1
|
Huang L, Cao C, Lin X, Lu L, Lin X, Liu HC, Odle J, See MT, Zhang L, Wu W, Luo X, Liao X. Zinc alleviates thermal stress-induced damage to the integrity and barrier function of cultured chicken embryonic primary jejunal epithelial cells via the MAPK and PI3K/AKT/mTOR signaling pathways. Poult Sci 2024; 103:103696. [PMID: 38593549 PMCID: PMC11016803 DOI: 10.1016/j.psj.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 μmol Zn/L was more effective than 100 μmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 μmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 μmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
3
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
4
|
Xiong Y, Li J, He S. Zinc Protects against Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in TM3 Leydig Cells. Biol Trace Elem Res 2022; 200:728-739. [PMID: 33738683 DOI: 10.1007/s12011-021-02673-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
Heat stress (HS)-induced apoptosis in Leydig cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Zinc, an inorganic mineral element, exhibits several cytoprotective properties, but its potential protective action against Leydig cell apoptosis and the related molecular mechanisms has not been fully elucidated. In this study, we evaluated the effects of zinc sulfate, a predominant chemical form of zinc, exerted on cell viability, apoptosis, and testosterone production in HS-treated TM3 Leydig cells and investigated the underlying signaling pathways. HS treatment inhibited cell viability and induced apoptosis, which was accompanied by the induction of the activity of caspase 3, an executioner of apoptosis, involved in the expression of pro-apoptotic protein B cell lymphoma 2-associated X protein (Bax), and in the reduction of the expression of anti-apoptotic protein B cell lymphoma 2 (Bcl-2), thereby activating ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, zinc sulfate led to the attenuation of deleterious effects, including increases in apoptosis, caspase-3 activity, Bax, GRP78, and CHOP expression, and decreases in cell viability and Bcl-2 protein expression in cells treated with HS or thapsigargin (an ER stress activator). Furthermore, 4-phenylbutyric acid (an ER stress inhibitor) treatment markedly alleviated the HS-induced adverse effects in cells exposed to HS, which was similar to zinc sulfate. Additionally, zinc sulfate supplementation in the culture medium effectively restored the HS-induced decrease in testosterone levels in HS-treated cells. In summary, these findings indicate that HS triggers apoptosis in TM3 Leydig cells via the ER stress pathway and that zinc confers protection against these detrimental effects. This study provides new insights into the benefits of using zinc against HS-induced apoptosis and cell injury.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
5
|
Kim SY, Cha HJ, Hwangbo H, Park C, Lee H, Song KS, Shim JH, Noh JS, Kim HS, Lee BJ, Kim S, Kim GY, Jeon YJ, Choi YH. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle ( Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway. Foods 2021; 10:foods10112807. [PMID: 34829088 PMCID: PMC8623046 DOI: 10.3390/foods10112807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to explore the efficacy of fermented extract of sea tangle (Laminaria japonica Aresch, FST) with Lactobacillus brevis on DNA damage and apoptosis in hydrogen peroxide (H2O2)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in H2O2-stimulated cells. In addition, H2O2 triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, H2O2-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome c, were reduced in the presence of FST. FST also diminished H2O2-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of H2O2 with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against H2O2-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from H2O2-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea;
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Kyoung Seob Song
- Department of Medical Life Science, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Jung-Hyun Shim
- Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea;
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea;
| | - Suhkmann Kim
- Center for Proteome Biophysics and Chemistry, Department of Chemistry, College of Natural Sciences, Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
6
|
Exploring the Effect of Jiawei Buguzhi Pills on TGF- β-Smad Pathway in Postmenopausal Osteoporosis Based on Integrated Pharmacological Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5556653. [PMID: 34754316 PMCID: PMC8572597 DOI: 10.1155/2021/5556653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Objective To explore the effect of Jiawei Buguzhi Pills (JWBGZP) on the TGF-β-Smad pathway in postmenopausal osteoporosis (PMO) based on integrated pharmacological strategy. Method The ETCM database was used to collect JWBGZP. GeneCards and OMIM databases were utilized to obtain PMO-related genes. Cytoscape was used for network construction and analysis, and DAVID was used for GO and KEGG enrichment analysis of key targets. Animal experiments and cell experiments were conducted to further explore the mechanism. The bone mass density was detected by dual-energy X-ray bone densitometer. The TGF-β1 and Smad4 mRNA in bone tissue were detected by RT-qPCR. The TGF-β1 and Smad4 protein in bone tissue were detected by the western blot. The TGF-β1 and Smad4 protein in osteoblasts were determined by immunohistochemistry. Result A total of 721 JWBGZP potential targets and 385 PMO-related genes were obtained. The enrichment analysis showed that JWBGZP may regulate the TGF-beta signaling pathway, oxidation-reduction process, aging, response to hypoxia, response to ethanol, negative regulation of cell proliferation, PI3K-Akt, HIF-1, and other signaling pathways. The animal experiments showed that compared with the model group, the femoral bone mineral density and lumbar bone mineral density of the JWBGZP group increased (P < 0.05); the expression levels of TGF-β1 and Smad mRNA and proteins in the JWBGZP group were significantly higher (P < 0.05). The cell experiment results showed a large number of osteoblast stained blue-purple and orange-red calcified nodules. The expression levels of TGF-β1 and Smad proteins in the JWBGZP group were significantly higher than those in the blank control group and the sham operation group, and the protein expression levels in the model group were the lowest (P < 0.05). Conclusion JWBGZP may be involved in PI3K-Akt, HIF-1, estrogen, prolactin, and other signaling pathways and regulate MAPK1, AKT1, PIK3CA, JAK2, and other gene targets, regulate bone metabolism, and thereby treat PMO.
Collapse
|
7
|
Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, Liu J, Min Y. Fabrication of Dexamethasone-Loaded Dual-Metal-Organic Frameworks on Polyetheretherketone Implants with Bacteriostasis and Angiogenesis Properties for Promoting Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50836-50850. [PMID: 34689546 DOI: 10.1021/acsami.1c18088] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.
Collapse
Affiliation(s)
- Tianhua Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongtao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihuan Wang
- Child Developmental & Behavioral Center, Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Guangzhou 510630, China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyu Pang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Da Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Han J, Wang L, Lv H, Liu J, Dong Y, Shi L, Ji Q. EphA2 inhibits SRA01/04 cells apoptosis by suppressing autophagy via activating PI3K/Akt/mTOR pathway. Arch Biochem Biophys 2021; 711:109024. [PMID: 34487720 DOI: 10.1016/j.abb.2021.109024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
This study attempted to determine the effect of EphA2 on H2O2-treated lens epithelial cells (SRA01/04) and the underlying mechanisms. MTT assay and flow cytometry were performed to assess cell viability and cell apoptosis. Western blot was carried out to examine the levels of proteins associated with apoptosis and autophagy. Our results revealed that EphA2 significantly elevated the reduced cell viability, and inhibited the increased cell apoptosis in H2O2-treated SRA01/04 cells, along with the significant up-regulated Bcl-2 and down-regulated Cleaved-caspase-3 and Bax protein levels, but which were all abolished by Rapa (autophagy activator). We also found that EphA2 significantly suppressed cell autophagy in H2O2-treated SRA01/04 cells. Additionally, EphA2 significantly up-regulated the protein levels of p-Akt and p-mTOR in H2O2-treated SRA01/04 cells, and the inhibition of Akt by MK-2206 and inhibition of mTOR by Rapa both obviously reversed EphA2-mediated the inhibition of autophagy in H2O2-treated SRA01/04 cells. In summary, these data demonstrated that EphA2 inhibited the apoptosis of SRA01/04 cells by inhibiting autophagy via activating PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jing Han
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lisong Wang
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Huayi Lv
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiajia Liu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yiran Dong
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lei Shi
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Qingshan Ji
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
9
|
Qi T, Weng J, Yu F, Zhang W, Li G, Qin H, Tan Z, Zeng H. Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biol Trace Elem Res 2021; 199:559-567. [PMID: 32449009 DOI: 10.1007/s12011-020-02183-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into bone-producing cells, which is essential for bone formation. Magnesium biomedical materials, such as biodegradable matters with osteoinductive properties, play a vital role in the osteogenic differentiation of MSCs. International and Chinese studies have shown that magnesium ions, which are produced by biodegradation, mainly achieve this effect by regulating the expression of genes and proteins associated with osteogenesis, activating multiple signal pathways, elevating autophagic activities, and adjusting the pH in the microenvironment. It is of great significance to study the regulatory mechanisms and identify the optimal conditions that how magnesium ions promote osteogenic differentiation of MSCs. In this study, we summarized the regulatory mechanisms noted above.
Collapse
Affiliation(s)
- Tiantian Qi
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Weifei Zhang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Guoqing Li
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Zhen Tan
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China.
| |
Collapse
|
10
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
11
|
Ameliorative potential of Saudi Arabian date fruit (Phoenix dactylifera L.) varieties against Freund’s complete adjuvant induced arthritis in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Involvement of JNK/FOXO1 pathway in apoptosis induced by severe hypoxia in porcine granulosa cells. Theriogenology 2020; 154:120-127. [PMID: 32562827 DOI: 10.1016/j.theriogenology.2020.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
In ovaries, follicles undergo a periodic process of degeneration, namely atresia, during each stage of development. Granulosa cell (GC) apoptosis is believed as the hallmark of follicular atresia. The avascular environment within the granulosa compartment is supposed to cause hypoxic conditions. The effects of hypoxia on organs, tissues, cells can be either positive or negative, depending on the severity and context. The present study aimed to explore whether and how severe hypoxia under in vitro conditions functions in apoptosis of porcine GCs. The current results showed that the apoptosis in porcine GCs exposed to severe hypoxia (1% O2) was correlated with enhanced activation of c-Jun N-terminal kinase (JNK), nuclear accumulation of FOXO1, as well as elevated level of cleaved caspase-3 and decreased ratio of BCL-2/BAX. Further investigations revealed that severe hypoxia-mediated JNK activation was required for the apoptotic death of porcine GCs and the nuclear transport of FOXO1. Moreover, inhibition of FOXO1 reduced GCs apoptosis upon severe hypoxia exposure. Together, these findings suggested that severe hypoxia might act through JNK/FOXO1 axis to induce apoptosis in porcine GCs.
Collapse
|
13
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
14
|
Zhu X, Zhao Z, Zeng C, Chen B, Huang H, Chen Y, Zhou Q, Yang L, Lv J, Zhang J, Pan D, Shen J, Duque G, Cai D. HNGF6A Inhibits Oxidative Stress-Induced MC3T3-E1 Cell Apoptosis and Osteoblast Phenotype Inhibition by Targeting Circ_0001843/miR-214 Pathway. Calcif Tissue Int 2020; 106:518-532. [PMID: 32189040 DOI: 10.1007/s00223-020-00660-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/11/2020] [Indexed: 01/08/2023]
Abstract
Humanin (HN), a mitochondrial derived peptide, plays cyto-protective role under various stress. In this study, we aimed to investigate the effects of HNGF6A, an analogue of HN, on osteoblast apoptosis and differentiation and the underlying mechanisms. Cell proliferation of murine osteoblastic cell line MC3TC-E1 was examined by CCK8 assay and Edu staining. Cell apoptosis was detected by Annexin V assay under H2O2 treatment. The differentiation of osteoblast was determined by Alizarin red S staining. We also tested the expression of osteoblast phenotype related protein by real-time PCR and Western blot. The interaction between Circ_0001843 and miR-214, miR-214 and TAFA5 was examined by luciferase report assay. Circ_0001843 was inhibited by siRNA and miR-214 was suppressed by miR-214 inhibitor to determine the effects of Circ_0001843 and miR-214 on cell proliferation, apoptosis, and differentiation. HNGF6A, an analogue of HN, exerted cyto-protection and osteogenesis-promotion in MC3T3-E1 cells. The expression of osteoblast phenotype related protein was significantly induced by HNGF6A. Additionally, HNGF6A treatment decreased Circ_0001843 and increased miR-214 levels, as well as inhibited the phosphorylation of p38 and JNK. We further found that Circ_0001843 directly bound with miR-214, which in turn inhibited the phosphorylation of p38 and JNK. Furthermore, both Circ_0001843 overexpression and miR-214 knockdown significantly decreased the cyto-protection and osteogenic promotion of HNGF6A. In summary, our data showed that HNGF6A protected osteoblasts from oxidative stress-induced apoptosis and osteoblast phenotype inhibition by targeting Circ_0001843/miR-214 pathway and the downstream kinases, p38 and JNK.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ziping Zhao
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, No.183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Bo Chen
- Department of Endocrinology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haifeng Huang
- Department of Internal Medicine, the Eastern Hospital of the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510700, Guangdong, China
| | - Youming Chen
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Quan Zhou
- Department of Medical Image, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Li Yang
- Department of Endocrinology, People's Hospital of Hunan Province, Changsha, 410011, Hunan, China
| | - Jicheng Lv
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jing Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Daoyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Gustavo Duque
- Department of Medicine, Western Health, The University of Melbourne, St Albans, Victoria, 3021, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, 3021, Australia.
| | - Daozhang Cai
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, No.183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
15
|
NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep 2020; 10:3078. [PMID: 32080264 PMCID: PMC7033235 DOI: 10.1038/s41598-020-59743-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The highly selective magnesium transporter non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2) has recently been associated with the development and progression of type 2 diabetes osteoporosis, but the mechanisms involved are still poorly understood. Because mitophagy is involved in the pathology of type 2 diabetes osteoporosis, the present study aimed to explore the relationship among NIPA2, mitophagy and osteoblast osteogenic capacity. NIPA2 expression was reduced in C57BKS background db/db mice and in vitro models of type 2 diabetes osteoporosis, and the activation of mitophagy in primary culture osteoblast-derived from db/db mice and in high glucose-treated human fetal osteoblastic cells (hFOB1.19) was observed. Knockdown, overexpression of NIPA2 and pharmacological inhibition of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) showed that NIPA2 increased osteoblast function, which was likely regulated by PTEN induced kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy via the PGC-1α/forkhead box O3a(FoxO3a)/mitochondrial membrane potential (MMP) pathway. Furthermore, the negative effect of mitophagy on osteoblast function was confirmed by pharmacological regulation of mitophagy and knockdown of Parkin. Taken together, these results suggest that NIPA2 positively regulates the osteogenic capacity of osteoblasts via the mitophagy pathway in type 2 diabetes.
Collapse
|
16
|
Zhang Y, Cai F, Liu J, Chang H, Liu L, Yang A, Liu X. Transfer RNA-derived fragments as potential exosome tRNA-derived fragment biomarkers for osteoporosis. Int J Rheum Dis 2018; 21:1659-1669. [PMID: 30345646 DOI: 10.1111/1756-185x.13346] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Zhang
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
| | - Feng Cai
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
| | - Ju Liu
- Department of Orthopedics; Shanghai Zhoupu Hospital; Shanghai China
| | - Hongze Chang
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
| | - Liang Liu
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
| | - Anli Yang
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
| | - Xiaodong Liu
- Department of Orthopedics; Shanghai Yangpu Hospital Affiliated to Tongji University; Shanghai China
- Department of Orthopedics; Shanghai Zhoupu Hospital; Shanghai China
| |
Collapse
|
17
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
18
|
Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, Sun L, Tang J, Zhao D, Mo F, Niu J, Jiang G, Fu M, Brömme D, Zhang D, Gao S. Antioxidant Effect of Fructus Ligustri Lucidi Aqueous Extract in Ovariectomized Rats Is Mediated through Nox4-ROS-NF-κB Pathway. Front Pharmacol 2017; 8:266. [PMID: 28588482 PMCID: PMC5438993 DOI: 10.3389/fphar.2017.00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
Purpose: This study is designed to explore whether Fructus ligustri lucidi (FLL) exhibits antioxidant effect in ovariectomized (OVX) rats, and to identify the signaling pathway involved in this process. Methods: OVX rats were treated with FLL aqueous extract (3.5 g/kg) for 12 weeks. Serum, uteri, and tibias were harvested from the rats and the levels of total antioxidant capacity (TAC), nitric oxide (NO), malondialdehyde (MDA), 8-hydroxy-desoxyguanosine (8-OHdG), and superoxide dismutase (SOD) were determined. Changes in the levels of NF-κB-p65, phosphorylation of NF-κB-p65 (NF-κB-pp65), NF-κB inhibitor alpha (IκBα), phosphorylation of IκBα (p-IκBα), and NADPH oxidase 4 (Nox4) in uteri and tibias were determined by western blot, immunofluorescent and immunohistochemical analysis, respectively. In addition, the expression of cytochrome C (Cyto-C) and B-cell lymphoma-2 (Bcl-2) were determined in the tibias of rats. Histopathological changes in the bones were evaluated by hematoxylin-eosin staining. Bone mineral density (BMD) was determined in rat femurs by dual X-ray absorptiometry. Results: Treatment of OVX rats with FLL aqueous extract improved redox homeostasis by increasing the levels of TAC and NO as well as decreasing the levels of MDA and 8-OHdG in serum, tibias, and uteri. Further, FLL extract also downregulated the expression of Nox4, NF-κB-p65, NF-κB-pp65, and p-IκBα in the uteri and tibias. Furthermore, administration of FLL–OVX rats increased Bcl-2 expression and prevented cytoplasmic release of mitochondrial Cyto-C in the tibias. In addition, FLL treatment also improved bone microstructure and increased cortical bone thickness as well as increased BMD values in the femurs of OVX rats. Conclusions: FLL treatment may suppress oxidative stress response in OVX rats via regulating the Nox4/ROS/NF-κB signaling pathway. These results suggest the potential of using FLL as a natural antioxidant agent in preventing the development of osteoporosis.
Collapse
Affiliation(s)
- Lili Wang
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Rufeng Ma
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Yubo Guo
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Jing Sun
- Chinese Material Medica School, Beijing University of Chinese MedicineBeijing, China
| | - Haixia Liu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Ruyuan Zhu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese MedicineBeijing, China
| | - Jun Li
- Modern Research Center for TCM, Beijing University of Chinese MedicineBeijing, China
| | - Lin Li
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Beibei Chen
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Liping Sun
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Jinfa Tang
- The First Affiliated Hospital of He'nan TCM University, ZhengzhouHenan, China
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Fangfang Mo
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Jianzhao Niu
- Cell and Biochemistry Lab, Preclinical Medicine School, Beijing University of Chinese MedicineBeijing, China
| | - Guangjian Jiang
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Min Fu
- The Research Institute of McGill University Health CenterMontreal, QC, Canada
| | - Dieter Brömme
- Oral Biological Medicinal Science, University of British ColumbiaVancouver, BC, Canada
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
19
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
20
|
Lu X, Mestres G, Singh VP, Effati P, Poon JF, Engman L, Ott MK. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity. Antioxidants (Basel) 2017; 6:antiox6010013. [PMID: 28216602 PMCID: PMC5384176 DOI: 10.3390/antiox6010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023] Open
Abstract
Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress.
Collapse
Affiliation(s)
- Xi Lu
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Gemma Mestres
- Department of Engineering, Microsystems Technology, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Vijay Pal Singh
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Pedram Effati
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Jia-Fei Poon
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Lars Engman
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Marjam Karlsson Ott
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| |
Collapse
|
21
|
An S, Gong Q, Huang Y. Promotive Effect of Zinc Ions on the Vitality, Migration, and Osteogenic Differentiation of Human Dental Pulp Cells. Biol Trace Elem Res 2017; 175:112-121. [PMID: 27260533 DOI: 10.1007/s12011-016-0763-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023]
Abstract
Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10-5, 4 × 10-5, and 8 × 10-5 M) of zinc ions (Zn2+) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10-5 and 8 × 10-5 M Zn2+ groups. These findings suggest that specific concentrations of Zn2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No.56 Lingyuan Xi Road, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No.74 Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
22
|
Zhu FB, Wang JY, Zhang YL, Hu YG, Yue ZS, Zeng LR, Zheng WJ, Hou Q, Yan SG, Quan RF. Mechanisms underlying the antiapoptotic and anti-inflammatory effects of monotropein in hydrogen peroxide-treated osteoblasts. Mol Med Rep 2016; 14:5377-5384. [PMID: 27840925 DOI: 10.3892/mmr.2016.5908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/17/2016] [Indexed: 11/05/2022] Open
Abstract
Monotropein, the primary iridoid glycoside isolated from Morindacitrifolia, has been previously reported to possess potent antioxidant and antiosteoporotic properties. However, there is no direct evidence correlating the antiosteoporotic effect of monotropein with its observed antioxidant capacity, and the molecular mechanisms involved in mediating these processes remain unclear. Therefore, the aim of the present study was to investigate the protective effects of monotropein against oxidative stress in osteoblasts and the mechanisms involved in mediating this process. Osteoblast viability was evaluated using the MTT assay. The mitochondrial membrane potential and reactive oxygen species were detected by flow cytometry analyses. Western blotting and enzyme‑linked immunosorbent assays were performed to detect protein expression levels. A significant reduction in osteoblast viability was observed at 24 h following exposure to various concentrations (100‑1,000 µM) of H2O2 compared with untreated osteoblasts. The cytotoxic effect of H2O2 was notably reversed when osteoblasts were pretreated with 1‑10 µg/ml monotropein. Pretreatment with 1-10 µg/ml monotropein increased the mitochondrial membrane potential and reduced the generation of reactive oxygen species in osteoblasts following exposure to H2O2. In addition, the H2O2‑induced increase in apoptotic markers (caspase-3 and caspase-9) and H2O2-induced reduction in sirtuin 1 levels were significantly reversed following pretreatment of cells with monotropein. Furthermore, monotropein significantly reduced H2O2‑induced stimulation of NF‑κB expression, in addition to the expression of a number of proinflammatory mediators. These results indicate that monotropein suppresses apoptosis and the inflammatory response in H2O2‑induced osteoblasts through the activation of the mitochondrial apoptotic signaling pathway and inhibition of the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Fang-Bing Zhu
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Jian-Yue Wang
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Ying-Liang Zhang
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Yun-Gen Hu
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Zhen-Shuang Yue
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lin-Ru Zeng
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Wen-Jie Zheng
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Qiao Hou
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Shi-Gui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ren-Fu Quan
- Department of Orthopedic Surgery, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311200, P.R. China
| |
Collapse
|
23
|
Wang X, Feng Z, Li J, Chen L, Tang W. High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis. Mol Cell Endocrinol 2016; 429:62-72. [PMID: 27068641 DOI: 10.1016/j.mce.2016.03.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 02/04/2023]
Abstract
In the present study, we investigate the function of ROS-AKT-mTOR axis on the apoptosis, proliferation and autophagy of MC3T3-E1 cells, and the proliferation of MC3T3-E1 cells after autophagy inhibition under high glucose conditions. MC3T3-E1 cells cultured in vitro were divided into the following groups: normal control group, N-acetylcysteine (NAC) group, 11.0 mM high glucose group, 11.0 mM high glucose + NAC group, 22.0 mM high glucose group, 22.0 mM high glucose + NAC group, CQ group, 22.0 mM high glucose + CQ group, 3-MA group and 3-MA + 22.0 mM high glucose group. ROS production was measured by DCFH-DA fluorescent probe. Cell proliferation was measured by MTT assay. Cells in different groups were stained with Annexin V-FITC/PI, and then apoptosis rate was detected by flow cytometry. Nucleus morphology was observed under fluorescence microscope after being incubated with Honchest33258. Protein expression was measured using Western blotting and immunofluorescence. Cell apoptosis and proliferation in high glucose group were increased and decreased, respectively, in a dose-dependent manner. Autophagy was significantly induced in high glucose group, even though different concentration of glucose induced autophagy in different stages of autophagy. ROS production in MC3T3-E1 cells was remarkably increased in high glucose group, but not in a dose-dependent manner. NAC, as an antioxidant, reduced ROS production and ameliorated cell apoptosis, proliferation abnormity and autophagy caused by high glucose. Expression of p-AKT and p-mTOR proteins were dramatically decreased in high glucose group, and NAC reversed their expression. In addition, 3-MA, an inhibitor of autophagy, significantly decreased the proliferation of MC3T3-E1 cells. When cocultured with 22.0 mM glucose that induced autophagy, proliferation of MC3T3-E1 cells was not affected compared to 22.0 mM high glucose group. Our present findings reveal that high glucose affects apoptosis, proliferation and autophagy of MC3T3-E1 cells through ROS-AKT-mTOR axis. In addition, autophagy inhibition does not affect the proliferation of MC3T3-E1 cells under high glucose conditions.
Collapse
Affiliation(s)
- Xiaoju Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhengping Feng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Jiling Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lixue Chen
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Weixue Tang
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
24
|
Song ZH, Ke YL, Xiao K, Jiao LF, Hong QH, Hu CH. Diosmectite-zinc oxide composite improves intestinal barrier restoration and modulates TGF-β1, ERK1/2, and Akt in piglets after acetic acid challenge. J Anim Sci 2016; 93:1599-607. [PMID: 26020182 DOI: 10.2527/jas.2014-8580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study evaluated the beneficial effect of diosmectite-zinc oxide composite (DS-ZnO) on improving intestinal barrier restoration in piglets after acetic acid challenge and explored the underlying mechanisms. Twenty-four 35-d-old piglets (Duroc × Landrace × Yorkshire), with an average weight of 8.1 kg, were allocated to 4 treatment groups. On d 1 of the trial, colitis was induced via intrarectal injection of acetic acid (10 mL of 10% acetic acid [ACA] solution for ACA, DS-ZnO, and mixture of diosmectite [DS] and ZnO [DS+ZnO] groups) and the control group was infused with saline. Twenty-four hours after challenged, piglets were fed with the following diets: 1) control group (basal diet), 2) ACA group (basal diet), 3) DS-ZnO group (basal diet supplemented with DS-ZnO), and 4) DS+ZnO group (mixture of 1.5 g diosmectite [DS]/kg and 500 mg Zn/kg from ZnO [equal amount of DS and ZnO in the DS-ZnO treatment group]). On d 8 of the trial, piglets were sacrificed. The results showed that DS-ZnO supplementation improved (P < 0.05) ADG, ADFI, and transepithelial electrical resistance and decreased (P < 0.05) fecal scores, crypt depth, and fluorescein isothiocyanate-dextran 4 kDa (FD4) influx as compared with ACA group. Moreover, DS-ZnO increased (P < 0.05) occludin, claudin-1, and zonula occluden-1 expressions; reduced (P < 0.05) caspase-9 and caspase-3 activity and Bax expression; and improved (P < 0.05) Bcl2, XIAP, and PCNA expression. Diosmectite-zinc oxide composite supplementation also increased (P < 0.05) TGF-β1 expression and ERK1/2 and Akt activation. These results suggest that DS-ZnO attenuates the acetic acid-induced colitis by improving mucosa barrier restoration, inhibiting apoptosis, and improving intestinal epithelial cells proliferation and modulation of TGF-β1 and ERK1/2 and Akt signaling pathway.
Collapse
|
25
|
Manosso LM, Moretti M, Colla AR, Ribeiro CM, Dal-Cim T, Tasca CI, Rodrigues ALS. Involvement of glutamatergic neurotransmission in the antidepressant-like effect of zinc in the chronic unpredictable stress model of depression. J Neural Transm (Vienna) 2016; 123:339-52. [PMID: 26747027 DOI: 10.1007/s00702-015-1504-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Stress and excessive glutamatergic neurotransmission have been implicated in the pathophysiology of depression. Therefore, this study was aimed at investigating the influence of zinc on depressive-like behavior induced by chronic unpredictable stress (CUS), on alterations in glutamate-induced toxicity and immunocontent of proteins involved in the control of glutamatergic neurotransmission in the hippocampus of mice. Mice were subjected to CUS procedure for 14 days. From the 8th to the 14th day, mice received zinc chloride (ZnCl2) (10 mg/kg) or fluoxetine (10 mg/kg, positive control) once a day by oral route. CUS caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test (TST), which was prevented by treatment with ZnCl2 or fluoxetine. Ex vivo exposure of hippocampal slices to glutamate (10 mM) resulted in a significant decrease on cell viability; however, neither CUS procedure nor drug treatments altered this reduction. No alterations in the immunocontents of GLT-1 and GFAP or p-Akt were observed in any experimental group. The ratio of p-Akt/AKT was also not altered in any group. However, Akt immunocontent was increased in stressed mice and in animals treated with ZnCl2 (stressed or non-stressed mice) and EAAC1 immunocontent was increased in stressed mice treated with ZnCl2, fluoxetine or vehicle and in non-stressed mice treated with ZnCl2 and fluoxetine. These findings indicate a robust effect of zinc in reversing behavioral alteration induced by CUS in mice, through a possible modulation of the glutamatergic neurotransmission, extending literature data regarding the mechanisms underlying its antidepressant-like action.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Post-Graduate Nutrition Program, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - André R Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Tharine Dal-Cim
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
26
|
Bose K, Lakshminarasimhan H, Sundar K, Kathiresan T. Cytotoxic effect of ZnS nanoparticles on primary mouse retinal pigment epithelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1764-73. [PMID: 26523428 DOI: 10.3109/21691401.2015.1102739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.
Collapse
Affiliation(s)
- Karthikeyan Bose
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | | | - Krishnan Sundar
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| | - Thandavarayan Kathiresan
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamil Nadu , India.,b International Research Centre, Kalasalingam University , Krishnankoil , Tamil Nadu , India
| |
Collapse
|
27
|
Manosso LM, Moretti M, Ribeiro CM, Gonçalves FM, Leal RB, Rodrigues ALS. Antidepressant-like effect of zinc is dependent on signaling pathways implicated in BDNF modulation. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:59-67. [PMID: 25600102 DOI: 10.1016/j.pnpbp.2015.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
Considering that intracellular signaling pathways that modulate brain BDNF are implicated in antidepressant responses, this study investigated whether signaling pathway inhibitors upstream to BDNF might influence the antidepressant-like effect of zinc, a metal that has been shown to display antidepressant properties. To this end, the influence of i.c.v. administration of H-89 (1μg/site, PKA inhibitor), KN-62 (1μg/site, CAMKII inhibitor), chelerythrine (1μg/site, PKC inhibitor), PD98059 (5μg/site, MEK1/2 inhibitor), U0126 (5μg/site, MEK1/2 inhibitor), LY294002 (10nmol/site, PI3K inhibitor) on the reduction of immobility time in the tail suspension test (TST) elicited by ZnCl2 (10mg/kg, p.o.) was investigated. Moreover, the effect of the combination of sub-effective doses of ZnCl2 (1mg/kg, p.o.) and AR-A014418 (0.001μg/site, GSK-3β inhibitor) was evaluated. The occurrence of changes in CREB phosphorylation and BDNF immunocontent in the hippocampus and prefrontal cortex of mice following ZnCl2 treatment was also investigated. The anti-immobility effect of ZnCl2 in the TST was prevented by treatment with PKA, PKC, CAMKII, MEK1/2 or PI3K inhibitors. Furthermore, ZnCl2 in combination with AR-A014418 caused a synergistic anti-immobility effect in the TST. None of the treatments altered locomotor activity of mice. ZnCl2 treatment caused no alteration in CREB phosphorylation and BDNF immunocontent. The results extend literature data regarding the mechanisms underlying the antidepressant-like action of zinc by indicating that its antidepressant-like effect may be dependent on the activation of PKA, CAMKII, PKC, ERK, and PI3K/GSK-3β pathways. However, zinc is not able to acutely increase BDNF in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Natural Sciences, Universidade Regional de Blumenau, Blumenau 89012-900, SC, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Filipe M Gonçalves
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Rodrigo B Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil.
| |
Collapse
|
28
|
Salutary effect of aurintricarboxylic acid on endotoxin- and sepsis-induced changes in muscle protein synthesis and inflammation. Shock 2015; 41:420-8. [PMID: 24430547 DOI: 10.1097/shk.0000000000000128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small molecule nonpeptidyl molecules are potentially attractive drug candidates as adjunct therapies in the treatment of sepsis-induced metabolic complications. As such, the current study investigates the use of aurintricarboxylic acid (ATA), which stimulates insulinlike growth factor 1 receptor and AKT signaling, for its ability to ameliorate the protein metabolic effects of endotoxin (lipopolysaccharide [LPS]) + interferon γ (IFN-γ) in C2C12 myotubes and sepsis in skeletal muscle. Aurintricarboxylic acid dose- and time-dependently increases mTOR (mammalian or mechanistic target of rapamycin)-dependent protein synthesis. Pretreatment with ATA prevents the LPS/IFN-γ-induced decrease in protein synthesis at least in part by maintaining mTOR kinase activity, whereas posttreatment with ATA is able to increase protein synthesis when added up to 6 h after LPS/IFN-γ. Aurintricarboxylic acid also reverses the amino acid resistance, which is detected in response to nutrient deprivation. Conversely, ATA decreases the basal rate of protein degradation and prevents the LPS/IFN-γ increase in proteolysis, and the latter change is associated reduced atrogin 1 and MuRF1 mRNA. The ability of ATA to antagonize LPS/IFN-γ-induced changes in protein metabolism was associated with its ability to prevent the increases in interleukin 6 and nitric oxide synthase 2 and decreases in insulinlike growth factor 1. In vivo studies indicate ATA acutely increases skeletal muscle, but not cardiac, protein synthesis and attenuates the loss of lean body mass over 5 days. These data suggest ATA and other small molecule agonists of endogenous anabolic hormones may prove beneficial in treating sepsis by decreasing the inflammatory response and improving muscle protein balance.
Collapse
|
29
|
Xiao CW, Ji QA, Wei Q, Liu Y, Pan LJ, Bao GL. Digital gene expression analysis of Microsporum canis exposed to berberine chloride. PLoS One 2015; 10:e0124265. [PMID: 25874937 PMCID: PMC4397074 DOI: 10.1371/journal.pone.0124265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 01/23/2023] Open
Abstract
Berberine, a natural isoquinoline alkaloid of many medicinal herbs, has an active function against a variety of microbial infections including Microsporum canis (M. canis). However, the underlying mechanisms are poorly understood. To study the effect of berberine chloride on M. canis infection, a Digital Gene Expression (DGE) tag profiling was constructed and a transcriptome analysis of the M. canis cellular responses upon berberine treatment was performed. Illimina/Hisseq sequencing technique was used to generate the data of gene expression profile, and the following enrichment analysis of Gene Ontology (GO) and Pathway function were conducted based on the data of transcriptome. The results of DGE showed that there were 8476945, 14256722, 7708575, 5669955, 6565513 and 9303468 tags respectively, which was obtained from M. canis incubated with berberine or control DMSO. 8,783 genes were totally mapped, and 1,890 genes have shown significant changes between the two groups. 1,030 genes were up-regulated and 860 genes were down-regulated (P<0.05) in berberine treated group compared to the control group. Besides, twenty-three GO terms were identified by Gene Ontology functional enrichment analysis, such as calcium-transporting ATPase activity, 2-oxoglutarate metabolic process, valine catabolic process, peroxisome and unfolded protein binding. Pathway significant enrichment analysis indicated 6 signaling pathways that are significant, including steroid biosynthesis, steroid hormone biosynthesis, Parkinson’s disease, 2,4-Dichlorobenzoate degradation, and tropane, piperidine and Isoquinoline alkaloid biosynthesis. Among these, eleven selected genes were further verified by qRT-PCR. Our findings provide a comprehensive view on the gene expression profile of M. canis upon berberine treatment, and shed light on its complicated effects on M. canis.
Collapse
Affiliation(s)
- Chen-Wen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Quan-An Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Li-Jun Pan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Guo-Lian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
30
|
Wang L, Zhao X, Wei BY, Liu Y, Ma XY, Wang J, Cao PC, Zhang Y, Yan YB, Lei W, Feng YF. Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway. Biochimie 2014; 108:85-93. [PMID: 25308835 DOI: 10.1016/j.biochi.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Clinical evidence indicates that insulin therapy improves implant survival rates in diabetic patients; however, the mechanisms responsible for this effect are unknown. Here, we test if insulin exerts anti-oxidative effects, thereby improving diabetes-associated impaired osteoblast behavior on titanium implants. To test this hypothesis, we cultured primary rabbit osteoblasts in the presence of titanium implants and studied the impact of treatment with normal serum (NS), diabetic serum (DS), DS + insulin, DS + tempol (a superoxide dismutase mimetic), DS + insulin + tempol, and DS + insulin + wortmannin. We analyzed cell function, apoptosis, and reactive oxygen species (ROS) production in osteoblasts following the various treatments. Treatment with DS induced osteoblast dysfunction, evidenced by impaired cell attachment and morphology, decreased cell proliferation and ALP activity, and decreased expression of osteogenesis-related genes. We also observed a significant increase in apoptosis. Importantly, treatment with DS resulted in increased production of ROS in osteoblasts. In contrast, treatment with insulin inhibited ROS production, alleviated cell dysfunction, and decreased apoptosis of osteoblasts on the implants. Scavenging ROS with tempol also attenuated cell dysfunction. Compared to insulin treatment alone, the combination of insulin and tempol failed to further improve osteoblast functional recovery. Moreover, the anti-oxidative and pro-osteogenic effects afforded by insulin were almost completely abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin. These results demonstrate, for the first time, that insulin treatment alleviates the impaired osteogenesis of titanium implants under diabetic conditions by inhibiting ROS overproduction via a PI3K/Akt-dependent mechanism. Both the anti-oxidative and metabolic properties of insulin should make it a viable therapeutic option to combat diabetic implant failure.
Collapse
Affiliation(s)
- Lin Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiong Zhao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Bo-yuan Wei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yi Liu
- Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiang-yu Ma
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jian Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Peng-chong Cao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yang Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ya-bo Yan
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| | - Ya-fei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
31
|
Tyszka-Czochara M, Paśko P, Reczyński W, Szlósarczyk M, Bystrowska B, Opoka W. Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis. Biol Trace Elem Res 2014; 160:123-31. [PMID: 24913100 PMCID: PMC4065375 DOI: 10.1007/s12011-014-0019-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/14/2014] [Indexed: 12/21/2022]
Abstract
It has been demonstrated that zinc exerts its beneficial influence on skin fibroblasts. Propolis, a complex mixture of plant-derived and bees' products, was reported to stimulate cicatrization processes in skin and prevent infections. The aim of this study was to find out how zinc and propolis influence human skin fibroblasts in cell culture and to compare the effect of individual compounds to the effect of a mixture of zinc and propolis. In this study, zinc, as zinc aspartate, at a concentration of 16 μM, increased human fibroblasts proliferation in cell culture, whereas propolis at a concentration of 0.01% (w/v) revealed antiproliferative and cytotoxic action followed by mild cell necrosis. In culture, zinc was effectively transported into fibroblasts, and propolis inhibited the amount of zinc incorporated into the cells. An addition of propolis to the medium caused a decrease in the Zn(II) amount incorporated into fibroblasts. The obtained results also indicate an appreciable antioxidant property of propolis and revealed its potential as a supplement when applied at doses lower than 0.01% (w/v). In conclusion, the present study showed that zinc had a protective effect on human cultured fibroblasts' viability, although propolis revealed its antiproliferative action and caused mild necrosis.
Collapse
Affiliation(s)
- Małgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
32
|
Kapoor S, Goel A, Tilocca A, Dhuna V, Bhatia G, Dhuna K, Ferreira JMF. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater 2014; 10:3264-78. [PMID: 24709542 DOI: 10.1016/j.actbio.2014.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 11/19/2022]
Abstract
We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.
Collapse
Affiliation(s)
- Saurabh Kapoor
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
| | - Ashutosh Goel
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8065, USA.
| | - Antonio Tilocca
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vikram Dhuna
- Department of Biotechnology, DAV College, Amritsar 143-001, Punjab, India
| | - Gaurav Bhatia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - Kshitija Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143-005, Punjab, India
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Song ZH, Xiao K, Ke YL, Jiao LF, Hu CH. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immun 2014; 21:341-8. [PMID: 24917655 DOI: 10.1177/1753425914536450] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022] Open
Abstract
Weaning is the most significant event in the life of pigs and is always related with intestinal disruption. Although it is well known that zinc oxide (ZnO) exerts beneficial effects on the intestinal barrier, the mechanisms underlying these effects have not yet been fully elucidated. We examined whether ZnO protects the intestinal barrier via mitogen-activated protein kinases and TGF-β1 signaling pathways. Twelve barrows weaned at 21 d of age were randomly assigned to two treatments (0 verus 2200 mg Zn/kg from ZnO) for 1 wk. The results showed that supplementation with ZnO increased daily gain and feed intake, and decreased postweaning scour scores. ZnO improved intestinal morphology, as indicated by increased villus height and villus height:crypt depth ratio, and intestinal barrier function, indicated by increased transepithelial electrical resistance and decreased mucosal-to-serosal permeability to 4-ku FITC dextran. ZnO decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38), while it increased the ratio of ERK (p-ERK/ERK). Supplementation with ZnO increased intestinal TGF-β1 expression. The results indicate that supplementation with ZnO activates ERK ½, and inhibits JNK and p38 signaling pathways, and increases intestinal TGF-β1 expression in weaned pigs.
Collapse
Affiliation(s)
- Ze He Song
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Kan Xiao
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Ya Lu Ke
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Le Fei Jiao
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| | - Cai Hong Hu
- Animal Science College, Zhejiang University, Hangzhou, PR China The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, PR China
| |
Collapse
|
34
|
Xu S, Yang Y, Han S, Wu Z. ZIP1 and zinc inhibits fluoride-induced apoptosis in MC3T3-E1 cells. Biol Trace Elem Res 2014; 159:399-409. [PMID: 24752969 DOI: 10.1007/s12011-014-9935-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 12/01/2022]
Abstract
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.
Collapse
Affiliation(s)
- Shihong Xu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Zaichick V, Zaichick S. Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3173-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Zhang X, Zhao Y, Chu Q, Wang ZY, Li H, Chi ZH. Zinc modulates high glucose-induced apoptosis by suppressing oxidative stress in renal tubular epithelial cells. Biol Trace Elem Res 2014; 158:259-67. [PMID: 24591003 DOI: 10.1007/s12011-014-9922-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/28/2014] [Indexed: 11/25/2022]
Abstract
Hyperglycemia is a characteristic of diabetic nephropathy, inducing renal tubular cell apoptosis by eliciting oxidative stress and inflammation. Zinc (Zn) is known as an essential trace element in many enzymes and proteins involved in antioxidant defenses, electron transport, and exerting antiapoptotic or cytoprotective effects. In this study, the underlying mechanisms involved in the protective effects of Zn on high glucose-induced cytotoxicity were explored using cultured renal tubular epithelial cells (NRK-52E). The authors discovered that Zn supplementation inhibited high glucose (HG)-induced NRK-52E cell apoptosis by attenuating reactive oxygen species production, inhibiting HG-induced caspase-3 and caspase-9 activation, and inhibiting the release of cytochrome c from mitochondria to the cytosol. Further analysis revealed that Zn supplementation facilitated cell survival through increasing nuclear translocation of NF-E2-related factor 2 (Nrf2), leading to increased regulation of levels of two antioxidant enzymes, hemeoxygenase-1 and glutamate cysteine ligase, which provided an adaptive survival response against the HG-induced oxidative cytotoxicity. Moreover, the Zn-mediated increases in Nrf2 activity were suppressed by the pharmacological inhibition of Akt or extracellular signal-regulated kinase 1/2. Taken together, these findings suggest that Zn antiapoptosis capacity through the activation of Akt and ERK signal pathways leads to Nrf2 activation and, subsequently, Nrf2 target gene induction, thereby protecting the NRK-52E cells from HG-induced apoptosis.
Collapse
Affiliation(s)
- Xiuli Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Zaichick V, Zaichick S. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot 2014; 90:62-73. [PMID: 24704913 DOI: 10.1016/j.apradiso.2014.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
The variation with age of the mass fraction of 37 chemical elements in intact nonhyperplastic prostate of 65 healthy 21-87 year old males was investigated by instrumental neutron activation analysis with high resolution spectrometry of short- and long-lived radionuclides. Mean values (M±SΕΜ) for mass fractions (mg kg(-1), dry mass basis) of the chemical elements studied were: Ag-0.055±0.007, Br-33.2±3.3, Ca-2150±118, Cl-13014±703, Co-0.038±0.003, Cr-0.47±0.05, Fe-99.3±6.1, Hg-0.044±0.006, K-11896±356, Mg-1149±68, Mn-1.41±0.07, Na-10886±339, Rb-12.3±0.6, Sb-0.049±0.005, Sc-0.021±0.003, Se-0.65±0.03, and Zn-795±71. The mass fraction of other chemical elements measured in this study were lower than the corresponding detection limits (mg kg(-1), dry mass basis): As<0.1, Au<0.01, Ba<100, Cd<2, Ce<0.1, Cs<0.05, Eu<0.001, Gd<0.02, Hf<0.2, La<0.5, Lu<0.003, Nd<0.1, Sm<0.01, Sr<3, Ta<0.01, Tb<0.03, Th<0.05, U<0.07, Yb<0.03, and Zr<0.3. This work revealed that there is a significant trend for increase with age in mass fractions of Co (p<0.0085), Fe (p<0.037), Hg (p<0.035), Sc (p<0.015), and Zn (p<0.0014) and for a decrease in the mass fraction of Mn (p<0.018) in prostates, obtained from young adult up to about 60 years, with age. In the nonhyperplastic prostates of males in the sixth to ninth decades, the magnitude of mass fractions of all chemical element were maintained at near constant levels. Our finding of correlation between the prostatic chemical element mass fractions indicates that there is a great variation of chemical element relationships with age.
Collapse
Affiliation(s)
- Vladimir Zaichick
- Radionuclide Diagnostics Department, Medical Radiological Research Centre Korolyeva Str. 4, Obninsk, 249036 Kaluga Region, Russia.
| | - Sofia Zaichick
- Radionuclide Diagnostics Department, Medical Radiological Research Centre Korolyeva Str. 4, Obninsk, 249036 Kaluga Region, Russia.
| |
Collapse
|
38
|
Jung WW. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int J Mol Med 2014; 33:1327-34. [PMID: 24573323 DOI: 10.3892/ijmm.2014.1666] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 01/10/2023] Open
Abstract
Apigenin, a plant-derived flavonoid, was investigated to determine whether it could influence hydrogen peroxide (H2O2)-induced oxidative damage and cellular dysfunction in the MC3T3-E1 mouse osteoblastic cell line. In the present study, osteoblastic cells were treated with H2O2 in the presence or absence of apigenin. Cell viability, apoptosis, reactive oxygen species (ROS) production and mitochondrial membrane potential (ΔΨm) were subsequently examined. It was observed that H2O2 reduced cell survival and ΔΨm, while it markedly increased the intracellular levels of ROS and apoptosis. However, pretreatment of cells with apigenin attenuated all the H2O2-induced effects. The antioxidants, catalase and N-acetyl-L-cysteine (NAC) also prevented H2O2-induced oxidative cell damage. In addition, treatment with apigenin resulted in a significant elevation of osteoblast differentiation genes including alkaline phosphatase (ALP), collagen, osteopontin (OPN), osteoprotegerin (OPG), bone sialoprotein (BSP), osterix (OSX) and osteocalcin (OC) and bone morphogenetic proteins (BMPs) genes (BMP2, BMP4 and BMP7). In the mechanistic studies of cell signaling by the antioxidative potential of apigenin, it was found that apigenin activated the H2O2-induced decreased expression of phosphatidylinositol 3'-kinase (PI3K), protein kinase B2 (AKT2) genes and extracellular signal-related kinase (EPK) 2, which are key regulators of survival-related signaling pathways. By contrast, there were no changes in the expression of nuclear facor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) gene exposed to H2O2 in the present study. Apigenin also upregulated the gene expression of antioxidant enzymes, superoxide dismutase (SOD) 1, SOD2 and glutathione peroxidase (GPx) 1. Taken together, these results suggested that apigenin attenuated oxidative-induced cell damage in osteoblastic cells and may be useful for the treatment of oxidative-related bone disease.
Collapse
Affiliation(s)
- Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju, Chungbuk 360-764, Republic of Korea
| |
Collapse
|
39
|
Zaichick V, Zaichick S. Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. AGE (DORDRECHT, NETHERLANDS) 2014; 36:167-181. [PMID: 23852618 PMCID: PMC3889912 DOI: 10.1007/s11357-013-9561-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
To clarify age-related histological and Zn content changes in nonhyperplastic adult prostate glands, a quantitative morphometric and energy-dispersive X-ray fluorescence analyses were performed. The prostates were obtained from autopsies of 63 subjects aged 21-70 years who died mainly from trauma. It was found that histologically normal prostate tissue undergoes substantial changes throughout aging. These changes are reflected in an increase of the percent volume of the glandular lumen for the third to fifth decades, reaching a maximum for the decade 41-50 years. Over the same period, the percent volume of the stroma remains steady, but the percent volume of epithelium decreases, approximately, linearly with age. The percent volume of glandular lumen (reflects the volume of prostatic fluid) in the prostate gland of men aged 41 to 50 years is 1.5-fold higher than that in men aged 21 to 30 years, but the epithelium/lumen (prostatic fluid) ratio is approximately twofold lower. This suggests that accumulation of the prostatic fluid develops from 30 to 50 years of age. This accumulation of the prostatic fluid results in an increase of the Zn mass fraction in the prostate. In turn, when the intraprostatic Zn level exceeds a certain level by the end of the fifth decade, it begins to work as a trigger for different factors, all of which increase the proliferation of stromal cells. Deductions from these results allow possible partial explanations of both relevant prostatic aging mechanisms and the effects of dietary interventions using supplementary Zn.
Collapse
Affiliation(s)
- Vladimir Zaichick
- />Radionuclide Diagnostics Department, Medical Radiological Research Centre, Korolyev Str.-4, Obninsk, 249036 Kaluga Region Russia
| | - Sofia Zaichick
- />Radionuclide Diagnostics Department, Medical Radiological Research Centre, Korolyev Str.-4, Obninsk, 249036 Kaluga Region Russia
- />Department of Immunology and Microbiology, Northwestern University, 302 East Superior Street, Morton Building, Chicago, IL 60640 USA
| |
Collapse
|
40
|
Yamamoto K, Uda A, Mukai A, Yamashita K, Kume M, Makimoto H, Bito T, Nishigori C, Hirano T, Hirai M. Everolimus-induced human keratinocytes toxicity is mediated by STAT3 inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:83. [PMID: 24423131 PMCID: PMC3874739 DOI: 10.1186/1756-9966-32-83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/21/2013] [Indexed: 11/21/2022]
Abstract
Background Mammalian target of rapamycin (mTOR) inhibitors are associated with dermatological adverse events. The chief aim of this study was to examine the relation between the signal transducer and activator of transcription 3 (STAT3) protein and the dermatological adverse events associated with the mTOR inhibitor everolimus. Methods We evaluated the effects of STAT3 activity and related signal transduction activities on everolimus-induced cell growth inhibition in the human keratinocyte HaCaT cell line via a WST-8 assay, and on signal transduction mechanisms involved in everolimus treatments via a western blot analysis. Apoptosis was evaluated using an imaging cytometric assay. Results The cell growth inhibitory effects of everolimus were enhanced by stattic or STA-21, which are selective inhibitors of STAT3, treatment in HaCaT cells, although such effects were not observed in Caki-1 and HepG2 cells. Phosphorylation at tyrosine 705 of STAT3 was decreased by treatment with everolimus in a dose-dependent manner in HaCaT cells; in contrast, phosphorylation at serine 727 was not decreased by everolimus, but slightly increased. Furthermore, we found that pretreatment of p38 MAPK inhibitor and transfection with constitutively active form of STAT3 in HaCaT cells resisted the cytostatic activity of everolimus. Conclusions These findings suggest that STAT3 activity may be a biomarker of everolimus-induced dermatological toxicity.
Collapse
|
41
|
Mao L, Chen J, Peng Q, Zhou A, Wang Z. Effects of different sources and levels of zinc on H2O2-induced apoptosis in IEC-6 cells. Biol Trace Elem Res 2013; 155:132-41. [PMID: 23912254 DOI: 10.1007/s12011-013-9759-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.
Collapse
Affiliation(s)
- Lei Mao
- Institute of Animal Nutrition, Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya' an, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
She C, Zhu LQ, Zhen YF, Wang XD, Dong QR. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment? Cell Signal 2013; 26:1-8. [PMID: 24080159 DOI: 10.1016/j.cellsig.2013.08.046] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
Abstract
Elevated hydrogen peroxide (H2O2) causes osteoblast dysfunction and apoptosis, serving as an important contributor to the development of osteonecrosis. Here we aimed to understand the role of AMP-activated protein kinase (AMPK) in the process. We observed a high level of AMPK activation in surgery isolated patients' osteonecrosis tissues. In cultured osteoblastoma MG63 cells, H2O2 stimulation induced significant AMPK activation, oxidative stress, cell death and apoptosis. Inhibition of AMPK by its inhibitor (compound C) or by shRNA-mediated knockdown dramatically enhanced H2O2-induced MG63 cell apoptosis, while over-expression of AMPK in HEK-293 cells alleviated H2O2-induced cell damage. These results confirmed that H2O2-activated AMPK is pro-cell survival. We observed that H2O2 induced protective autophagy in MG63 cells, and AMPK-dependent Ulk1 activation and mTORC1 (mTOR complex 1) inactivation might involve autophagy activation. Further, AMPK activation inhibited H2O2-induced oxidative stress, probably through inhibiting NADPH (nicotinamide adenine dinucleotide phosphate) depletion, since more NADPH depletion and oxidative stress were induced by H2O2 in AMPK deficient MG63 cells. Finally, we observed a significant AMPK activation in H2O2-treated primary cultured and transformed (MC3T3-E1) osteoblasts, and AMPK inhibitor compound C enhanced death by H2O2 in these cells. Based on these results, we concluded that H2O2-induced AMPK activation is pro-survival and anti-apoptosis in osteoblasts. Autophagy induction and NADPH maintenance are involved in AMPK-mediated pro-survival effects. AMPK might represent a novel molecular target for osteonecrosis treatment.
Collapse
Affiliation(s)
- Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | | | | | | | | |
Collapse
|
43
|
Xu Z, Zhou J. Zinc and myocardial ischemia/reperfusion injury. Biometals 2013; 26:863-78. [DOI: 10.1007/s10534-013-9671-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023]
|
44
|
Brzóska MM, Rogalska J. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol 2013; 272:208-20. [PMID: 23726800 DOI: 10.1016/j.taap.2013.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60mg/l) or/and Cd (5 and 50mg/l) for 6months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system.
Collapse
Affiliation(s)
- Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland.
| | | |
Collapse
|
45
|
Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate. Toxicology 2013; 305:20-9. [DOI: 10.1016/j.tox.2013.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 01/03/2023]
|
46
|
Zhang X, Liang D, Guo B, Deng W, Chi ZH, Cai Y, Wang L, Ma J. Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis. Cell Signal 2012; 25:999-1010. [PMID: 23275032 DOI: 10.1016/j.cellsig.2012.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/21/2012] [Accepted: 12/19/2012] [Indexed: 11/25/2022]
Abstract
Zinc is an essential micronutrient and cytoprotectant involved in many types of apoptosis. The zinc transporter family SLC30A (ZnTs) is an important factor in the regulation of zinc homeostasis; however, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. This study explores the regulation of zinc transporters and how they play a role in cell survival, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations, and the molecular mechanism involved. The messenger RNA (mRNA) transcripts were quantitatively measured by real-time polymerase chain reaction for all known nine zinc transport exporters (SLC30A1-8,10), as well as in primary RPMCs and the cells cultured under nonstimulated and HG-stimulated conditions. While many zinc transporters were constitutively expressed, ZnT5 mRNA and ZnT7 mRNA were strongly induced by HG. Overexpression of ZnT5 and ZnT7 respectively resulted in a decrease in the expression of caspace 3, caspace 8, BAX, and AIF and coincided with cell survival in the presence of HG. Inhibition of ZnT5 and ZnT7 expression using considerable siRNA-mediated knockdown of RPMCs was examined and, afterwards, the impact on cell apoptosis was investigated. Increased levels of apoptosis were observed after knockdown of ZnT5 and ZnT7. Furthermore, overexpression of ZnT5 and ZnT7 is accompanied by activation of PI3K/Akt pathway and inhibiting HG-induced apoptosis. This study suggests that the zinc transporting system in RPMCs is influenced by exposure to HG, particularly ZnT5 and ZnT7. This may account for the inhibition of HG-induced RPMC apoptosis and peritoneum injury, likely through targeting PI3K/Akt pathway-mediated cell survival.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, the First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang X, Liang D, Guo B, Yang L, Wang L, Ma J. Zinc inhibits high glucose-induced apoptosis in peritoneal mesothelial cells. Biol Trace Elem Res 2012; 150:424-32. [PMID: 22826039 DOI: 10.1007/s12011-012-9473-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Zinc (Zn) plays an important role in influencing many types of apoptosis. However, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the effects of Zn on high glucose (HG)-induced apoptosis in rat PMCs (RPMCs) and examined the underlying molecular mechanisms. We found that Zn supplementation inhibited HG-induced RPMC apoptosis significantly, by attenuating reactive oxygen species (ROS) production, inhibiting HG-induced sFasR and sFasL over-expression, caspase-8 and caspase-3 activation, and inhibiting release of cytochrome c from mitochondria to the cytosol. Further analysis revealed that Zn supplementation facilitated cell survival through activation of the phosphatidylinositol 3-kinase/Akt signaling pathway and MAPK/ERK pathways. These results indicate that Zn can inhibit apoptosis in HG-induced RPMCs by several independent mechanisms, including an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-3 activation.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Aluoch AO, Jessee R, Habal H, Garcia-Rosell M, Shah R, Reed G, Carbone L. Heart failure as a risk factor for osteoporosis and fractures. Curr Osteoporos Rep 2012; 10:258-69. [PMID: 22915207 DOI: 10.1007/s11914-012-0115-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although heart failure (HF) and osteoporosis are common diseases, particularly in elderly populations, patients with HF have an increased risk for osteoporosis. The relationship of HF with osteoporosis is modified by gender and the severity of HF. In addition, shared risk factors, medication use, and common pathogenic mechanisms affect both HF and osteoporosis. Shared risk factors for these 2 conditions include advanced age, hypovitaminosis D, renal disease, and diabetes mellitus. Medications used to treat HF, including spironolactone, thiazide diuretics, nitric oxide donors, and aspirin, may protect against osteoporosis. In contrast, loop diuretics may make osteoporosis worse. HF and osteoporosis appear to share common pathogenic mechanisms, including activation of the renin-angiotensin-aldosterone system, increased parathyroid hormone levels, and/or oxidative/nitrosative stress. HF is a major risk factor for mortality following fractures. Thus, in HF patients, it is important to carefully assess osteoporosis and take measures to reduce the risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Aloice O Aluoch
- Department of Medicine, University of TN Health Science Center, Memphis, 38163, USA
| | | | | | | | | | | | | |
Collapse
|