1
|
Li L, Ma M, Zuo G, Xiao J, Chen J, He X, Song Z. Effect of manganese amino acid complexes on growth performance, meat quality, breast muscle and bone development in broilers. Br Poult Sci 2024; 65:582-594. [PMID: 38994893 DOI: 10.1080/00071668.2024.2346640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 07/13/2024]
Abstract
1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-β, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.
Collapse
Affiliation(s)
- L Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - M Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - G Zuo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
- Technical R&D Department, Beijing Deyuanshun Biotechnology Co, Ltd, Beijing, China
| | - J Xiao
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - J Chen
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - X He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - Z Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| |
Collapse
|
2
|
Sohail S, Mottaghitalab M, Hossein-Zadeh NG, Nazaran MH. Effect of advanced chelate technology-based trace minerals on growth performance, mineral digestibility, tibia properties, and antioxidant status in two broiler strains. Poult Sci 2024; 103:104304. [PMID: 39332341 PMCID: PMC11467658 DOI: 10.1016/j.psj.2024.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
This research aimed to assess the impact of diet supplementation of Advanced Chelate Technology-based Mineral (ACTMS), on the Ross and Arian broilers performance. 520 broilers, of two strains, were allocated to 8 treatments (4 for each strain), 5 replicates, (13 chicks/replicate) and reared for 42 d. The treatments include 0 (CONT), 250 (SBC250), 1,000 (SBC1000), and 2,000 (SBC2000) of ACTMS. Feed intake, weight gain, and feed conversion ratio were recorded, and the European Production Efficiency Factor (EPEF) was also calculated. Serum antibody was measured in response to sheep red blood cell (SRBC) to evaluate humoral immune response. Blood sample and tibia were used to measure the bone composition of Ca and P. No significant difference was obtained in feed intake (P > 0.05), however, weight gain, feed conversion ratio, and EPEF showed significant differences (P ˂ 0.05). The results showed that the interaction effect of Ross× SBC250 had the highest average daily feed intake during 25 to 42 and 0 to 42 d of age, but Ross×CONT group provided the lowest average daily feed intake (P ˂ 0.05). Furthermore, the Ross×CONT group had the highest average daily gain during 0 to 10, 25 to 42, and 0 to 42 d of age (P < 0.05). The Ross×CONT group also provided the best feed conversion ratio during 0 to 10 d of rearing period compared to other treatments (P < 0.05). Various levels of ACTMS, significantly (P ˂ 0.05) enhanced the antioxidant activity of superoxide dismutase and glutathione peroxidase. No significant differences were obtained in blood parameter (P > 0.05), though, SBC2000 exhibited the greatest numerical phosphorus content. There was no significant impact of strain effects on blood metabolites, however, the Ross strain exhibited higher values. The results indicated that the Arian× SBC250 group had the largest tibia diameter which had a significant difference from the Arian×CONT group (P < 0.05). In conclusion, ACTMS inclusion in the ration (either replacement or on top) led to the significant improvement of FCR and ADWG (SBC250 as on top) and EPEF (SBC2000 replacement) in the Ross strain and some parameters in Arian strains (mostly numerically).
Collapse
Affiliation(s)
- Sarwar Sohail
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Majid Mottaghitalab
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | | |
Collapse
|
3
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
4
|
Han X, Kong J, Zheng C, Yan X, Qiu T, Chen Z, Zhang H. The effects of a mixture of small peptide chelating minerals and inorganic minerals on the production performance and tissue deposition of broiler chickens. Front Vet Sci 2024; 11:1380911. [PMID: 38706756 PMCID: PMC11066274 DOI: 10.3389/fvets.2024.1380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Due to the limited bioavailability of inorganic trace minerals, their utilization in poultry production has led to problems such as environmental contamination and inefficient resource utilization. It was investigated whether replacing inorganic trace minerals (ITM) with a blend of organic small peptide-chelated trace minerals (MIX) would improve production performance, selected biochemical parameters, antioxidant capacity, mineral deposition in liver, heart, and tibia, as well as mineral content in feces of broilers. A total of 432 healthy 21-day-old 817 broilers were randomly divided into 4 groups with 6 replicates per group and 18 chickens per replicate. The control group received a basal diet supplemented with 1,000 mg/kg of inorganic trace minerals as sulfate. The experimental groups received basal diets supplemented with 200, 400, and 600 mg/kg of mixed trace mineral elements (50% sulfate +50% small peptide-chelate) for a trial period of 30 days, divided into two stages: 21-35 days and 36-50 days. The results indicate that on the 50th day, compared with the 1,000 mg/kg ITM group, the levels of serum cholesterol, urea nitrogen, and malondialdehyde in the 200, 400, and 600 mg/kg MIX groups decreased (p < 0.01), while the levels of serum glutathione peroxidase in the 200, 400, and 600 mg/kg MIX groups increased (p < 0.05). Compared to the ITM group, the addition of organic small peptide chelated trace minerals mixed with inorganic trace minerals can reduce the levels of zinc and manganese in feces (p < 0.01). Furthermore, the iron content in the heart and tibia of the 600 mg/kg MIX group also significantly decreased (p < 0.05). There were no differences in growth performance and slaughter performance among the groups (p > 0.05). This study shows that replacing inorganic minerals with low-dose MIX (200, 400, and 600 mg/kg) can reduce the levels of zinc and manganese in feces, with no negative impact on growth and slaughter performance.
Collapse
Affiliation(s)
- Xiaofeng Han
- School of Life Science and Engineering, Foshan University, Foshan, China
- Wen’s Foodstuffs Group Co., Ltd., Yunfu, China
| | - Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chaojun Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhiyong Chen
- Foshan Guangmuxing Feed Co., Ltd., Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
5
|
Liu Y, Li S, Huang Z, Dai H, Shi F, Lv Z. Dietary collagen peptide-chelated trace elements supplementation for breeder hens improves the intestinal health of chick offspring. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:174-183. [PMID: 37612258 DOI: 10.1002/jsfa.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dietary supplementation with trace elements zinc (Zn), iron (Fe) and manganese (Mn) could promote intestinal development and improve intestinal health. There are, however, few studies examining the possibility that maternal original Zn, Fe and Mn could regulate intestinal development and barrier function in the offspring. This study aimed to investigate how the intestinal growth and barrier function of breeder offspring were affected by collagen peptide-chelated trace elements (PTE; Zn, Fe, Mn). RESULTS PTE supplementation in the diet of breeder hens increased the concentrations of Zn, Fe and Mn in egg yolk. Maternal PTE supplementation improved morphological parameters of the intestine (villi height, crypt depth and villi height/crypt depth) and upregulated the mRNA expression level of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the ileum of chick embryos. Furthermore, maternal PTE effect improved villi height/crypt depth of offspring at 1 and 14 days of age, and upregulated Lgr5, Claudin-3 and E-cadherin mRNA expression in the broiler ileum. Additionally, PTE treatment could enhance the intestinal microbial diversity of offspring. Maternal PTE supplementation increased the relative abundance of Clostridiales at the genus level and decreased the relative abundance of Enterococcus in newborn offspring. Moreover, maternal PTE supplementation ameliorated the elevated nuclear factor kappa B, toll-like receptor 4 and interleukin 1β mRNA expression in the ileum of offspring caused by LPS challenge. CONCLUSION Maternal PTE supplementation could promote intestinal development and enhance the intestinal barrier function of chicken offspring. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Simeng Li
- Aksu Vocational and Technical College, Aksu, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Ma M, Li L, Zuo G, Xiao J, Chen J, He X, Song Z. Effect of Zinc Amino Acid Complexes on Growth Performance, Tissue Zinc Concentration, and Muscle Development of Broilers. Biol Trace Elem Res 2024; 202:291-306. [PMID: 37086354 DOI: 10.1007/s12011-023-03661-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
The present study aimed to evaluate the effects of zinc amino acid complexes on growth performance, tissue zinc concentration, and muscle development in broilers. A total of 504 day-old male arbor acres broilers were randomly divided into seven treatments (fed with a basal diet or a basal diet supplemented with 120 mg kg-1 Zn as ZnSO4, 30, 60, 90 or 120 mg kg-1 Zn as ZnN, or 30 mg kg-1 Zn as ZnA separately). Each group had six replicates, with 12 birds per replicate. The results showed that the addition of 60 mg kg-1 ZnN significantly increased (P < 0.05) the average daily gain (ADG) and breast muscle percentage of broilers. Zinc concentration of ZnN and ZnA added groups were higher than (P < 0.05) that in the Zn sulfate group under the same addition dose. Except for the 30 mg kg-1 ZnN group, the muscle fiber diameter and cross-sectional area (CSA) were significantly increased (P < 0.05) in the ZnN addition groups. Compared with the basal diet group, adding ZnN significantly increased (P < 0.05) the expression of MTOR, MYOD, and MYOG at day 21 and decreased (P < 0.05) the expression of Atrogin-1. The expression levels of AKT, MTOR, P70S6K, and MYOD were increased at day 42, while the expression levels of MuRF1 and Atrogin-1 were decreased. Adhesion, backbone regulation of actin, MAPK, mTOR, and AMPK were significantly enriched as indicated by KEGG pathway enrichment analysis. In conclusion, zinc amino acid complexes could improve growth performance, tissue zinc concentration, and regulate breast muscle development.
Collapse
Affiliation(s)
- Mengmeng Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, 410128, China
| | - Liwei Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, 410128, China
| | - Gang Zuo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, 410128, China
- Beijing Deyuanshun Biotechnology Co., Ltd., Beijing, 102206, China
| | - Jian Xiao
- Hunan Xiang Jia Husbandry Limited By Share Ltd., Changde, 415000, Hunan, China
| | - Junlie Chen
- Hunan Xiang Jia Husbandry Limited By Share Ltd., Changde, 415000, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, 410128, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, 410128, China.
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, 410128, China.
| |
Collapse
|
7
|
Liu KL, He YF, Xu BW, Lin LX, Chen P, Iqbal MK, Mehmood K, Huang SC. Leg disorders in broiler chickens: a review of current knowledge. Anim Biotechnol 2023; 34:5124-5138. [PMID: 37850850 DOI: 10.1080/10495398.2023.2270000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ensuring improved leg health is an important prerequisite for broilers to achieve optimal production performance and welfare status. Broiler leg disease is characterized by leg muscle weakness, leg bone deformation, joint cysts, arthritis, femoral head necrosis, and other symptoms that result in lameness or paralysis. These conditions significantly affect movement, feeding and broiler growth performance. Nowadays, the high incidence of leg abnormalities in broiler chickens has become an important issue that hampers the development of broiler farming. Therefore, it is imperative to prevent leg diseases and improve the health of broiler legs. This review mainly discusses the current prevalence of broiler leg diseases and describes the risk factors, diagnosis, and prevention of leg diseases to provide a scientific basis for addressing broiler leg health problems.
Collapse
Affiliation(s)
- Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yan-Feng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Lu-Xi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Muhammad Kashif Iqbal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
8
|
Ghassemi Nejad J, Vakili R, Sobhani E, Sangari M, Mokhtarpour A, Hosseini Ghafari SA. Worldwide Research Trends for Chelates in Animal Science: A Bibliometric Analysis. Animals (Basel) 2023; 13:2374. [PMID: 37508152 PMCID: PMC10376876 DOI: 10.3390/ani13142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to look at research trends in the application of CTM in animal nutrition in order to identify current and emerging challenges, as well as to examine the intellectual structure of the subject. The intellectual structure of CTM was examined using keyword and reference analysis. The research community includes all research and review articles published in journals indexed in the Web of Science database during the years 1990-2022. The results showed that the terms zinc, co-occurring 331 times, performance (324 times), and copper 216 (times) were the main and hotspots of research in the field of chelate. The data suggest that the most important keywords during the study period were zinc, copper, pig, bovine, metabolism, and bioavailability. The terms health, muscle, beef, trace elements, and dietary supplements represent emerging topics in CTM, as research began to focus on these areas during the years 2017-2022. The country with the greatest number of published articles was the United States of America. This bibliometric analysis showed that countries are focusing on the effects of CTM on the health and musculature of cattle through dietary supplementation with trace elements. According to the identified hot and emerging topics, this research can serve as a roadmap for a global comprehensive scientific plan and policy.
Collapse
Affiliation(s)
- Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Reza Vakili
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar 7635168111, Iran
| | - Ehsan Sobhani
- Department of Animal Science, Kashmar Branch, Islamic Azad University, Kashmar 7635168111, Iran
- Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University, Mashhad 9177948564, Iran
| | - Mahmood Sangari
- Department Library and Information Science, University of Birjand, Birjand 9717434765, Iran
| | - Amir Mokhtarpour
- Special Domestic Animals Institute, Research Institute of Zabol, Zabol 9861335856, Iran
| | - Seyed Ali Hosseini Ghafari
- The Agricultural Faculty, Agricultural Sciences and Resource Management in the Tropics and Subtropics (ARTS), University of Bonn, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Zeng Y, Jiang L, Zhou B, Liu Y, Wang L, Hu Z, Wang C, Tang Z. Effect of High Efficiency Digestion and Utilization of Organic Iron Made by Saccharomyces cerevisiae on Antioxidation and Caecum Microflora in Weaned Piglets. Animals (Basel) 2023; 13:ani13030498. [PMID: 36766387 PMCID: PMC9913381 DOI: 10.3390/ani13030498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Organic iron is expected to replace inorganic iron used in diets as an iron source. Organic iron possesses high absorption efficiency and low fecal iron excretion. This study aims to study the effect of organic iron produced by Saccharomyces cerevisiae (yeast iron) on digestion, utilization, antioxidation and caecum microflora in weaned piglets. In total, 20 piglets that had been weaned after 28 days were divided into 4 groups, each of which followed a different basal diet. The basal diet of each of these 4 groups contained, respectively, 104 mg/kg iron (ferrous sulfate, CON), 84 mg/kg iron (yeast iron, LSC), 104 mg/kg iron (yeast iron, MSC) or 124 mg/kg iron (yeast iron, HSC). This experiment lasted 35 d. The apparent digestibility of iron in LSC, MSC and HMS was higher than that in CON (p < 0.01) and the fecal iron content in LSC, MSC and HMS was lower than that in CON (p < 0.01). Serum iron contents in LSC, MSC and HMS were higher than that in CON (p < 0.01). The iron contents of the heart, lungs, liver, kidney and left gluteus muscle in the MSC and HMS groups were higher than that in CON and LSC (p < 0.05). Serum catalase, glutathione peroxidase, superoxide dismutase activity, superoxide anion, glutathione, hydroxyl free radical scavenging rate, total antioxidant capacity, and liver superoxide anion clearance rate and peroxidase in MSC and HMS were higher than that in CON and LSC (p < 0.05). The contents of nitric oxide and peroxide of the weaned piglets in MSC and HMS were lower than that in CON and LSC (p < 0.05). The abundance of Firmicutes, Blautia and Peptococcus in LSC, HSC and MSC was higher than that in CON (p < 0.01). The abundance of Lactobacillus in CON and LSC was higher than that in MSC and HSC (p < 0.01). The abundance of Acinetobacter, Streptococcus and Prevotella in LSC, MSC and HSC was lower than that in CON (p < 0.01). The results suggested that a diet containing 84 mg/kg iron of yeast iron has the same effect as a diet containing 104 mg/kg iron of ferric sulfate, and that a diet containing 104 or 124 mg/kg iron of yeast iron is superior to a diet containing 104 mg/kg iron of ferric sulfate.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Liwen Jiang
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Yubo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Lingang Wang
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chunping Wang
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Zhiru Tang
- Laboratory of Bio-Feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-1399-6192-900
| |
Collapse
|
10
|
Zhang Y, Liu Y, Li C, Huang X, Zhang X, Deng P, Chen J, Wu S, Wang H, Jiang G, Dai Q. Effects of supplementation of inorganic trace elements with organic trace elements chelated with hydroxy methionine on laying performance, egg quality, blood micronutrients, antioxidant capacity and immune function of laying ducks. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1070018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IntroductionThis study aimed to investigate the effects of organic trace elements chelated with hydroxy methionine (OTE-HM) in diets, which substituted inorganic trace elements, on laying performance, egg quality, blood microelement content, antioxidant capacity and immune function of laying ducks.MethodsA total of 300 healthy laying ducks at age of 30 wk were randomly divided into 5 treatments and 10 ducks per replicate. The treatments included a control group (CON) which was served with basal diet supplemented with 20 mg/kg Cu, 50 mg/kg Fe, 70 mg/kg Mn, and 70 mg/kg Zn in inorganic form, and 4 OTE-HM treated groups (OTE-HM25, OTE-HM50, OTE-HM75, OTE-HM100) which were served with basal diets supplemented with OTE-HM providing trace elements (combination of Cu, Fe, Mn, Zn) at 25%, 50%, 75% and 100% of the commercial levels, respectively.ResultsResults showed that substitution of inorganic trace elements with OTE-HM did not affect egg production, qualified egg rate, average egg weight, average daily egg mass, average daily feed intake, or feed per kg egg of laying ducks (P > 0.05). Dietary with OTE-HM did not influence eggshell strength, eggshell thickness, egg shape index, eggshell ratio, yolk ratio, albumen ratio, albumen height, and Haugh unit of the sampled eggs of ducks (P > 0.05), but increased the yolk color, compared with dietary with inorganic trace elements (P< 0.01). Moreover, the blood content of Cu of the laying ducks was significantly increased by OTE-HM compared with that in CON (P< 0.001), but the other elements in laying duck blood were not different among treatments (P > 0.05). OTE-HM (75% and 100%) significantly increased serum activities of glutathione peroxidase and Cu-Zn superoxide dismutase, and decreased serum content of malonaldehyde of laying ducks compared with those in CON (P< 0.05). OTE-HM (50%, 75%, and 100%) significantly increased the serum contents of immunoglobulin G and immunoglobulin A of laying ducks compared with those in CON (P< 0.05).DiscussionCollectively, replacing inorganic trace elements with 50% and 75% OTE-HM in diets did not influence the laying performance or egg quality, but improved trace element efficacy, antioxidant capacity and immune function of the laying ducks.
Collapse
|
11
|
Kong J, Qiu T, Yan X, Wang L, Chen Z, Xiao G, Feng X, Zhang H. Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Front Physiol 2022; 13:1027834. [PMID: 36330210 PMCID: PMC9623153 DOI: 10.3389/fphys.2022.1027834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 10/15/2023] Open
Abstract
Due to the low bio-availability of inorganic trace minerals, its application in poultry production has been causing many problems such as environment pollution and waste of resources. The current study was designed to evaluate if replacing inorganic trace minerals (ITM) with small peptide chelate trace minerals (SPM) affects production performance, some biochemical parameters and antioxidant status, tibia mineral deposition, and fecal mineral content in 817 white-feathered broilers. A total of 432 broilers (21-day-old) were randomly divided into four groups with six replicates of 18 chicks each. The four groups included inorganic trace minerals group (addition of 1,000 mg/kg ITM; common practice by commercial poultry farms), three organic trace minerals groups with supplementation of 150, 300, and 500 mg/kg SPM, respectively. The experiment lasted for 30 days. The results showed that there was no significant difference in growth performance and slaughter performance among the four groups (p > 0.05). Total cholesterol in the SPM group was significantly lower than those in the ITM groups (p < 0.01). Compared with the ITM group, the serum urea nitrogen in 150 and 300 mg/kg SPM groups decreased significantly (p < 0.01). Among all SPM treatments, 300 mg/kg SPM groups had the highest serum glutathione peroxidase (GSH-Px) activity (p < 0.01). The activity of copper and zinc superoxide dismutase (Cu/Zn SOD) of liver in ITM group was the lowest among the four groups (p < 0.01). The catalase (CAT) activity of liver in the 150 mg/kg SPM group was significantly higher than the ITM group and 300 mg/kg SPM group (p < 0.05). Compared to the ITM group, the iron content of the tibia was significantly increased in 300 mg/kg SPM group (p < 0.05) and 500 mg/kg SPM group (p < 0.01). Compared to the ITM group, dietary supplementation with SPM significantly reduced fecal content of zinc and manganese (p < 0.01). The 150 mg/kg SPM and 300 mg/kg SPM group had significantly reduced content of iron (p < 0.05). This study demonstrated that replacing inorganic minerals with low doses of SPM (300 and 500 mg/kg) did not negatively affect growth and slaughter performance, as well as the antioxidant status of broiler chickens. In addition, SPM can also promote mineral content in the tibia and reduce mineral content in the feces.
Collapse
Affiliation(s)
- Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lili Wang
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing, China
| | - Zhiyong Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gengsheng Xiao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
12
|
Kim CH, Jeong SH, Lim SJ, Cheon SN, Kim K, Chun J, Jeon J. Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality. Animals (Basel) 2022; 12:ani12182378. [PMID: 36139238 PMCID: PMC9495068 DOI: 10.3390/ani12182378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we examined the effect of diets supplemented with organic and inorganic mineral premixes on the laying performance and eggshell quality of aged laying hens. A total of 600 68-week-old Hy-Line Brown laying hens were randomly assigned to 1 of 3 dietary treatments, repeated 5 times: Mash type basal diet, basal diet supplemented with an inorganic mineral premix (1.0 g/kg), and basal diet supplemented with an organic mineral premix (1.8 g/kg). The results showed that eggshell strength was higher (p < 0.01) in the inorganic mineral diet group than in the organic mineral and basal diet groups. Further, the levels of Fe and Mn in the liver were higher (p < 0.05) in the inorganic and organic mineral diet groups than in the basal diet group. The concentrations of Fe and Mg in the spleen were different (p < 0.05) among the treatment groups, with the highest levels reported in the organic mineral premix group. The concentrations of Cu, Zn, and Mn in the eggshell were different (p < 0.05) among the groups, with the highest levels reported in the inorganic and organic mineral premix diet groups. In conclusion, a diet containing organic mineral premix improved eggshell strength and had no detrimental effect on the laying performance of aged laying hens.
Collapse
|
13
|
Yu L, Yi J, Chen Y, Huang M, Zhu N. Relative Bioavailability of Broiler Chickens Fed with Zinc Hydroxychloride and Sulfate Sources for Corn-Soybean Meal. Biol Trace Elem Res 2022; 200:4114-4125. [PMID: 34825318 DOI: 10.1007/s12011-021-03013-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022]
Abstract
This study was conducted to determine relative bioavailability (RBV) of basic zinc chloride (BZC) compared to zinc sulfate monohydrate (ZSM) for broilers. A randomized design involving a 2 × 3 factorial arrangement of the different treatment regimens plus one negative control was set up for this study. A total of 630 newly hatched male AA broiler chicks were randomly allocated to 42 different pens (15 chickens/pen) and assigned to 7 dietary treatments in a completely randomized design. The diet was supplemented with 0, 20, 40, or 80 mg of Zn mg/kg of feed in the form of ZSM or BZC. The results showed that zinc supplementation altered average daily gain (ADG) and feed conversion ratio (FCR) (P < 0.05) for both zinc sources. It was observed that the weight gain increased linearly (P < 0.01) and FCR decreased linearly as dietary BZC and ZSM concentration increased. Moreover, compared with chickens fed with ZSM, chickens fed with BZC had higher ADG and lower FCR from days 0 to 14 (P < 0.05), and higher activity of plasma alkaline phosphatase (ALP) (P < 0.05), total superoxide dismutase (T-SOD), and CuZn superoxide dismutase (CuZn-SOD) (P < 0.01) in the plasma of chickens fed with BZC at zinc level 80 mg/kg at day 14. The pancreas divalent metal-ion transporter-1 (DMT1) mRNA expression of chickens fed with BZC was found to be significantly enhanced at day 28, and the pancreas metallothionein (MT) mRNA expression for BZC fed group was also markedly increased at Zn levels of 20 and 40 mg/kg respectively. The relative bioavailability (RBV) of BZC (Zn sulfate 100%) based on ADG in the starter phase was 110.82%, whereas the tibia zinc content, as well as the activities of plasma ALP and CuZn-SOD, and the pancreas MT mRNA level were in the range between 108 and 119%. It was thus concluded that BZC was more efficacious than Zn sulfate and could serve as a potentially novel zinc source in the broilers.
Collapse
Affiliation(s)
- Longfei Yu
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiang Yi
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Yan Chen
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Mingxing Huang
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Nianhua Zhu
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
14
|
He X, Guo X, Du Z, Liu X, Jing J, Zhou C, Cheng Y, Wang Z, He XP. Enhancement of Intracellular Accumulation of Copper by Biogenesis of Lipid Droplets in Saccharomyces cerevisiae Revealed by Transcriptomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7170-7179. [PMID: 35657321 DOI: 10.1021/acs.jafc.2c01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper is an essential micronutrient for life, whose homeostasis is rigorously regulated to meet the demands of normal biological processes and to minimize the potential toxicity. Copper enriched by yeast is regarded as a safe and bioavailable form of copper supplements. Here, a Saccharomyces cerevisiae mutant strain H247 with expanded storage capability of copper was obtained through atmospheric and room-temperature plasma treatment. Transcriptomic analyses found that transcriptional upregulation of DGA1 might be the major contributor to the enhancement of intracellular copper accumulation in strain H247. The positive correlation between biogenesis of lipid droplets and intracellular accumulation of copper was confirmed by overexpression of the diacylglycerol acyltransferase encoding genes DGA1 and LRO1 or knockout of DGA1. Lipid droplets are not only the storage pool of copper but might prompt the copper trafficking to mitochondria, vacuoles, and Golgi apparatus. These results provide new insights into the sophisticated copper homeostatic mechanisms and the biological functions of lipid droplets.
Collapse
Affiliation(s)
- Xiaoxian He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing 100192, China
| | - Junnian Jing
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing 100192, China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Ping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Zhang Y, Wang S, Huang X, Li K, Ruan D, Xia W, Wang S, Chen W, Zheng C. Comparative effects of inorganic and organic manganese supplementation on productive performance, egg quality, tibial characteristics, serum biochemical indices, and fecal Mn excretion of laying ducks. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Flores KR, Fahrenholz A, Ferket PR, Biggs TJ, Grimes JL. Effect of methionine chelated Zn and Mn and corn particle size on Large White male turkey live performance and carcass yields. Poult Sci 2021; 100:101444. [PMID: 34547618 PMCID: PMC8463767 DOI: 10.1016/j.psj.2021.101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 10/25/2022] Open
Abstract
Most turkey research has been conducted with a regular corn particle size set through phase-feeding programs. This study's first objective was to determine the effect of increasing corn particle size through the feed phases on performance, processing yield, and feed milling energy usage in Large White commercial male turkey production. Zinc (Zn) and manganese (Mn) are essential microminerals for animals' healthy growth. The source in which these elements are supplied to the bird will determine their bioavailability, effect on bird growth, and subsequent environmental impact. This study's second objective was to measure both inorganic and chelated Zn and Mn sources on turkey performance, turkey carcass processing yields, and subsequent litter residues. Twelve hundred Nicolas Select male poults were randomly assigned to 48 concrete; litter-covered floor pens. The experimental design was a completely randomized block design with a 2 × 2 factorial arrangement of 2 sources of minerals (organic blend vs. inorganic) formulated to match breeder recommendations and 2 types of corn mean particle size (coarse corn [1,000-3,500 µm] vs. fine corn [276 µm]). The ASABE S319.4 standard was used to measure corn mean particle size. Bird performance, carcass processing yield, litter content of Zn and Mn, and pellet mill energy consumption were analyzed in SAS 9.4 in a mixed model. There was a reduction of pellet mill energy usage of 36% when coarse corn was added post-pelleting. Birds fed increasing coarse corn mean particle size were 250 g lighter on average in body weight (BW) than birds fed a constant control mean particle size. No difference was found in feed intake (FI) or feed conversion ratio (FCR). Birds fed methionine chelated Zn and Mn blended with inorganic mineral sources were 250 g heavier on average than birds fed only an inorganic source of minerals. In addition, feeding an organic blend of Zn and Mn resulted in greater breast meat yield. Litter from birds fed the control corn mean particle size, and inorganic minerals had a higher concentration of Zn in the litter but were not different when the chelated Zn/Mn were fed. In conclusion, increasing the corn mean particle size and adding it post pellet could save money during feed milling; however, birds might have a slightly lower BW. A combination of inorganic and chelated Zn and Mn may improve performance and increase total breast meat yields.
Collapse
Affiliation(s)
- K R Flores
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - A Fahrenholz
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - P R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - T J Biggs
- Global Animal Products, Inc. Amarillo, TX 79118, USA
| | - J L Grimes
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA.
| |
Collapse
|
17
|
Alagawany M, Elnesr SS, Farag MR, Tiwari R, Yatoo MI, Karthik K, Michalak I, Dhama K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health - a comprehensive review. Vet Q 2020; 41:1-29. [PMID: 33250002 PMCID: PMC7755404 DOI: 10.1080/01652176.2020.1857887] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals' normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
18
|
Ghasemi HA, Hajkhodadadi I, Hafizi M, Taherpour K, Nazaran MH. Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutr Metab (Lond) 2020; 17:94. [PMID: 33292310 PMCID: PMC7596981 DOI: 10.1186/s12986-020-00520-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/02/2022] Open
Abstract
Background Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. Methods This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-day-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100% of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results Diets CTM50 and CTM100 increased average daily gain (ADG), European performance index (EPI), and tibia length compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and serum malondialdehyde level and highest EPI, tibia ash, zinc, manganese, and copper contents, and serum total antioxidant capacity (P < 0.05). The apparent ileal digestibilities of phosphorus and zinc were lower in the ITM group compared with the CTM25 and CTM50 groups (P < 0.05). Broiler chickens fed any of the diets, except diet CTM25, exhibited higher serum glutathione peroxidase and superoxide dismutase activities than those fed the NTM diet, where the best glutathione peroxidase activity was found for CTM100 treatment (P < 0.05). Conclusions These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, bone mineralization, and antioxidant status, a totally replacing ITM by equivalent levels of CTM could also improve performance index and glutathione peroxidase activity of broiler chickens under the conditions of this study.
Collapse
Affiliation(s)
- Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran.
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | | |
Collapse
|
19
|
Magnuson AD, Liu G, Sun T, Tolba SA, Xi L, Whelan R, Lei XG. Supplemental methionine and stocking density affect antioxidant status, fatty acid profiles, and growth performance of broiler chickens. J Anim Sci 2020; 98:5811254. [PMID: 32207523 DOI: 10.1093/jas/skaa092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
Broilers stocked in high densities may be prone to oxidative and inflammatory insults, resulting in impaired health status, growth performance, and meat quality. This study was to determine if 30% extra supplemental dl-methionine alleviated or prevented those adverse effects of a higher stocking density in broiler chickens. A total of 560 male Cornish Cross cockerels (day old) were divided into four groups: two stocking densities (9 and 12 birds/m2) and two supplementations of methionine (grower: 2.90 or 3.77 g/kg and finisher: 2.60 or 3.38 g/kg). Growth performance was recorded weekly. Blood and tissues were sampled at the end of each period. High stocking density decreased (P < 0.05) body weight and growth performance of growers and (or) finishers. Those differences were partially attenuated by the extra methionine supplementation. The high methionine elevated (P < 0.05) glutathione (GSH) concentration in the thigh at both ages (> 24%). The high stocking density elevated (>28%, P < 0.05) glutathione concentration in the plasma, breast, and thigh of growers, but decreased (P < 0.05) it in the liver of growers and thigh of finishers. Interaction effects (P < 0.05) between dietary methionine and stocking density were found on activities of the antioxidant enzyme glutathione S-transferase in the liver of growers and breast, thigh, and adipose tissue of finishers. The interaction effect was also found on activities of glutathione peroxidase and superoxide dismutase in the thigh of growers. The extra methionine decreased (P < 0.05) hepatic gene expression of heat shock protein 90 (18%) and thigh and breast malondialdehyde concentrations of the finishers (35%). In conclusion, the 30% extra dl-methionine supplementation was able to partially mitigate adverse effects caused by the higher stocking density and to improve the redox status of the broilers.
Collapse
Affiliation(s)
| | - Guanchen Liu
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Samar A Tolba
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Lin Xi
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|
20
|
Abstract
The use of inorganic copper in feed is hazardous. As probiotics of animals, Candida utilis can absorb copper ions and transform them to organic copper. This study aimed to domesticate the ability of C. utilis (CICC 32211) to absorb and transform copper ions. So, C. utilis (CICC 32211) was cultured in media with different concentrations of copper ions for 24, 48 and 72 h to identify the optimum copper ion concentration. C. utilis (CICC 32211) strains were domesticated for three generations, then the absorption and distribution of copper ions in the yeast cells were studied. We found that the optimum concentration of copper ions was 110 µg/mL. After 48 h, the number of yeast cells was low, but copper ion absorption efficiency was maximized (43.83%). Most of the enriched copper ions were distributed in the yeast cell wall (up to 30.58% when grown in the medium with 110 µg/mL copper ions), while the intracellular copper ion content was low (2.095%). High concentrations of copper ions affected the morphological structure, element content and distribution of yeast cells.
Collapse
Affiliation(s)
- Wang Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | | | - Ping-Hua Cao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Long-Mei Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
21
|
Qiu JL, Zhou Q, Zhu JM, Lu XT, Liu B, Yu DY, Lin G, Ao T, Xu JM. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poult Sci 2019; 99:1483-1490. [PMID: 32115033 PMCID: PMC7587740 DOI: 10.1016/j.psj.2019.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the effects of low inclusion levels of organic trace minerals (iron, copper, manganese, and zinc) on performance, eggshell quality, serum hormone levels, and enzyme activities of laying hens during the late laying period. A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic trace minerals at commercial levels (CON), a basal diet supplemented with inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet supplemented with proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted 56 D (8 wk). Compared with the CON group, the ITM group showed decrease in (P < 0.05) egg production, eggshell strength, eggshell palisade layer, palisade layer ratio, serum estrogen, luteinizing hormone, glycosaminoglycan concentration, and carbonic anhydrase activity and increase in (P < 0.05) egg loss and mammillary layer ratio. However, the TRT group almost kept all the indices close to the CON group (P > 0.05). Furthermore, hens fed with low inclusion levels of organic trace minerals had smaller mammillary knobs (P < 0.05) than those in the CON and ITM groups. In conclusion, hens fed with low inclusion levels of proteinated trace minerals had better performance and eggshell strength than those fed with identical levels of inorganic compounds; organic trace minerals improved eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period.
Collapse
Affiliation(s)
- J L Qiu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Q Zhou
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - J M Zhu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - X T Lu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - B Liu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - D Y Yu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - G Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - T Ao
- Center for Applied Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA
| | - J M Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Lin Y, Shu X, Fu Z, Hu H, Wang WX, Gong S. Influences of different Fe sources on Fe bioavailability and homeostasis in SD rats. Anim Sci J 2019; 90:1377-1387. [PMID: 31436009 DOI: 10.1111/asj.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/05/2019] [Accepted: 05/27/2019] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to determine whether the enteric coating process affects growth performance, Fe bioavailability, and gene expression levels that maintain iron balance in the body. The test was divided into the control group, ferrous sulfate group, ferrous fumarate group, ferrous glycine chelate(1:1) (Fe-Gly(1:1)) group, ferrous glycine chelate(2:1) (Fe-Gly(2:1)) group, enteric-coated Fe-Gly(1:1) group, and enteric-coated Fe-Gly(2:1) group. The results showed that the growth performance of the rats in each iron supplement group was no significant difference among them. The results of serum biochemical indicators showed that the antioxidant capacity of the rats in the iron supplement group after enteric coating increased. The iron supplementation effect of Fe-Gly(1:1) and Fe-Gly(2:1) was better than that of ferrous sulfate, and the effect of Fe-Gly(1:1) after enteric coating was enhanced. The expression levels of IRP1 and IRP2 in the genes of enteric-coated Fe-Gly(1:1) and enteric-coated Fe-Gly(2:1) were significantly higher than those of ferrous sulfate. The expression levels of IRP1 and IRP2 in the protein of enteric-coated Fe-Gly(1:1) group were significantly higher than those in the Fe-Gly(1:1) group. The above results show that Fe-Gly can improve the bioavailability and antioxidant capacity of iron and reduce the iron output of feces after enteric coating.
Collapse
Affiliation(s)
- Yu Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhihuan Fu
- College of Animal Science and Technology, Zhongkai Agricultural Engineering College, Guangzhou, China
| | - Hongchao Hu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Xiong Wang
- Hong Kong University of Science and Technology, HongKong, China
| | - Sheng Gong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
23
|
Qiu J, Lu X, Ma L, Hou C, He J, Liu B, Yu D, Lin G, Xu J. Low-dose of organic trace minerals reduced fecal mineral excretion without compromising performance of laying hens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:588-596. [PMID: 31480181 PMCID: PMC7054597 DOI: 10.5713/ajas.19.0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the effects of low doses of organic trace minerals (iron, copper, manganese, and zinc) on productive performance, egg quality, yolk and tissue mineral retention, and fecal mineral excretion of laying hens during the late laying period. METHODS A total of 405 healthy hens (HY-Line White, 50-week-old) were randomly divided into 3 treatments, with 9 replicates per treatment and 15 birds per replicate. The dietary treatments included feeding a basal diet + inorganic trace minerals at commercial levels (CON), a basal diet + inorganic trace minerals at 1/3 commercial levels (ITM), and a basal diet + proteinated trace minerals at 1/3 commercial levels (TRT). The trial lasted for 56 days. RESULTS Compared to CON, ITM decreased (p<0.05) egg production, daily egg mass, albumen height, eggshell strength, yolk Fe concentration, serum alkaline phosphatase activity and total protein, and increased (p<0.05) egg loss and feed to egg ratio. Whereas with productive performance, egg quality, yolk mineral retention, and serum indices there were no differences (p>0.05) between CON and TRT. The concentrations of Fe and Mn in the tissue and tibia were changed notably in ITM relative to CON and TRT. Both ITM and TRT reduced (p<0.05) fecal mineral excretion compared to CON. CONCLUSION These results indicate that dietary supplementation of low-dose organic trace minerals reduced fecal mineral excretion without negatively impacting hen performance and egg quality.
Collapse
Affiliation(s)
- Jialing Qiu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xintao Lu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianxiang Ma
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanchuan Hou
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junna He
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing Liu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- Key Laboratory of Animal Nutrition and Feed in East China of Ministry of Agriculture and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Jiming Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Zhu Z, Yan L, Hu S, An S, Lv Z, Wang Z, Wu Y, Zhu Y, Zhao M, Gu C, Zhang A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Arch Anim Nutr 2019; 73:324-337. [PMID: 31192701 DOI: 10.1080/1745039x.2019.1620050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This experiment was conducted to evaluate the effects of different sources and levels of trace elements on growth performance, carcass composition and mineral excretion levels of broilers. In a completely randomised experimental design, 900 one-day-old male Ross-308 broilers were assigned to 5 treatments, with 6 replicates of 30 birds each. The control group (CITE) was fed with a basal diet containing regular inclusion levels of inorganic trace elements. Treatment groups were supplied with reduced levels (30% and 50% of the regular level) of inorganic (ITE) or organic trace elements (OTE), respectively. Groups 50% ITE, 30% OTE and 50% OTE diets had equivalent average daily gain (ADG), average daily feed intake (ADFI), feed to gain ratio (F/G ratio) and mortality rate compared with group CITE in any phase. However, compared with group CITE chicks in group 30% ITE have lower ADG and ADFI and higher F/G ratio. The carcass yields were not affected by dietary treatments. Compared with group CITE, in groups 30% ITE, 50% ITE, 30% OTE and 50% OTE the shear force values of the breast muscle were only 71.8%, 83.4%, 63.5% and 59.4% (p < 0.05), respectively. Birds received diets containing reduced levels of trace elements had diminished excretions of Mn and Zn throughout the entire period (p < 0.01). In conclusion, the reduced supplementation of trace elements had no or slightly negative impact on growth performance, carcass yield and meat quality, but decreased faecal mineral excretion. Moreover, the trace element supply as OTE played a limited role on performance and excretion and was only partly beneficial for animal performance in case the trace element supply was reduced to 30%.
Collapse
Affiliation(s)
- Zhengpeng Zhu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Lei Yan
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Shengdi Hu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Sha An
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Zunzhou Lv
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Zhengguo Wang
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Yueming Wu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Yutao Zhu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Min Zhao
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Changsong Gu
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| | - Aoran Zhang
- a New Hope Feed Research Institute , New Hope Liuhe Co., Ltd ., Beijing , P. R. China
| |
Collapse
|
25
|
Wang ZC, Yu HM, Xie JJ, Cui H, Nie H, Zhang T, Gao XH. Effect of dietary zinc pectin oligosaccharides chelate on growth performance, enzyme activities, Zn accumulation, metallothionein concentration, and gene expression of Zn transporters in broiler chickens1. J Anim Sci 2019; 97:2114-2124. [PMID: 30753602 PMCID: PMC6488314 DOI: 10.1093/jas/skz038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/16/2019] [Indexed: 11/14/2022] Open
Abstract
This study was to investigate the effect of zinc pectin oligosaccharides chelate (Zn-POS) on growth performance, serum enzyme activities, tissue zinc accumulation, metallothionein (MT) concentrations, and gene expression of zinc transporters (ZnT) in broilers. Five hundred forty 1-d-old Arbor Acres broiler chicks were randomly assigned to 5 dietary groups with 6 replicates of 18 birds per replicate. The diets were formulated with the same supplemental Zn level (80 mg/kg diet) but different amount of the Zn-POS: 0, 200, 400, 600, and 800 mg Zn-POS/kg diet. ZnSO4 was used to adjust to the desired amount of the Zn (80 mg/kg) in the Zn-POS diets. Broilers were fed with the experimental diets for 42 d including the starter (days 1 to 21) and grower (days 22 to 42) phases. Our results showed that dietary supplementation of Zn-POS linearly and quadratically increased (P < 0.05) the average daily gain and gain-to-feed ratio during 22 to 42 d and 1 to 42 d as well as body weight on day 42, whereas reduced (P < 0.05) the sum of mortality and lag abnormalities in broilers on day 42. Besides, serum alkaline phosphatase and copper-zinc superoxide dismutase activities increased (P < 0.05) linearly and quadratically in response to dietary Zn-POS supplemental level on day 42. Dietary Zn-POS supplementation increased Zn accumulation in serum (linear, P < 0.05), liver (linear, P < 0.05), and pancreas (linear and quadratic, P < 0.05). In addition, Zn-POS supplementation linearly and quadratically increased (P < 0.01, P < 0.05, respectively) MT concentrations in liver and pancreas of broilers. Pancreatic mRNA levels of MT, ZnT-1, and ZnT-2 increased (P < 0.05) linearly and quadratically, and the mRNA expression of metal response element-binding transcription factor-1 increased linearly (P < 0.05), in response to dietary Zn-POS supplementation. In conclusion, supplementation of Zn-POS in the diet increases Zn enrichment in the metabolic organs such as liver and pancreas and promotes productive performance in broilers.
Collapse
Affiliation(s)
- Zhong Cheng Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hui Min Yu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jing Jing Xie
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hu Cui
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Hao Nie
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tietao Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiu Hua Gao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
26
|
Khatun A, Chowdhury SD, Roy BC, Dey B, Haque A, Chandran B. Comparative effects of inorganic and three forms of organic trace minerals on growth performance, carcass traits, immunity, and profitability of broilers. J Adv Vet Anim Res 2019; 6:66-73. [PMID: 31453173 PMCID: PMC6702935 DOI: 10.5455/javar.2019.f313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022] Open
Abstract
Objective: The experiment was conducted to investigate the comparative effects of inorganic trace minerals (ITM) and three forms of organic trace minerals (OTM) (propionate, metho-chelated, and proteinate) on growth performance, edible meat yield, immunity, and profitability of commercial broilers. Materials and methods: A corn-soya based mash diet comprising four treatments each of 10 replicates were fed to 720 day-old Cobb 500 broiler chicks for 35 days (starter diet 0–21 days and grower diet 22–35 days). The diets for comparison were as follows: diet 1: control diet with ITM premix at 1 kg/ton of feed (T1); diet 2: control diet supplemented with propionate trace minerals at 600 gm/ton (T2); diet 3: control diet supplemented with metho-chelated trace minerals at 500 gm/ton by reducing 225 gm methionine/ton of feed (T3); and diet 4: control diet supplemented with proteinate trace minerals at 500 gm/ton of feed (T4). Growth performance, carcass yield, and antibody titer (AT) data were recorded. Data were analyzed and interpreted using SAS Computer Package Program version 9.1. Results: Feeding propionate and proteinate OTM showed similar performance. Birds fed these two types (propionate and proteinate) or OTM had better performance in comparison with those receiving ITM and metho-chelated one. Proteinate group produced more wing meat and propionate group showed higher breast and drumstick meat yield as compared with those received the metho-chelated trace mineral and ITM. The birds belonging to OTM groups showed significantly higher AT level against infectious bursal disease. Proteinate minerals groups showed higher profitability followed by propionate fed broilers. Conclusion: Two forms of OTM, propionate and proteinate improved performance of commercial broilers over those of ITM and metho-chelated one.
Collapse
Affiliation(s)
- Anguara Khatun
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Bibek Chandra Roy
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bapon Dey
- Department of Poultry Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azimul Haque
- Kemin Industries South Asia Pvt. Ltd., #C-3, 1st Street, Ambattur Industrial Estate, Chennai, India
| | - Bakthavachalam Chandran
- Kemin Industries South Asia Pvt. Ltd., #C-3, 1st Street, Ambattur Industrial Estate, Chennai, India
| |
Collapse
|
27
|
VASWANI SHALINI, KUMAR VINOD, ROY DEBASHIS, KUMAR MUNEENDRA, KUSHWAHA RAJU. Effect of different sources of copper supplementation on performance, nutrient utilization, blood-biochemicals and plasma mineral status of growing Hariana heifers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i7.81465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Twenty-four, 12-18 months old Hariana heifers were used to determine the effects of organic and inorganic dietary copper (Cu) supplementation on performance, nutrient utilization, blood biochemicals and plasma mineral status. Cu was supplemented (8 mg/kg diet DM) as copper proteinate, copper propionate and copper sulfate (CuSO4. Animals were divided into four treatment groups with 6 animals in each group and were fed basal diet as per NRC (2001) for a period of 120 days. The basal diet contained 8.0 mg of Cu/kg DM. T1 (control) was fed only basal diet with no added copper while in T2: 8 mg/kg DM of copper proteinate; T3: 8 mg/kg DM of copper propionate; T4: 8mg/kg diet CuSO4 was added respectively.The intake, daily gain, feed:gain ratio, BCS and FCR were not affected by Cu supplementation. The TDN intake and ADF digestibility were significantly higher in both the organic Cu supplemented groups. The intake of Cu was significantly higher in Cu supplemented groups. The concentration of plasma ALT, AST enzymes, total cholesterol and total immunoglobulins were not affected by sources of Cu in diet. The antioxidant activity and plasma Cu concentration were significantly higher in Cu supplemented groups, irrespective of sources. Thus, supplementation of 8 mg/kg DM Cu had no beneficial effect on growth performance and blood biochemicals. In conclusion, chelating agents have no effect on bioavailability of copper. Also, the organic copper can be a preferred form to be supplemented for better digestibility in heifers.
Collapse
|
28
|
Yang Z, Qi XM, Yang HM, Dai H, Xu CX, Wang ZY. Effects of Dietary Copper on Growth Performance, Slaughter Performance and Nutrient Content of Fecal in Growing Goslings from 28 to 70 Days of Age. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Z Yang
- Yangzhou University, P. R. China
| | - XM Qi
- Rudong County Animal Husbandry and Veterinary Station, P. R. China
| | - HM Yang
- Yangzhou University, P. R. China
| | - H Dai
- Yangzhou University, P. R. China
| | - CX Xu
- Yangzhou University, P. R. China
| | - ZY Wang
- Yangzhou University, P. R. China
| |
Collapse
|
29
|
Perez V, Shanmugasundaram R, Sifri M, Parr TM, Selvaraj RK. Effects of hydroxychloride and sulfate form of zinc and manganese supplementation on superoxide dismutase activity and immune responses post lipopolysaccharide challenge in poultry fed marginally lower doses of zinc and manganese. Poult Sci 2017; 96:4200-4207. [DOI: 10.3382/ps/pex244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
|
30
|
Effects of ferrous carbamoyl glycine on iron state and absorption in an iron-deficient rat model. GENES AND NUTRITION 2015; 10:54. [PMID: 26584806 DOI: 10.1007/s12263-015-0504-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
An iron-deficient rat model was established and used to determine the effects of different iron sources on iron metabolism and absorption. Iron-deficient rats were assigned to one of three treatment groups, and their diet was supplemented with deionized water (control), Fe-CGly, or FeSO4 for 8 days via intragastric administration. Blood samples were obtained for analysis of iron-related properties, and the small intestine and liver were removed for quantitative reverse transcription PCR of genes related to iron metabolism. The serum total iron-binding capacity (TIBC) levels of rats in Fe-CGly and FeSO4 supplementation groups was lower (P < 0.05) than that of the rats in the control group. The rats in Fe-CGly group exhibited higher (P < 0.05) plasma Fe and ferritin levels and lower (P < 0.05) TIBC levels compared with the rats in FeSO4 groups. The relative expression of liver hepcidin increased (P < 0.05) by tenfold and 80-fold in the Fe-CGly and FeSO4 groups, respectively, whereas divalent metal transporter 1, duodenal cytochrome b, and ferroportin 1 expression decreased (P < 0.05) in the duodenum in both Fe-CGly and FeSO4 group. A comparison between Fe-CGly and FeSO4 group showed that iron regulatory protein 1 (IRP1) and iron regulatory protein (IRP2) expressions were reduced (P < 0.05) in rats administered FeSO4 than in rats administered with Fe-Cgly. These results indicate that Fe-CGly rapidly improves the blood iron status and that IRP1 and IRP2 may play an important role in the intestinal absorption of Fe-CGly.
Collapse
|