramidal diseases and is the third most common after essential tremor and Parkinson's disease. The introduction of diagnostic methods expanded the understanding of the genetic basis of muscle dystonia and neurophysiological mechanisms of dystonic phenomena. However, the questions of the etiology and pathogenesis of dystonia still remain the subject of close interest of researchers. The review provides up-to-date information about the etiology and pathogenesis of muscle dystonia. Recent changes in the genetic nomenclature of dystonia are described. Modern ideas about the pathogenetic significance of such mechanisms as abnormalities of neural inhibition, disturbances of sensorimotor integration, and abnormalities of neural plasticity are considered. Recent research data support the concept of systemic sensorimotor disintegration, including not only basal ganglia dysfunction, but also motor network disorders involving the cerebellum, cortex, midbrain, thalamus and other areas.
Collapse
Affiliation(s)
- O O Bushueva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,City Hospital N 33, Nizhny Novgorod, Russia
| | - E A Antipenko
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch Pharm Res 2021; 44:487-498. [PMID: 34028650 DOI: 10.1007/s12272-021-01332-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is composed of specific tight junction proteins and transporters expressed on the lining of endothelial cells of the vasculature in the brain. The structural and functional integrity of the BBB is one of the most critical factors for maintaining brain homeostasis and is mainly regulated by complex interactions between various cell types, such as endothelial cells, pericytes, and astrocytes, which are shaped by their differential responses to changes in microenvironments. Alterations in these cellular components have been implicated in neurodegenerative disorders. Although it has long been considered that BBB dysfunction is a mere ramification of pathological phenomena, emerging evidence supports its critical role in the pathogenesis of various disorders. In epilepsy, heightened BBB permeability has been found to be associated with increased occurrence of spontaneous seizures. Additionally, exaggerated inflammatory responses significantly correlate with increased BBB permeability during healthy aging. Furthermore, it has been previously reported that BBB disruption can be an early marker for predicting cognitive impairment in the progression of Alzheimer's disease. We herein review a potential role of the major cellular components of the BBB, with a focus on the contribution of BBB disruption, in neurodegenerative disease progression.
Collapse
|
47
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
48
|
Zanaboni MP, Pasca L, Villa BV, Faggio A, Grumi S, Provenzi L, Varesio C, De Giorgis V. Characterization of Speech and Language Phenotype in GLUT1DS. CHILDREN-BASEL 2021; 8:children8050344. [PMID: 33925679 PMCID: PMC8146076 DOI: 10.3390/children8050344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022]
Abstract
Background: To analyze the oral motor, speech and language phenotype in a sample of pediatric patients with GLUT 1 transporter deficiency syndrome (GLUT1DS). Methods: eight Italian-speaking children with GLUT1DS (aged 4.6–15.4 years) in stable treatment with ketogenic diet from a variable time underwent a specific and standardized speech and language assessment battery. Results: All patients showed deficits with different degrees of impairment in multiple speech and language areas. In particular, orofacial praxis, parallel and total movements were the most impaired in the oromotor domain; in the speech domain patients obtained a poor performance in the diadochokinesis rate and in the repetition of words that resulted as severely deficient in seven out of eight patients; in the language domain the most affected abilities were semantic/phonological fluency and receptive grammar. Conclusions: GLUT1DS is associated to different levels of speech and language impairment, which should guide diagnostic and therapeutic intervention. Larger population data are needed to identify more precisely a speech and language profile in GLUT1DS patients.
Collapse
Affiliation(s)
- Martina Paola Zanaboni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
- Department of Brain and Behaviour Neuroscience, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380289
| | - Barbara Valeria Villa
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Antonella Faggio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Serena Grumi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Livio Provenzi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
- Department of Brain and Behaviour Neuroscience, University of Pavia, 27100 Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| |
Collapse
|
49
|
de Gusmão CM, Garcia L, Mikati MA, Su S, Silveira-Moriyama L. Paroxysmal Genetic Movement Disorders and Epilepsy. Front Neurol 2021; 12:648031. [PMID: 33833732 PMCID: PMC8021799 DOI: 10.3389/fneur.2021.648031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
Paroxysmal movement disorders include paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dyskinesia, and episodic ataxias. In recent years, there has been renewed interest and recognition of these disorders and their intersection with epilepsy, at the molecular and pathophysiological levels. In this review, we discuss how these distinct phenotypes were constructed from a historical perspective and discuss how they are currently coalescing into established genetic etiologies with extensive pleiotropy, emphasizing clinical phenotyping important for diagnosis and for interpreting results from genetic testing. We discuss insights on the pathophysiology of select disorders and describe shared mechanisms that overlap treatment principles in some of these disorders. In the near future, it is likely that a growing number of genes will be described associating movement disorders and epilepsy, in parallel with improved understanding of disease mechanisms leading to more effective treatments.
Collapse
Affiliation(s)
- Claudio M. de Gusmão
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Lucas Garcia
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
| | - Mohamad A. Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Samantha Su
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, NC, United States
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
- Department of Medicine, Universidade 9 de Julho, São Paulo, Brazil
- Education Unit, University College London Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
50
|
Shin BC, Cepeda C, Eghbali M, Byun SY, Levine MS, Devaskar SU. Adult glut3 homozygous null mice survive to demonstrate neural excitability and altered neurobehavioral responses reminiscent of neurodevelopmental disorders. Exp Neurol 2021; 338:113603. [PMID: 33482226 DOI: 10.1016/j.expneurol.2021.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 11/15/2022]
Abstract
Since GLUT3 is vital for fueling neurotransmission, we examined in-vivo the adult phenotype carrying the conditional homozygous glut3 gene mutation (KO) in glutamate-excitatory neurons. These KO mice demonstrated sex-specific differences in brain and body weights (p = 0.0001 and p = 0.01 each) with reduced GLUT3 protein in cerebral cortices and brain stem (p = 0.005). In patch clamp studies the glut3 KO mice displayed a shorter latency to and enhanced paroxysmal activity (p = 0.01 and p = 0.015 each) in pyramidal neurons upon application of a GABAA antagonist, supporting hyperexcitability. Further, associated changes in neurobehavior consisted of reduced latency to fall in the rotorod motor test related to incoordination, increased distance traveled in total and periphery versus center in open field testing suggesting hyperactivity with anxiety (p = 0.0013 in male, p = 0.045 in female), reduced time freezing reminiscent of disrupted contextual fear conditioning (p = 0.0033), decreased time in target quadrant seen with spatial cognitive memory water maze testing (p = 0.034), and enhanced sociability particularly for novelty reflecting a lack of inhibition/impulsivity (p = 0.038). Some of these features were equally pronounced in males and females (cognitive) while others were seen in females (anxiety and impulsivity). We conclude that GLUT3 in adult glutamate-excitatory neurons is essential for maintaining neurotransmitory equipoise regulating excitation with maintenance of motor coordination and activity, cognition, spatial memory and normal fear for both contextual events and novelty with tempered sociability. While sex-specificity was forthcoming for some of these behaviors, our findings collectively suggest that loss-of-function glut3 gene mutations or polymorphisms may underlie an endophenotype of attention deficit-hyperactivity disorder.
Collapse
Affiliation(s)
- Bo-Chul Shin
- Departments of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America
| | - Mason Eghbali
- Departments of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America
| | - Shin Yun Byun
- Departments of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America
| | - Sherin U Devaskar
- Departments of Pediatrics, Division of Neonatology & Developmental Biology, The Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, United States of America.
| |
Collapse
|