1
|
McLoughlin EC, Twamley B, O'Boyle NM. Candidaantarctica Lipase B mediated kinetic resolution: A sustainable method for chiral synthesis of antiproliferative β-lactams. Eur J Med Chem 2024; 276:116692. [PMID: 39068864 DOI: 10.1016/j.ejmech.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Biocatalysis is a valuable industrial approach in active pharmaceutical ingredient (API) manufacturing for asymmetric induction and synthesis of chiral APIs. Herein, we investigated synthesis of a panel of microtubule-destabilising antiproliferative β-lactam enantiomers employing a commercially available immobilised Candida antarctica lipase B enzyme together with methanol and MTBE. The β-lactam ring remained intact during chiral kinetic resolution reactions, plausibly due to a bulky N-1 phenyl substituent on the β-lactam ring substrate. The predominant reaction mediated by CAL-B was methanol catalysed conversion of the β-lactam 3-acetoxy substituent to a 3-hydroxyl group, with preferential methanolysis of the 3S, 4S enantiomer. The unreacted substrate underwent progressive enantioenrichment to the 3R, 4R enantiomer. Substitution patterns on the B ring C3 meta position of the β-lactam scaffold greatly affected the rate of reaction. Halo substituents (fluoro-, chloro- and bromo-) reduced the rate of conversion compared to unsubstituted analogues, which in turn increased enantiomeric excess (ee). Ee values up to 86 % for the 3S, 4S 3-hydroxyl enantiomer were achieved. A double resolution approach for unreacted substrate yielded high ee values (>99 %) for the 3R, 4R 3-acetoxy enantiomer. CAL-B mediated methanolysis is a more sustainable method for resolution of racemic antiproliferative β-lactams compared to a previous technique of chiral diastereomeric resolution. Yields of β-lactams obtained using CAL-B are far superior than previously described, which will facilitate progression toward pre-clinical and clinical development. Biocatalysis is a useful tool in the toolbox of the medicinal chemist.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland.
| |
Collapse
|
2
|
Zhao J, Ma M, Zeng Z, Wan D, Yan X, Xia J, Yu P, Gong D. Production, purification, properties and current perspectives for modification and application of microbial lipases. Prep Biochem Biotechnol 2024; 54:1001-1016. [PMID: 38445829 DOI: 10.1080/10826068.2024.2323196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
With the industrialization and development of modern science, the application of enzymes as green and environmentally friendly biocatalysts in industry has been increased widely. Among them, lipase (EC. 3.1.1.3) is a very prominent biocatalyst, which has the ability to catalyze the hydrolysis and synthesis of ester compounds. Many lipases have been isolated from various sources, such as animals, plants and microorganisms, among which microbial lipase is the enzyme with the most diverse enzymatic properties and great industrial application potential. It therefore has promising applications in many industries, such as food and beverages, waste treatment, biofuels, leather, textiles, detergent formulations, ester synthesis, pharmaceuticals and medicine. Although many microbial lipases have been isolated and characterized, only some of them have been commercially exploited. In order to cope with the growing industrial demands and overcome these shortcomings to replace traditional chemical catalysts, the preparation of new lipases with thermal/acid-base stability, regioselectivity, organic solvent tolerance, high activity and yield, and reusability through excavation and modification has become a hot research topic.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dongman Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
3
|
Sayın B, Kaban G. Biotechnological Innovations Unleashing the Potential of Olive Mill Wastewater in Added-Value Bioproducts. Foods 2024; 13:2245. [PMID: 39063329 PMCID: PMC11276412 DOI: 10.3390/foods13142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Byproducts and wastes from the food processing industry represent an important group of wastes generated annually in large quantities. It is important to note that the amount of this waste will increase with industrialization, and effective solutions must be found urgently. Many wastes that cause environmental pollution are evaluated by their low-tech conversion into products with little economic value, such as animal feed and fertilizer. Therefore, the evaluation of food processing waste using effective recycling techniques has become an interesting subject with increasing population, ongoing biotechnological studies, and advances in technology. The conversion of food waste into biotechnological products via fermentation is a sustainable, environmentally friendly, and economical method in line with the principles of green chemistry. This approach promotes the reuse of food waste by supporting the principles of a circular economy and offers sustainable alternatives to fossil fuels and synthetic chemicals. This contributes to reducing the carbon footprint, preserving soil and water quality, and providing economic sustainability through the production of high-value products. In this study, the properties of olive mill wastewater, an important and valuable waste in the olive oil industry, its environmental aspects, and its use in biotechnological applications that integrate green chemistry are evaluated.
Collapse
Affiliation(s)
- Bilge Sayın
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, 75002 Ardahan, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240 Erzurum, Türkiye
| |
Collapse
|
4
|
Karia M, Kaspal M, Alhattab M, Puri M. Marine-Derived Lipases for Enhancing Enrichment of Very-Long-Chain Polyunsaturated Fatty Acids with Reference to Omega-3 Fatty Acids. Mar Drugs 2024; 22:301. [PMID: 39057410 PMCID: PMC11277628 DOI: 10.3390/md22070301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote good health. To overcome this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this purpose, various approaches have been employed to obtain omega-3 concentrates from sources such as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremendous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are preferred as they are easily produced due to their higher growth rate, and they hold the ability to be manipulated using genetic modification. This review aims to highlight the recent studies that have been carried out using marine lipases for the enrichment of omega-3, to provide insight into future directions. Overall, the covalent bond-based lipase immobilization to various support materials appears most promising; however, greener and less expensive options need to be strengthened.
Collapse
Affiliation(s)
- Mahejbin Karia
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Mona Kaspal
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Mariam Alhattab
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Munish Puri
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide 5042, Australia
| |
Collapse
|
5
|
Rampanti G, Cantarini A, Cardinali F, Milanović V, Garofalo C, Aquilanti L, Osimani A. Technological and Enzymatic Characterization of Autochthonous Lactic Acid Bacteria Isolated from Viili Natural Starters. Foods 2024; 13:1115. [PMID: 38611419 PMCID: PMC11011773 DOI: 10.3390/foods13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Viili, a Finnish ropy fermented milk, is traditionally manufactured through spontaneous fermentation, by mesophilic lactic acid bacteria and yeast-like fungi, or back-slopping. This study evaluated four natural viili starters as sources of lactic acid bacteria for dairy production. Back-slopping activation of the studied viili samples was monitored through pH and titratable acidity measurements and enumeration of mesophilic lactic acid bacteria. Sixty lactic acid bacteria isolates were collected, molecularly identified, and assayed for acidification performance, enzymatic activities, production of exopolysaccharides (EPSs), presence of the histidine decarboxylase (hdcA) gene of Gram-positive bacteria, and production of bacteriocins. A neat predominance of Lactococcus lactis emerged among the isolates, followed by Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus lactis, and Lactococcus cremoris. Most isolates exhibited proteolytic activity, whereas only a few enterococci showed lipase activity. Five isolates identified as L. cremoris, L. lactis, and E. faecalis showed a good acidification performance. Most of the isolates tested positive for leucine arylamidase, whereas only one E. durans and two L. lactis isolates were positive for valine arylamidase. A few isolates also showed a positive reaction for beta-galactosidase and alpha- and beta-glucosidase. None of the isolates produced EPSs or bacteriocins. The hdcA gene was detected in five isolates identified as L. lactis and E. faecium. A few L. cremoris and L. lactis isolates for potential use as starter or adjunct cultures for dairy processing were finally identified.
Collapse
Affiliation(s)
| | | | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (A.C.); (V.M.); (C.G.); (L.A.); (A.O.)
| | | | | | | | | |
Collapse
|
6
|
Khodakarami Fard Z, Shirazinejad A, Mohammadi M, Hashemi SMB. Molecular Cloning of the Extracellular Lipases of Bacillus Amyloliquefaciens Isolated from Agrifood Wastes. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3797. [PMID: 39220339 PMCID: PMC11364930 DOI: 10.30498/ijb.2024.417315.3797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 09/04/2024]
Abstract
Background The lipase enzyme (EC: 3.1.1.3) is one of the most important catalysts in food, dairy, detergent, and textile industries. Objective This study was performed to identify, isolate and characterize of lipase producing bacterial strain from agrifood wastes and to identify and characterize of their lipase genes. Materials and Methods In the present study, two lipase-producing isolates were identified from the effluent of Golbahar meat products and Soveyda vegetable oil factories using in silico and in vitro approaches. Results The results of morphological, biochemical, and molecular characterizations showed that both lipase-producing isolates belong to the Bacillus amyloliquefaciens species. Phylogenetic analysis confirmed the results of phenotypic, biochemical, and molecular characterizations. The results showed differences between LipA and LipB in the Golbahar and Soveyda isolates. Three different amino acids (residues 14, 100, and 165) were observed in LipA and one different amino acid (residue 102) was detected in LipB extracellular lipases. The protein molecular weight of the two extracted lipases ranged from 20 to 25 kDa. The identified extracellular lipases also had different physicochemical features. The maximum lipase activity of the Golbahar and Soveyda isolates was observed at 45 °C and at the pH of 8, but the Golbahar isolates exhibited higher lipase activity compared to the Soveyda isolates. The Golbahar and Soveyda isolates exhibited different activities in the presence of some ions, inhibitors, denaturing agents, and organic solvents and the Golbahar isolates showed better lipase activity than the Soveyda isolates. Conclusions In this study, two extracellular lipase-producing isolates of B. amyloliquefaciens were identified from different food industries, and their characteristics were investigated. The results of various investigations showed that the lipases produced by the Golbahar isolate have better characteristics than the lipases of the Soveyda isolate. The Golbahar lipases have a suitable temperature and pH activity range and maintain their activity in the presence of some ions, inhibitors, denaturing agents, and organic solvents. After further investigation, the Golbahar isolate lipase can be used in various industries. In addition, this lipase can be used enzyme engineering processes and its activity can be arbitrarily changed by targeted mutations. The results of this study can increase our knowledge of extracellular lipases and may turn out to have industrial applications.
Collapse
Affiliation(s)
- Zahra Khodakarami Fard
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Alireza Shirazinejad
- Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Mohsen Mohammadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
7
|
Gong D, Cong H, Liu S, Zhang L, Wei T, Shi X, Wang Z, Wu X, Song J. Transcriptome Identification and Analysis of Fatty Acid Desaturase Gene Expression at Different Temperatures in Tausonia pullulans 6A7. Microorganisms 2023; 11:2916. [PMID: 38138060 PMCID: PMC10745852 DOI: 10.3390/microorganisms11122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Tausonia pullulans 6A7 is a low-temperature yeast strain that can produce lipases. Yeast, which is made up of chassis cells, is an important part of synthetic biology, and the use of the lipase-producing properties of T. pullulans 6A7 for the production of fatty acids provides a new pathway for targeted synthesis in yeast cell factories. In this study, we performed RNA-seq on lipase-producing T. pullulans 6A7 at different temperatures (15 °C, 20 °C, 20 °C without corn oil, and 25 °C). Therefore, a total of 8455 differentially expressed genes were screened, and 16 of them were FAD candidate genes. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of group A (15 °C) vs. group D (25 °C) showed that the pathways of fatty acid biosynthesis (map00061) and the biosynthesis of unsaturated fatty acids (map01040) were significantly enriched. In the proposed temporal analysis of differentially expressed genes among the four temperature modulations, we found differentially expressed genes in nine clusters that had the same expression trends; these genes may be jointly involved in multiple biological processes in T. pullulans 6A7. In addition, we found 16 FAD candidate genes involved in fatty acid biosynthesis, and the expression of these genes had similar expression in the transcriptome trends with the different temperature treatments. These findings will help in future in-depth studies of the function and molecular mechanisms of these important FAD genes involved in fatty acid metabolism in yeast, and they could also be conducive to the establishment of a cellular factory for targeted fatty acid production by using yeast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; (D.G.); (H.C.); (S.L.); (L.Z.); (T.W.); (X.S.); (Z.W.); (X.W.)
| |
Collapse
|
8
|
Mustafa A, Faisal S, Ahmed IA, Munir M, Cipolatti EP, Manoel EA, Pastore C, di Bitonto L, Hanelt D, Nitbani FO, El-Bahy ZM, Inayat A, Abdellatief TMM, Tonova K, Bokhari A, Abomohra A. Has the time finally come for green oleochemicals and biodiesel production using large-scale enzyme technologies? Current status and new developments. Biotechnol Adv 2023; 69:108275. [PMID: 39492461 DOI: 10.1016/j.biotechadv.2023.108275] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
With the growth of the chemical industry over the last decade, the need for cheaper (and more environmentally friendly) alternatives to petrochemicals of ever-increasing cost has grown steadily. Oleochemicals and biodiesel (OC/BD) are considered as green alternatives to petroleum derivatives, because they come from renewable oils and fats. OC/BD are currently produced by the traditional energy intensive chemical catalyzed methods, which have several economic and environmental drawbacks. For these reasons, the enzymatic production of OC/BD has attracted a growing attention for their greener pathway with respect to the chemically catalyzed processes. Lipase-catalyzed processes have a low energy requirement, since reactions are performed under atmospheric pressure and mild temperature and without the creation of side reactions. Furthermore, utilization of enzyme catalysts offers many advantages such as reducing the initial capital investment due to simplified downstream processing steps. Despite all the previous advantages, however, the high cost of lipases restricted their large-scale utilization. In the past decade, efforts have been made to reduce the cost of the enzymatic-catalyzed synthesis of OC/BD. However, most previous studies have studied only the technical feasibility of the lipase-catalyzed reactions and overlocked the economic viability. This review critically discusses the factors affecting the promotion of the economic feasibility of the enzymatic processes from the lab to large scale. These include reactor configuration, type of feedstock, conditions optimization, immobilization, lipase-producing microorganisms, and substrate diversification. In addition, this review reports the recent advances in lipase-catalyzed production of fatty acids, fatty esters, monoglycerides, and biodiesel in the lab as well as in the large-scales. To the best of authors' knowledge, this is the first review article reports the recent global progress achieved in both lab- and large-scale for the enzymatic production of OC/BD.
Collapse
Affiliation(s)
- Ahmad Mustafa
- Faculty of Engineering, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Inas A Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Eliane Pereira Cipolatti
- Chemical Engineering Department, Institute of Technology, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro (UFRJ), Rio de Janeito, RJ, Brazil; Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), Viale De Blasio 5,70132 Bari, Italy
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Febri Odel Nitbani
- Department of Chemistry, Faculty of Science and Engineering, University of Nusa Cendana, Jl. Adisucipto, Penfui, Kupang 85001, Nusa Tenggara Timur, Indonesia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Tamer M M Abdellatief
- Sustainable Energy & Power Systems Research Center, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, EL-Minia 61519, Egypt
| | - Konstantza Tonova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 103, Sofia 1113, Bulgaria
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab 54000, Pakistan; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
9
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
10
|
Jiang S, Zhou Z, Han J, Fan Q, Long Z, Wang J. Enhanced enzyme thermostability of a family I.3 lipase LipSR1 by T118A mutation at the calcium-binding site. Biotechnol Lett 2023; 45:1199-1207. [PMID: 37439931 DOI: 10.1007/s10529-023-03413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES The lipase gene lipSR1 isolated from oil-contaminated soil exhibits high hydrolytic activity for short-chain fatty acid substrates. A single calcium ion is required to anchor the lid of LipSR1 in an open conformation by coordination with two aspartate residues and three other residues in the lid. The lid of LipSR1 is anchored by Ca2+, which is coordinated by side-chain carboxyl oxygens of Asp153 and Asp157, carbonyl oxygens of Thr118 and Ser144, and the side chain of Gln120. RESULTS D157A, D153R, Q120A, S144A, and T118A mutants were produced by site-directed mutagenesis in this study. Analyses of hydrolytic activity and thermostability showed that the properties of D157A, D153R, Q120A, and S144A were almost lost, suggesting that Asp157, Asp153, Gln120, and Ser144 are important residues for LipSR1. However, the catalytic performance of T118A was clearly maintained. Moreover, the thermostability of mutant T118A was higher than that of wild-type LipSR1. CONCLUSIONS These results indicated that mutation of threonine at position 118 improved the stability of the enzyme at high temperature.
Collapse
Affiliation(s)
- Shijie Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingfeng Fan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhijian Long
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
11
|
Kumar D, Bhardwaj R, Jassal S, Goyal T, Khullar A, Gupta N. Application of enzymes for an eco-friendly approach to textile processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71838-71848. [PMID: 34651264 DOI: 10.1007/s11356-021-16764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Textile industry is one of the oldest industries existing from several centuries. Major concern of the industry is to design, produce, and distribute yarn, cloth, and clothing. Diverse physical and chemical operations are required in order to achieve this. Environmental concerns related to textile industry have attained attention all around the world as it is generating large amounts of effluents having various toxic agents and chemicals. Enzymes have been suggested as the best possible alternative to replace or reduce these hazardous and toxic chemicals. Enzymes like amylase, cellulase, catalase, protease, pectinase, laccase, and lipase have widely been used in textile manufacturing processes. Use of enzymatic approach is very promising as they are eco-friendly, produce high-quality products, and lead to the reduction of energy, water, and time. This review highlights the significance of different enzymes employed in the textile industry at various stages along with the conventional textile processing.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Microbiology, DAV University, Jalandhar, Punjab, India.
| | - Raveena Bhardwaj
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Tanya Goyal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Aastha Khullar
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India.
| |
Collapse
|
12
|
Umbelopsis (Mucoromycota) from Patagonia, Argentina: identification, phylogenetic analysis, and expression profiling of lipase activity and lipid accumulation in selected isolates. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Jain L, Jajoo A. Diminishing toxicity of pyrene on photosynthetic performance of soybean using Bacillus subtilis (NCIM 5594). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:206-218. [PMID: 36372780 DOI: 10.1071/fp22172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons are persistent organic pollutants causing serious environmental problems, being toxic to plants and difficult to remediate. Pyrene is one such extremely dangerous compound that is toxic for the environment. This study suggests the use of Bacillus subtilis (National Collection of Industrial Microorganisms [NCIM] 5594) to overcome inhibitory effects of pyrene on soybean photosynthesis. The toxicity of pyrene to soybean was evident from a significant decrease in seed germination parameters, photosynthetic performance and biomass during growth of soybean in pyrene contaminated soil. Efficiency of performance index, light absorption, trapping and electron transport were reduced in plants grown in pyrene contaminated soil while significant recovery in these parameters was observed in plants grown in pyrene+B. subtilis treated soil. Activity levels of dehydrogenase and lipase enzymes significantly recovered in pyrene+B. subtilis treated soil. After extraction of pyrene from soil and soybean plant, concentration of pyrene was lowered in pyrene+B. subtilis treated soil and plants. These findings suggest efficient degradation of pyrene by B. subtilis . About 70% degradation of pyrene was achieved in soil using B. subtilis ; thus it is a useful strain for crop improvement in pyrene polluted soil.
Collapse
Affiliation(s)
- Lakshmi Jain
- School of Life Science, Devi Ahilya University, Indore 452017, India
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452017, India; and School of Biotechnology, Devi Ahilya University, Indore 452017, India
| |
Collapse
|
14
|
Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK. Industrial applications of fungal lipases: a review. Front Microbiol 2023; 14:1142536. [PMID: 37187537 PMCID: PMC10175645 DOI: 10.3389/fmicb.2023.1142536] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Fungal lipases (triacylglycerol acyl hydrolases EC 3.1.1.3) are significant industrial enzymes and have several applications in a number of industries and fields. Fungal lipases are found in several species of fungi and yeast. These enzymes are carboxylic acid esterases, categorized under the serine hydrolase family, and do not require any cofactor during the catalyzing of the reactions. It was also noticed that processes including the extraction and purification of lipases from fungi are comparatively easier and cheaper than other sources of lipases. In addition, fungal lipases have been classified into three chief classes, namely, GX, GGGX, and Y. Fungal lipases have applications not only in the hydrolysis of fats and oils (triglycerides) but are also involved in synthetic reactions such as esterification, acidolysis, alcoholysis, interesterification, and aminolysis. The production and activity of fungal lipases are highly affected by the carbon source, nitrogen source, temperature, pH, metal ions, surfactants, and moisture content. Therefore, fungal lipases have several industrial and biotechnological applications in many fields such as biodiesel production, ester synthesis, production of biodegradable biopolymers, formulations of cosmetics and personal care products, detergent manufacturing, degreasing of leather, pulp and paper production, textile industry, biosensor development, and drug formulations and as a diagnostic tool in the medical sector, biodegradation of esters, and bioremediation of wastewater. The immobilization of fungal lipases onto different carriers also helps in improving the catalytic activities and efficiencies of lipases by increasing thermal and ionic stability (in organic solvents, high pH, and temperature), being easy to recycle, and inducing the volume-specific loading of the enzyme onto the support, and thus, these features have proved to be appropriate for use as biocatalysts in different sectors.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vinita Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vimal Kumar Dubey
- College of Agriculture Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Pankaj Kumar Arora
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- *Correspondence: Pankaj Kumar Arora
| |
Collapse
|
15
|
Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pomegranate-seed residue (PSR) was used in a new strategy for the simultaneous production of Yarrowia lipolytica lipase by submerged fermentation and its immobilization by adsorption. This biocatalyst—the fermented solid residue containing the adsorbed lipase (fermPSR)—was evaluated in hydrolysis reactions and in structured lipid synthesis. In shake flasks, yeast extract and urea were the best nitrogen sources for lipase production with PSR and their simultaneous use increased the lipase production even further. This result was confirmed in a 3.5-liter bioreactor, with lipase activity in an extracellular medium of 40 U/mL. A maximum reaction rate (Vmax) of 49.5 µmol/min/g, a Michaelis–Menten constant (Km) of 207 µmol/L, and a turnover number (Kcat) of 130 s−1 were determined for the new biocatalyst, fermPSR, for the hydrolysis of p-nitrophenyl laurate (p-NPL) into p-nitrophenol. The conversion of p-NPL into p-nitrophenol in subsequent reactions confirmed fermPSR’s potential for industrial hydrolytic reactions. The production of structured lipids from vegetable oil and free fatty acids by fermPSR evidences the versatility of this new biocatalyst.
Collapse
|
16
|
Mazhar H, Ullah I, Ali U, Abbas N, Hussain Z, Ali SS, Zhu H. Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Fang Y, Liu F, Shi Y, Yang T, Liang C, Xin Y, Gu Z, Shi G, Zhang L. Hotspots and Mechanisms of Action of the Thermostable Framework of a Microbial Thermolipase. ACS Synth Biol 2022; 11:3460-3470. [PMID: 36173803 DOI: 10.1021/acssynbio.2c00360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lipase TrLipB from Thermomicrobium roseum is highly thermostable. However, its thermostable skeleton and mechanism of action should be investigated for industrial applications. Toward this, TrLipB was crystallized using the hanging-drop vapor diffusion method and subjected to X-ray diffraction at 2.0 Å resolution in this study. The rigid sites, such as the prolines on the relatively flexible loops on the enzyme surface, were scanned. Soft substitutions of these sites were designed using both molecular dynamics (MD) simulation and site-directed mutagenesis. The thermostability of several substitutions decreased markedly, while the catalytic efficiencies of the P9G, P127G, P194G, and P300G mutants reduced substantially; additionally, the thermostable framework of the double mutant, P194G/P300G, was considerably perturbed. However, the substitutions on the lid of the enzyme, including P49G and P48G, promoted the catalytic efficiency to approximately 150% and slightly enhanced the thermostability below 80 °C. In MD simulations, the P100G, P194G, P100G/P194G, P194G/P300G, and P100G/P194G/P300G mutants showed high B-factors and RMSD values, whereas the secondary structures, radius of gyration, H-bonds, and solvent accessible surface areas of these mutants were markedly affected. Our observations will assist in understanding the natural framework of a stable lipase, which might contribute to its industrial applications.
Collapse
Affiliation(s)
- Yakun Fang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Fan Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yi Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Ting Yang
- Wuxi Food Safety Inspection and Test Center, Technology Innovation Center of Special Food for State Market Regulation, Wuxi, Jiangsu 214122, P.R. China
| | - Chaojuan Liang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
18
|
Moguei MRS, Habibi Z, Shahedi M, Yousefi M, Alimoradi A, Mobini S, Mohammadi M. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen. BIOTECHNOLOGY REPORTS 2022; 35:e00759. [PMID: 36060211 PMCID: PMC9434027 DOI: 10.1016/j.btre.2022.e00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 10/26/2022]
|
19
|
Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. PLoS One 2022; 17:e0273368. [PMID: 36040973 PMCID: PMC9426928 DOI: 10.1371/journal.pone.0273368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Five Bacillus cereus strains including B. cereus AVP12, B. cereus NC7401, B. cereus BDBCO1, B. cereus JF70 and B. specie JL47 isolated from the diesel fuel polluted soil adhered to the roots of Tagetes minuta were screened for lipase production with phenol red agar method. B. cereus NC7401 strain successfully expressing and secreting lipase with maximal lipolytic activity was subjected to a submerged fermentation process with five different carbon (starch, glucose, maltose, fructose, and lactose) and five different nitrogen (tryptone, ammonium nitrate, peptone, urea, yeast extract) sources to produce lipase enzyme. Maximum enzyme activity was found with starch (30.6 UmL-1), maltose (40 UmL-1), and tryptone (38.6 UmL-1), and the lipases produced using these sources were named lipase A, B, and C respectively. The total protein content of 8.56, 8.86, and 2.75 μg mL-1 were obtained from B. cereus NC7401 cultured using starch, maltose, and tryptone respectively. Lipase was stable between temperature range 30–80°C and pH 5–10 whereas optimally active at 55°C and pH 8.0. The enzyme was relatively stable for 10 days at 4°C and its optimum reaction time with the substrate was 30 minutes. It was tolerant to 1.5% (v/v) methanol as an organic solvent, 1.5% (v/v) Triton X-100 as a media additive and 1.5% (w/v) Ni2+ as a metal ion. SDS, n-hexane, and Ag+ inhibited lipolytic activity. Oil stains were removed from cotton fabric which showed oil removal efficiency enhancement in the presence of a lipase. Fat hydrolysis of 20, 24, and 30% was achieved following 6 hours of incubation of the fat particles with lipase A, B, and C respectively at a concentration of 20 mg mL-1. To as best of our knowledge, this study on lipases extracted from bacteria of Azad Kashmir, Pakistan origin has never been reported before.
Collapse
|
20
|
Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils. ENERGIES 2022. [DOI: 10.3390/en15145217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model.
Collapse
|
21
|
Isolated and fermented orange and grape wastes: Bromatological characterization and phytase, lipase and protease source. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Cheng LM, Zhang SF, Xie ZX, Li DX, Lin L, Wang MH, Wang DZ. Metabolic Adaptation of a Globally Important Diatom following 700 Generations of Selection under a Warmer Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5247-5255. [PMID: 35352563 DOI: 10.1021/acs.est.1c08584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diatoms, accounting for 40% of the marine primary production and 20% of global carbon dioxide fixation, are threatened by the ongoing ocean warming (OW). However, whether and how these ecologically important phytoplankton adapt to OW remains poorly unknown. Here, we experimentally examined the metabolic adaptation of a globally important diatom species Skeletonema dohrnii (S. dohrnii) to OW at two elevated temperatures (24 and 28 °C compared with 20 °C) under short-term (∼300 generations) and long-term (∼700 generations) selection. Both warming levels significantly increased the cell growth rate but decreased the chlorophyll a content. The contents of particulate organic carbon (POC) and particulate organic nitrogen (PON) decreased significantly initially (i.e., until 300 generations) at two temperature treatments but completely recovered after 700 generations of selection, suggesting that S. dohrnii ultimately developed thermal adaptation. Proteomic analysis demonstrated that elevated temperatures upregulated energy metabolism via glycolysis, tricarboxylic acid cycle, and fatty acid oxidation as well as nitrogen acquisition and utilization, which in turn reduced substance storage because of trade-off in the 300th generation, thus decreasing POC and PON. Interestingly, populations at both elevated temperatures exhibited significant proteome plasticity in the 700th generation, as primarily demonstrated by the increased lipid catabolism and glucose accumulation, accounting for the recovery of POC and PON. Changes occurring in cells at the 300th and 700th generations demonstrate that S. dohrnii can adapt to the projected OW, and readjusting the energy metabolism is an important adaptive strategy.
Collapse
Affiliation(s)
- Lu-Man Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dong-Xu Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022; 8:e09173. [PMID: 35368548 PMCID: PMC8971590 DOI: 10.1016/j.heliyon.2022.e09173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reviews the pertinent literature from 1970 to 2020 and presents a bibliometric analysis of research trends in the application of solid-state fermentation in the bioprocessing of agro-industrial wastes. A total 5630 publications of studies on solid-state fermentation that comprised of 5208 articles (92.50%), 340 book chapters (6.04%), 39 preprints (0.69%), 32 proceedings (0.56%), 8 edited books (0.14%) and 3 monographs (0.05%) were retrieved from Dimensions database. A review of the literature indicated that (i) fermentation of solid substrates is variously defined in the literature over the past 50 years, where "solid-state fermentation" is the most dominant research term used, and (ii) key products derived from the valorization of agro-industrial wastes through solid-state fermentation include, among others, enzymes, antioxidants, animal feed, biofuel, organic acids, biosurfactants, etc. Bibliometric analyses with VOSviewer revealed an astronomic increase in publications between 2000 and 2020, and further elucidated the most frequently explored core research topics, the most highly cited publications and authors, and countries/regions with the highest number of citations. The most cited publication between 2010 and 2020 had 382 citations compared to 725 citations for the most cited publication from 1970 to 2020. Ashok Pandey from India was the most published and cited author with 123 publications and 8,613 citations respectively; whereas Bioresource Technology was the most published and cited journal with 233 publications and 12,394 citations. Countries with the most publications and citations are Brazil, France, India, and Mexico. These findings suggest that research in the application of solid-state fermentation for bioprocessing of agro-industrial wastes has gained prominence over the past 50 years. Future perspectives and implications are discussed.
Collapse
|
24
|
Purification and Optimization of Extracellular Lipase from a Novel Strain Kocuria flava Y4. Int J Anal Chem 2022; 2022:6403090. [PMID: 35169395 PMCID: PMC8840939 DOI: 10.1155/2022/6403090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
The exogenous lipolytic activities of Kocuria sp. have been recognized earlier but the genus further contains many more unexplored strains. In this study, the extracellular lipase activity of Kocuria flava Y4 (GenBank accession no. MT773277), isolated from Dioscorea villosa during our previous study, was regulated by different physicochemical parameters, such as pH, temperature, shaking speed, and incubation time. For efficient immobilization of the extracellular lipase, 4% sodium alginate, 50 mL of 25 nM CaCl2.2H2O solution, and 15 min. Hardening time of gel beads in calcium chloride was used. For the first time, K. flava Y4 lipase was purified using ammonium sulphate precipitation followed by dialysis and DEAE-Sepharose anion exchange chromatography with Sepharose-6B gel filtration chromatography, yielding ∼15-fold purified lipase with a final yield of 96 U/mL. The SDS-PAGE of purified lipase displayed a single strong band, indicating a monomeric protein of 45 kDa. At a temperature of 35°C and pH 8, the purified lipase showed maximum hydrolytic activity. Using p-nitrophenyl acetate (p-NPA) as the hydrolysis substrate, the values of Km and Vmax derived from the Lineweaver–Burk plot were 4.625 mM and 125 mol/min−1mg−1, respectively.
Collapse
|
25
|
Kuang L, Zhang Q, Li J, Tian H. An Electrospun Sandwich-Type Lipase-Membrane Bioreactor for Hydrolysis at Macroscopic Oil-Water Interfaces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:584-591. [PMID: 34788030 DOI: 10.1021/acs.jafc.1c04042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The core task for lipase catalytic system design is to construct a suitable oil-water interface for lipase distribution. In comparison to the micro-oil-water interface, the macro-oil-water interface (top oil-bottom water) served as a simplified lipase catalytic system that is more in line with industrial applications but limited in catalytic efficiency. Based on the assumption that one potential carrier can help lipase reach to the macro-oil-water interface, in the current work, sandwich-type lipase-membrane bioreactors (SLMBs) fabricated by a facile layer-by-layer electrospinning process were reported. These SLMBs were composed of a hydrophilic polyamide 6 nanofibrous membrane (NFM) as the bottom layer, a blended electrospun lipase/PVA NFM as the middle layer, and a hydrophobic EC/PU NFM as the top layer. The lipase loading can be controlled by altering the electrospinning time of the middle layer. Under the optimized conditions, the catalytic efficiency of the SLMBs was 2.05 times higher than that of free lipase. In addition, the SLMBs exhibit much better pH (high activity over a broad pH range of 5-10), temperature (retained 62% at 80 °C), storage stability (no loss of activity after being stored at 4 °C for 11 days), and reusability (retained 23% after five cycles) than free lipase.
Collapse
Affiliation(s)
- Lei Kuang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Qianqian Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jinlong Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huafeng Tian
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
26
|
Oliart-Ros RM, Badillo-Zeferino GL, Quintana-Castro R, Ruíz-López II, Alexander-Aguilera A, Domínguez-Chávez JG, Khan AA, Nguyen DD, Nadda AK, Sánchez-Otero MG. Production and Characterization of Cross-Linked Aggregates of Geobacillus thermoleovorans CCR11 Thermoalkaliphilic Recombinant Lipase. Molecules 2021; 26:7569. [PMID: 34946651 PMCID: PMC8708040 DOI: 10.3390/molecules26247569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.
Collapse
Affiliation(s)
- Rosa-María Oliart-Ros
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Giselle-Lilian Badillo-Zeferino
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. De Quevedo 2779, Veracruz C.P. 91897, Ver., Mexico; (R.-M.O.-R.); (G.-L.B.-Z.)
| | - Rodolfo Quintana-Castro
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Irving-Israel Ruíz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Puebla C.P. 72570, Pue., Mexico;
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Jorge-Guillermo Domínguez-Chávez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dinh Duc Nguyen
- Department of Environmental and Energy Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si 16227, Gyeonggi-do, Korea;
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Faculty of Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - María-Guadalupe Sánchez-Otero
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán Esq. Iturbide, Veracruz C.P. 91700, Ver., Mexico; (R.Q.-C.); (A.A.-A.); (J.-G.D.-C.)
| |
Collapse
|
27
|
Sundaramahalingam MA, Amrutha C, Sivashanmugam P, Rajeshbanu J. An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech 2021; 11:481. [PMID: 34790505 PMCID: PMC8557240 DOI: 10.1007/s13205-021-03003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/26/2021] [Indexed: 10/19/2022] Open
Abstract
Biodiesel is a renewable, sulfur-free, toxic-free, and low carbon fuel which possesses enhanced lubricity. Transesterification is the easiest method employed for the production of biodiesel, in which the oil is transformed into biodiesel. Biocatalyst-mediated transesterification is more advantageous than chemical process because of its non-toxic nature, the requirement of mild reaction conditions, absence of saponification, easy product recovery, and production of high-quality biodiesel. Lipases are found to be the primary enzymes in enzyme-mediated transesterification process. Currently, researchers are using lipases as biocatalyst for transesterification. Lipases are extracted from various sources such as plants, microbes, and animals. Biocatalyst-based biodiesel production is not yet commercialized due to high-cost of purified enzymes and higher reaction time for the production process. However, research works are growing in the area of various cost-effective techniques for immobilizing lipase to improve its reusability. And further reduction in the production cost of lipases can be achieved by genetic engineering techniques. The reduction in reaction time can be achieved through ultrasonic-assisted biocatalytic transesterification. Biodiesel production by enzymatic transesterification is affected by many factors. Various methods have been developed to control these factors and improve biodiesel production. This report summarizes the various sources of lipase, various production strategies for lipase and the lipase-mediated transesterification. It is fully focused on the lipase enzyme and its role in biodiesel production. It also covers the detailed explanation of various influencing factors, which affect the lipase-mediated transesterification along with the limitations and scope of lipase in biodiesel production.
Collapse
Affiliation(s)
- M. A. Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - C. Amrutha
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - P. Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 India
| | - J. Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610 005 India
| |
Collapse
|
28
|
Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287. [PMID: 34670489 PMCID: PMC8527658 DOI: 10.1186/s12866-021-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. Methods Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. Results 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. Conclusions The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02346-4.
Collapse
Affiliation(s)
- Amanda C Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sephra N Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
29
|
Elemosho R, Suwanto A, Thenawidjaja M. Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Komesli S, Akbulut S, Arslan NP, Adiguzel A, Taskin M. Waste frying oil hydrolysis and lipase production by cold-adapted Pseudomonas yamanorum LP2 under non-sterile culture conditions. ENVIRONMENTAL TECHNOLOGY 2021; 42:3245-3253. [PMID: 32192416 DOI: 10.1080/09593330.2020.1745297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Non-sterile culture technique is currently used in some microbial processes. However, there is no study on the use of this technique in the production of microbial lipases and hydrolysis of waste frying oils. This study was conducted to hydrolyse waste frying oils and produce lipase under non-sterile culture conditions using locally isolated cold-adapted bacteria. Of 75 bacterial isolates, the psychrotolerant Pseudomonas yamanorum LP2 (Genbank number: KU711080) was determined to have the highest lipase activity. It was found that a combination of restricted nutrient availability, low temperature and high inoculum volume prevented microbial contaminants under non-sterile conditions. The most favourable parameters for lipase production under both sterile and non-sterile conditions were 15°C temperature, pH 8, 30 mL/L inoculum volume, 40 mL/L waste frying oil concentration, 10 mL/L Tween-80 and 72 h incubation time. The maximum lipase activities in sterile and non-sterile media were determined as 93.3 and 96.8 U/L, respectively. The present process designed for enzyme production and waste oil hydrolysis can reduce the cost of cultivation medium as well as energy consumption and workload. The potential of cold-adapted bacteria to produce lipase and hydrolyse waste oils under non-sterile culture conditions was first tested in the current study.
Collapse
Affiliation(s)
- Senba Komesli
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Sumeyya Akbulut
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | | | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
31
|
Bansal S, Sardar S, Sinha K, Bhunia RK, Katoch M, Sonah H, Deshmukh R, Ram H. Identification and molecular characterization of rice bran-specific lipases. PLANT CELL REPORTS 2021; 40:1215-1228. [PMID: 34028583 DOI: 10.1007/s00299-021-02714-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Among the 113 lipases present in rice genome, bran and endosperm-specific lipases were identified and lipase activity for one of the selected lipase gene is demonstrated in yeast. Rice bran is nutritionally superior than endosperm as it has major reservoirs of various minerals, vitamins, essential mineral oils and other bioactive compounds, however it is often under-utilized as a food product due to bran instability after milling. Various hydrolytic enzymes, such as lipases, present in bran causes degradation of the lipids present and are responsible for the bran instability. Here, in this study, we have systematically analyzed the 113 lipase genes present in rice genome, and identified 21 seed-specific lipases. By analyzing the expression of these genes in different seed tissues during seed development, we have identified three bran-specific and three endosperm-specific lipases, and one lipase which expresses in both bran and endosperm tissues. Further analysis of these genes during seed maturation and seed germination revealed that their expression increases during seed maturation and decreases during seed germination. Finally, we have shown the lipase activity for one of the selected genes, LOC_Os05g30900, in heterologous system yeast. The bran-specific lipases identified in this study would be very valuable for engineering designer rice varieties having increased bran stability in post-milling.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Megha Katoch
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
32
|
Ramdass AC, Rampersad SN. Diversity and Oil Degradation Potential of Culturable Microbes Isolated from Chronically Contaminated Soils in Trinidad. Microorganisms 2021; 9:1167. [PMID: 34071489 PMCID: PMC8230346 DOI: 10.3390/microorganisms9061167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Trinidad and Tobago is the largest producer of oil and natural gas in Central America and the Caribbean. Natural crude oil seeps, in addition to leaking petroleum pipelines, have resulted in chronic contamination of the surrounding terrestrial environments since the time of petroleum discovery, production, and refinement in Trinidad. In this study, we isolated microbes from soils chronically contaminated with crude oil using a culture-dependent approach with enrichment. The sampling of eight such sites located in the southern peninsula of Trinidad revealed a diverse microbial composition and novel oil-degrading filamentous fungi and yeast as single-isolate degraders and naturally occurring consortia, with specific bacterial species not previously reported in the literature. Multiple sequence comparisons and phylogenetic analyses confirmed the identity of the top degraders. The filamentous fungal community based on culturable species was dominated by Ascomycota, and the recovered yeast isolates were affiliated with Basidiomycota (65.23%) and Ascomycota (34.78%) phyla. Enhanced biodegradation of petroleum hydrocarbons is maintained by biocatalysts such as lipases. Five out of seven species demonstrated extracellular lipase activity in vitro. Our findings could provide new insights into microbial resources from chronically contaminated terrestrial environments, and this information will be beneficial to the bioremediation of petroleum contamination and other industrial applications.
Collapse
Affiliation(s)
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, Trinidad and Tobago, West Indies;
| |
Collapse
|
33
|
Luz BDDAS, Sarrouh B, Bicas JL, Lofrano RCZ. Lipase production by microorganisms isolated from the Serra de Ouro Branco State Park. AN ACAD BRAS CIENC 2021; 93:e20190672. [PMID: 33825790 DOI: 10.1590/0001-3765202120190672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Lipases are hydrolases used in various sectors such as the food, pharmaceutical and chemical synthesis industries. In this study, epiphytic microorganisms were isolated from the Serra of Ouro Branco State Park (Minas Gerais, Brazil) and were subsequently evaluated for their ability to produce extracellular lipases. Among the 46 isolated strains, 25 presented positive results for lipase production in the agar plate screening assay. Two of these strains that expressed the highest diffusion halos, were genetically identified as Serratia marcescens and Pseudomonas fluorescens and catalogued in the Tropical Cultures Collection from the André Tosello Foundation/Brazil as CCT 7796 and CCT 7797, respectively. The fermentation growth kinetics indicated that the maximum extracellular lipase activities were achieved between 96 and 120h of cultivation. The highest lipolytic activity for both strains was observed at an optimum temperature and pH of 37°C and 7.0, respectively. At these conditions, the lipase activity detected in the crude enzymatic extract of both strains was close to 15.0 U/mL. We consider that these species are promising lipase producers for industrial applications.
Collapse
Affiliation(s)
- Bárbara D DA Silva Luz
- Programa de Pós-Graduação em Tecnologias para o Desenvolvimento Sustentável, Universidade Federal de São João Del-Rei (PPGTDS / UFSJ), Campus Alto Paraopeba, Rodovia MG 443, Km 07, 36420-000 Ouro Branco, MG, Brazil
| | - Boutros Sarrouh
- Universidade Federal de São João Del-Rei, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos (UFSJ/ DQBIO), Campus Alto Paraopeba, Rodovia MG 443, Km 07, 36420-000 Ouro Branco, MG, Brazil
| | - Juliano L Bicas
- Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos (FEA), Departamento de Ciência de Alimentos, Rua Monteiro Lobato, 80, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 13083-862 Campinas, SP, Brazil
| | - Renata C Z Lofrano
- Universidade Federal de São João Del-Rei (UFSJ/ DEQUI), Departamento de Engenharia Química, Campus Alto Paraopeba, Rodovia MG 443, Km 07, 36420-000 Ouro Branco, MG, Brazil
| |
Collapse
|
34
|
Fraga JL, Souza CPL, Pereira ADS, Aguieiras ECG, de Silva LO, Torres AG, Freire DG, Amaral PFF. Palm oil wastes as feedstock for lipase production by Yarrowia lipolytica and biocatalyst application/reuse. 3 Biotech 2021; 11:191. [PMID: 33927982 DOI: 10.1007/s13205-021-02748-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Palm oil production chain generates a greasy residue in the refining stage, the Palm Oil Deodorizer Distillate (PODD), mainly composed of free fatty acids. Palm oil is also used industrially to fry foods, generating a residual frying oil (RFO). In this paper, we aimed to produce lipase from palm agro-industrial wastes using an unconventional yeast. RFO_palm, from a known source, consisted of 0.11% MAG + FFA, 1.5% DAG, and 97.5 TAG, while RFO_commercial, from a commercial restaurant, contained 6.7% of DAG and 93.3% of TAG. All palm oil wastes were useful for extracellular lipase production, especially RFO_commercial that provided the highest activity (4.9 U/mL) and productivity (465 U/L.h) in 75 h of processing time. In 48 h of process, PODD presented 2.3 U/mL of lipase activity and 48.5 U/L.h of productivity. RFO_commercial also showed the highest values for lipase associated to cell debris (843 U/g). This naturally immobilized biocatalyst was tested on hydrolysis reactions to produce Lipolyzed Milk Fat and was quite efficient, with a hydrolysis yield of 13.1% and 3-cycle reuse. Therefore, oily palm residues seem a promising alternative to produce lipases by the non-pathogenic yeast Y. lipolytica and show great potential for industrial applications.
Collapse
Affiliation(s)
- Jully L Fraga
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Camila P L Souza
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Adejanildo da S Pereira
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Erika C G Aguieiras
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
- Universidade Federal do Rio de Janeiro Campus UFRJ - Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias, RJ 25.240-005 Brazil
| | - Laís O de Silva
- Laboratório de Bioquímica Nutricional E de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Alexandre G Torres
- Laboratório de Bioquímica Nutricional E de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Denise G Freire
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Priscilla F F Amaral
- Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| |
Collapse
|
35
|
Cipolatti EP, Rios NS, Sousa JS, Robert JDM, da Silva AAT, Pinto MC, Simas ABC, Vilarrasa-García E, Fernandez-Lafuente R, Gonçalves LRB, Freire DMG, Manoel EA. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Verma S, Meghwanshi GK, Kumar R. Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie 2021; 182:23-36. [PMID: 33421499 DOI: 10.1016/j.biochi.2020.12.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
Microbial lipases are most broadly used biocatalysts for environmental and industrial applications. Lipases catalyze the hydrolysis and synthesis of long acyl chain esters and have a characteristic folding pattern of α/β hydrolase with highly conserved catalytic triad (Serine, Aspartic/Glutamic acid and Histidine). Mesophilic lipases (optimal activity in neutral pH range, mesophilic temperature range, atmospheric pressure, normal salinity, non-radio-resistant, and instability in organic solvents) have been in use for many industrial biotransformation reactions. However, lipases from extremophiles can be used to design biotransformation reactions with higher yields, less byproducts or useful side products and have been predicted to catalyze those reactions also, which otherwise are not possible with the mesophilic lipases. The extremophile lipase perform activity at extremes of temperature, pH, salinity, and pressure which can be screened from metagenome and de novo lipase design using computational approaches. Despite structural similarity, they exhibit great diversity at the sequence level. This diversity is broader when lipases from the bacterial, archaeal, plant, and animal domains/kingdoms are compared. Furthermore, a great diversity of novel lipases exists and can be discovered from the analysis of the dark matter - the unexplored nucleotide/metagenomic databases. This review is an update on extremophilic microbial lipases, their diversity, structure, and classification. An overview on novel lipases which have been detected through analysis of the genomic dark matter (metagenome) has also been presented.
Collapse
Affiliation(s)
- Swati Verma
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, 334004, India
| | | | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, SE-90185, Umeå, Sweden.
| |
Collapse
|
37
|
Helal SE, Abdelhady HM, Abou-Taleb KA, Hassan MG, Amer MM. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. J Genet Eng Biotechnol 2021; 19:1. [PMID: 33400043 PMCID: PMC7785608 DOI: 10.1186/s43141-020-00094-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
Background Rhizopus species is among the most well-known lipase producers, and its enzyme is suitable for use in many industrial applications. Our research focuses on the production of lipase utilizing waste besides evaluating its applications. Results An extracellular lipase was partially purified from the culture broth of Rhizopus oryzae R1 isolate to apparent homogeneity using ammonium sulfate precipitation followed by desalting via dialysis. The partially purified enzyme was non-specific lipase and the utmost activity was recorded at pH 6, 40 °C with high stability for 30 min. The constants Km and Vmax, calculated from the Lineweaver-Burk plot, are 0.3 mg/mL and 208.3 U/mL, respectively. Monovalent metal ions such as Na+ (1 and 5 mM) and K+ (5 mM) were promoters of the lipase to enhance its activity with 110, 105.5, and 106.5%, respectively. Chitosan was used as a perfect support for immobilization via both adsorption and cross-linking in which the latter method attained immobilization efficiency of 99.1% and reusability of 12 cycles. The partially purified enzyme proved its ability in forming methyl oleate (biodiesel) through the esterification of oleic acid and transesterification of olive oil. Conclusion The partially purified and immobilized lipase from Rhizopus oryzae R1 approved excellent efficiency, reusability, and a remarkable role in detergents and biodiesel production.
Collapse
Affiliation(s)
- Shimaa E Helal
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt. .,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hemmat M Abdelhady
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Khadiga A Abou-Taleb
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mervat G Hassan
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mahmoud M Amer
- Department of Botany, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
38
|
Fang Y, Zhou Y, Xin Y, Shi Y, Guo Z, Li Y, Gu Z, Ding Z, Shi G, Zhang L. Preparation and characterization of a novel thermostable lipase from Thermomicrobium roseum. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01486b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, a hypothetical lipase gene from Thermomicrobium roseum DSM 5159 (GenBank: ACM04789.1) was recombinantly expressed in two system and characterized.
Collapse
Affiliation(s)
- Yakun Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yanjie Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yu Xin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Yi Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zitao Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, Jiangsu, P.R. China
| |
Collapse
|
39
|
|
40
|
Wu F, Ma J, Cha Y, Lu D, Li Z, Zhuo M, Luo X, Li S, Zhu M. Using inexpensive substrate to achieve high-level lipase A secretion by Bacillus subtilis through signal peptide and promoter screening. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Setti L, Samaei SP, Maggiore I, Nissen L, Gianotti A, Babini E. Comparing the Effectiveness of Three Different Biorefinery Processes at Recovering Bioactive Products from Hemp (Cannabis sativa L.) Byproduct. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02550-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractHemp (Cannabis sativa L.) seeds are considered a nutritional powerhouse, rich in proteins and unsaturated fatty acids. The market for hemp seed food products is growing, due to the loosening of constraints in industrial cultivation. During the food processing chain, the external part of the seed is discarded, although it contains a significant amount of proteins. Converting this material into value-added products with a biorefinery approach could meet the ever-increasing need for sustainable protein sources while reducing food waste. In this study, creating value from hemp byproducts was pursued with three different approaches: (i) chemical extraction followed by enzymatic digestion, (ii) liquid fermentation by strains of Lactobacillus spp., and (iii) solid-state fermentation by Pleurotus ostreatus. The resulting products exhibited a range of in vitro antioxidant and antihypertensive activity, depending on the proteases used for enzymatic digestion, the bacterial strain, and the length of time of the two fermentation processes. These byproducts could be exploited as functional ingredients in the food, pharmaceutical, and cosmetic industries; the suggested biorefinery processes thus represent potential solutions for the development of other protein-containing byproducts or wastes.
Collapse
|
42
|
Bioconversion of Sweet Sorghum Residues by Trichoderma citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts 2020. [DOI: 10.3390/catal10111292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Improved cost-effective bioethanol production using inexpensive enzymes preparation was investigated. Three types of waste lignocellulosic materials were converted—for the production of enzyme preparation, a mixture of sugar beet pulp and wheat bran, while the source of sugars in hydrolysates was sweet sorghum biomass. A novel enzyme cocktail of Trichoderma citrinoviride C1 is presented. The one-step ultrafiltration process of crude enzyme extract resulted in a threefold increase of cellulolytic and xylanolytic activities. The effectiveness of enzyme preparation, compared to Cellic® CTec2, was tested in an optimized enzymatic hydrolysis process. Depending on the test conditions, hydrolysates with different glucose concentrations were obtained—from 6.3 g L−1 to 14.6 g L−1 (representing from 90% to 79% of the CTec2 enzyme yield, respectively). Furthermore, ethanol production by Saccharomyces cerevisiae SIHA Active Yeast 6 strain DF 639 in optimal conditions reached about 120 mL kg d.m.−1 (75% compared with the CTec2 process). The achieved yields suggested that the produced enzyme cocktail C1 could be potentially used to reduce the cost of bioethanol production from sweet sorghum biomass.
Collapse
|
43
|
Fraga JL, da Penha ACB, Akil E, Silva KA, Amaral PFF. Catalytic and physical features of a naturally immobilized Yarrowia lipolytica lipase in cell debris (LipImDebri) displaying high thermostability. 3 Biotech 2020; 10:454. [PMID: 33088651 DOI: 10.1007/s13205-020-02444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Lipase activity (337 U/g dry weight of cell debris) was detected in cell debris after ultrasound treatment of Yarrowia lipolytica cells cultivated in residual frying palm oil. It is a naturally immobilized lipase with protein content of 47%, herein called LipImDebri. This immobilized biocatalyst presents low hydrophobicity (8%), that can be increased adjusting pH and buffer type. Despite apparent intact cells, electron microscopy showed a shapeless and flat surface for LipImDebri and optical microscopy revealed no cell viability. Besides, an inferior mean diameter (3.4 mm) in relation to whole cells reveals structure modification. A high negative zeta potential value (- 33.86 mV) for pH 6 and 25 °C suggests that LipImDebri is a stable suspension in aqueous solution. Fourier Transform Infrared Spectra (FTIR) expose differences between LipImDebri and extracellular lipase extract signaling a physical interaction between enzyme and cell debris, which is possibly the reason for the high thermostability (k d = 0.246 h-1; t 1/2 = 2.82 h at 50 °C, pH 7.0). A good adjustment of LipImDebri kinetic data with Hill equation (R 2 = 0.95) exposes an allosteric behavior related to the presence of more than one lipase isoform. These features reveal that LipImDebri can be a good catalyst for industrial applications.
Collapse
Affiliation(s)
- Jully Lacerda Fraga
- Departamento de Eng. Bioquímica, Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Avenida Athos da Silveira Ramos, N° 123, Bloco E, Rio de Janeiro, RJ CEP 21941-900 Brazil
| | - Adrian Chaves Beserra da Penha
- Departamento de Eng. Bioquímica, Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Avenida Athos da Silveira Ramos, N° 123, Bloco E, Rio de Janeiro, RJ CEP 21941-900 Brazil
| | - Emília Akil
- Laboratório de Bioquímica Nutricional e de Alimentos, Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Avenida Athos da Silveira Ramos, N° 149, Bloco A, sala 528A, Rio de Janeiro, RJ CEP 21941-909 Brazil
| | - Kelly Alencar Silva
- Centro de Ciências Médicas, Faculdade de Farmácia, Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, RJ 24241-002 Brazil
| | - Priscilla Filomena Fonseca Amaral
- Departamento de Eng. Bioquímica, Escola de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Avenida Athos da Silveira Ramos, N° 123, Bloco E, Rio de Janeiro, RJ CEP 21941-900 Brazil
| |
Collapse
|
44
|
Nathan VK, Rani ME. A cleaner process of deinking waste paper pulp using Pseudomonas mendocina ED9 lipase supplemented enzyme cocktail. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36498-36509. [PMID: 32562224 DOI: 10.1007/s11356-020-09641-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Lipase enzyme has a critical role in deinking process along with other lignocellulosic enzymes. In this paper, we try to demonstrate the role of lipase in the enzyme cocktail used for enzymatic deinking. For this, we identified a potential lipolytic bacterium, Pseudomonas mendocina ED9 isolated from elephant dung with a molecular weight of 35 kDa. During the Box-Benhken model optimization, a maximum lipase activity of 105.12 U/g, which was 12.36-fold higher than the initial enzyme activity and 1.3-fold higher than the activity obtained during the Plackett Burman design, was achieved. A maximum lipase activity of 105.12 U/g was obtained after optimization. Ammonium sulphate (60%) precipitation resulted in a specific activity of 68.19 U/mg with a 1.4-fold purification and yield of 64%. Lipase from P. mendocina ED9 exhibited a Km of 0.5306 mM and Vmax of 25.0237 μmol/min/mg. A Δ brightness of approximately 14.5% were achieved during the enzymatic deinking using cocktail comprised of cellulase, xylanase and lipase. This reports the significant role and efficacy of lipase in enzyme cocktails for deinking applications. This formulation will reduce the pollution and environmental toxicity of conventional chemical deinking.
Collapse
Affiliation(s)
- Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
- Research Centre, Department of Botany and Microbiology, Lady Doak College, Madurai, Tamil Nadu, 625002, India.
| | - Mary Esther Rani
- Research Centre, Department of Botany and Microbiology, Lady Doak College, Madurai, Tamil Nadu, 625002, India
| |
Collapse
|
45
|
Fatima S, Faryad A, Ataa A, Joyia FA, Parvaiz A. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol Appl Biochem 2020; 68:445-458. [PMID: 32881094 DOI: 10.1002/bab.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance of enzymes is ever-rising particularly microbial lipases holding great industrial worth owing to their potential to catalyze a diverse array of chemical reactions in aqueous as well as nonaqueous settings. International lipase market is anticipated to cross USD 797.7 million till 2025, rising at a 6.2% compound annual growth rate from 2017 to 2025. The recent breakthrough in the field of lipase research is the generation of new and upgraded versions of lipases via molecular strategies. For example, integration of rational enzyme design and directed enzyme evolution to attain desired properties in lipases. Normally, purification of lipase with significant purity is achieved through a multistep procedure. Such multiple step approach of lipase purification entails both conventional and novel techniques. The present review attempts to provide an overview of different aspects of lipase production including fermentation techniques, factors affecting lipase production, and purification strategies, with the aim to assist researchers to pick a suitable technique for the production and purification of lipase.
Collapse
Affiliation(s)
- Samar Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Faryad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Asia Ataa
- Department of Biochemistry, Baha-ud-Din Zakariya, University Multan, Multan, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Aqsa Parvaiz
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
46
|
Anand A, Gnanasekaran P, Allgeier AM, Weatherley LR. Study and deployment of methacrylate-based polymer resins for immobilized lipase catalyzed triglyceride hydrolysis. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Janek T, Mirończuk AM, Rymowicz W, Dobrowolski A. High-yield expression of extracellular lipase from Yarrowia lipolytica and its interactions with lipopeptide biosurfactants: A biophysical approach. Arch Biochem Biophys 2020; 689:108475. [DOI: 10.1016/j.abb.2020.108475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
|
48
|
Subramanian K, Sadaiappan B, Aruni W, Kumarappan A, Thirunavukarasu R, Srinivasan GP, Bharathi S, Nainangu P, Renuga PS, Elamaran A, Balaraman D, Subramanian M. Bioconversion of chitin and concomitant production of chitinase and N-acetylglucosamine by novel Achromobacter xylosoxidans isolated from shrimp waste disposal area. Sci Rep 2020; 10:11898. [PMID: 32681120 PMCID: PMC7368032 DOI: 10.1038/s41598-020-68772-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Marine pollution is a significant issue in recent decades, with the increase in industries and their waste harming the environment and ecosystems. Notably, the rise in shellfish industries contributes to tons of shellfish waste composed of up to 58% chitin. Chitin, the second most ample polymer next to cellulose, is insoluble and resistant to degradation. It requires chemical-based treatment or enzymatic hydrolysis to cleave the chitin polymers. The chemical-based treatment can lead to environmental pollution, so to solve this problem, enzymatic hydrolysis is the best option. Moreover, the resulting biopolymer by-products can be used to boost the fish immune system and also as drug delivery agents. Many marine microbial strains have chitinase producing ability. Nevertheless, we still lack an economical and highly stable chitinase enzyme for use in the industrial sector. So we isolate a novel marine bacterial strain Achromobacter xylosoxidans from the shrimp waste disposal site using chitin minimal medium. Placket-Burman and central composite design statistical models for culture condition optimisation predicted a 464.2 U/ml of chitinase production. The culture conditions were optimised for maximum chitinase production recording up to 467 U/ml. This chitinase from the A. xylosoxidans was 100% active at an optimum temperature of 45 °C (withstand up to 55 °C) and pH 8 with 80% stability. The HPLC analysis of chitinase degraded shellfish waste reveals a major amino acid profile composition-arginine, lysine, aspartic acid, alanine, threonine and low levels of isoleucine and methionine. These chitinase degraded products and by-products can be used as supplements in the aquaculture industry.
Collapse
Affiliation(s)
- Kumaran Subramanian
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.,Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Balamurugan Sadaiappan
- Plankton Ecology Laboratory, CSIR- National Institute of Oceanography, Panaji, Goa, 403004, India
| | - Wilson Aruni
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.,School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | | | - Rajasekar Thirunavukarasu
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Guru Prasad Srinivasan
- Centre for Advanced Studies in Marine Biology, Annamalai University, Chidambaram, Tamil Nadu, 608502, India
| | - Selvaraj Bharathi
- Department of Microbiology, Sri Sankara Arts and Science College, Enathur, Tamil Nadu, 631561, India
| | - Prasannabalaji Nainangu
- Department of Microbiology, Sri Sankara Arts and Science College, Enathur, Tamil Nadu, 631561, India
| | | | - Anandajothi Elamaran
- Centre for Advanced Studies in Marine Biology, Annamalai University, Chidambaram, Tamil Nadu, 608502, India.,Central Aquaculture Genetics Laboratory, Rajiv Gandhi Centre for Aquaculture, Karaimedu, Tamil Nadu, 609109, India
| | - Deivasigamani Balaraman
- Centre for Advanced Studies in Marine Biology, Annamalai University, Chidambaram, Tamil Nadu, 608502, India
| | - Mahendran Subramanian
- Department of Bioengineering, Department of Computing, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
49
|
Alabdalall AH, ALanazi NA, A Aldakeel S, AbdulAzeez S, Borgio JF. Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. PeerJ 2020; 8:e9425. [PMID: 32704444 PMCID: PMC7350912 DOI: 10.7717/peerj.9425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Extracellular production of fungal lipases especially the lipases obtained from the Aspergilli has gained immense interest in recent years due to its diverse biotechnological applications. In this study, we focused on determining the fermentation parameters required for the optimal lipase production. Methods A total of 256 fungal isolates were obtained from oil seeds. From each genus, one isolate was selected to evaluate lipase production using phenol red and tributyrin plate assays. Lipase activity was estimated using the spectrophotometric pNPP hydrolysis assay. The highest lipase producer isolates were identified using 18S ribosomal RNA gene sequencing. The genetic variability was determined by random amplified polymorphic DNA (RAPD) analysis and the dendrogram was constructed using the unweighted pair group method with arithmetic averages method. The isolates were examined in a submerged fermentation culture (Smf) to measure the effect of temperature, pH, incubation time, carbon source, nitrogen source, inoculum volume, and lipid source on lipase production. Results Eleven isolates belonging to the genus Aspergillus were analyzed for lipase production where they were found to be the highest lipase producers among various fungal genera. All the tested isolates were identified as A. niger using 18s rRNA sequencing. Genetic diversity was evaluated among all of the studied A. niger isolates using RAPD primers. The RAPD primers were used to amplify 285 loci, of which five were polymorphic (1.75%) and seven were monomorphic (2.45%). Thus, a high level of genetic diversity was observed among all isolates. The tributyrin test and the lipase activity assay identified five strains of A. niger as high lipase producers, and their optimal enzyme activities were 709.74, 532.54, 735.64, 794.62, and 787.69 U/ml. The optimal conditions for lipase production were as follows: 40 °C, pH 7.5, 1% fructose as the carbon source, 1% yeast extract as the nitrogen source, 2% palm oil, 2.5 × 107 spores/ml suspension, and 3 days of incubation. Conclusions The current study provides a comprehensive characterization of the optimal conditions, which are essential to enhance lipase production in five A. niger isolates.
Collapse
Affiliation(s)
- Amira Hassan Alabdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Norah Ayad ALanazi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Sumayh A Aldakeel
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| | - J Francis Borgio
- Department of Genetic Research, Department of Epidemic Diseases Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudia Arabia
| |
Collapse
|
50
|
Marchut-Mikolajczyk O, Drożdżyński P, Struszczyk-Świta K. Biodegradation of slop oil by endophytic Bacillus cereus EN18 coupled with lipase from Rhizomucor miehei (Palatase®). CHEMOSPHERE 2020; 250:126203. [PMID: 32092570 DOI: 10.1016/j.chemosphere.2020.126203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Removal of slop oil, a by-product of oil refining, also obtained in cleaning up of oil tanks and filters is a difficult issue. High content of hydrocarbons (C3-C40) and other organic compounds makes this waste difficult to eliminate from the environment. The purpose of this investigation was to combine bacterial degradation by endophytic Bacillus cereus EN18 with biotransformation performed using lipase enzyme preparation (Palatase®) to remove recalcitrant compounds present in slop oil from the environment. Endophytic B. cereus EN18 was able to biodegrade up to 40% of slop oil while supplementation with lipase improved the efficiency of contamination removal in about one third. Also the use of lipase enzyme preparation resulted in higher microbial activity of B. cereus EN18 bacterial strain, as well as higher concentration of fatty acids in the culture medium, which indicates higher degradation efficiency. Obtained results suggest that lipase preparation from Rhizomucor miehei (Palatase®) may be a useful agent to improve microbial degradation of recalcitrant pollutants, like slop oil in water environments. GC and spectrometric analysis revealed that hydrocarbons from slop oil were effectively degraded while using both microbial degradation and lipase catalysis.
Collapse
Affiliation(s)
- Olga Marchut-Mikolajczyk
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Stefanowskiego 4/10, 90-924, Łódź, Poland.
| | - Piotr Drożdżyński
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Stefanowskiego 4/10, 90-924, Łódź, Poland
| | - Katarzyna Struszczyk-Świta
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Stefanowskiego 4/10, 90-924, Łódź, Poland
| |
Collapse
|