1
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
2
|
Guo J, Luo X, Zhang Q, Duan X, Yuan Y, Zheng S. Contributions of selenium-oxidizing bacteria to selenium biofortification and cadmium bioremediation in a native seleniferous Cd-polluted sandy loam soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116081. [PMID: 38335579 DOI: 10.1016/j.ecoenv.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.
Collapse
Affiliation(s)
- Jiayi Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qingyun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuanshuang Duan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
3
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
4
|
Zhang C, Huang R, Zhan N, Qin L. Methyl jasmonate and selenium synergistically mitigative cadmium toxicity in hot pepper (Capsicum annuum L.) plants by improving antioxidase activities and reducing Cd accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82458-82469. [PMID: 37326735 DOI: 10.1007/s11356-023-28273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Methyl jasmonate (MeJA) or selenium (Se)-mediated response to cadmium (Cd) stress in plant has been widely reported, but the combined effects both on plant growth in response to Cd stress and the underlying mechanisms remain obscure. Here, we showed the combined effects of MeJA (2.5 μM) and Se (7 μM) on hot pepper growth under Cd stress (CdCl2, 5 μM). The results showed Cd suppressed the accumulation of total chlorophyll and carotenoid and reduced the photosynthesis, while it increased the content of endogenous signaling molecules, e.g. nitric oxide (NO) and hydrogen peroxide (H2O2), as well as Cd content in leaves. The combined application of MeJA and Se significantly decreased the malondialdehyde (MDA) accumulation and improved the activities of antioxidant enzymes (AOEs, e.g. SOD and CAT) and defense-related enzymes (DREs, POD and PAL). Additionally, the synergistic application of MeJA and Se also obviously improved photosynthesis in hot pepper plants under Cd stress compared with those treated with MeJA or Se respectively or not. Moreover, the treatment of MeJA associated with Se also effectively reduced the Cd accumulation in hot pepper leaves under Cd stress compared with the plants treated with MeJA or Se separately, which implied a potentially synergistic role of MeJA and Se in alleviating Cd toxicity in hot pepper plants. This study provides a theoretical reference for the further analysis of the molecular mechanism of MeJA and Se in jointly mediating the response to heavy metals in plants.
Collapse
Affiliation(s)
- Chuhan Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Renquan Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Niheng Zhan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Lijun Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
5
|
Wang F, Yang J, Hua Y, Wang K, Guo Y, Lu Y, Zhu S, Zhang P, Hu G. Transcriptome and Metabolome Analysis of Selenium Treated Alfalfa Reveals Influence on Phenylpropanoid Biosynthesis to Enhance Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2038. [PMID: 37653955 PMCID: PMC10224443 DOI: 10.3390/plants12102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Selenium (Se) plays an important role in the growth of plants. Alfalfa (Medicago sativa L.) is a perennial legume forage crop with high nutritional value and Se-rich functions. Many studies have shown that selenium can promote alfalfa growth, but few have explored the molecular biology mechanisms behind this effect. In this study, alfalfa was divided into two groups. One group was sprayed with sodium selenite (Na2SeO3) and the other group was sprayed with distilled water as a control. This study determined the growth, reproductive traits, physiological changes, transcriptome and metabolome of both groups of alfalfa. We found that foliar spraying of 100 mg/L Na2SeO3 could significantly increase the growth rate, dry weight, total Se content, amount of pollen per flower, pollen viability, pod spirals, and seed number per pod of alfalfa plants. The level of chlorophyll, soluble protein, proline, and glutathione also increased dramatically in Na2SeO3-sprayed alfalfa seedlings. After transcriptome and metabolome analysis, a total of 614 differentially expressed genes (DEGs) and 1500 differentially expressed metabolites (DEMs), including 26 secondary differentially metabolites were identified. The DEGs were mainly enriched in MAPK signaling pathway, phenylpropanoid biosynthesis, isoflavonoid biosynthesis, cutin, suberine, and wax biosynthesis, and glycerolipid metabolism. The DEMs were mainly enriched in flavone and flavonol biosynthesis, carbon metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and phenylpropanoid biosynthesis. Integrative analysis of transcriptome and metabolome showed that the foliar spraying of Na2SeO3 mainly affects phenylpropanoid biosynthesis to promote alfalfa growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Xin J, Yuan H, Yang L, Liao Q, Luo J, Wang Y, Ye Z, Huang B. Effect of boron supply on the uptake and translocation of cadmium in Capsicum annuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114925. [PMID: 37080127 DOI: 10.1016/j.ecoenv.2023.114925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Large areas of soil in southern China are contaminated with cadmium (Cd) and are deficient in boron (B). Previously, we suggested that B supplementation could reduce Cd accumulation in hot peppers (Capsicum annuum L.); however, the physiological mechanisms underlying this reduction remain unclear. In this study, the uptake and translocation of Cd in hot pepper plants were investigated using hydroponic experiments with different B and Cd treatments. A pot experiment was performed to verify whether B decreased the Cd concentration in hot peppers by minimizing the Cd translocation rate. The results of the dose- and time-dependent experiments showed that B supplementation reduced root Cd uptake and root-to-shoot Cd translocation. Additionally, B supplementation increased the root length, diameter, volume, surface area, and number of root forks and tips, as well as improving the relative absorbance of carboxyl groups under Cd exposure, leading to enhanced Cd fixation in the cell walls of the roots. As a result, the fruit Cd concentration decreased because B inhibited Cd translocation from the roots. Overall, the results demonstrate that B supplementation can reduce Cd accumulation in hot peppers by promoting normal root growth and development and by limiting the uptake and translocation of Cd.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Lang Yang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China; School of Humanity, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
7
|
Su Y, Huang X, Li L, Muhammad ZA, Li M, Zheng T, Guo Z, Zhang Y, Luo D, Ye X, Jia X, Hussain Panhwar F, Tun MT, Zhu J. Comparative Responses of Silicon to Reduce Cadmium and Enrich Selenium in Rice Varieties. Foods 2023; 12:foods12081656. [PMID: 37107451 PMCID: PMC10138079 DOI: 10.3390/foods12081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cadmium (Cd), a highly toxic heavy metal for crops in China, poses a significant threat to rice cultivation. It is crucial to identify the genotypes with robust resistance to heavy metals, including Cd, in rice. The experiment was conducted to examine the mitigation effect of silicon (Si) on Cd toxicity levels in Se-enriched Z3055B and non-Se-enriched G46B rice genotypes. A basal dose of Si improved the growth and the quality of rice significantly by reducing the Cd content in rice roots, stems, leaves and grains and increased the yield, biomass and selenium (Se) content of brown rice in both genotypes. Additionally, Se content in brown rice and polished rice was notably higher in Se-enriched rice than in non-Se-enriched rice, with the highest amount at 0.129 mg/kg and 0.085 mg/kg, respectively. The results demonstrated that a basal fertilizer concentration of 30 mg/kg of Si was more effective in reducing Cd transport from roots to shoots in Se-enriched rice than in non-Se-enriched rice genotypes. Therefore, it can be concluded that Se-enriched rice genotypes are a viable option for food crop production in Cd-contaminated areas.
Collapse
Affiliation(s)
- Yang Su
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xin Huang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Ling Li
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zahir Ahsan Muhammad
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Meilin Li
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Tengda Zheng
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhe Guo
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yue Zhang
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Dan Luo
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoying Ye
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaomei Jia
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Faiz Hussain Panhwar
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Myo Thuzar Tun
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, 211, Huimin Road, Wenjiang District, Chengdu 611130, China
| |
Collapse
|
8
|
Samynathan R, Venkidasamy B, Ramya K, Muthuramalingam P, Shin H, Kumari PS, Thangavel S, Sivanesan I. A Recent Update on the Impact of Nano-Selenium on Plant Growth, Metabolism, and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:853. [PMID: 36840201 PMCID: PMC9964709 DOI: 10.3390/plants12040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) is a microelement that plays an important nutrient role by influencing various physiological and biochemical traits in plants. It has been shown to stimulate plant metabolism, enhancing secondary metabolites and lowering abiotic and biotic stress in plants. Globally, the enormous applications of nanotechnology in the food and agricultural sectors have vastly expanded. Nanoselenium is more active than bulk materials, and various routes of synthesis of Se nanoparticles (Se-NPs) have been reported in which green synthesis using plants is more attractive due to a reduction in ecological issues and an increase in biological activities. The Se-NP-based biofortification is more significant because it increases plant stress tolerance and positively impacts their metabolism. Se-NPs can enhance plant resistance to various oxidative stresses, promote growth, enhance soil nutrient status, enhance plant antioxidant levels, and participate in the transpiration process. Additionally, they use a readily available, biodegradable reducing agent and are ecologically friendly. This review concentrates on notable information on the different modes of Se-NPs' synthesis and characterization, their applications in plant growth, yield, and stress tolerance, and their influence on the metabolic process.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore 641009, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Karthikeyan Ramya
- Department of Biotechnology, CMS College of Science and Commerce, Coimbatore 641049, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Pandy Saravana Kumari
- Department of Microbiology, Rathnavel Subramaniam College of Arts and Science, Coimbatore 641402, India
| | - Sivakumar Thangavel
- Post Graduate Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Li L, Yu J, Li L, Rao S, Wu S, Wang S, Cheng S, Cheng H. Treatment of Ginkgo biloba with Exogenous Sodium Selenite Affects Its Physiological Growth, Changes Its Phytohormones, and Synthesizes Its Terpene Lactones. Molecules 2022; 27:7548. [PMID: 36364373 PMCID: PMC9655945 DOI: 10.3390/molecules27217548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2023] Open
Abstract
Ginkgolide is a unique terpenoid natural compound in Ginkgo biloba, and it has an important medicinal value. Proper selenium has been reported to promote plant growth and development, and improve plant quality, stress resistance, and disease resistance. In order to study the effects of exogenous selenium (Se) on the physiological growth and the content of terpene triolactones (TTLs) in G. biloba seedlings, the seedlings in this work were treated with Na2SeO3. Then, the physiological indexes, the content of the TTLs, and the expression of the related genes were determined. The results showed that a low dose of Na2SeO3 was beneficial to plant photosynthesis as it promoted the growth of ginkgo seedlings and increased the root to shoot ratio. Foliar Se application significantly increased the content of soluble sugar and protein and promoted the content of TTLs in ginkgo leaves; indeed, it reached the maximum value of 7.95 mg/g in the ninth week, whereas the application of Se to the roots inhibited the synthesis of TTLs. Transcriptome analysis showed that foliar Se application promoted the expression levels of GbMECPs, GbMECT, GbHMGR, and GbMVD genes, whereas its application to the roots promoted the expression of GbDXS and GbDXR genes. The combined analysis results of metabolome and transcriptome showed that genes such as GbDXS, GbDXR, GbHMGR, GbMECPs, and GbCYP450 were significantly positively correlated with transcription factors (TFs) GbWRKY and GbAP2/ERF, and they were also positively correlated with the contents of terpene lactones (ginkgolide A, ginkgolide B, ginkgolide M, and bilobalide). Endogenous hormones (MeJA-ILE, ETH, and GA7) were also involved in this process. The results suggested that Na2SeO3 treatment affected the transcription factors related to the regulation of endogenous hormones in G. biloba, and further regulated the expression of genes related to the terpene synthesis structure, thus promoting the synthesis of ginkgo TTLs.
Collapse
Affiliation(s)
- Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Yu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
10
|
Rizwan M, Ali S, Rehman MZU, Rinklebe J, Tsang DCW, Tack FMG, Abbasi GH, Hussain A, Igalavithana AD, Lee BC, Ok YS. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [PMID: 0 DOI: 10.1080/10643389.2020.1796566] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Filip M. G. Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Ghulam Hasan Abbasi
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Wang K, Linghu J, Kong L, Huang S, Wang Q, Li H, Wan Y. Comparative responses of cadmium accumulation and subcellular distribution in wheat and rice supplied with selenite or selenate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45075-45086. [PMID: 33855664 DOI: 10.1007/s11356-021-13554-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination of crop plants has aroused a worldwide concern because of the threats posed to human health through accumulation in the food chains. Selenium (Se) can alleviate the Cd-induced phytotoxicity, but the relevant underlying mechanisms are not fully understood. Therefore, with wheat (Triticum aestivum L.) and rice (Oryza sativa L.) chosen as the target plants in this study, the effects of selenite or selenate on Cd accumulation and subcellular distribution were investigated through greenhouse hydroponic experiments; and simultaneously, the effects of pre-Se treatment with selenite or selenate on Cd accumulation and root-to-shoot translocation in the studied plants were also included. Results showed the addition of Se slightly changed the Cd content in plant roots in a time-dependent manner; however, with the obvious decreasing trend on the Cd transfer factor (TF), its content in plant shoots was significantly reduced by selenite or selenate in a plant species-dependent manner. At 48 h of exposure, the supplementation of selenite and selenate significantly decreased the Cd content by 40.4% and 38.0% in wheat shoots, and by 72.2% and 40.9% in rice shoots, respectively. Additionally, the order of Cd proportion distributed to the different subcellular fractions of plant tissues was as follows: cell wall > soluble cytosol > organelle, irrespective of the Se treatments or the plant species. However, selenate increased the Cd percentage in soluble cytosol of wheat shoots, while selenite increased that percentage in the cell wall of rice shoots; and the Cd proportion in soluble cytosol of the studied plant roots was significantly enhanced owing to selenite or selenate addition. Moreover, similar to the co-application, the pre-Se treatment with inorganic Se also reduced the Cd accumulation and translocation both in wheat and rice. Our results proved that the inorganic Se could decline the Cd accumulation and translocation in the crop plants, although selenite was found more effective than selenate regarding such effects.
Collapse
Affiliation(s)
- Kang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jingying Linghu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lingxuan Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
12
|
Tran TAT, Dinh QT, Zhou F, Zhai H, Xue M, Du Z, Bañuelos GS, Liang D. Mechanisms underlying mercury detoxification in soil-plant systems after selenium application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46852-46876. [PMID: 34254235 DOI: 10.1007/s11356-021-15048-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 05/12/2023]
Abstract
Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.
Collapse
Affiliation(s)
- Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Faculty of Natural Resources and Environmental Management, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, 400570, Vietnam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zekun Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648-9757, USA
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Feng R, Zhao P, Zhu Y, Yang J, Wei X, Yang L, Liu H, Rensing C, Ding Y. Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144776. [PMID: 33545486 DOI: 10.1016/j.scitotenv.2020.144776] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities such as mining, industrialization and subsequent emission of industrial waste, and agricultural practices have led to an increase in the accumulation of metal(loid)s in agricultural soils and crops, which threatens the health of people; the risk is more pronounced for individuals whose survival depends on food sources from several contaminated regions. Selenium (Se) is an element essential for the normal functioning of the human body and is a beneficial element for plants. Se deficiency in the diet is a common issue in many countries around the world, such as China and Egypt. >40 diseases are associated with Se deficiency. In practice, Se compounds have been applied through foliar sprays or via base application of fertilizers to increase Se concentration in the edible parts of crops and to satisfy the daily Se intake. Moreover, Se at low concentrations has been used to mitigate the toxicity of many metal(loid)s. In this review, we present an overview of the latest knowledge and practices with regards to the utilization of Se to reduce the uptake/toxicity of metal(loid)s in plants. We have focused on the following issues: 1) the current status of understanding the mechanisms of detoxification and uptake restriction of metal(loid)s regulated by Se; 2) the optimal dose and speciation of Se, and stage of plant growth that is optimal for application; 3) the differences in the efficiency of different application methods of Se including seed priming, base application, and foliar spray of Se fertilizers; 4) the possibility of using Se along with other methods to reduce multiple metal(loid) accumulation in crops; and 5) potential risks when Se is used to reduce metal(loid) accumulation in crops.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - XinQi Wei
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YongZhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
14
|
Hasanuzzaman M, Nahar K, García-Caparrós P, Parvin K, Zulfiqar F, Ahmed N, Fujita M. Selenium Supplementation and Crop Plant Tolerance to Metal/Metalloid Toxicity. FRONTIERS IN PLANT SCIENCE 2021; 12:792770. [PMID: 35046979 PMCID: PMC8761772 DOI: 10.3389/fpls.2021.792770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
Selenium (Se) supplementation can restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element essential for the functioning of the human physiology and is a beneficial element for plants. Low concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various ways. Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the outcome of improvement of various physiological features. Photosynthesis has been improved by Se supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained enzymatic activity, improved stomatal function, and photosystem activity. By modulating the antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of plants. However, excessive concentration of Se exerts toxic effects on plants. This review presents the role of Se for improving plant tolerance to metal/metalloid stress.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
- *Correspondence: Mirza Hasanuzzaman
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Masayuki Fujita
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
- Masayuki Fujita
| |
Collapse
|
15
|
Difference between Selenite and Selenate in the Regulation of Growth and Physiological Parameters of Nickel-Exposed Lettuce. BIOLOGY 2020; 9:biology9120465. [PMID: 33322708 PMCID: PMC7763836 DOI: 10.3390/biology9120465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
Simple Summary Nickel is a trace metal that can cause toxicity in plants. In contrast, selenium, as a beneficial element, can have a favorable effect on plants grown under metal stress. However, the biological activity of selenium largely depends on its chemical form. Therefore, we assessed the effect of two chemical forms of Se (selenite and selenate) on the toxicity and accumulation of Ni in lettuce. We found that Ni phytotoxicity severely increased in the presence of higher doses of selenite. On the other hand, a low dose of selenate stimulated the growth of roots of Ni-exposed plants. We found that selenium can modify Ni activity in lettuce, but this depends not only on the concentration but also on the form of selenium. The strong intensification of Ni toxicity in the presence of selenite was most likely related to the very high selenium accumulation in root tissues. The obtained results indicate that depending on the conditions in the root environment, Se in a given concentration and chemical form can be either beneficial or toxic for plants. Therefore, the use of selenium in metal-stressed plants requires consideration of not only the concentration but also the chemical form of this element. Abstract Nickel is an essential plant micronutrient; however, even at low concentrations, it may be phytotoxic. Selenium is a beneficial element with an alleviating effect that has been confirmed in the case of many abiotic stresses, including metal toxicity. The aim of this study is to assess the effect of two forms of Se (Se(IV) or Se(VI)) on the phytotoxicity, accumulation, and translocation of Ni in lettuce. Nickel causes a reduction in lettuce growth and vitality of roots, probably through increased lipid peroxidation. The application of Se(IV) to a Ni-contaminated medium resulted in a further reduction of growth, especially in the presence of 6 µM Se(IV). The growth-promoting effect of Se was found only in the 2 µM Se(VI)/10 µM Ni treatment. The application of 6 µM Se, regardless of the Se form, to the Ni-containing substrate caused an increase in shoot Ni concentration. In turn, a decrease in root Ni content was found for all Se treatments. The strong aggravation of Ni phytotoxicity in the presence of 6 µM Se(IV) was most likely related to the accumulation of high Se concentration in the roots, and the combination of high root Ni accumulation caused irreversible dysregulation of cell metabolism.
Collapse
|
16
|
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121711. [PMID: 33291816 DOI: 10.1016/j.envexpbot.2020.104170] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - M H M Borhannuddin Bhuyan
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
17
|
Effect of Different Forms of Selenium on the Physiological Response and the Cadmium Uptake by Rice under Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196991. [PMID: 32987814 PMCID: PMC7579289 DOI: 10.3390/ijerph17196991] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a pollutant toxic to plants and a potential threat to human health. Selenium (Se), though not essential for plants, has beneficial effects on plants under abiotic stress. A hydroponic experiment was conducted to investigate the impact of different forms of Se (Nano-Se, selenite, selenate, and SeMet) on accumulation, subcellular distribution, and chemical forms of Cd, as well as oxidative stress in rice seedlings. Cd (20 μmol·L−1) treatment significantly decreased biomass accumulation and chlorophyll content. The application of all Se forms, except selenate, mitigated the adverse effects of Cd on growth and chlorophyll content. The application of selenite, Nano-Se, and SeMet decreased root and shoot Cd concentrations as well as root-to-shoot Cd translocation in rice seedlings. Selenate application decreased shoot Cd concentration and root-to-shoot Cd translocation with no effect on root Cd concentration. Accordingly, Se increased the sequestration of Cd in the cell wall and vacuoles and decreased the active chemical form of Cd in rice seedlings. SeMet was the most effective supplement that decreased Cd concentration and enhanced Se concentration in the roots and shoots of rice seedlings. All forms of Se further enhanced catalase (CAT) and glutathione peroxidase (GSH-Px) activities and inhibited MDA accumulation. To conclude, Se influenced Cd accumulation and translocation in rice seedlings by altering the subcellular distribution, chemical forms, and antioxidant defense system under Cd stress. These effects were highly significant with SeMet treatment, probably due to better absorption and utilization by the plant.
Collapse
|
18
|
Zhang ZW, Dong YY, Feng LY, Deng ZL, Xu Q, Tao Q, Wang CQ, Chen YE, Yuan M, Yuan S. Selenium Enhances Cadmium Accumulation Capability in Two Mustard Family Species- Brassica napus and B. juncea. PLANTS 2020; 9:plants9070904. [PMID: 32709100 PMCID: PMC7412126 DOI: 10.3390/plants9070904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023]
Abstract
Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Yi-Ying Dong
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zong-Lin Deng
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Qiang Xu
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Qi Tao
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Chang-Quan Wang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Shu Yuan
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-Y.D.); (Z.-L.D.); (Q.X.); (Q.T.); (C.-Q.W.)
- Correspondence: ; Tel.: +86-28-86291325
| |
Collapse
|
19
|
Mechora Š, Rižnik T, Urbanek Krajnc A, Ambrožič-Dolinšek J. Response of Berula erecta to Lead in Combination with Selenium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:51-61. [PMID: 32561951 DOI: 10.1007/s00128-020-02910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture of Berula erecta is suitable cultivation system for research purposes connected with contamination and phytoremediation studies. In previous investigation we determined the optimal dose concentration at which Se stimulates plant growth and positively affects the antioxidative status in this experimental system. In current study, we investigate its response to exposure to lead (Pb) and further the possible protective effect of Se(IV) against Pb exposure. Plants were grown in 10 and 50 mg Pb L-1 solution without and with added Se (0.1 mg L-1) for six weeks. Plants possessed a high affinity to uptake Pb and Se in roots. Addition of Pb inhibited roots elongations and the plant height. In contrast, the combined effect of Se + Pb treatment was reflected in increased weight of plants when compared to Pb treatment alone. Pb decreased the amount of chlorophylls and consequently photochemical efficiency was lowered, whereas in Pb + Se treatment the photochemical efficiency was higher. Furthermore, Pb treatment caused a gradual increase in glutathione in both roots and shoots, however, to a greater percentage in shoots when compared to controls. Exposure to both Pb and Se did not cause any significant changes in root's glutathione level when compared to Pb treatment alone. In shoots, the combined treatment lowered the glutathione significantly, but the levels remained 50% above those of untreated control samples, reflecting that this might be related with the antioxidative effects of Se treatment.
Collapse
Affiliation(s)
- Špela Mechora
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
- Agency for Radwaste Management, Litostrojska cesta 58a, 1000, Ljubljana, Slovenia.
| | - Tadeja Rižnik
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311, Hoče, Slovenia
| | - Jana Ambrožič-Dolinšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311, Hoče, Slovenia
- Faculty of Education, University of Maribor, Koroška 160, 2000, Maribor, Slovenia
| |
Collapse
|
20
|
Shah WH, Rasool A, Tahir I, Rehman RU. Exogenously applied selenium (Se) mitigates the impact of salt stress in Setaria italica L. and Panicum miliaceum L. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00326-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2020; 11:255-277. [PMID: 30632600 DOI: 10.1039/c8mt00247a] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cd is the third major contaminant of greatest hazard to the environment after mercury and lead and is considered as the only metal that poses health risks to both humans and animals at plant tissue concentrations that are generally not phytotoxic. Cd accumulation in plant shoots depends on Cd entry through the roots, sequestration within root vacuoles, translocation in the xylem and phloem, and Cd dilution within the plant shoot throughout its growth. Several metal transporters, processes, and channels are involved from the first step of Cd reaching the root cells and until its final accumulation in the edible parts of the plant. It is hard to demonstrate one step as the pivotal factor to decide the Cd tolerance or accumulation ability of plants since the role of a specific transporter/process varies among plant species and even cultivars. In this review, we discuss the sources of Cd pollutants, Cd toxicity to plants, and mechanisms of Cd uptake and redistribution in plant tissues. The metal transporters involved in Cd transport within plant tissues are also discussed and how their manipulation can control Cd uptake and/or translocation. Finally, we discuss the beneficial effects of Se on plants under Cd stress, and how it can minimize or mitigate Cd toxicity in plants.
Collapse
Affiliation(s)
- Marwa A Ismael
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
22
|
Auobi Amirabad S, Behtash F, Vafaee Y. Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12476-12490. [PMID: 31997246 DOI: 10.1007/s11356-020-07751-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 05/08/2023]
Abstract
We aimed to examine the effects of selenium on the tolerance of radish plants CV. Cherri Belle under cadmium phytotoxicity. The biomass accumulation was drastically decreased under Cd toxicity and the supplementary Se maintained the biomass acquisition under Cd pressure. The chlorophyll index (SPAD), PSII efficiency (Fv/Fm), and PSII quantum yield (ΦPSII) were declined in response to Cd treatment, while Se nutrition improved these variables in a dose-dependent manner. The highest H2O2 and MDA contents were observed in the plants fed with 10 mg-1 L Cd. The Cd stress resulted in a considerable decline in the activities of GPX, CAT, and APX antioxidant enzymes, while Se supplementation increased their activities in the Cd-treated plants. Based on the mineral analyses, no Cd was traced in the control plants, while the Cd concentration in both roots and leaves of the Cd-stressed radish plants increased with increasing the supplemented Cd levels. Compared with plants solely treated with 10 mg L-1 Cd, Se nutrition declined the Cd absorption in roots and in leaves. The concentration of evaluated micronutrients including Fe, Mn, Cu, and Zn tended to decrease in the Cd-imposed plants in comparison with control plants. Se nutrition of both stressed and non-stressed radish plants increased the concentrations of the studied microelements, except for Zn in which the individual use of Se led to a decrease in the Zn content. Significant positive and negative correlation values were found among the studied traits and the principle component analysis (PCA) biplot and Ward dendrogram confirmed the results of the correlation analysis. Se proved to be efficient in the alleviation of Cd-triggered deleterious effects by improving biomass acquisition, enhancing chlorophyll biosynthesis and fluorescence, and increasing micronutrient uptake in a dose-dependent manner. Furthermore, the Se alleviation mechanism under Cd stress was also connected with the activation of enzymatic antioxidative protection system as well as with decreasing Cd uptake, transport, and distribution in radish leaves. Altogether, our research strongly suggests the implementation of Se in the growth medium to enhance the tolerance of radish plants under Cd stress.
Collapse
Affiliation(s)
- Setareh Auobi Amirabad
- Department of Horticultural Science, Faculty of Agriculture, University of Maraghe, Maraghe, 55181-83111, Iran
| | - Farhad Behtash
- Department of Horticultural Science, Faculty of Agriculture, University of Maraghe, Maraghe, 55181-83111, Iran
| | - Yavar Vafaee
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
23
|
Li H, Liu X, Wassie M, Chen L. Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9490-9502. [PMID: 31919821 DOI: 10.1007/s11356-019-06628-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is beneficial for plant growth under different stressful conditions. In this study, we investigated the protective effects of Se supply from Cd-induced damages in tall fescue under Cd stress. Tall fescue seedlings (40 days old) were treated with Cd (30 mg/L, as CdSO4·8/3 H2O) and Se (0.1 mg/L, as Na2SeO3) individually and in combination using 1/2 Hoagland's solution system for 7 days. Various physiological parameters, photosynthetic behaviors, and gene expressions were measured. The results showed that Cd-stressed plants displayed obvious toxicity symptoms such as leaf yellowing, decreasing plant height, and root length. Cd stress significantly increased the malondialdehyde (MDA) content and electrolyte leakage (EL), and remarkably reduced the chlorophyll and soluble protein content, antioxidant enzyme activities, and photosynthetic efficiency. Cd stress significantly inhibited the expression of two photosynthesis-related genes (psbB and psbC), but not psbA. In addition, it significantly inhibited the expression of antioxidant system-related genes such as ChlCu/ZnSOD, CytCu/ZnSOD, GPX, and pAPX, but significantly increased the expression of GR. However, Se improved the overall physiological and photosynthetic behaviors of Cd-stressed plants. Se significantly enhanced the chlorophyll and soluble protein content and CAT and SOD activities, but decreased MDA contents, EL, and Cd content and translocation in tall fescue under Cd stress. Furthermore, under Cd stress, Se increased the expression of psbA, psbB psbC, ChlCu/ZnSOD, CytCu/ZnSOD, GPx, and PAPx. The result suggests that Se alleviated the deleterious effects of Cd and improved Cd resistance in tall fescue through upregulating the antioxidant system, photosynthesis activities, and gene expressions.
Collapse
Affiliation(s)
- Huiying Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaofei Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
24
|
Cheng Q, Hu C, Jia W, Cai M, Zhao Y, Tang Y, Yang D, Zhou Y, Sun X, Zhao X. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109503. [PMID: 31394376 DOI: 10.1016/j.ecoenv.2019.109503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum) is a devastating fungal pathogen with worldwide distribution, and threatened the agro-ecological safety in the long term. To control the damage caused by Sclerotinia diseases, as well as consider the fungicide resistance and chemical residues, strategy of which plant nutritional regulation, as an eco-friendly approach, is gaining much significance. Selenium (Se), as a beneficial microelement for plant, has been manifested to be effective in inhibiting the mycelial growth of S.sclerotiorum in our previous study. In the present study, we observed that Se (both selenate and selenite) inhibited the formation of sclerotia, which is an important life form in the disease cycle of S. sclerotiorum. And the inhibition ratios of number of sclerotia in treatments of Se(VI)5.0 and Se(IV)5.0 were 54.55% and 43.84%, respectively; the inhibition ratios of weight of sclerotia in treatments of Se(VI)5.0 and Se(IV)5.0 were 42.29% and 25.67%, respectively. Results suggested that Se inhibited mycelial growth, severely damaged sclerotial ultrastructure, reduced the capacity of acid production, decreased superoxide dismutase (SOD) and catalase (CAT) activities, increased the content of hydrogen peroxide (H2O2) and superoxide anion (O2-) in mycelium, and all of these resulted in the reduction in sclerotial formation. Further studies revealed that Se application in medium increased Se concentration in sclerotia and thus inhibited sclerotial germination. Moreover, the pathogenicity of mycelia germinating from sclerotia that pretreated with Se, decreased significantly to rape leaves. These findings broadened our understanding of Se application in plant protection, as well as provided evidences for developing environment-friendly fungicide for S. sclerotiorum control.
Collapse
Affiliation(s)
- Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Wei Jia
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yuanyuan Zhao
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Dandan Yang
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yingjie Zhou
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xuecheng Sun
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
25
|
Zhang Z, Yuan L, Qi S, Yin X. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1228-1235. [PMID: 31726553 DOI: 10.1016/j.scitotenv.2019.06.331] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
There is little available information about the important interactions between selenium and cadmium (Se-Cd) in crops grown on natural Se-Cd rich soils. We investigated their interactive effects on the translocation and uptake of Se and Cd from soils to crops. Corn (Zea mays L.) roots, stems, leaves, and grains, and their corresponding rhizosphere soils were collected from naturally Se-Cd rich areas in Wumeng Mountain, Guizhou, China. The Se and Cd levels were determined in the soils, roots, stems, leaves, and grains. Soil bioavailable Se and Cd were also determined. The low soil bioavailable molar ratios for Se and Cd (Se:Cd) (≤0.7) improved Cd accumulation in the plants. However, relatively high Se:Cd molar ratios (>0.7) in the soils prevented Cd from entering the plants, but the effect of the soil Se:Cd on Se accumulation in corn was not significant. The strong anion exchange-high performance liquid chromatography-inductively coupled plasma mass spectroscopy (SAX-HPLC-ICP-MS) chromatograms showed that Se-Cd complexes occurred in the leaves, which likely indicated that direct interactions between Se and Cd happened there. The results suggested that thresholds for soil bioavailable Se:Cd molar ratios played a role in the interaction between Se and Cd in corn under natural conditions.
Collapse
Affiliation(s)
- Zezhou Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Linxi Yuan
- Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, China.
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| |
Collapse
|
26
|
Wan Y, Wang K, Liu Z, Yu Y, Wang Q, Li H. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16220-16228. [PMID: 30972675 DOI: 10.1007/s11356-019-04975-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/25/2019] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is absorbed readily by rice plants and is transferred to humans when contaminated rice is consumed. Adding selenium (Se) to the plant nutrient solutions reduces the accumulation of Cd in the rice (Oryza sativa L.) seedlings. However, as the relevant underlying mechanism remains unclear, the aim of our study was to improve our understanding of the Se-mediated resistance to Cd stress in rice. We conducted hydroponic experiments to study the effects of selenite or selenate on Cd subcellular distribution and xylem transport in rice seedlings under Cd stress, and we investigated the antioxidative defense responses in the rice plants. We found that the supplementation of both Se forms decreased the Cd accumulations in the roots and shoots of the rice plants. The selenite addition significantly decreased the Cd contents in different subcellular fractions of the rice roots, increased the proportion of Cd distributed to soluble cytosol by 23.41%, and decreased the Cd distribution in the organelle by 28.74% in contrast with the treatment with Cd only. As regards the selenate addition, only the Cd distribution ratio of cytosol was increased by 13.07%. After adding selenite, a decrease of 55.86% in the Cd concentration in xylem sap was observed, whereas little change was found after treatment co-applied with selenate. The hydrogen peroxide (H2O2) and malondialdehyde(MDA) contents in the rice roots were elevated under Cd stress, and the addition of selenite and selenate decreased the H2O2 levels by 77.78% and 59.26%, respectively. Co-exposure to Cd and Se elevated the glutathione (GSH) accumulations in the rice shoots and roots, with the degree of increase being the following: co-applied with selenite > co-applied with selenate > Cd alone treatment. Exposure to Cd increased the catalase (CAT) activity in the roots significantly, whereas it decreased in the shoots. After selenite or selenate supplementation, the CAT activity in the rice roots increased compared with applying only Cd. Compared with the control, the addition of Cd or Se had no significant effect on the activities of peroxidase (POD) or ascorbate peroxidase (APX). Our results showed that Se affected the Cd accumulation in rice seedlings by altering the Cd subcellular distribution and decreasing the ROS induced by Cd stress. Such effects were more significant in the selenite than in the selenate applied treatment.
Collapse
Affiliation(s)
- Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
27
|
Yu Y, Fu P, Huang Q, Zhang J, Li H. Accumulation, subcellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages. CHEMOSPHERE 2019; 216:331-340. [PMID: 30384302 DOI: 10.1016/j.chemosphere.2018.10.138] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Despite not being an essential element for plants, Se has been proved to reduce Cd accumulation and Cd-induced oxidative stress, although the underlying mechanisms are not fully understood. A pak choi hydroponic experiment was conducted to investigate the effects of Se on Cd accumulation, subcellular distribution, and Cd-induced oxidative stress at different growth stages. The results showed that on day 19 after germination, Cd content was significantly reduced by 32% by selenite, but was increased by 15% by selenate. Accordingly, selenite improved cell-wall Cd sequestration by 20%, whereas selenate caused enhanced translocation of Cd from the root to the shoot. However, the effects of selenite on the reduction in Cd accumulation and distribution in pak choi seedlings were completely dismissed on day 40. Nevertheless, both forms of Se enhanced antioxidative defense, as they both inhibited the accumulation of H2O2 and malondialdehyde. On day 19, ascorbate peroxidase and glutathione reductase activities were increased by more than 50% by selenite; additionally, superoxide dismutase, catalase, and peroxidase activities increased by up to 86%, 63%, and 24%, respectively, in the presence of selenite, when compared to Cd treatment alone. Activities of most of the antioxidants remained significantly unaffected by both forms of Se on day 40. Consequently, selenite and selenate affected Cd accumulation in pak choi seedlings by altering Cd subcellular distribution and by enhancing antioxidative defense, but such effects depended on the Se forms applied and the growth stage as well.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, PRC
| | - Pingnan Fu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, PRC
| | - Qingqing Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PRC
| | - Jingsuo Zhang
- Beijing Municipal Station of Agro-Environmental Monitoring, Beijing, 100029, PRC
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, PRC.
| |
Collapse
|
28
|
Yu Y, Yuan S, Zhuang J, Wan Y, Wang Q, Zhang J, Li H. Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica chinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:571-580. [PMID: 30031318 DOI: 10.1016/j.ecoenv.2018.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Pak choi can readily accumulate cadmium (Cd) into its edible parts; this can pose a threat to human health. Although not essential for higher plants, selenium (Se) can be favorable for plant growth and antioxidative defense under heavy metal stress conditions. A pak choi hydroponic experiment was conducted to investigate the effect of two forms of Se on the Cd uptake kinetics and accumulation and oxidative stress. The results showed that selenite and selenate remarkably enhanced Cd uptake kinetics in pak choi. The maximum Cd uptake rate increased by more than 100% after treatment with 5 µM of selenite and selenate, and it further increased after treatment with 20 µM of both Se forms. The effects of Se on Cd content depended on the Se form, exposure time, and Cd dosage. Selenite reduced the Cd content in shoots by 41% after 3 days of treatment with 10 µM Cd, whereas selenate increased this rate by 89%. Both forms of Se decreased Cd content in the shoots by 40% after 7 days of treatment with 10 µM Cd, but they increased the Cd content by approximately 30% after treatment with 50 µM Cd. Se enhanced Cd-induced oxidative stress in pak choi. Malondialdehyde (MDA) generation was promoted by more than 33% by selenite and selenate treatments in combination with 10 µM Cd, and it was further enhanced by 106% and 185% at 50 µM Cd, respectively. Selenite also increased the H2O2 content at both Cd doses, but selenate did not have significant effects on H2O2 production. The effects of Se on antioxidative enzyme activity also depended on the dose of Cd. Selenite and selenate inhibited catalase activity by 11% and 29%, respectively, at 10 µM Cd, and by 13% and 42%, respectively, at 50 µM Cd. Moreover, both forms of Se increased superoxide dismutase activity after treatment with 10 µM Cd but inhibited its activity at 50 µM Cd. Therefore, Se exhibits dual effects on Cd accumulation and oxidative stress in pak choi and might cause further stress when combined with higher doses of Cd.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sili Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jian Zhuang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jingsuo Zhang
- Beijing Municipal Station of Agro-environmental Monitoring, Beijing 100029, PR China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
29
|
Huang C, Qin N, Sun L, Yu M, Hu W, Qi Z. Selenium Improves Physiological Parameters and Alleviates Oxidative Stress in Strawberry Seedlings under Low-Temperature Stress. Int J Mol Sci 2018; 19:ijms19071913. [PMID: 29966265 PMCID: PMC6073314 DOI: 10.3390/ijms19071913] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we investigated the effects of selenium (Se) applications on two strawberry varieties, Akihime and Benihoppe, under chilling stress and recovery conditions. Changes in photosynthetic parameters, antioxidant enzyme activities, ascorbate (AsA)-glutathione (GSH) cycle-related enzyme activities, and low-molecular-mass antioxidant contents were determined. Foliar spraying with Se alleviated the decline in the net photosynthetic rate and chlorophyll content and increased the malondialdehyde and hydrogen peroxide contents of strawberry seedlings’ leaves under chilling stress. As the time under chilling stress increased, the stomatal conductance decreased and intercellular CO₂ concentration increased, suggesting that nonstomatal factors had major limiting effects on the net photosynthetic rate’s decrease. Se applications significantly alleviated the adverse impacts of chilling stress on changes in stomatal conductance and intercellular CO₂ concentration. Se, especially at lower concentrations, significantly increased superoxide dismutase, catalase, and peroxide enzyme activities during chilling stress. Approximately 5 mg·L−1 of sodium selenite solution had the greatest stress-alleviating effects. Among the AsA-GSH cycle-related enzymes, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase (MDHAR) treatments, coupled with an appropriate dose of Se, significantly enhanced ascorbate peroxidase and MDHAR activities, which suggested that Se applications played important roles in strawberry leaves by affecting AsA-GSH cycle-related defenses against the oxidative damage caused by chilling stress. Furthermore, MDHAR was the key enzyme required to maintain the balance between AsA consumption and regeneration that may assist in protecting strawberry seedlings in a low-temperature environment.
Collapse
Affiliation(s)
- Chongping Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
- Agricultural Experiment Station of Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Nannan Qin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Li Sun
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Mingyan Yu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Weizhen Hu
- Agricultural Experiment Station of Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| | - Zhenyu Qi
- Agricultural Experiment Station of Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
30
|
Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R, Woch W, Hasanuzzaman M. Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:446-456. [PMID: 29689508 DOI: 10.1016/j.plaphy.2018.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
We examined the possibility to enhance the growth and the physiological tolerance of lamb's lettuce (Valerianella locusta L.) grown under heat stress (HS) by biofortification with selenium (Se). The plants were grown at optimal (22/19 °C; day/night) or high (35/22 °C; day/night) temperature and Se was applied via foliar or soil treatment. The HS reduced plant biomass and photosynthetic pigment concentration and impaired some parameters of chlorophyll a fluorescence. The lamb's lettuce grown under HS accumulated large amounts of H2O2 in the leaves, especially in younger ones. The Se fertilization (both foliar and soil) at HS was beneficial to plant growth, whilst the concentration of photosynthetic pigments and the analysed parameters of chlorophyll a fluorescence were unaffected by the Se supply. The application of Se enhanced the thermo-tolerance of plants through cooperative action of antioxidant enzymes, such as guaiacol peroxidase (GPOX; EC 1.11.1.7) and catalase (CAT; EC 1.11.1.6), and reduced glutathione (GSH) among low-molecular-weight non-enzymatic antioxidants, in removal of excess of H2O2. Although under HS the content of different phenolic compounds in the leaves was higher than under normal temperature (NT), the application of Se did not affect their concentration at stress conditions. On the other hand, at NT the Se-biofortified plants accumulated significantly more phenolic compounds with health-promoting properties than Se-untreated plants. Therefore, biofortification of lamb's lettuce with Se can be beneficial in terms of plants yield and their nutritional value under both NT and HS.
Collapse
Affiliation(s)
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Katarzyna Rubinowska
- Department of Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | | | - Weronika Woch
- Department of Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
31
|
Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. CHEMOSPHERE 2017; 182:90-105. [PMID: 28494365 DOI: 10.1016/j.chemosphere.2017.05.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) accumulation in vegetables is an important environmental issue that threatens human health globally. Understanding the response of vegetables to Cd stress and applying management strategies may help to reduce the Cd uptake by vegetables. The aim of the present review is to summarize the knowledge concerning the uptake and toxic effects of Cd in vegetables and the different management strategies to combat Cd stress in vegetables. Leafy vegetables grown in Cd contaminated soils potentially accumulate higher concentrations of Cd, posing a threat to food commodities. The Cd toxicity decreases seed germination, growth, biomass and quality of vegetables. This reduces the photosynthesis, stomatal conductance and alteration in mineral nutrition. Toxicity of Cd toxicity also interferes with vegetable biochemistry causing oxidative stress and resulting in decreased antioxidant enzyme activities. Several management options have been employed for the reduction of Cd uptake and toxicity in vegetables. The exogenous application of plant growth regulators, proper mineral nutrition, and the use of organic and inorganic amendments might be useful for reducing Cd toxicity in vegetables. The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Gent, Belgium
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1875. [PMID: 28018407 PMCID: PMC5156728 DOI: 10.3389/fpls.2016.01875] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 11/28/2016] [Indexed: 05/03/2023]
Abstract
The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals ([Formula: see text]), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.
Collapse
Affiliation(s)
- Zhilin Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, Scientific Observing and Experimental Station of Agricultural Environment of the Ministry of Agriculture – Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture, School of Plant Protection – School of Resources and Environment, Anhui Agricultural UniversityHefei, China
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
| | - Xuebin Yin
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| | - Gary S. Bañuelos
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture – Agricultural Research Service, ParlierCA, USA
| | - Zhi-Qing Lin
- Environmental Sciences Program and Department of Biological Sciences, Southern Illinois University Edwardsville, EdwardsvilleIL, USA
| | - Ying Liu
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Scientific Observing and Experimental Station of Agricultural Environment of the Ministry of Agriculture – Laboratory of Quality and Safty Risk Assessment for Agricultural Products on Storage and Preservation of the Ministry of Agriculture, School of Plant Protection – School of Resources and Environment, Anhui Agricultural UniversityHefei, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
- The Northwest of Anhui Province Station for Integrative Agriculture, Research Institute for New Rural Development, Anhui Agricultural UniversityHefei, China
| | - Linxi Yuan
- School of Earth and Space Sciences, University of Science and Technology of ChinaHefei, China
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of ChinaSuzhou, China
- Institute of Advanced Technology, University of Science and Technology of ChinaHefei, China
| |
Collapse
|
33
|
Wan Y, Yu Y, Wang Q, Qiao Y, Li H. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:127-34. [PMID: 27434423 DOI: 10.1016/j.ecoenv.2016.07.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 05/03/2023]
Abstract
Selenium (Se) can alleviate the toxicity of cadmium (Cd), but little is known about its mechanism in Cd uptake and translocation in plants. We investigated the effects of exogenous selenite, selenate, and selenomethionine (SeMet) on Cd uptake and translocation within rice (Oryza sativa L., Zhunliangyou 608) seedlings, and the concentration-dependent uptake kinetics of Cd into rice roots (with or without Se) were determined. The effect of the endogenous Se pool on Cd uptake was also investigated. Results of uptake kinetics showed that selenite slightly promoted Cd influx during 1h of exposure, compared with no selenite addition; Vmax of Cd uptake increased by 13.8% in 10μM selenite treatment; while the presence of selenate had no effect on the influx of Cd. When exposed to Cd (5μM) over 20h (with selenite) or 30h (with selenate or SeMet), Se addition (5μM) decreased Cd uptake and root-to-shoot translocation; after 30h selenite, selenate, or SeMet addition decreased Cd uptake by roots by 28.6%, 17.7% or 12.1%, respectively. Besides, as the selenite levels in the treatment solutions (1μMCd) increased (0, 0.1, 1, and 5μM, Se), Cd uptake and translocation were both significantly reduced, while the inhibitive effect was more significant at lower levels of selenate. Pretreatment of selenite or selenate (5μM) also decreased Cd uptake by 24.9% or 15.7%, and reduced the root-to-shoot transfer factor by 41.4% or 36.2% after 144h of subjection to Cd (5μM), respectively. The presence of selenite decreased Cd content more effectively than did selenate. Our results demonstrated that Se can effectively reduce the Cd translocation from roots to shoots in rice seedlings.
Collapse
Affiliation(s)
- Yanan Wan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yao Yu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi Wang
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yuhui Qiao
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Huafen Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
34
|
Murillo-Amador B, Rueda-Puente EO, Troyo-Diéguez E, Córdoba-Matson MV, Hernández-Montiel LG, Nieto-Garibay A. Baseline study of morphometric traits of wild Capsicum annuum growing near two biosphere reserves in the Peninsula of Baja California for future conservation management. BMC PLANT BIOLOGY 2015; 15:118. [PMID: 25957869 PMCID: PMC4425933 DOI: 10.1186/s12870-015-0505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. RESULTS The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. CONCLUSIONS We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.
Collapse
Affiliation(s)
- Bernardo Murillo-Amador
- Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, La Paz, Baja California Sur, México.
| | | | - Enrique Troyo-Diéguez
- Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, La Paz, Baja California Sur, México.
| | | | | | - Alejandra Nieto-Garibay
- Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, La Paz, Baja California Sur, México.
| |
Collapse
|