1
|
Antón-Herrero R, Chicca I, García-Delgado C, Crognale S, Lelli D, Gargarello RM, Herrero J, Fischer A, Thannberger L, Eymar E, Petruccioli M, D’Annibale A. Main Factors Determining the Scale-Up Effectiveness of Mycoremediation for the Decontamination of Aliphatic Hydrocarbons in Soil. J Fungi (Basel) 2023; 9:1205. [PMID: 38132804 PMCID: PMC10745009 DOI: 10.3390/jof9121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Soil contamination constitutes a significant threat to the health of soil ecosystems in terms of complexity, toxicity, and recalcitrance. Among all contaminants, aliphatic petroleum hydrocarbons (APH) are of particular concern due to their abundance and persistence in the environment and the need of remediation technologies to ensure their removal in an environmentally, socially, and economically sustainable way. Soil remediation technologies presently available on the market to tackle soil contamination by petroleum hydrocarbons (PH) include landfilling, physical treatments (e.g., thermal desorption), chemical treatments (e.g., oxidation), and conventional bioremediation. The first two solutions are costly and energy-intensive approaches. Conversely, bioremediation of on-site excavated soil arranged in biopiles is a more sustainable procedure. Biopiles are engineered heaps able to stimulate microbial activity and enhance biodegradation, thus ensuring the removal of organic pollutants. This soil remediation technology is currently the most environmentally friendly solution available on the market, as it is less energy-intensive and has no detrimental impact on biological soil functions. However, its major limitation is its low removal efficiency, especially for long-chain hydrocarbons (LCH), compared to thermal desorption. Nevertheless, the use of fungi for remediation of environmental contaminants retains the benefits of bioremediation treatments, including low economic, social, and environmental costs, while attaining removal efficiencies similar to thermal desorption. Mycoremediation is a widely studied technology at lab scale, but there are few experiences at pilot scale. Several factors may reduce the overall efficiency of on-site mycoremediation biopiles (mycopiles), and the efficiency detected in the bench scale. These factors include the bioavailability of hydrocarbons, the selection of fungal species and bulking agents and their application rate, the interaction between the inoculated fungi and the indigenous microbiota, soil properties and nutrients, and other environmental factors (e.g., humidity, oxygen, and temperature). The identification of these factors at an early stage of biotreatability experiments would allow the application of this on-site technology to be refined and fine-tuned. This review brings together all mycoremediation work applied to aliphatic petroleum hydrocarbons (APH) and identifies the key factors in making mycoremediation effective. It also includes technological advances that reduce the effect of these factors, such as the structure of mycopiles, the application of surfactants, and the control of environmental factors.
Collapse
Affiliation(s)
- Rafael Antón-Herrero
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | | | - Carlos García-Delgado
- Department of Geology and Geochemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Crognale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Davide Lelli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Romina Mariel Gargarello
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | - Jofre Herrero
- Water, Air and Soil Unit, Eurecat, Centre Tecnològic de Catalunya, 08242 Manresa, Spain; (R.M.G.); (J.H.)
| | | | | | - Enrique Eymar
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (R.A.-H.); (E.E.)
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| | - Alessandro D’Annibale
- Department for Innovation in Biological, Agri-Food and Forestry Systems, University of Tuscia, 01100 Tuscia, Italy; (S.C.); (D.L.); (M.P.); (A.D.)
| |
Collapse
|
2
|
Giovanella P, Taketani RG, Gil-Solsona R, Saldanha LL, Naranjo SBE, Sancho JV, Portolés T, Andreote FD, Rodríguez-Mozaz S, Barceló D, Sette LD. A comprehensive study on diesel oil bioremediation under microcosm conditions using a combined microbiological, enzymatic, mass spectrometry, and metabarcoding approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101250-101266. [PMID: 37648922 DOI: 10.1007/s11356-023-29474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Rodrigo Gouvêa Taketani
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Luiz Leonardo Saldanha
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Samantha Beatríz Esparza Naranjo
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino Americana, Parque tecnológico Itaipu, Foz do Iguaçu, PR, Brazil
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Tania Portolés
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Fernando Dini Andreote
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Lara Durães Sette
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
3
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
5
|
Liu X, He L, Zhang X, Kong D, Chen Z, Lin J, Wang C. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119970. [PMID: 35995289 DOI: 10.1016/j.envpol.2022.119970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation is a potential remediation method for petroleum-contaminated soil. In order to explore the petroleum degradation mechanism by microorganisms, the oilfield soil was remedied by Acinetobacter baumannii combined with Talaromyces sp. The degradation mechanism was studied by analyzing soil microbial community and functional genes through metagenomics during the degradation process. The result showed the degradation rate of petroleum was 65.6% after 28 days. The concentration of petroleum decreased from 1220 mg/kg to 420 mg/kg. In the co-culture group, Acinetobacter baumannii became the dominant species, the annotated genes of it at the species level accounted for 7.34% while that of Talaromyces sp. accounted for only 0.34%. Meanwhile, the annotated genes of Bacillus, Halomonas, and Nitriliruptor at the genus level were up-regulated by 1.83%, 0.90%, and 0.71%, respectively. In addition, large functional genes were significantly up-regulated, including the peroxisome, P450 enzyme (CYP53, CYP116, CYP102, CYP645), and biofilm formulation, promoting the oxidation and hydroxylation, and catalyzing the epoxidation of aromatic and aliphatic hydrocarbons. Meanwhile, the degrading genes of alkanes and aromatic hydrocarbons were expressed promotionally, and degradation pathways were deduced. In conclusion, the inoculation of Acinetobacter baumannii combined with Talaromyces sp. accelerated the degradation of petroleum in oilfield soil and improved the growth of indigenous petroleum-degrading bacteria. Many functional genes related to petroleum degradation were promoted significantly. These results proved the co-culture of bacteria-fungi consortium contributes to the bioremediation of petroleum-contaminated soil.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Lihong He
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Dewen Kong
- Shanghai Solid Waste Disposal Co., Ltd., No. 666, Lane 2088, Nanbin Highway, Shanghai, 201302, China
| | - Zongze Chen
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jia Lin
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
6
|
Dauda WP, Abraham P, Glen E, Adetunji CO, Ghazanfar S, Ali S, Al-Zahrani M, Azameti MK, Alao SEL, Zarafi AB, Abraham MP, Musa H. Robust Profiling of Cytochrome P450s (P450ome) in Notable Aspergillus spp. Life (Basel) 2022; 12:life12030451. [PMID: 35330202 PMCID: PMC8955511 DOI: 10.3390/life12030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/03/2023] Open
Abstract
Cytochrome P450s (P450ome) constitute an extended superfamily group of heme-thiolate enzymes identified in all biological domains. P450omes play a critical role in the oxidation of steroids and fatty acids, xenobiotic degradation of hydrophobic compounds, biosynthesis of hormones, and primary and secondary metabolism in organisms. Aspergillus species are among the most economically important fungal organisms in human medicine, industry, and agriculture worldwide. Exploring insight on the genome-wide annotations of cytochrome P450s in Aspergillus species is necessary for their biosynthetic applications. In this present study, we report the identification of 306 cytochrome P450s and their robust profiling in eight notable Aspergillus species (A. carbonarius, A. clavatus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. oryzae, and A. terreus). Based on the evolutionary relationship, the Aspergillus P450s families clustered into 15 clades, with clades V, I, and XIII recording higher percentages (17.3%, 15.00%, and 14.71%, respectively) of Cyp families. Cyps were classified into 120 families 64 clans, and their putative functions were also elucidated. P450s were predicted to be located in 13 subcellular components, but the endoplasm reticulum was the dominant location across the eight Aspergillus species. Cyps genes of Aspergillus species were associated with seven secondary metabolism-related gene clusters. Elucidating the genome-wide annotations of P450s enzymes in Aspergillus species will form vital potential biotechnological tools that could be harnessed for industrial, pharmaceutical, and agricultural use.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- Crop Science Unit, Department of Agronomy, Federal University Gashua, Gashua P.M.B 1005, Yobe State, Nigeria
- Correspondence:
| | - Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B 108, Gombe State, Nigeria; (P.A.); (M.P.A.)
| | - Elkanah Glen
- Department of Biochemistry, Federal University Lokoja, Lokoja P.M.B 1154, Kogi State, Nigeria;
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, Auchi P.M.B 04, Edo State, Nigeria;
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Majid Al-Zahrani
- Biological Science Department, College of Sciences and Art, King Abdulaziz University, Rabigh 80200, Saudi Arabia;
| | - Mawuli Kwamla Azameti
- Division of Molecular Biology and Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sheik Emmanuel Laykay Alao
- Department of Crop Protection, Faculty of Agriculture, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria; (S.E.L.A.); (A.B.Z.)
| | - Afiniki Bawa Zarafi
- Department of Crop Protection, Faculty of Agriculture, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria; (S.E.L.A.); (A.B.Z.)
| | - Maryam Peter Abraham
- Department of Horticulture, Federal College of Horticulture, Dadin Kowa P.M.B 108, Gombe State, Nigeria; (P.A.); (M.P.A.)
| | - Hannatu Musa
- Department of Botany, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| |
Collapse
|
7
|
Sessa L, Pedrini N, Altier N, Abreo E. Alkane-priming of Beauveria bassiana strains to improve biocontrol of the redbanded stink bug Piezodorus guildinii and the bronze bug Thaumastocoris peregrinus. J Invertebr Pathol 2022; 187:107700. [PMID: 34838792 DOI: 10.1016/j.jip.2021.107700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
Insect epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana (Balsamo) Vuillemin (Hypocreales; Clavicipitaceae) strains were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus (Carpintero and Dellapé) (Heteroptera: Thaumastocoridae) and low fungal-susceptible Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these strains, which were the most (ILB308) and the least (ILB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane, a P. guildinii epicuticular hydrocarbon. Beauveria bassiana hypervirulent strain ILB308 showed the lowest growth on most evaluated CHC media. However, this strain distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILB299 strains after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was only observed in the hypervirulent strain. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by CHC on the induction of some genes related to hydrocarbon assimilation in ILB299 and ILB308, such as cytochrome P450 genes (BbCyp52g11 and BbCyp52x1), together with adhesion and stress tolerance genes, such as hydrophobin (Bbhyd2) and catalase (Bbcatc) and glutathione peroxidase (Bbgpx), respectively.
Collapse
Affiliation(s)
- Lucía Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay.
| |
Collapse
|
8
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
9
|
Wang H, Peng H, Li W, Cheng P, Gong M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front Microbiol 2021; 12:705343. [PMID: 34512581 PMCID: PMC8430825 DOI: 10.3389/fmicb.2021.705343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The long-term and excessive usage of pesticides is an enormous burden on the environment, which also increases pest resistance. To overcome this problem, research and application of entomopathogenic fungi, which are both environmentally friendly and cause lower resistance, have gained great momentum. Entomopathogenic fungi have a wide range of prospects. Apart from Bacillus thuringiensis, Beauveria bassiana is the most studied biopesticide. After invading insect hosts, B. bassiana produces a variety of toxins, which are secondary metabolites such as beauvericin, bassianin, bassianolide, beauverolides, tenellin, oosporein, and oxalic acid. These toxins help B. bassiana to parasitize and kill the hosts. This review unequivocally considers beauveria toxins highly promising and summarizes their attack mechanism(s) on the host insect immune system. Genetic engineering strategies to improve toxin principles, genes, or virulent molecules of B. bassiana have also been discussed. Lastly, we discuss the future perspective of Beauveria toxin research, including newly discovered toxins.
Collapse
Affiliation(s)
- Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China.,College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenjuan Li
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| |
Collapse
|
10
|
Cowan AR, Costanzo CM, Benham R, Loveridge EJ, Moody SC. Fungal bioremediation of polyethylene: Challenges and perspectives. J Appl Microbiol 2021; 132:78-89. [PMID: 34218487 DOI: 10.1111/jam.15203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Plastics have become ubiquitous in both their adoption as materials and as environmental contaminants. Widespread pollution of these versatile, man-made and largely petroleum-derived polymers has resulted from their long-term mass production, inappropriate disposal and inadequate end of life management. Polyethylene (PE) is at the forefront of this problem, accounting for one-third of plastic demand in Europe in part due to its extensive use in packaging. Current recycling and incineration processes do not represent sustainable solutions to tackle plastic waste, especially once it becomes littered, and the development of new waste-management and remediation technologies are needed. Mycoremediation (fungal-based biodegradation) of PE has been the topic of several studies over the last two decades. The utility of these studies is limited by an inconclusive definition of biodegradation and a lack of knowledge regarding the biological systems responsible. This review highlights relevant features of fungi as potential bioremediation agents, before discussing the evidence for fungal biodegradation of both high- and low-density PE. An up-to-date perspective on mycoremediation as a future solution to PE waste is provided.
Collapse
Affiliation(s)
- Andrew R Cowan
- Faculty of Sport, Health and Social Science, Solent University, Southampton, UK
| | - Chiara M Costanzo
- Department of Chemistry, College of Science, Swansea University, Swansea, UK
| | - Robert Benham
- Faculty of Creative Industries, Architecture and Engineering, Solent University, Southampton, UK
| | - E Joel Loveridge
- Department of Chemistry, College of Science, Swansea University, Swansea, UK
| | - Suzy C Moody
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK
| |
Collapse
|
11
|
Bhandari G, Bagheri AR, Bhatt P, Bilal M. Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. CHEMOSPHERE 2021; 275:130013. [PMID: 33647677 DOI: 10.1016/j.chemosphere.2021.130013] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is considered a potential endocrine-disrupting chemical affecting humans and the environment. Due to widespread occurrence in the aquatic environment and neuro-, immuno, reproductive, and estrogenic effects, nonylphenol calls for considerable attention from the scientific community, researchers, government officials, and the public. It can persist in the environment, especially soil, for a long duration because of its high hydrophobic nature. Nonylphenol is incorporated into the water matrices via agricultural run-off, wastewater effluents, agricultural sources, and groundwater leakage from the soil. In this regard, assessment of the source, fate, toxic effect, and removal of nonylphenol seems a high-priority concern. Remediation of nonylphenol is possible through physicochemical and microbial methods. Microbial methods are widely used due to ecofriendly in nature. The microbial strains of the genera, Sphingomonas, Sphingobium, Pseudomonas, Pseudoxanthomonas, Thauera, Novosphingonium, Bacillus, Stenotrophomonas, Clostridium, Arthrobacter, Acidovorax, Maricurvus, Rhizobium, Corynebacterium, Rhodococcus, Burkholderia, Acinetobacter, Aspergillus, Pleurotus, Trametes, Clavariopsis, Candida, Phanerochaete, Bjerkandera, Mucor, Fusarium and Metarhizium have been reported for their potential role in the degradation of NP via its metabolic pathway. This study outlines the recent information on the occurrence, origin, and potential ecological and human-related risks of nonylphenol. The current development in the removal of nonylphenol from the environment using different methods is discussed. Despite the significant importance of nonylphenol and its effects on the environment, the number of studies in this area is limited. This review gives an in-depth understanding of NP occurrence, fate, toxicity, and remediation from the environments.
Collapse
Affiliation(s)
- Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University Dehradun, Uttarakhand, India
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
12
|
Lee MR, Kim JC, Park SE, Lee SJ, Kim WJ, Lee DH, Kim JS. Interactive Gene Expression Between Metarhizium anisopliae JEF-290 and Longhorned Tick Haemaphysalis longicornis at Early Stage of Infection. Front Physiol 2021; 12:643389. [PMID: 34093222 PMCID: PMC8170561 DOI: 10.3389/fphys.2021.643389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The longhorned tick, Haemaphysalis longicornis (Acari: Ixodidae), is a hard tick and a vector for severe fever with thrombocytopenia syndrome (SFTS) virus. The number of patients infected with SFTS is rapidly increasing. Recently, the invertebrate pathogen Metarhizium anisopliae JEF-290 was reported to be useful to control the tick as an alternative to chemical acaricides, which are not easily applicable in human living areas where the tick is widely spread. In this study, we analyzed how the tick and the fungal pathogen interact at the transcriptional level. Field-collected tick nymphs were treated with JEF-290 conidia at 1 × 108 conidia/ml. In the early stage of infection with 2.5% mortality, the infected ticks were subjected to RNA sequencing, and non-infected ticks and fungal masses served as controls. Fungus and tick genes were mostly up-regulated at the early stage of infection. In the gene set enrichment analysis of the infecting fungus, catabolic processes that included lipids, phospholipids, and detoxification processes, the response to oxidative stress, and toxic substances were significantly up-regulated. In this fungal up-regulation, various lipase, antioxidant enzyme, and hydrolase genes were highly transcribed. The gene set enrichment analysis of the infected tick showed that many peptide synthesis processes including translation, peptide metabolism, ribonucleotide metabolism, and energy production processes that included ATP generation and ADP metabolism were significantly up-regulated. Structurally, mitochondria and ribosome subunit genes in ticks were highly transcribed to upregulate these processes. Together these results indicate that JEF-290 initiates process that infects the tick while the tick actively defends against the fungal attack. This work provides background to improve our understanding of the early stage of fungal infection in longhorned tick.
Collapse
Affiliation(s)
- Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Se Jin Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Woo Jin Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, College of Bionano, Gachon University, Seongnam, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
13
|
Su X, Jiao R, Liu Z, Xia Y, Cao Y. Functional and characteristic analysis of an appressorium-specific promoter PMagas1 in Metarhizium acridum. J Invertebr Pathol 2021; 182:107565. [PMID: 33676966 DOI: 10.1016/j.jip.2021.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Entomopathogenic fungi have been used as important biological control agents throughout the world. To improve the biocontrol efficacy of entomopathogenic fungi, many genes have been used to improve fungal virulence or tolerance to adverse conditions via modulating their expression with strong promoters. The Magas1 gene is specifically expressed during appressorium formation and contributes to the virulence in Metarhizium acridum. In this study, we analyzed the functional region of the promoter of Magas1 gene (PMagas1) in M. acridum using 5'-deletion technique with enhanced green fluoresces protein (EGFP) as a reporter. Results showed the full length of the PMagas1 was at least 897 bp. Two regions (-897 to -611 bp and -392 to -328 bp) were essential for the activity of PMagas1. An engineered M. acridum strain was constructed with PMagas1 driving the expression of a subtilisin-like proteinase gene Pr1A (PMagas1-PR1A). Bioassay showed that the virulence was significantly increased in PMagas1-PR1A strain compared to wild type strain. Pmagas1 promoter is suitable for the overexpression of some genes during the infection of entomopathogenic fungi, which avoids the waste of nutritional resources and the influence on other fungal characteristics during the saprophytic process of constitutive promoter.
Collapse
Affiliation(s)
- Xueling Su
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Run Jiao
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Zhe Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China.
| |
Collapse
|
14
|
Martínez-Ávila L, Peidro-Guzmán H, Pérez-Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, Gunde-Cimerman N, Batista-García RA. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116358. [PMID: 33385892 DOI: 10.1016/j.envpol.2020.116358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
Collapse
Affiliation(s)
- Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Arline Fernández-Silva
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Shin TY, Lee MR, Park SE, Lee SJ, Kim WJ, Kim JS. Pathogenesis-related genes of entomopathogenic fungi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21747. [PMID: 33029869 DOI: 10.1002/arch.21747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
All living things on Earth experience various diseases such as those caused by viruses, bacteria, and fungi. Insects are no exception to this rule, and fungi that cause disease in insects are called entomopathogenic fungi. These fungi have been developed as microbial insecticides and are used to control various pests. Generally, the mode of action of entomopathogenic fungi is divided into the attachment of conidia, germination, penetration, growth, and generation of secondary infectious conidia. In each of these steps, that entomopathogenic fungi use genes in a complex manner (specific or diverse) has been shown by gene knock-out and RNA-sequencing analysis. In this review, the information mechanism of entomopathogenic fungi was divided into six steps: (1) attachment of conidia to host, (2) germination and appressorium, (3) penetration, (4) fungal growth in hemolymph, (5) conidia production on host, and (6) transmission and dispersal. The strategy used by the fungi in each step was described at the genetic level. In addition, an approach for studying the mode of action of the fungi is presented.
Collapse
Affiliation(s)
- Tae Young Shin
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Woo Jin Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Yang B, Zha R, Zhao W, Gong D, Meng X, Zhang Z, Zhu L, Qi N, Wang B. Comparative transcriptome analysis of the fungus Gibberella zeae transforming lithocholic acid into ursodeoxycholic acid. Biotechnol Lett 2020; 43:415-422. [PMID: 33179169 DOI: 10.1007/s10529-020-03048-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
The comparative transcriptome analysis of the fungus Gibberella zeae which could efficiently catalyze the 7β-hydroxylation of LCA to produce UDCA was performed with LCA induction. This is the first time to report the comparative transcriptome of fungus under LCA treatment. Totally, 1364 differentially expressed genes including 770 up-regulated and 594 down-regulated genes were identified. In the 770 up-regulated genes, 12 genes with the function of hydroxylation were picked out by application of function screening, which were annotated as CYP450 or hydroxylase. Moreover, the qRT-PCR results of five up-regulated CYP450-like genes confirmed the credibility of RNA-Seq further. These results provide valuable information for the discovery of novel enzyme producing clinical drug UDCA from butchery byproduct LCA, and also might indicate some clues for the detoxification process of LCA in humans.
Collapse
Affiliation(s)
- Biling Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Renfen Zha
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Daoyong Gong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xinhua Meng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Na Qi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
17
|
Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA, Schnabel D, Jiménez-Gómez I, Mouriño-Pérez RR, Aréchiga-Carvajal ET, Del Rayo Sánchez-Carbente M, Folch-Mallol JL, Sánchez-Reyes A, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 2020; 23:3435-3459. [PMID: 32666586 DOI: 10.1111/1462-2920.15166] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.
Collapse
Affiliation(s)
- Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Angélica Ortega García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Denhi Schnabel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosa R Mouriño-Pérez
- Centro de Investigación Cientifica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elva T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
18
|
Martins TM, Martins C, Silva Pereira C. Multiple degrees of separation in the central pathways of the catabolism of aromatic compounds in fungi belonging to the Dikarya sub-Kingdom. Adv Microb Physiol 2019; 75:177-203. [PMID: 31655737 DOI: 10.1016/bs.ampbs.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The diversity and abundance of aromatic compounds in nature is crucial for proper metabolism in all biological systems, and also impacts greatly the development of many industrial processes. Naturally, understanding their catabolism becomes fundamental for many scientific fields of research, from clinical and environmental to technological. The genetic basis of the central pathways for the catabolism of aromatic compounds in fungi, particularly of benzene derivatives, remains however poorly understood largely overlooking their significance. In some Dikarya species the genes of the central pathways are clustered in the genome, often in an array with peripheral pathway genes, even if the existence of a specific pathway does not necessarily mean that the composing genes are clustered. The current availability of many annotated fungal genomes in the postgenomic era creates conditions to reach a more holistic view of these processes through target analysis of the central pathways gene clusters. Inspired by this, we have critically analyzed the established biochemical and genetic data on the catabolism of aromatic compounds in Dikarya after dissecting the presence and distribution of central catabolic gene clusters (at times including also details on gene diversity, order and orientation) and of peripheral genes. Our methodological approach illustrates the multiple degrees of separation in these central pathways gene clusters across Dikarya. Surprisingly, they show a great degree of similarity irrespectively of the Dikarya division, emphasizing that knowledge established on either phyla can guide the identification of clusters of comparable composition (in-cluster plus peripheral genes) in uncharacterized species.
Collapse
Affiliation(s)
- Tiago M Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, Oeiras, Portugal
| |
Collapse
|
19
|
Nowak M, Soboń A, Litwin A, Różalska S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. CHEMOSPHERE 2019; 220:324-334. [PMID: 30590298 DOI: 10.1016/j.chemosphere.2018.12.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
In this study, the ability of 4-n-nonylphenol (4-n-NP) elimination by fungal species belonging to the genus Metarhizium was investigated. The occurrence of 35 metabolites from 4-n-NP degradation was confirmed. For the first time, based on the obtained results, the 4-n-NP biodegradation pathway distinctive for the genus Metarhizium was proposed. Principal Component Analysis (PCA) indicated that despite the similar elimination pathway in all the examined Metarhizium species, there are significant differences in the kinetics of degradation of 4-n-NP. Oxidation of the terminal methyl group of the aliphatic chain leading to the formation of carboxylic acids coupled with the removal of terminal carbon is characteristic of M. robertsii and M. guizhouense, whereas metabolites with a hydroxyl group in the distal part of the nonyl chain distinguish M. lepidiotae and M. majus. Additionally, this study verified the participation of cytochrome P450 in the elimination of the xenobiotic by Metarhizium as experimentally proven for M. robertsii.
Collapse
Affiliation(s)
- Monika Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Adrian Soboń
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Anna Litwin
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
20
|
Al-Hawash AB, Zhang J, Li S, Liu J, Ghalib HB, Zhang X, Ma F. Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:398-408. [PMID: 30142606 DOI: 10.1016/j.ecoenv.2018.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fungi can use n-hexadecane (HXD) as a sole carbon source. But the mechanism of HXD degradation remains unclear. This work mainly aimed to study the degradation of HXD by Aspergillus sp. RFC-1 obtained from oil-contaminated soil. The HXD content, medium acidification and presence of hexadecanoic acid in the medium were determined by gas chromatography-mass spectrometry, and fungal growth was observed. Enzyme and gene expression assays suggested the involvement of an alkane hydroxylase, an alcohol dehydrogenase, and a P450 enzyme system in HXD degradation. A biosurfactant produced by the strain RFC-1 was also characterized. During 10 days of incubation, 86.3% of HXD was degraded by RFC-1. The highest activities of alkane hydroxylase (125.4 µmol mg-1 protein) and alcohol dehydrogenase (12.5 µmol mg-1 proteins) were recorded. The expression level of cytochrome P450 gene associated with oxidation was induced (from 0.94-fold to 5.45-fold) under the HXD condition by Real-time PCR analysis. In addition, HXD accumulated in inclusion bodies of RFC-1with the maximum of 5.1 g L-1. Results of blood agar plate and thin-layer chromatography analysis showed RFC-1 released high lipid and emulsification activity in the fungal culture. Induced cell surface hydrophobicity and reduced surface tension also indicated the RFC-1-mediated biosurfactant production, which facilitated the HXD degradation and supported the degradation process.
Collapse
Affiliation(s)
- Adnan B Al-Hawash
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Ministry of Education, Directorate of Education, Basra 61001, Iraq
| | - Jialong Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shue Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiashu Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hussein B Ghalib
- Department of Geology, College of Sciences, University of Basrah, Basra 61001, Iraq
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Stein HP, Navajas-Pérez R, Aranda E. Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities in Model Fungi. APPROACHES IN BIOREMEDIATION 2018. [DOI: 10.1007/978-3-030-02369-0_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|