1
|
Zhang Y, Gao S, Mao J, Song Y, Wang X, Jiang J, Lv L, Zhou Z, Wang J. The Inhibitory Effect and Mechanism of the Histidine-Rich Peptide rAj-HRP from Apostichopus japonicus on Human Colon Cancer HCT116 Cells. Molecules 2024; 29:5214. [PMID: 39519855 PMCID: PMC11548021 DOI: 10.3390/molecules29215214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Colon cancer is a common and lethal malignancy, ranking second in global cancer-related mortality, highlighting the urgent need for novel targeted therapies. The sea cucumber (Apostichopus japonicus) is a marine organism known for its medicinal properties. After conducting a bioinformatics analysis of the cDNA library of Apostichopus japonicus, we found and cloned a cDNA sequence encoding histidine-rich peptides, and the recombinant peptide was named rAj-HRP. Human histidine-rich peptides are known for their anti-cancer properties, raising questions as to whether rAj-HRP might exhibit similar effects. To investigate whether rAj-HRP can inhibit colon cancer, we used human colon cancer HCT116 cells as a model and studied the tumor suppressive activity in vitro and in vivo. The results showed that rAj-HRP inhibited HCT116 cell proliferation, migration, and adhesion to extracellular matrix (ECM) proteins in vitro. It also disrupted the cytoskeleton and induced apoptosis in these cells. In vivo, rAj-HRP significantly inhibited the growth of HCT116 tumors in BALB/c mice, reducing tumor volume and weight without affecting the body weight of the tumor-bearing mice. Western blot analysis showed that rAj-HRP inhibited HCT116 cell proliferation and induced apoptosis by upregulating BAX and promoting PARP zymogen degradation. Additionally, rAj-HRP inhibited HCT116 cell adhesion and migration by reducing MMP2 levels. Further research showed that rAj-HRP downregulated EGFR expression in HCT116 cells and inhibited key downstream molecules, including AKT, P-AKT, PLCγ, P38 MAPK, and c-Jun. In conclusion, rAj-HRP exhibits significant inhibitory effects on HCT116 cells in both in vitro and in vivo, primarily through the EGFR and apoptosis pathways. These findings suggest that rAj-HRP has the potential as a novel targeted therapy for colon cancer.
Collapse
Affiliation(s)
- Yuebin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Shan Gao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jiaming Mao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Yuyao Song
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| | - Xueting Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (X.W.); (L.L.)
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China; (S.G.); (J.J.)
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Y.Z.); (J.M.); (Y.S.)
| |
Collapse
|
2
|
Büyüktuna SA, Yerlitaş Sİ, Zararsız GE, Doğan K, Kablan D, Bağcı G, Özer S, Baysal C, Çakır Y, Cephe A, Koçhan N, Zararız G, Doğan HO. Exploring free amino acid profiles in Crimean-Congo hemorrhagic fever patients: Implications for disease progression. J Med Virol 2024; 96:e29637. [PMID: 38773825 DOI: 10.1002/jmv.29637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024]
Abstract
This study investigated the intricate interplay between Crimean-Congo hemorrhagic fever virus infection and alterations in amino acid metabolism. The primary aim is to elucidate the impact of Crimean-Congo hemorrhagic fever (CCHF) on specific amino acid concentrations and identify potential metabolic markers associated with viral infection. One hundred ninety individuals participated in this study, comprising 115 CCHF patients, 30 CCHF negative patients, and 45 healthy controls. Liquid chromatography-tandem mass spectrometry techniques were employed to quantify amino acid concentrations. The amino acid metabolic profiles in CCHF patients exhibit substantial distinctions from those in the control group. Patients highlight distinct metabolic reprogramming, notably characterized by arginine, histidine, taurine, glutamic acid, and glutamine metabolism shifts. These changes have been associated with the underlying molecular mechanisms of the disease. Exploring novel therapeutic and diagnostic strategies addressing specific amino acids may offer potential means to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Seyit Ali Büyüktuna
- Department of Infectious Disease and Clinical Microbiology, Cumhuriyet University School of Medicine, Sivas, Türkiye
| | - Serra İlayda Yerlitaş
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Türkiye
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Gözde Ertük Zararsız
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Türkiye
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Kübra Doğan
- Department of Biochemistry, Minister of Health Sivas Numan Hospital, Sivas, Türkiye
| | - Demet Kablan
- Department of Biochemistry, Cumhuriyet University School of Medicine, Sivas, Türkiye
| | - Gökhan Bağcı
- Faculty of Medicine, Medical Biochemistry, Altinbas University, Istanbul, Türkiye
| | - Selda Özer
- Department of Biochemistry, Cumhuriyet University School of Medicine, Sivas, Türkiye
| | - Cihad Baysal
- Department of Infectious Disease and Clinical Microbiology, Cumhuriyet University School of Medicine, Sivas, Türkiye
| | - Yasemin Çakır
- Department of Infectious Disease and Clinical Microbiology, Cumhuriyet University School of Medicine, Sivas, Türkiye
| | - Ahu Cephe
- Institutional Data Management and Analytics Unit, Erciyes University Rectorate, Kayseri, Türkiye
| | - Necla Koçhan
- İzmir Biomedicine and Genome Center (IBG), İzmir, Türkiye
| | - Gökmen Zararız
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Türkiye
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Türkiye
| | - Halef Okan Doğan
- Department of Biochemistry, Cumhuriyet University School of Medicine, Sivas, Türkiye
| |
Collapse
|
3
|
Latifimehr M, Nazari L, Rastegari AA, Zamani Z, Fard-Esfahani P. The Association between Histidine-Rich Glycoprotein rs10770 Genotype and Recurrent Miscarriage in Iranian Women. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2501086. [PMID: 38659607 PMCID: PMC11042909 DOI: 10.1155/2024/2501086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Purpose Recurrent miscarriage (RM) is a significant reproductive concern affecting numerous women globally. Genetic factors are believed to play a crucial role in RM, making the histidine-rich glycoprotein (HRG) gene, a topic of interest due to its potential involvement in angiogenesis. This study is aimed at investigating the association between the HRG rs10770 genotype and RM. Method Blood samples were collected from a total of 200 women at the beginning of the study. Subsequently, a comparative analysis was conducted between the blood samples of 100 women with a history of RM (case group) and the blood samples of another 100 healthy women (control group). HRG rs10770 genotyping was performed through polymerase chain reaction restriction-fragment length polymorphism (PCR-RFLP), followed by statistical analysis to evaluate the relationship between HRG rs10770 genotype and RM. Results The results indicated a significant statistical difference between the C/C genotype (OR = 3.32, CI: 1.22-9.04, p = 0.01) and the C/T genotype (OR = 1.24, CI: 0.67-2.30, p = 0.47) in both the case and control groups. Additionally, a significant correlation was observed in the C allelic frequency among RM participants compared to the control group (OR = 1.65, CI: 1.06-2.58, p = 0.02). Conclusion The study highlights the importance of HRG rs10770 in understanding RM, shedding light on its implications for reproductive health. Furthermore, it became evident that women carrying the homozygous C/C genotype exhibited increased susceptibility to the risk of RM.
Collapse
Affiliation(s)
- Mahbobeh Latifimehr
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Leila Nazari
- Department of Obstetrics and Gynecology Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Zamani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
4
|
Foglia B, Sutti S, Cannito S, Rosso C, Maggiora M, Casalino A, Bocca C, Novo E, Protopapa F, Ramavath NN, Provera A, Gambella A, Bugianesi E, Tacke F, Albano E, Parola M. Histidine-rich glycoprotein in metabolic dysfunction-associated steatohepatitis-related disease progression and liver carcinogenesis. Front Immunol 2024; 15:1342404. [PMID: 38469298 PMCID: PMC10925642 DOI: 10.3389/fimmu.2024.1342404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD), previously non-alcoholic fatty liver disease (NAFLD), is a leading cause of chronic liver disease worldwide. In 20%-30% of MASLD patients, the disease progresses to metabolic dysfunction-associated steatohepatitis (MASH, previously NASH) which can lead to fibrosis/cirrhosis, liver failure as well as hepatocellular carcinoma (HCC). Here we investigated the role of histidine-rich glycoprotein (HRG), a plasma protein produced by hepatocytes, in MASLD/MASH progression and HCC development. Methods The role of HRG was investigated by morphological, cellular, and molecular biology approaches in (a) HRG knock-out mice (HRG-/- mice) fed on a CDAA dietary protocol or a MASH related diethyl-nitrosamine/CDAA protocol of hepatocarcinogenesis, (b) THP1 monocytic cells treated with purified HRG, and (c) well-characterized cohorts of MASLD patients with or without HCC. Results In non-neoplastic settings, murine and clinical data indicate that HRG increases significantly in parallel with disease progression. In particular, in MASLD/MASH patients, higher levels of HRG plasma levels were detected in subjects with extensive fibrosis/cirrhosis. When submitted to the pro-carcinogenic protocol, HRG-/- mice showed a significant decrease in the volume and number of HCC nodules in relation to decreased infiltration of macrophages producing pro-inflammatory mediators, including IL-1β, IL-6, IL-12, IL-10, and VEGF as well as impaired angiogenesis. The histopathological analysis (H-score) of MASH-related HCC indicate that the higher HRG positivity in peritumoral tissue significantly correlates with a lower overall patient survival and an increased recurrence. Moreover, a significant increase in HRG plasma levels was detected in cirrhotic (F4) patients and in patients carrying HCC vs. F0/F1 patients. Conclusion Murine and clinical data indicate that HRG plays a significant role in MASLD/MASH progression to HCC by supporting a specific population of tumor-associated macrophages with pro-inflammatory response and pro-angiogenetic capabilities which critically support cancer cell survival. Furthermore, our data suggest HRG as a possible prognostic predictor in HCC patients with MASLD/MASH-related HCCs.
Collapse
Affiliation(s)
- Beatrice Foglia
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Salvatore Sutti
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Stefania Cannito
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Chiara Rosso
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Marina Maggiora
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Alice Casalino
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Claudia Bocca
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Erica Novo
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Francesca Protopapa
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| | - Naresh Naik Ramavath
- Department of Pediatrics, School of Medicine, Washington University, St Louis, MO, United States
| | - Alessia Provera
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Alessandro Gambella
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Elisabetta Bugianesi
- Department Medical Sciences, University of Torino, and Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitatsmedizin Berlin, Berlin, Germany
| | - Emanuele Albano
- Department Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of Eastern Piedmont, Novara, Italy
| | - Maurizio Parola
- Department Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Han Y, Shi S, Liu S, Gu X. Effects of spaceflight on the spleen and thymus of mice: Gene pathway analysis and immune infiltration analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8531-8545. [PMID: 37161210 DOI: 10.3934/mbe.2023374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During space flight, the immune system function of the body is disrupted due to continuous weightlessness, radiation and other factors, resulting in an increased incidence of infectious diseases in astronauts. However, the effect of space flight on the immune system at the molecular level is unknown. The aim of this study was to identify key genes and pathways of spatial environmental effects on the spleen and thymus using bioinformatics analysis of the GEO dataset. Differentially expressed genes (DEGs) in the spleen and thymus of mice preflight and postflight were screened by comprehensive analysis of gene expression profile data. Then, GO enrichment analysis of DEGs was performed to determine the biological role of DEGs. A protein-protein interaction network was used to identify hub genes. In addition, transcription factors in DEGs were screened, and a TF-target regulatory network was constructed. Finally, immune infiltration analysis was performed on spleen and thymus samples from mice. The results showed that DEGs in the spleen and thymus are mainly involved in immune responses and in biological processes related to platelets. Six hub genes were identified in the spleen and 13 in the thymus, of which Ttr, Aldob, Gc and Fabp1 were common to both tissues. In addition, 5 transcription factors were present in the DEGs of the spleen, and 9 transcription factors were present in the DEGs of the thymus. The spatial environment can influence the degree of immune cell infiltration in the spleen and thymus. Our study bioinformatically analyzed the GEO dataset of spacefaring mice to identify the effects of the space environment on the immune system and the genes that play key roles, providing insights for the treatment of spaceflight-induced immune system disorders.
Collapse
Affiliation(s)
- Yuru Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Shuang Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Roy S, Agarwal T, Das A, Halder T, Upadhyaya G, Chaubey B, Ray S. The C-terminal stretch of glycine-rich proline-rich protein (SbGPRP1) from Sorghum bicolor serves as an antimicrobial peptide by targeting the bacterial outer membrane protein. PLANT MOLECULAR BIOLOGY 2023; 111:131-151. [PMID: 36271987 DOI: 10.1007/s11103-022-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.
Collapse
Affiliation(s)
- Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Binay Chaubey
- Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
7
|
Kawanoue N, Kuroda K, Yasuda H, Oiwa M, Suzuki S, Wake H, Hosoi H, Nishibori M, Morimatsu H. Consistently low levels of histidine-rich glycoprotein as a new prognostic biomarker for sepsis: A multicenter prospective observational study. PLoS One 2023; 18:e0283426. [PMID: 36989333 PMCID: PMC10057827 DOI: 10.1371/journal.pone.0283426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Few sepsis biomarkers accurately predict severity and mortality. Previously, we had reported that first-day histidine-rich glycoprotein (HRG) levels were significantly lower in patients with sepsis and were associated with mortality. Since the time trends of HRG are unknown, this study focused on the time course of HRG in patients with sepsis and evaluated the differences between survivors and non-survivors. METHODS A multicenter prospective observational study was conducted involving 200 patients with sepsis in 16 Japanese hospitals. Blood samples were collected on days 1, 3, 5, and 7, and 28-day mortality was used for survival analysis. Plasma HRG levels were determined using a modified quantitative sandwich enzyme-linked immunosorbent assay. RESULTS First-day HRG levels in non-survivors were significantly lower than those in survivors (mean, 15.7 [95% confidence interval (CI), 13.4-18.1] vs 20.7 [19.5-21.9] μg/mL; P = 0.006). Although there was no time × survivors/non-survivors interaction in the time courses of HRG (P = 0.34), the main effect of generalized linear mixed models was significant (P < 0.001). In a univariate Cox proportional hazards model with each variable as a time-dependent covariate, higher HRG levels were significantly associated with a lower risk of mortality (hazard ratio, 0.85 [95% CI, 0.78-0.92]; P < 0.001). Furthermore, presepsin levels (P = 0.02) and Sequential Organ Function Assessment scores (P < 0.001) were significantly associated with mortality. Harrell's C-index values for the 28-day mortality effect of HRG, presepsin, procalcitonin, and C-reactive protein were 0.72, 0.70, 0.63, and 0.59, respectively. CONCLUSIONS HRG levels in non-survivors were consistently lower than those in survivors during the first seven days of sepsis. Repeatedly measured HRG levels were significantly associated with mortality. Furthermore, the predictive power of HRG for mortality may be superior to that of other singular biomarkers, including presepsin, procalcitonin, and C-reactive protein.
Collapse
Affiliation(s)
- Naoya Kawanoue
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kosuke Kuroda
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroko Yasuda
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiko Oiwa
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Suzuki
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Hosoi
- Data Science Division, Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Quartz Crystal Microbalance Measurement of Histidine-Rich Glycoprotein and Stanniocalcin-2 Binding to Each Other and to Inflammatory Cells. Cells 2022; 11:cells11172684. [PMID: 36078092 PMCID: PMC9454698 DOI: 10.3390/cells11172684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The plasma protein histidine-rich glycoprotein (HRG) is implicated in the polarization of macrophages to an M1 antitumoral phenotype. The broadly expressed secreted protein stanniocalcin 2 (STC2), also implicated in tumor inflammation, is an HRG interaction partner. With the aim to biochemically characterize the HRG and STC2 complex, binding of recombinant HRG and STC2 preparations to each other and to cells was explored using the quartz crystal microbalance (QCM) methodology. The functionality of recombinant proteins was tested in a phagocytosis assay, where HRG increased phagocytosis by monocytic U937 cells while STC2 suppressed HRG-induced phagocytosis. The binding of HRG to STC2, measured using QCM, showed an affinity between the proteins in the nanomolar range, and both HRG and STC2 bound individually and in combination to vitamin D3-treated, differentiated U937 monocytes. HRG, but not STC2, also bound to formaldehyde-fixed U937 cells irrespective of their differentiation stage in part through the interaction with heparan sulfate. These data show that HRG and STC2 bind to each other as well as to U937 monocytes with high affinity, supporting the relevance of these interactions in monocyte/macrophage polarity.
Collapse
|
9
|
Oiwa M, Kuroda K, Kawanoue N, Morimatsu H. Histidine-rich glycoprotein as a novel predictive biomarker of postoperative complications in intensive care unit patients: a prospective observational study. BMC Anesthesiol 2022; 22:232. [PMID: 35858852 PMCID: PMC9296898 DOI: 10.1186/s12871-022-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Decrease in histidine-rich glycoprotein (HRG) was reported as a cause of dysregulation of the coagulation-fibrinolysis and immune systems, leading to multi-organ failure, and it may be a biomarker for sepsis, ventilator-associated pneumonia, preeclampsia, and coronavirus disease 2019. However, the usefulness of HRG in perioperative management remains unclear. This study aimed to assess the usefulness of HRG as a biomarker for predicting postoperative complications. Methods This was a single-center, prospective, observational study of 150 adult patients who were admitted to the intensive care unit after surgery. Postoperative complications were defined as those having a grade II or higher in the Clavien–Dindo classification, occurring within 7 days after surgery. The primary outcome was HRG levels in the patients with and without postoperative complications. The secondary outcome was the ability of HRG, white blood cell, C-reactive protein, procalcitonin, and presepsin to predict postoperative complications. Data are presented as number and median (interquartile range). Results The incidence of postoperative complications was 40%. The HRG levels on postoperative day 1 were significantly lower in patients who developed postoperative complications (n = 60; 21.50 [18.12–25.74] µg/mL) than in those who did not develop postoperative complications (n = 90; 25.46 [21.05–31.63] µg/mL). The Harrell C-index scores for postoperative complications were HRG, 0.65; white blood cell, 0.50; C-reactive protein, 0.59; procalcitonin, 0.73; and presepsin, 0.73. HRG was independent predictor of postoperative complications when adjusted for age, the presence of preoperative cardiovascular comorbidities, American Society of Anesthesiologists Physical Status Classification, operative time, and the volume of intraoperative bleeding (adjusted hazard ratio = 0.94; 95% confidence interval, 0.90–0.99). Conclusions The HRG levels on postoperative day 1 could predict postoperative complications. Hence, HRG may be a useful biomarker for predicting postoperative complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01774-7.
Collapse
Affiliation(s)
- Masahiko Oiwa
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Kosuke Kuroda
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoya Kawanoue
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Pan Y, Deng L, Wang H, He K, Xia Q. Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes Dis 2022; 9:381-392. [PMID: 35224154 PMCID: PMC8843877 DOI: 10.1016/j.gendis.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Histidine-rich glycoprotein (HRGP) is a relatively less known glycoprotein, but it is abundant in plasma with a multidomain structure, which allows it to interact with many ligands and regulate various biological processes. HRGP ligands includes heme, Zn2+, thrombospondin, plasmin/plasminogen, heparin/heparan sulfate, fibrinogen, tropomyosin, IgG, FcγR, C1q. In many conditions, the histidine-rich region of HRGP strengthens ligand binding following interaction with Zn2+ or exposure to low pH, such as sites of tissue injury or tumor growth. The multidomain structure and diverse ligand binding attributes of HRGP indicates that it can act as an extracellular adaptor protein, connecting with different ligands, especially on cell surfaces. Also, HRGP can selectively target IgG, which blocks the production of soluble immune complexes. The most common cell surface ligand of HRGP is heparan sulfate proteoglycan, and the interaction is also potentiated by elevated Zn2+ concentration and low pH. Recent reports have shown that HRGP can modulate macrophage polarization and possibly regulate other physiological processes such as angiogenesis, anti-tumor immune response, fibrinolysis and coagulation, soluble immune complex clearance and phagocytosis of apoptotic/necrosis cells. In addition, it has also been reported that HRGP has antibacterial and anti-HIV infection effects and may be used as a novel clinical biomarker accordingly. This review outlines the molecular, structural and biological properties of HRGP as well as presenting an update on the function of HRGP in various physiological processes.
Collapse
|
11
|
John AS, Wang Y, Chen J, Osborn W, Wang X, Lim E, Chung D, Stern S, White N, Fu X, López J. Plasma proteomic profile associated with platelet dysfunction after trauma. J Thromb Haemost 2021; 19:1666-1675. [PMID: 33774904 PMCID: PMC8793912 DOI: 10.1111/jth.15316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Coagulopathic bleeding is a major cause of mortality after trauma, and platelet dysfunction contributes to this problem. The causes of platelet dysfunction are relatively unknown, but a great deal can be learned from the plasma environment about the possible pathways involved. OBJECTIVE Describe the changes in plasma proteomic profile associated with platelet dysfunction after trauma. METHODS Citrated blood was collected from severely injured trauma patients at the time of their arrival to the Emergency Department. Samples were collected from 110 patients, and a subset of twenty-four patients was identified by a preserved (n = 12) or severely impaired (n = 12) platelet aggregation response to five different agonists. Untargeted proteomics was performed by nanoflow liquid chromatography tandem mass spectrometry. Protein abundance levels for each patient were normalized to total protein concentration to control for hemodilution by crystalloid fluid infusion prior to blood draw. RESULTS Patients with platelet dysfunction were more severely injured but otherwise demographically similar to those with retained platelet function. Of 232 proteins detected, twelve were significantly different between groups. These proteins fall into several broad categories related to platelet function, including microvascular obstruction with platelet activation, immune activation, and protease activation. CONCLUSIONS This observational study provides a description of the change in proteomic profile associated with platelet dysfunction after trauma and identifies twelve proteins with the most profound changes. The pathways involving these proteins are salient targets for immediate investigation to better understand platelet dysfunction after trauma and identify targets for intervention.
Collapse
Affiliation(s)
- Alexander St. John
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yi Wang
- Bloodworks Research Institute, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - Xu Wang
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Esther Lim
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Susan Stern
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nathan White
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, USA
| | - José López
- Bloodworks Research Institute, Seattle, WA, USA
| |
Collapse
|
12
|
Histidine-rich glycoprotein as a prognostic biomarker for sepsis. Sci Rep 2021; 11:10223. [PMID: 33986340 PMCID: PMC8119687 DOI: 10.1038/s41598-021-89555-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Various biomarkers have been proposed for sepsis; however, only a few become the standard. We previously reported that plasma histidine-rich glycoprotein (HRG) levels decreased in septic mice, and supplemental infusion of HRG improved survival in mice model of sepsis. Moreover, our previous clinical study demonstrated that HRG levels in septic patients were lower than those in noninfective systemic inflammatory response syndrome patients, and it could be a biomarker for sepsis. In this study, we focused on septic patients and assessed the differences in HRG levels between the non-survivors and survivors. We studied ICU patients newly diagnosed with sepsis. Blood samples were collected within 24 h of ICU admission, and HRG levels were determined using an enzyme-linked immunosorbent assay. Ninety-nine septic patients from 11 institutes in Japan were included. HRG levels were significantly lower in non-survivors (n = 16) than in survivors (n = 83) (median, 15.1 [interquartile ranges, 12.7–16.6] vs. 30.6 [22.1–39.6] µg/ml; p < 0.01). Survival analysis revealed that HRG levels were associated with mortality (hazard ratio 0.79, p < 0.01), and the Harrell C-index (predictive power) for HRG was 0.90. These results suggested that HRG could be a novel prognostic biomarker for sepsis.
Collapse
|
13
|
Wang S, Xiao C, Liu C, Li J, Fang F, Lu X, Zhang C, Xu F. Identification of Biomarkers of Sepsis-Associated Acute Kidney Injury in Pediatric Patients Based on UPLC-QTOF/MS. Inflammation 2021; 43:629-640. [PMID: 31828589 DOI: 10.1007/s10753-019-01144-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sepsis or septic shock is often accompanied by organ dysfunction, among which acute kidney injury (AKI) is the most frequent event that appears early during sepsis. To harness urinary metabolic profiling to discover potential biomarkers of septic acute kidney injury in pediatric patients at intensive care units, we collected urine samples from 27 septic children with AKI and 30 septic children without AKI. We used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling and multiple regression analysis to explore the potential biomarkers of sepsis with AKI. We identified a clear distinction in the UPLC-QTOF/MS results for septic children with and without AKI after the development of sepsis, specifically 18 and 17 metabolites with different levels at 12 and 24 h, respectively. Metabolic pathways associated with septic AKI included lipid metabolism, particularly processes involving glycerophospholipid metabolism. L-Histidine, DL-indole-3-lactic acid, trimethylamine N-oxide, and caprylic acid were uncovered as potential biomarkers of septic AKI at 12 h, while gentisaldehyde, 3-ureidopropionate, N4-acetylcytidine, and 3-methoxy-4-hydroxyphenylglycol sulfate were identified as potential candidates at 24 h. We further found that combinations of metabolites were more effective diagnostic marker compared with individual metabolites, with an area under the receiver operating characteristics curve of 0.905 and 0.97 at 12 and 24 h, respectively. Our results indicated that metabolomic analysis could be a promising approach for identifying diagnostic biomarkers of pediatric septic AKI and helped elucidate the pathological mechanisms involved.
Collapse
Affiliation(s)
- Sa Wang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Changxue Xiao
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jing Li
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Fang Fang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xue Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chao Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 136 Second Zhongshan Road, Yuzhong district, Chongqing, 400014, China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
14
|
Ma X, Shang M, Su B, Wiley A, Bangs M, Alston V, Simora RM, Nguyen MT, Backenstose NJC, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Transcriptome Analysis During the Seven Developmental Stages of Channel Catfish ( Ictalurus punctatus) and Tra Catfish ( Pangasianodon hypophthalmus) Provides Novel Insights for Terrestrial Adaptation. Front Genet 2021; 11:608325. [PMID: 33552125 PMCID: PMC7859520 DOI: 10.3389/fgene.2020.608325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022] Open
Abstract
Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Anne Wiley
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Mai Thi Nguyen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, United States.,Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.,Alabama Agricultural Experiment Station, Auburn, AL, United States
| |
Collapse
|
15
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|
16
|
Men WQ, Xu SG, Mou R. Hepatic transcriptome study of Taenia asiatica infection in suckling pigs. Microb Pathog 2020; 152:104598. [PMID: 33157217 DOI: 10.1016/j.micpath.2020.104598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
Taenia asiatica is a crucial Taenia that is prevalent in East and Southeast Asia. Domestic pigs and wild boars are essential intermediate hosts for Taenia. Cysticercus larvae are mainly parasitic in the liver of domestic pigs. The Taenia asiatica was collected from Liangmu Township, Duyun City, Guizhou Province. Twelve Yorkshire Suckling pigs of 20 days of age were randomly divided into an experimental and control group of 6 pigs each. RNA sequencing (RNA-seq) technology was used to detect the expression differences of the mRNA transcriptomes in the liver of the experimental and control group at different infection times. Differential genes were analyzed by bioinformatics and verified by Real Time-PCR(RT-PCR). On the 15th and 75th days after infection, 152 and 558 differentially expressed genes were detected in the liver of the experimental group, respectively, accounting for 0.85% and 3.12% of all identified transcribed RNA genes, respectively. Through GO and KEGG related bioinformatics analysis, it was found that these differentially expressed genes are involved in the immune response, material metabolism, fibrosis, and tissue proliferation and repair of suckling pig liver, and related to MHC antigen processing and presentation, cytochrome P450, transforming growth factor-beta (TGF-β) signaling pathway and so on. Cysticercus asiatica parasites cause significant differential gene expression in the liver of suckling pigs. Specific differentially expressed genes are involved in biological processes such as liver metabolism, immune response, and tissue repair or regeneration in suckling pigs. The immune evasion is related to the immuno-suppressive response of the intermediate host.
Collapse
Affiliation(s)
- Wan-Qi Men
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Shi-Gang Xu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Rong Mou
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
17
|
Wang F, Yang J, Lin H, Li Q, Ye Z, Lu Q, Chen L, Tu Z, Tian G. Improved Human Age Prediction by Using Gene Expression Profiles From Multiple Tissues. Front Genet 2020; 11:1025. [PMID: 33101366 PMCID: PMC7546819 DOI: 10.3389/fgene.2020.01025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Studying transcriptome chronological change from tissues across the whole body can provide valuable information for understanding aging and longevity. Although there has been research on the effect of single-tissue transcriptomes on human aging or aging in mice across multiple tissues, the study of human body-wide multi-tissue transcriptomes on aging is not yet available. In this study, we propose a quantitative model to predict human age by using gene expression data from 46 tissues generated by the Genotype-Tissue Expression (GTEx) project. Specifically, the biological age of a person is first predicted via the gene expression profile of a single tissue. Then, we combine the gene expression profiles from two tissues and compare the predictive accuracy between single and two tissues. The best performance as measured by the root-mean-square error is 3.92 years for single tissue (pituitary), which deceased to 3.6 years when we combined two tissues (pituitary and muscle) together. Different tissues have different potential in predicting chronological age. The prediction accuracy is improved by combining multiple tissues, supporting that aging is a systemic process involving multiple tissues across the human body.
Collapse
Affiliation(s)
- Fayou Wang
- School of Computer and Data Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China.,Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jialiang Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Huixin Lin
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Qian Li
- Geneis Beijing Co., Ltd., Beijing, China.,Reproductive Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Zixuan Ye
- Geneis Beijing Co., Ltd., Beijing, China
| | - Qingqing Lu
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| |
Collapse
|
18
|
Nicoletti M, Gambarotti C, Fasoli E. Proteomic exploration of soft and hard biocorona onto PEGylated multiwalled carbon nanotubes. Biotechnol Appl Biochem 2020; 68:1003-1013. [PMID: 32910836 DOI: 10.1002/bab.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
In nanomedicine, carbon nanotubes (CNTs) are considered potential candidates as drug delivery systems. The absorption of proteins onto CNTs, after their administration in physiological environment, forms the protein corona or biocorona, which is able to influence their biological properties and biocompatibility. For this reason, characterization of protein corona is a crucial aspect in the research to control CNTs toxicity and capability to target cells. Multiwalled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG), chosen considering its well-known biocompatibility, and then incubated in human plasma to create the biocorona. Plasma proteins, which bound around PEGylated CNTs, were detached using five different solutions, grouped into native and denaturant buffers, and used to characterize the two components of biocorona. The proteomic fingerprinting of biocorona was performed by SDS-PAGE and 2D-PAGE separation and mass spectrometry analysis. Native eluents were able to capture proteins of soft corona, characterized by complex secondary structures, and formed by both β-sheet and α-helices domains. Denaturant buffers have eluted many proteins with a high percentage of the α-helix structure that could be involved in specific interactions responsible for the formation of hard corona.
Collapse
Affiliation(s)
- Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Milan, 20133, Italy
| |
Collapse
|
19
|
Siudut J, Natorska J, Son M, Plens K, Undas A. Increased levels of histidine-rich glycoprotein are associated with the development of post-thrombotic syndrome. Sci Rep 2020; 10:14419. [PMID: 32879351 PMCID: PMC7468120 DOI: 10.1038/s41598-020-71437-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Denser fibrin networks which are relatively resistant to lysis can predispose to post-thrombotic syndrome (PTS). Histidine-rich glycoprotein (HRG), a blood protein displaying antifibrinolytic properties, is present in fibrin clots. We investigated whether HRG may affect the risk of PTS in relation to alterations to fibrin characteristics. In venous thromboembolism (VTE) patients, we evaluated plasma HRG levels, plasma clot permeability, maximum absorbance, clot lysis time and maximum rate of increase in D-dimer levels released from clots after 3 months of the index event. We excluded patients with cancer and severe comorbidities. After 2 years of follow-up, 48 patients who developed PTS had 18.6% higher HRG at baseline. Baseline HRG positively correlated with clot lysis time, maximum absorbance, and thrombin-activatable fibrinolysis inhibitor (TAFI) activity but was inversely correlated with plasma clot permeability and maximum rate of increase in D-dimer levels released from clots. On multivariate regression model adjusted for age, fibrinogen and glucose, independent predictors of PTS were recurrent VTE, baseline HRG level, and TAFI activity. VTE recurred in 45 patients, including 30 patients with PTS, and this event showed no association with elevated HRG. Our findings suggest that increased HRG levels might contribute to the development of PTS, in part through prothrombotic fibrin clot properties.
Collapse
Affiliation(s)
- Jakub Siudut
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.,Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202, Krakow, Poland
| | - Joanna Natorska
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.,Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202, Krakow, Poland
| | - Maksim Son
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | | | - Anetta Undas
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland. .,Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202, Krakow, Poland.
| |
Collapse
|
20
|
The Glycine- and Proline-Rich Protein AtGPRP3 Negatively Regulates Plant Growth in Arabidopsis. Int J Mol Sci 2020; 21:ijms21176168. [PMID: 32859078 PMCID: PMC7504531 DOI: 10.3390/ijms21176168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Glycine- and proline-rich proteins (GPRPs) comprise a small conserved family that is widely distributed in the plant kingdom. GPRPs are relatively short peptides (<200 amino acids) that contain three typical domains, including an N-terminal XYPP-repeat domain, a middle hydrophobic domain rich in alanine, and a C-terminal HGK-repeat domain. These proteins have been proposed to play fundamental roles in plant growth and environmental adaptation, but their functions remain unknown. In this study, we selected an Arabidopsis GPRP (AtGPRP3) to profile the physiological role of GPRPs. Transcripts of AtGPRP3 could be detected in the whole Arabidopsis plant, but greater amounts were found in the rosette, followed by the cauline. The AtGPRP3::GFP fusion protein was mainly localized in the nucleus. The overexpression and knockout of AtGPRP3, respectively, retarded and accelerated the growth of Arabidopsis seedlings, while the increase in the growth rate of atgprp3 plants was offset by the complementary expression of AtGPRP3. CAT2 and CAT3, but not CAT1, interacted with AtGPRP3 in the nuclei of Arabidopsis protoplasts. The knockout of CAT2 by CRISPR-Cas9 retarded the growth of the Arabidopsis seedlings. Together, our data suggest that AtGPRP3 negatively regulates plant growth, potentially through CAT2 and CAT3.
Collapse
|
21
|
Nakharuthai C, Rodrigues PM, Schrama D, Kumkhong S, Boonanuntanasarn S. Effects of Different Dietary Vegetable Lipid Sources on Health Status in Nile Tilapia ( Oreochromis niloticus): Haematological Indices, Immune Response Parameters and Plasma Proteome. Animals (Basel) 2020; 10:E1377. [PMID: 32784430 PMCID: PMC7460521 DOI: 10.3390/ani10081377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of DLs, including palm oil (PO; an SFAs), linseed oil (LO; n-3 PUFAs) and soybean oil (SBO; n-6 PUFAs) on the health status of Nile tilapia (Oreochromis niloticus) during adulthood. Three experimental diets incorporating PO, LO or SBO were fed to adult Nile tilapia for a period of 90 days, and haematological and innate immune parameters were evaluated. Proteome analysis was also conducted to evaluate the effects of DLs on plasma proteins. The tested DLs had no significant effects on red blood cell (RBC) count, haematocrit, haemoglobin, and total immunoglobulin and lysozyme activity. Dietary LO led to increased alternative complement 50 activity (ACH50), and proteome analysis revealed that PO and SBO enhanced A2ML, suggesting that different DLs promote immune system via different processes. Dietary LO or SBO increased the expression of several proteins involved in coagulation activity such as KNG1, HRG and FGG. Increased HPX in fish fed with PO suggests that SFAs are utilised in heme lipid-oxidation. Overall, DLs with distinct fatty acids (FAs) affect several parameters corresponding to health status in Nile tilapia, and dietary LO and SBO seemed to strengthen health in this species.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Pedro M. Rodrigues
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Denise Schrama
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Suksan Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| |
Collapse
|
22
|
Wang X, Yan X, Tian X, Zhang Z, Wu W, Shang J, Ouyang J, Yao W, Li S. Glycine- and Proline-Rich Protein OsGPRP3 Regulates Grain Size and Quality in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7581-7590. [PMID: 32579349 DOI: 10.1021/acs.jafc.0c01803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grain size and shape of rice are limited by the growth of the spikelet hulls and are important selective target during domestication and breeding. In this study, we identified a glycine- and proline-rich protein (OsGPRP3), which belongs to a conserved family rarely studied. We found that OsGPRP3 was highly expressed in the seed at 10 days after pollination (DAP) using qRT-PCR, pOsGPRP3::GUS and in situ hybridization. Knockout and knockdown of OsGPRP3 led to significant decrease of 1000-grain weight, grain width, and grain thickness. We further found that the content of storage protein and total lipid were decreased in osgprp3 lines. In particular, the contents of C14:0 (myristic acid), C16:0 (palmitic acid), C18:1 (oleic acid), and C18:2 (linoleic acid) were reduced in osgprp3 lines. Cytological experiments revealed that the cell width of spikelet hull in osgprp3 lines was significantly reduced than that in WT. Taken together, our results reveal that OsGPRP3 regulates the grain size and shape of rice by influencing the cell width of spikelet hulls and the accumulation of storage protein and lipids.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xiaoxiao Tian
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Zongfei Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Weiwei Wu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Junjun Shang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
23
|
Zhang F, Wu P, Wang Y, Zhang M, Wang X, Wang T, Li S, Wei D. Identification of significant genes with prognostic influence in clear cell renal cell carcinoma via bioinformatics analysis. Transl Androl Urol 2020; 9:452-461. [PMID: 32420151 PMCID: PMC7215011 DOI: 10.21037/tau.2020.02.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of kidney with high mortality. The pathogenesis of ccRCC is complicated and effective prognostic predictors for clinical practice are still limited. This study aimed to identify significant genes with prognostic influence in ccRCC via bioinformatics analysis. Methods Four gene expression profiles were acquired from the Gene Expression Omnibus (GEO) database, including 168 ccRCC tissues and 143 normal tissues. Common differentially expressed genes (DEGs) between ccRCC tissues and normal kidney tissues were screened out. Then gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were investigated. Protein-protein interaction (PPI) network of the common DEGs was diagrammed and analyzed. Kaplan–Meier analysis was conducted to identify genes with prognostic influence in ccRCC. Gene Expression Profiling Interactive Analysis (GEPIA) was finally applied to validating differential expression of genes. Results Ninety-nine common DEGs between ccRCC tissues and normal kidney tissues were eventually screened out (P<0.05, |log FC| >2). GO functional analysis showed that the down-regulated genes were enriched in excretion, negative regulation of cell proliferation, heparin binding and cellular response to BMP stimulus, etc. KEGG pathway analysis indicated that the common DEGs were particularly enriched in HIF-1 signaling pathway and aldosterone-regulated sodium reabsorption. Seven core DEGs were distinguished through PPI network analysis, of which 6 core genes ANGPTL4, CA9, CXCR4, LOX, EGF and HRG showed significantly prognostic difference in patients with ccRCC by Kaplan–Meier analysis (P<0.05). And GEPIA confirmed these genes were expressed differentially between tumor and normal tissues (P<0.05). High expression of HRG was correlated with good OS in ccRCC patients. Specifically, HRG was commonly down-regulated in ccRCC tissues compared with normal tissues according to GEPIA. Conclusions Our study shows that high expression of HRG denotes a better prognosis in ccRCC patients. HRG is down-regulated in ccRCC tissues compared with normal kidney tissues. The selective expression pattern suggests that HRG could be a novel prognostic predictor and potential therapeutic target for ccRCC patients.
Collapse
Affiliation(s)
- Fangyuan Zhang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Science, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Science, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Science, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ting Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Science, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Shengwen Li
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Dong Wei
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| |
Collapse
|
24
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
25
|
Halder T, Upadhyaya G, Roy S, Biswas R, Das A, Bagchi A, Agarwal T, Ray S. Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. PLANT MOLECULAR BIOLOGY 2019; 101:95-112. [PMID: 31236845 DOI: 10.1007/s11103-019-00894-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.
Collapse
Affiliation(s)
- Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Ria Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
26
|
Albonici L, Giganti MG, Modesti A, Manzari V, Bei R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int J Mol Sci 2019; 20:ijms20122970. [PMID: 31216652 PMCID: PMC6627047 DOI: 10.3390/ijms20122970] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The sharing of molecules function that affects both tumor growth and neoangiogenesis with cells of the immune system creates a mutual interplay that impairs the host’s immune response against tumor progression. Increasing evidence shows that tumors are able to create an immunosuppressive microenvironment by recruiting specific immune cells. Moreover, molecules produced by tumor and inflammatory cells in the tumor microenvironment create an immunosuppressive milieu able to inhibit the development of an efficient immune response against cancer cells and thus fostering tumor growth and progression. In addition, the immunoediting could select cancer cells that are less immunogenic or more resistant to lysis. In this review, we summarize recent findings regarding the immunomodulatory effects and cancer progression of the angiogenic growth factor namely placental growth factor (PlGF) and address the biological complex effects of this cytokine. Different pathways of the innate and adaptive immune response in which, directly or indirectly, PlGF is involved in promoting tumor immune escape and metastasis will be described. PlGF is important for building up vascular structures and functions. Although PlGF effects on vascular and tumor growth have been widely summarized, its functions in modulating the immune intra-tumoral microenvironment have been less highlighted. In agreement with PlGF functions, different antitumor strategies can be envisioned.
Collapse
Affiliation(s)
- Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
27
|
Zheng YY, Xiao R, Zhang LX, Yan HJ, Wang JH, Lv L. A Novel Mutant of rLj-RGD3 (rLj-112) Suppressed the Proliferation and Metastasis of B16 Cells through the EGFR Signaling Pathway. Mar Drugs 2019; 17:md17020075. [PMID: 30821275 PMCID: PMC6409697 DOI: 10.3390/md17020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Lj-RGD3, which contains three Arg⁻Gly⁻Asp (RGD) motifs, was first identified from the buccal glands of Lampetra japonica and has been shown to suppress the tumor progression in the previous studies. Apart from the three RGD motifs, Lj-RGD3 is also characterized by its high content of histidine in its amino acid sequence. In order to clarify whether the histidine-rich characterization of Lj-RGD3 is also associated with its anti-tumor activity, mutants were designed in which the three RGD motifs (Lj-112), or all histidines (Lj-27) or both (Lj-26) were deleted. Furthermore, a mutant (Lj-42) in which all histidines and three RGD motifs were respectively substituted with alanines and three Ala⁻Gly⁻Asp (AGD) motifs, as well as a mutant (Lj-41) in which all histidines were substituted with alanines was synthesized to avoid alterations in structure which might further cause changes in the peptides' functions. After recombination and purification, recombinant Lj-112 (rLj-112), recombinant Lj-27 (rLj-27), recombinant Lj-41 (rLj-41), and recombinant Lj-RGD3 (rLj-RGD3) exhibited anti-proliferative activity in B16 cells, respectively; while recombinant Lj-26 (rLj-26) and recombinant Lj-42 (rLj-42) did not affect the proliferation of B16 cells significantly. In addition, the anti-proliferative activity of rLj-112 in B16 cells was due to apoptosis. Typical apoptosis features were observed, including chromatin condensation, fragmented DNA, and increased levels of cleaved caspase 3/caspase 7/nuclear enzyme poly (ADP-ribose) polymerase (PARP) in B16 cells. Similar to rLj-RGD3, rLj-112 was also capable of suppressing the migration and invasion of B16 cells by disturbing the F-actin arrangement. After labeling with FITC, rLj-112 was found localized in the cytoplasm of B16 cells, which induced the internalization of epidermal growth factor receptor (EGFR), suggesting that rLj-112 might block the EGFR mediated signaling pathway. Actually, the phosphorylation level of EGFR and its downstream signal molecules including Akt, PI3K, p38, and ERK1/2 was reduced in the rLj-112 treated B16 cells. In vivo, rLj-112 also inhibited the growth, weight, and volume of the tumors in B16 xenografted C57BL/6 mice without reducing their body weight, indicating that rLj-112 might be safe and might be used as an effective anti-tumor drug in the near future.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Lu-Xin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Hui-Jie Yan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Ji-Hong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
28
|
Zhao J, Cai CK, Xie M, Liu JN, Wang BZ. Investigation of the therapy targets of Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu recipe on type 2 diabetes by serum proteome labeled with iTRAQ. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:1-14. [PMID: 29654829 DOI: 10.1016/j.jep.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Based on basic theories of Chinese medicine, Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu (YQYYHTQY) recipe was constituted by eleven kinds of Chinese herbs and effective in treatment of type 2 diabetes (T2DM). But the therapy target was unclear. OBJECTIVE In this study, we used the serum proteome labeled by iTRAQ to find therapy target of YQYYHTQY recipe on T2DM. MATERIALS AND METHODS The rat model was induced by high-fat diet (HFD) and streptozotocin (STZ, 30 mg/kg). Drugs were administered to rats once daily for 14 days. Related laboratory parameters were observed. Serum proteome were compared between T2DM and YQYYHTQY group using the iTRAQ labeling quantitative proteomics technique. Functional differential proteins were analysis by STRING software. Target proteins were confirmed by ELISA kits. RESULTS Hyperglycemia, hyperinsulinemia, insulin resistance, decrease of glucose transporter, depilation, less activity, flock together, depression, ecchymosis of tongue and tail appearance, the typical diabetic patients "a little more than three" symptoms, as well as the decrease of grip strength, serum cyclic adenosine monophosphate (cAMP)/ cyclic guanosine monophosphate (cGMP) ratio, serum high density lipoprotein-cholesterol (HDL-C) and the increase of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), thromboxane B2 (TXB2)/ 6-keto prostaglandin F1α (6-keto PGF1α) ratio, endothelin-1 (ET-1) levels were found in T2DM group. After drugs treatment, all the above indexes almost were improved in different degrees and effect of YQYYHTQY recipe was superior to pioglitazone hydrochloride. In addition, there were 23 differential proteins, 5 up-regulated and 18 down-regulated proteins. Of them, there were 4 proteins related with diabetes, blood and behavior. Cell division control protein 42 homolog (CDC42) and Ras homolog gene family member A (RhoA) were the therapy targets of YQYYHTQY recipe on T2DM. CONCLUSIONS YQYYHTQY recipe showed therapy effect on T2DM. CDC42 and RhoA proteins were the therapy targets of YQYYHTQY recipe.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research and Continuing Education, Shenzhen 518057, China.
| | - Cheng-Ke Cai
- School of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ming Xie
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jin-Na Liu
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Shool of Combination of Chinese traditional and Western medicine, Hebei Medical University, Hebei 050017, China.
| | - Bang-Zhong Wang
- Department of Formula, Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
29
|
Decrease in Histidine-Rich Glycoprotein as a Novel Biomarker to Predict Sepsis Among Systemic Inflammatory Response Syndrome. Crit Care Med 2018; 46:570-576. [DOI: 10.1097/ccm.0000000000002947] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan XL. Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 2018; 7:50735-50754. [PMID: 27191744 PMCID: PMC5226617 DOI: 10.18632/oncotarget.9383] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment is replete with cells that evolve with and provide support to tumor cells during the transition to malignancy. The hijacking of the immune system in the pancreatic tumor microenvironment is suggested to contribute to the failure to date to produce significant improvements in pancreatic cancer survival by various chemotherapeutics. Regulatory T cells, myeloid derived suppressor cells, and fibroblasts, all of which constitute a complex ecology microenvironment, can suppress CD8+ T cells and NK cells, thus inhibiting effector immune responses. Tumor-associated macrophages (TAM) are versatile immune cells that can express different functional programs in response to stimuli in tumor microenvironment at different stages of pancreatic cancer development. TAM have been implicated in suppression of anti-tumorigenic immune responses, promotion of cancer cell proliferation, stimulation of tumor angiogenesis and extracellular matrix breakdown, and subsequent enhancement of tumor invasion and metastasis. Many emerging agents that have demonstrated efficacy in combating other types of tumors via modulation of macrophages in tumor microenvironments are, however, only marginally studied for pancreatic cancer prevention and treatment. A better understanding of the paradoxical roles of TAM in pancreatic cancer may pave the way to novel preventive and therapeutic approaches. Here we give an overview of the recruitment and differentiation of macrophages, TAM and pancreatic cancer progression and prognosis, as well as the potential preventive and therapeutic targets that interact with TAM for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
31
|
Ma D, Wu C, Li G, Leung C. Group 8–9 Metal-Based Luminescent Chemosensors for Protein Biomarker Detection. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-017-0045-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Kumaresan A, Johannisson A, Nordqvist S, Kårehed K, Åkerud H, Lindgren KE, Morrell JM. Relationship of DNA integrity to HRG C633T SNP and ART outcome in infertile couples. Reproduction 2017; 153:865-876. [PMID: 28356499 DOI: 10.1530/rep-17-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/29/2017] [Indexed: 11/08/2022]
Abstract
The status of sperm DNA fragmentation, protamine deficiency, free thiols and disulphide bonds in colloid-selected samples and its relationship to ART outcome or HRG C633T SNP is not known. The objective of this study was to determine these relationships in spermatozoa from men with male factor or unknown factor infertility (n = 118) undergoing in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI). Sperm DNA integrity was analysed by flow cytometry using three fluorescent probes (acridine orange, monobromobimane and chromomycin A3). Principal component analysis (PCA) was used to identify the parameters that most influenced fertility. The relationships of sperm DNA integrity with seminal parameters, HRG C633T SNP and ART outcome were established using ANOVA and t-test. Sperm concentration and yield after preparation accounted for 27% of the total variance; sperm DNA integrity (%DFI and disulphide bonds) accounted for 16% of the variance in men from infertile couples. Sperm %DFI was significantly higher (P < 0.05) in older men than in younger men. A significant difference (P < 0.01) was observed in %DFI between smokers and non-smokers. Sperm %DFI was significantly higher (P < 0.01) in male factor infertility compared to either female factor or unknown factor infertility while free thiols were significantly higher (P < 0.01) in unknown infertility factor. No significant difference was observed between IVF success/failure in any of the seminal parameters studied. There was a tendency for protamine deficiency to be higher and disulphide concentration to be lower in men with HRG 633T. Such assessments may provide additional useful information about the prognosis for ART outcome, although more research is needed before clinical guidelines can be provided.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Department of Clinical Sciences/Division of ReproductionSwedish University of Agricultural Sciences, Uppsala, Sweden.,Theriogenology LaboratoryAnimal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Anders Johannisson
- Department of Clinical Sciences/Division of ReproductionSwedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sarah Nordqvist
- Department of GeneticsImmunology and Pathology, and Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Karin Kårehed
- Department of GeneticsImmunology and Pathology, and Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Helena Åkerud
- Department of GeneticsImmunology and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin E Lindgren
- Department of GeneticsImmunology and Pathology, and Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jane M Morrell
- Department of Clinical Sciences/Division of ReproductionSwedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
33
|
Wells LA, Guo H, Emili A, Sefton MV. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation. Biomaterials 2017; 118:74-83. [DOI: 10.1016/j.biomaterials.2016.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
|
34
|
Bartneck M, Fech V, Ehling J, Govaere O, Warzecha KT, Hittatiya K, Vucur M, Gautheron J, Luedde T, Trautwein C, Lammers T, Roskams T, Jahnen-Dechent W, Tacke F. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology 2016; 63:1310-24. [PMID: 26699087 DOI: 10.1002/hep.28418] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/20/2015] [Indexed: 01/07/2023]
Abstract
UNLABELLED Pathogen- and injury-related danger signals as well as cytokines released by immune cells influence the functional differentiation of macrophages in chronic inflammation. Recently, the liver-derived plasma protein, histidine-rich glycoprotein (HRG), was demonstrated, in mouse tumor models, to mediate the transition of alternatively activated (M2) to proinflammatory (M1) macrophages, which limit tumor growth and metastasis. We hypothesized that liver-derived HRG is a critical endogenous modulator of hepatic macrophage functionality and investigated its implications for liver inflammation and fibrosis by comparing C57BL/6N wild-type (WT) and Hrg(-/-) mice. In homeostatic conditions, hepatic macrophages were overall reduced and preferentially polarized toward the anti-inflammatory M2 subtype in Hrg(-/-) mice. Upon chronic liver damage induced by CCl4 or methionine-choline-deficient (MCD) diet, liver injury and fibrosis were attenuated in Hrg(-/-) , compared to WT, mice. Macrophage populations were reduced and skewed toward M2 polarization in injured livers of Hrg(-/-) mice. Moreover, HRG-deficient mice showed significantly enhanced hepatic vascularization by micro-computed tomography and histology, corroborating proangiogenic activities of M2-polarized liver macrophages. Purified HRG protein induced, but HRG-deficient serum prevented, M1 macrophage differentiation in vitro. Accordingly, Hrg(-/-) mice transplanted with Hrg(+/+) bone marrow, but not Hrg(-/-) -transplanted Hrg(+/+) mice, remained protected from experimental steatohepatitis. Consistent with these findings, patients with chronic hepatitis C and nonalcoholic steatohepatitis significantly up-regulated hepatocytic HRG expression, which was associated with M1 polarization of adjacent macrophages. CONCLUSIONS Liver-derived HRG, similar to alarmins, appears to be an endogenous molecular factor promoting polarization of hepatic macrophages toward the M1 phenotype, thereby promoting chronic liver injury and fibrosis progression, but limiting angiogenesis. Therefore, controlling tissue levels of HRG or PGF might be a promising strategy in chronic inflammatory liver diseases.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Viktor Fech
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Olivier Govaere
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KU Leuven, Belgium
| | - Klaudia Theresa Warzecha
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | | | - Mihael Vucur
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Jérémie Gautheron
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany.,Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tania Roskams
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KU Leuven, Belgium
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Helmholtz Institute for Biomedical Engineering, RWTH University-Hospital Aachen, Aachen, Germany
| |
Collapse
|
35
|
Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett 2015; 381:211-6. [PMID: 26708507 DOI: 10.1016/j.canlet.2015.11.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages make up part of the innate immune system and provide one of the first defenses against variety of treats. Macrophages can also modulate the adaptive immune system. Efficient sensing and response to tissue environmental cues highlights the complexity and dynamic nature of macrophages and their plasticity. Macrophages may have divergent roles depending on their polarity and stimulus received. Accumulating evidence demonstrates the critical role played by macrophages in tumor initiation, development, and progression. In this review, we discuss the characteristics of tumor-associated macrophages (TAMs) and their role in pancreatic adenocarcinoma. In addition, we give an overview on recent advances related to the therapeutic implication associated with targeting TAMs in pancreas cancer.
Collapse
|
36
|
Eissa S, Azzazy HME, Matboli M, Shawky SM, Said H, Anous FA. The prognostic value of histidine-rich glycoprotein RNA in breast tissue using unmodified gold nanoparticles assay. Appl Biochem Biotechnol 2015; 174:751-61. [PMID: 25091325 DOI: 10.1007/s12010-014-1085-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of is this study is to explore the role of tissue histidine-rich glycoprotein (HRG) RNA as a promising clinically useful biomarker for breast cancer patients prognosis using nanogold assay. Expression of the HRG RNA was assessed by gold nanoparticles and conventional RT-PCR after purification by magnetic nanoparticles in breast tissue samples. The study included 120 patients, 60 of which were histologically proven breast carcinoma cases, 30 had benign breast lesions and 30 were healthy individuals who had undergone reductive plastic surgery. ER, PR and HER2 status were also investigated. The prognostic significance of tissue HRG RNA expression in breast cancer was explored. The magnetic nanoparticles coated with specific thiol modified oligonucleotide probe were used successfully in purification of HRG RNA from breast tissue total RNAs with satisfactory yield. The developed HRG AuNPs assay had a sensitivity and a specificity of 90 %, and a detection limit of 1.5 nmol/l. The concordance rate between the HRG AuNPs assay with RT-PCR after RNA purification using magnetic nanoparticles was 93.3 %. The median follow-up period was 60 months. Among traditional prognostic biomarkers, HRG was a significant independent prognostic marker in relapse-free survival (RFS). HRG RNA is an independent prognostic marker for breast cancer and can be detected using gold NPs assay, which is rapid, sensitive, specific, inexpensive to extend the value for breast cancer prognosis.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, P.O. Box 11381, Abbassia, Cairo, Egypt,
| | | | | | | | | | | |
Collapse
|
37
|
Nordqvist S, Kårehed K, Skoog Svanberg A, Menezes J, Åkerud H. Ovarian response is affected by a specific histidine-rich glycoprotein polymorphism: a preliminary study. Reprod Biomed Online 2014; 30:74-81. [PMID: 25456162 DOI: 10.1016/j.rbmo.2014.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
Genetic polymorphisms involved in angiogenesis, apoptosis and chemokine signalling are associated with varying ovarian response and oocyte quality. The protein, histidine-rich glycoprotein (HRG), is involved in these processes, but its effect on ovarian response in IVF has not been previously studied. A single nucleotide polymorphism (SNP) in the HRG gene (C633T) seems to affect pregnancy results in IVF. Women with the C/C genotype had higher pregnancy rates, C/T had moderate rates and none of those in the T/T group conceived. The aim of this study was to investigate if the HRG C633T SNP affects ovarian response. The HRG C633T SNP genotype of 67 women with unexplained infertility undergoing IVF was analysed and related to medical data. The T/T genotype obtained fewer oocytes, including mature oocytes, despite higher dosages of FSH administered. Additionally, the highest proportion of women who had exclusively poor-quality embryos was in the T/T group. No differences in demographic factors known to affect these parameters were found. The results suggest that the HRG C633T SNP influences ovarian response. Further studies of this SNP may increase knowledge about the biological processes involved in oocyte development and, furthermore, improve predicted ovarian response and fertilization.
Collapse
Affiliation(s)
- Sarah Nordqvist
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Karin Kårehed
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Agneta Skoog Svanberg
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Judith Menezes
- Fertilitetscentrum Stockholm, Storängsvägen 10, SE-115 42 Stockholm, Sweden
| | - Helena Åkerud
- Department of Women's and Children's Health, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
38
|
Elenis E, Lindgren KE, Karypidis H, Skalkidou A, Hosseini F, Bremme K, Landgren BM, Skjöldebrand-Sparre L, Stavreus-Evers A, Sundström-Poromaa I, Åkerud H. The histidine-rich glycoprotein A1042G polymorphism and recurrent miscarriage: a pilot study. Reprod Biol Endocrinol 2014; 12:70. [PMID: 25064236 PMCID: PMC4118256 DOI: 10.1186/1477-7827-12-70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Histidine-rich glycoprotein (HRG) has previously been shown to have an impact on implantation and fertility. The aim of this study was to investigate if there is an association between the HRG A1042G single nucleotide polymorphism (SNP) and recurrent miscarriage. METHODS The study was designed as a case-control study and the women were included at University Hospitals in Sweden. 186 cases with recurrent miscarriage were compared with 380 pregnant controls with no history of miscarriage. Each woman was genotyped for the HRG A1042G SNP. RESULTS The results indicated that the frequency of heterozygous HRG A1042G carriers was higher among controls compared to cases (34.7% vs 26.3%; p<0.05). In a bivariate regression analysis, a negative association was found between recurrent miscarriage and heterozygous A/G carriers both in the entire study population (OR 0.67, 95% CI 0.45 - 0.99; p<0.05) as well as in a subgroup of women with primary recurrent miscarriage (OR 0.37, 95% CI 0.16 - 0.84; p<0.05). These results remained even after adjustment for known confounders such as age, BMI and thyroid disease (OR 0.36, 95% CI 0.15 - 0.84; p<0.05). CONCLUSIONS Women who are heterozygous carriers of the HRG A1042G SNP suffer from recurrent miscarriage more seldom than homozygous carriers. Thus, analysis of the HRG A1042G SNP might be of importance for individual counseling regarding miscarriage.
Collapse
Affiliation(s)
- Evangelia Elenis
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Värmland County Council, Karlstad, Sweden
| | - Karin E Lindgren
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Helena Karypidis
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Alkistis Skalkidou
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Frida Hosseini
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Katarina Bremme
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Landgren
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lottie Skjöldebrand-Sparre
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | | | | | - Helena Åkerud
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Lievense L, Bezemer K, Aerts J, Hegmans J. Tumor-associated macrophages in thoracic malignancies. Lung Cancer 2013; 80:256-62. [DOI: 10.1016/j.lungcan.2013.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 01/07/2023]
|
40
|
Patel KK, Poon IKH, Talbo GH, Perugini MA, Taylor NL, Ralph TJ, Hoogenraad NJ, Hulett MD. New method for purifying histidine-rich glycoprotein from human plasma redefines its functional properties. IUBMB Life 2013; 65:550-63. [DOI: 10.1002/iub.1168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
|
41
|
New Insights into the Functions of Histidine-Rich Glycoprotein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:467-93. [DOI: 10.1016/b978-0-12-407696-9.00009-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Bolin M, Wikström AK, Wiberg-Itzel E, Olsson AK, Ringvall M, Sundström-Poromaa I, Axelsson O, Thilaganathan B, Åkerud H. Prediction of preeclampsia by combining serum histidine-rich glycoprotein and uterine artery Doppler. Am J Hypertens 2012; 25:1305-10. [PMID: 22895448 DOI: 10.1038/ajh.2012.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Preeclampsia is associated with both maternal and perinatal morbidity and mortality. Histidine-rich glycoprotein (HRG) is a protein interacting with angiogenesis, coagulation, and inflammatory responses, processes known to be altered in preeclamptic pregnancies. Significantly lower levels of HRG have been demonstrated as early as in the first trimester in women later developing preeclampsia compared with normal pregnancies. The aim of this study was to investigate whether the combination of HRG and uterine artery Doppler ultrasonography can be used as a predictor of preeclampsia. METHODS A total of 175 women were randomly selected from a case-control study; 86 women had an uncomplicated pregnancy and 89 women later developed preeclampsia. Blood samples and pulsatility index (PI) were obtained from both cases and controls in gestational week 14. RESULTS HRG levels were significantly lower in women who developed preterm preeclampsia compared with controls, but not for women developing preeclampsia in general. PI was significantly higher in the preeclampsia group compared with controls, especially in preterm preeclampsia. The combination of HRG and PI revealed a sensitivity of 91% and a specificity of 62% for preterm preeclampsia. CONCLUSIONS The combination of HRG and uterine artery Doppler may predict preterm preeclampsia in early pregnancy.
Collapse
|
43
|
La Mendola D, Magrì A, Santoro AM, Nicoletti VG, Rizzarelli E. Copper(II) interaction with peptide fragments of histidine–proline-rich glycoprotein: Speciation, stability and binding details. J Inorg Biochem 2012; 111:59-69. [DOI: 10.1016/j.jinorgbio.2012.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|
44
|
Abstract
The molecular basis for the anticoagulant action of heparin lies in its ability to bind to and enhance the inhibitory activity of the plasma protein antithrombin against several serine proteases of the coagulation system, most importantly factors IIa (thrombin), Xa and IXa. Two major mechanisms underlie heparin's potentiation of antithrombin. The conformational changes induced by heparin binding cause both expulsion of the reactive loop and exposure of exosites of the surface of antithrombin, which bind directly to the enzyme target; and a template mechanism exists in which both inhibitor and enzyme bind to the same heparin molecule. The relative importance of these two modes of action varies between enzymes. In addition, heparin can act through other serine protease inhibitors such as heparin co-factor II, protein C inhibitor and tissue factor plasminogen inhibitor. The antithrombotic action of heparin in vivo, though dominated by anticoagulant mechanisms, is more complex, and interactions with other plasma proteins and cells play significant roles in the living vasculature.
Collapse
Affiliation(s)
- Elaine Gray
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, UK.
| | | | | |
Collapse
|
45
|
Bolin M, Akerud P, Hansson A, Akerud H. Histidine-rich glycoprotein as an early biomarker of preeclampsia. Am J Hypertens 2011; 24:496-501. [PMID: 21252863 DOI: 10.1038/ajh.2010.264] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prediction of preeclampsia is of great interest and the coagulation system as well as the angiogenic pathway is known to be dysfunctional in preeclampsia. Histidine-rich glycoprotein (HRG) is a protein interacting with both these biological systems and the purpose of this prospective, longitudinal cohort study was to analyze whether there is a difference in circulating levels of HRG during pregnancy in women developing preeclampsia compared to normal healthy pregnancies. We furthermore wanted to evaluate whether HRG has the potential of being an early biomarker of preeclampsia. METHODS A cohort of healthy pregnant women (n = 469) was enrolled at gestational weeks 8-12. Plasma samples were collected at gestational weeks 10, 25, 28, 33, and 37 and analyzed with an enzyme-linked immunosorbent assay. RESULTS The levels of HRG decreased during pregnancy in all women, but the levels were significantly lower at gestational weeks 10, 25, and 28 in women who later developed preeclampsia than in normal pregnant women (P < 0.05, P < 0.05, and P < 0.05). CONCLUSION Our data indicates that HRG levels in plasma might be a possible biomarker already in gestational week 10 for prediction of later onset of preeclampsia in a low risk population.
Collapse
|
46
|
Huang Y, Snuderl M, Jain RK. Polarization of tumor-associated macrophages: a novel strategy for vascular normalization and antitumor immunity. Cancer Cell 2011; 19:1-2. [PMID: 21251607 PMCID: PMC3037265 DOI: 10.1016/j.ccr.2011.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vascular normalization is an emerging concept in cancer treatment. In this issue of Cancer Cell, Rolny et al. show that histidine-rich glycoprotein normalizes tumor vessels and promotes antitumor immunity by polarizing tumor-associated macrophages, leading to decreased tumor growth and metastasis. Placental Growth Factor deletion in macrophages phenocopies many of these effects.
Collapse
Affiliation(s)
- Yuhui Huang
- Steele Lab of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
47
|
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, Costa S, Vinckier S, Dresselaer T, Åkerud P, De Mol M, Salomäki H, Phillipson M, Wyns S, Larsson E, Buysschaert I, Botling J, Himmelreich U, Van Ginderachter JA, De Palma M, Dewerchin M, Claesson-Welsh L, Carmeliet P. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19:31-44. [PMID: 21215706 DOI: 10.1016/j.ccr.2010.11.009] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 08/12/2010] [Accepted: 10/25/2010] [Indexed: 11/15/2022]
Abstract
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chemotactic Factors/metabolism
- Clodronic Acid/pharmacology
- Culture Media, Conditioned/pharmacology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Down-Regulation/genetics
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Gene Expression/drug effects
- Gene Expression/genetics
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Microvessels/drug effects
- Microvessels/pathology
- Microvessels/ultrastructure
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/pathology
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Placenta Growth Factor
- Pregnancy Proteins/genetics
- Pregnancy Proteins/immunology
- Pregnancy Proteins/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proteins/pharmacology
- Regional Blood Flow/drug effects
- Regional Blood Flow/genetics
- Transfection
Collapse
Affiliation(s)
- Charlotte Rolny
- Uppsala University, Department of Genetics and Pathology, Rudbeck Laboratory, 75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Assumpção TCF, Charneau S, Santiago PBM, Francischetti IMB, Meng Z, Araújo CN, Pham VM, Queiroz RML, de Castro CN, Ricart CA, Santana JM, Ribeiro JMC. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 2011; 10:669-79. [PMID: 21058630 DOI: 10.1021/pr100866h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipetalogaster maxima is a blood-sucking Hemiptera that inhabits sylvatic areas in Mexico. It usually takes its blood meal from lizards, but following human population growth, it invaded suburban areas, feeding also on humans and domestic animals. Hematophagous insect salivary glands produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain further insight into the salivary biochemical and pharmacologic complexity of this insect, a cDNA library from its salivary glands was randomly sequenced. Salivary proteins were also submitted to one- and two-dimensional gel electrophoresis (1DE and 2DE) followed by mass spectrometry analysis. We present the analysis of a set of 2728 cDNA sequences, 1375 of which coded for proteins of a putative secretory nature. The saliva 2DE proteome displayed approximately 150 spots. The mass spectrometry analysis revealed mainly lipocalins, pallidipins, antigen 5-like proteins, and apyrases. The redundancy of sequence identification of saliva-secreted proteins suggests that proteins are present in multiple isoforms or derive from gene duplications.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Albuquerque LM, Trugilho MRO, Chapeaurouge A, Jurgilas PB, Bozza PT, Bozza FA, Perales J, Neves-Ferreira AGC. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients. J Proteome Res 2010; 8:5431-41. [PMID: 19845402 DOI: 10.1021/pr900236f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dengue fever is the world's most important arthropod-born viral disease affecting humans. To contribute to a better understanding of its pathogenesis, this study aims to identify proteins differentially expressed in plasmas from severe dengue fever patients relative to healthy donors. The use of 2-D Fluorescence Difference Gel Electrophoresis to analyze plasmas depleted of six high-abundance proteins (albumin, IgG, antitrypsin, IgA, transferrin and haptoglobin) allowed for the detection of 73 differentially expressed protein spots (n = 13, p < 0.01), of which 37 could be identified by mass spectrometry. These 37 spots comprised a total of 14 proteins, as follows: 7 had increased expression in plasmas from dengue fever patients (C1 inhibitor, alpha1-antichymotrypsin, vitamin D-binding protein, fibrinogen gamma-chain, alpha1-acid glycoprotein, apolipoprotein J and complement component C3c), while 7 others had decreased expression in the same samples (alpha-2 macroglobulin, prothrombin, histidine-rich glycoprotein, apolipoproteins A-IV and A-I, transthyretin and complement component C3b). The possible involvement of these proteins in the inflammatory process triggered by dengue virus infection and in the repair mechanisms of vascular damage occurring in this pathology is discussed in this study.
Collapse
Affiliation(s)
- Lidiane M Albuquerque
- Lab Toxinologia and Lab. Imunofarmacologia, Pavilhao Ozorio de Almeida, Instituto Oswaldo Cruz and Instituto de Pesquisa Clinica Evandro Chagas, Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Jackson JC, Duodu KG, Holse M, Lima de Faria MD, Jordaan D, Chingwaru W, Hansen A, Cencic A, Kandawa-Schultz M, Mpotokwane SM, Chimwamurombe P, de Kock HL, Minnaar A. The morama bean (Tylosema esculentum): a potential crop for southern Africa. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 61:187-246. [PMID: 21092905 DOI: 10.1016/b978-0-12-374468-5.00005-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The morama bean is an underutilized leguminous oilseed native to the Kalahari Desert and neighboring sandy regions of Botswana, Namibia, and South Africa (Limpopo, North-West, Gauteng, and Northern Cape provinces), and forms part of the diet of the indigenous population in these countries. It is also known as gemsbok bean, moramaboontjie, elandboontjie, braaiboonjie, marama, marumana, tsi, tsin, gami, and ombanui. It is reported as an excellent source of good quality protein (29-39%); its oil (24-48%) is rich in mono- and di-unsaturated fatty acids and contains no cholesterol. Morama is a good source of micronutrients such as calcium, iron, zinc, phosphate, magnesium, and B vitamins including folate. It is also reported to be a potential source of phytonutrients including phenolic compounds (e.g., tannins), trypsin inhibitors, phytates, and oligosaccharides, components which have been shown in other foods to contribute to health in particular, prevention of noncommunicable diseases such as cardiovascular diseases, diabetes, and some cancers. From a nutritional and health perspective, the morama bean has potential commercial value as a cash crop and value-added products, particularly in the communities where it is found.
Collapse
Affiliation(s)
- Jose C Jackson
- Centre for Scientific Research, Indigenous Knowledge and Innovation (CESRIKI), University of Botswana, Botswana.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|