1
|
Silva DS, Laranjeira P, Silva A, Silva I, Kaminska M, Mydel P, de Vries C, Lundberg K, da Silva JAP, Baptista IP, Paiva A. Impaired Periodontitis-Induced Cytokine Production by Peripheral Blood Monocytes and Myeloid Dendritic Cells in Patients with Rheumatoid Arthritis: A Case-Control Study. J Clin Med 2024; 13:5297. [PMID: 39274511 PMCID: PMC11395796 DOI: 10.3390/jcm13175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Immune cells from rheumatoid arthritis (RA) patients display a reduced in vitro response to Porphyromonas gingivalis (P. gingivalis), which may have functional immune consequences. The aim of this study was to characterize, by flow cytometry, the frequency/activity of monocytes and naturally occurring myeloid dendritic cells (mDCs) in peripheral blood samples from patients with periodontitis and patients with periodontitis and RA. Methods: The relative frequency of monocytes and mDCs in the whole blood, the frequency of these cells producing TNFα or IL-6 and the protein expression levels for each cytokine, before and after stimulation with lipopolysaccharide (LPS) from Escherichia coli plus interferon-γ (IFN-γ), were assessed by flow cytometry, in peripheral blood samples from 10 healthy individuals (HEALTHY), 10 patients with periodontitis (PERIO) and 17 patients with periodontitis and RA (PERIO+RA). Results: The frequency of monocytes and mDCs producing IL-6 or TNF-α and the expression of IL-6 and TNF-α in the PERIO group were generally higher. Within the PERIO+RA group, P. gingivalis and related antibodies were negatively correlated with the monocyte and mDC expression of IL-6. A subgroup of the PERIO+RA patients that displayed statistically significantly lower frequencies of monocytes producing IL-6 after activation presented statistically significantly higher peptidylarginine deiminase (PAD)2/4 activity, anti-arg-gingipain (RgpB) IgG levels, mean probing depth (PD), periodontal inflamed surface area (PISA) and bleeding on probing (BoP). Conclusions: In the patients with PERIO+RA, innate immune cells seemed to produce lower amounts of pro-inflammatory cytokines, which are correlated with worse periodontitis-related clinical and microbiological parameters.
Collapse
Affiliation(s)
- Daniela S Silva
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paula Laranjeira
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Marta Kaminska
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Charlotte de Vries
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - José António P da Silva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel P Baptista
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| |
Collapse
|
2
|
Miao J, Wang HM, Pan XH, Gong Z, Gao XM, Gong FY. hFcγRIIa: a double-edged sword in osteoclastogenesis and bone balance in transgenic mice. Front Immunol 2024; 15:1425670. [PMID: 39281679 PMCID: PMC11392756 DOI: 10.3389/fimmu.2024.1425670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied by local and systemic bone loss. FcγRs, especially FcγRIIa (hFcγRIIa), have been implicated in the pathogenesis of RA. However, the contribution of hFcγRIIa to bone loss has not been fully elucidated. In the present study, we demonstrated the double-edged sword role of hFcγRIIa on osteoclast differentiation through investigations involving hFcγRIIa-transgenic (hFcγRIIa-Tg) mice. Our findings reveal that hFcγRIIa-Tg mice, previously shown to exhibit heightened susceptibility to collagen-induced arthritis (CIA), displayed increased osteoporosis during CIA or at advanced ages (40 weeks), accompanied by heightened in vivo osteoclast differentiation. Notably, bone marrow cells from hFcγRIIa-Tg mice exhibited enhanced efficiency in differentiating into osteoclasts and bone resorption in vitro compared to wild-type mice when stimulated with receptor activators of NF-κB ligand (RANKL). Additionally, hFcγRIIa-Tg mice exhibited augmented sensitivity to RANKL-induced bone loss in vivo, highlighting the osteoclast-promoting role of hFcγRIIa. Mechanistically, bone marrow cells from hFcγRIIa-Tg mice displayed heightened Syk self-activation, leading to mTOR-pS6 pathway activation, thereby promoting RANKL-driven osteoclast differentiation. Intriguingly, while hFcγRIIa crosslinking hindered RANKL-induced osteoclast differentiation, it activated the kinase cAbl, subsequently triggering STAT5 activation and inhibiting the expression of osteoclast-associated genes. This study provides novel insights into hFcγRIIa-mediated osteoclast biology, suggesting promising therapeutic targets for managing bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Ming Gao
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Pan P, Wang Y, Nyirenda MH, Saiyed Z, Karimian Azari E, Sunderman A, Milling S, Harnett MM, Pineda M. Undenatured type II collagen protects against collagen-induced arthritis by restoring gut-joint homeostasis and immunity. Commun Biol 2024; 7:804. [PMID: 38961129 PMCID: PMC11222443 DOI: 10.1038/s42003-024-06476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Oral administration of harmless antigens can induce suppression of reactive immune responses, a process that capitalises on the ability of the gastrointestinal tract to tolerate exposure to food and commensal microbiome without triggering inflammatory responses. Repeating exposure to type II collagen induces oral tolerance and inhibits induction of arthritis, a chronic inflammatory joint condition. Although some mechanisms underlying oral tolerance are described, how dysregulation of gut immune networks impacts on inflammation of distant tissues like the joints is unclear. We used undenatured type II collagen in a prophylactic regime -7.33 mg/kg three times/week- to describe the mechanisms associated with protective oral immune-therapy (OIT) in gut and joint during experimental Collagen-Induced Arthritis (CIA). OIT reduced disease incidence to 50%, with reduced expression of IL-17 and IL-22 in the joints of asymptomatic mice. Moreover, whilst the gut tissue of arthritic mice shows substantial damage and activation of tissue-specific immune networks, oral administration of undenatured type II collagen protects against gut pathology in all mice, symptomatic and asymptomatic, rewiring IL-17/IL-22 networks. Furthermore, gut fucosylation and microbiome composition were also modulated. These results corroborate the relevance of the gut-joint axis in arthritis, showing novel regulatory mechanisms linked to therapeutic OIT in joint disease.
Collapse
Affiliation(s)
- Piaopiao Pan
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK
| | - Yilin Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Mukanthu H Nyirenda
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zainulabedin Saiyed
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Elnaz Karimian Azari
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Amy Sunderman
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Simon Milling
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | | | - Miguel Pineda
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Omran E, Alzahrani AR, Ezzat SF, Ellithy G, Tarek M, Khairy E, Ghit MM, Elgeushy A, Ibrahim Al-Hazani TM, Aziz Ibrahim IA, Falemban AH, Bamagous GA, Elhawary NA, Jaremko M, Saied EM, Mohamed DI. Deciphering the therapeutic potential of trimetazidine in rheumatoid arthritis via targeting mi-RNA128a, TLR4 signaling pathway, and adenosine-induced FADD-microvesicular shedding: In vivo and in silico study. Front Pharmacol 2024; 15:1406939. [PMID: 38919260 PMCID: PMC11196411 DOI: 10.3389/fphar.2024.1406939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.
Collapse
Affiliation(s)
- Enas Omran
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar F. Ezzat
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada Ellithy
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Ghit
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Elgeushy
- Orthopedic Department, Faculty of Medicine, Alazhar University Hospitals, Cairo, Egypt
| | | | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A. Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Sue T, Ichikawa T, Hattori S, Otani H, Fujimura S, Higuchi T, Okumura N, Higuchi Y. Quantitative evaluation of citrullinated fibrinogen for detection of neutrophil extracellular traps. Immunol Res 2024; 72:409-417. [PMID: 38087184 DOI: 10.1007/s12026-023-09446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) composed of chromatin filaments containing bactericidal proteins and enzymes. This process, known as NETosis, is an innate host defense mechanism. However, NET accumulation can lead to uncontrolled inflammation and organ damage. Therefore, NET detection provides clinically important information for the assessment of inflammatory conditions. We investigated whether quantification of citrullinated fibrinogen (C-Fbg), which is catalyzed by peptidylarginine deiminase (PAD) released during NETosis, can be used to detect NETs. Human neutrophils were stimulated with fibrinogen using phorbol 12-myristate 13-acetate (PMA). The myeloperoxidase (MPO)-DNA complex and C-Fbg concentrations in the culture supernatants were quantified using an enzyme-linked immunosorbent assay. The protein levels of peptidylarginine deiminase 2 and 4 in culture supernatants and mRNA levels in PMA-stimulated neutrophils were also assessed. The levels of the MPO-DNA complex in the supernatants of PMA-stimulated neutrophils increased, indicating NETosis. C-Fbg level also increased, which was suppressed by both NETosis and PAD inhibitors. PAD2 was detected in the culture supernatant; however, PAD4, but not PAD2, mRNA levels increased in PMA-stimulated neutrophils. This study quantitatively demonstrates that fibrinogen is citrullinated by PAD derived from PMA-stimulated neutrophils upon NETosis. Although further studies are needed for clinical application, quantification of C-Fbg in blood may help detect the presence of NETs.
Collapse
Affiliation(s)
- Tsubasa Sue
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tomoki Ichikawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Shu Hattori
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hikaru Otani
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Satoshi Fujimura
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Tsukasa Higuchi
- Department of General Pediatrics, Nagano Children's Hospital, Azumino, Japan
- Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| | - Nobuo Okumura
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yumiko Higuchi
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
6
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhu X, Zhang C, Feng S, He R, Zhang S. Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis. Clin Exp Med 2024; 24:39. [PMID: 38386169 PMCID: PMC10884059 DOI: 10.1007/s10238-024-01304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Intestinal microbiota plays an indispensable role in the host's innate immune system, which may be related to the occurrence of many autoimmune diseases. Hashimoto thyroiditis (HT) is one of the most common autoimmune diseases, and there is plenty of evidence indicating that HT may be related to genetics and environmental triggers, but the specific mechanism has not been proven clearly. Significantly, the composition and abundance of intestinal microbiota in patients with HT have an obvious difference. This phenomenon led us to think about whether intestinal microbiota can affect the progress of HT through some mechanisms. By summarizing the potential mechanism of intestinal microflora in regulating Hashimoto thyroiditis, this article explores the possibility of improving HT by regulating intestinal microbiota and summarizes relevant biomarkers as therapeutic targets, which provide new ideas for the clinical diagnosis and treatment of Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Xiaxin Zhu
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310018, People's Republic of China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Reis LR, Souza Junior DR, Tomasin R, Bruni-Cardoso A, Di Mascio P, Ronsein GE. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biol 2023; 64:102784. [PMID: 37356135 DOI: 10.1016/j.redox.2023.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.
Collapse
Affiliation(s)
- Lorenna Rocha Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Rebeka Tomasin
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
11
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
12
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
13
|
Zekeridou A, Gilbert B, Finckh A, Giannopoulou C. Periodontitis in First Degree-Relatives of Individuals With Rheumatoid Arthritis: A Short Narrative Review. FRONTIERS IN ORAL HEALTH 2022; 3:895753. [PMID: 35601818 PMCID: PMC9120603 DOI: 10.3389/froh.2022.895753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Periodontal disease (PD) and rheumatoid arthritis (RA) are chronic inflammatory diseases with a bi-directional relationship. Both share common genetic and environmental risk factors and result in the progressive destruction of bone and connective tissue. First degree relatives of patients with RA (FDR-RA) are one of the at-risk populations for RA. The etiopathogenic mechanisms of their susceptibility are currently being explored, focusing mostly on the role of anti–cyclic citrullinated protein/ peptide antibodies (ACPA) in triggering RA. Oral microbiota and their relation with oral health has been suggested as a factor influencing the risk of the FDR-RA developing RA. In particular, compromised periodontal status often correlates with ACPA seropositivity in FDR-RA. The presence of periodontal pathogens such as Porphyromonas gingivalis, in oral microbiota has been proposed to increase the risk of developing RA through its uniquely expressed peptidyl arginine deiminase (PPAD), capable of citrullinating both host and bacterial peptides. Aggregatibacter actinomycetemcomitans and its leukotoxin A (LtxA), also induces hypercitrullination in host neutrophils. Common risk factors of periodontitis and RA such as genetic predisposition, smoking, higher local and systemic inflammatory burden, are discussed in the literature. Based on those mechanisms periodontal disease seems to be presented as one of the factors triggering RA in FDR-RA. Larger studies evaluating all the potential mechanisms linking RA and periodontitis are needed in FDR-RA to confirm that periodontal disease should be considered in the screening of FDR-RA.
Collapse
Affiliation(s)
- Alkisti Zekeridou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Alkisti Zekeridou ;
| | - Benoit Gilbert
- Division of Rheumatology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Catherine Giannopoulou
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Jajoo NS, Shelke AU, Bajaj RS, Devani V. Correction to: Periodontitis and Rheumatoid Arthritis: The Common Thread. Clin Rev Bone Miner Metab 2021. [DOI: 10.1007/s12018-021-09280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Funabashi K, Sawata M, Nagai A, Akimoto M, Mashimo R, Takahara H, Kizawa K, Thompson PR, Ite K, Kitanishi K, Unno M. Structures of human peptidylarginine deiminase type III provide insights into substrate recognition and inhibitor design. Arch Biochem Biophys 2021; 708:108911. [PMID: 33971157 DOI: 10.1016/j.abb.2021.108911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.
Collapse
Affiliation(s)
- Kazumasa Funabashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Mizuki Sawata
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Anna Nagai
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Megumi Akimoto
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Ryutaro Mashimo
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Hidenari Takahara
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan; College of Agriculture, Ibaraki University, Ami Inashiki, Japan
| | - Kenji Kizawa
- Kao Corporation, Biological Science Research Laboratory, Odawara, Japan
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kenji Ite
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan
| | - Kenichi Kitanishi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Tokyo University of Science, Faculty of Science Division I, Tokyo, Japan
| | - Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan; Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai Naka, Japan.
| |
Collapse
|
16
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
17
|
Abstract
Endotoxemia induced by lipopolysaccharide (LPS) is an extremely severe syndrome identified by global activation of inflammatory responses. Neutrophil extracellular traps (NETs) play an important role in the development of endotoxemia. Histone hypercitrullination catalyzed by peptidylarginine deiminases (PADs) is a key step of NET formation. We have previously demonstrated that simultaneous inhibition of PAD2 and PAD4 with pan-PAD inhibitors can decrease NETosis and improve survival in a mouse model of LPS-induced endotoxic shock. However, the effects of PAD2 specific inhibition during NETosis and endotoxic shock are poorly understood. Therefore, in the present study, we aimed to investigate the effect of the specific PAD2 or PAD4 inhibitor on LPS-induced endotoxic shock in mice. We found that PAD2 inhibition but not PAD4 inhibition improves survival. Also, the levels of proinflammatory cytokines and NETosis were significantly reduced by PAD2 inhibitor. To our knowledge, this study demonstrates for the first time that PAD2 inhibition can reduce NETosis, decrease inflammatory cytokine production, and protect against endotoxin-induced lethality. Our findings provided a novel therapeutic strategy for the treatment of endotoxic shock.
Collapse
|
18
|
Serum biomarker panel for the diagnosis of rheumatoid arthritis. Arthritis Res Ther 2021; 23:31. [PMID: 33461622 PMCID: PMC7812661 DOI: 10.1186/s13075-020-02405-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease of inflammatory joint damage, wherein C-reactive protein and autoantibodies including rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) are rapidly elevated. These serological factors are diagnostic markers of RA; however, their sensitivity and specificity for prediction warrant improvement for an early and accurate diagnosis. Methods We aimed to identify alternative biomarkers by serum protein profiling using LC-MS/MS. We performed statistical and functional analysis of differentially expressed proteins to identify biomarker candidates complementing conventional serological tests. Results Seven biomarker candidates were verified through multiple reaction monitoring-based quantitative analysis, of which angiotensinogen (AGT), serum amyloid A-4 protein (SAA4), vitamin D-binding protein (VDBP), and retinol-binding protein-4 (RBP4) had an area under the curve over 0.8, thus distinguishing RA patients, including seronegative (RF- and anti-CCP-negative) RA patients, from healthy controls. Conclusions Therefore, among seronegative RA patients, a four-biomarker panel (AGT, SAA4, VDBP, and RBP4) can prevent false negatives and help diagnose RA accurately.
Collapse
|
19
|
Foers AD, Dagley LF, Chatfield S, Webb AI, Cheng L, Hill AF, Wicks IP, Pang KC. Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid. Clin Transl Immunology 2020; 9:e1185. [PMID: 33204424 PMCID: PMC7648259 DOI: 10.1002/cti2.1185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Extracellular vesicles (EVs) from rheumatoid arthritis (RA) synovial fluid (SF) have been reported to stimulate the release of pro-inflammatory mediators from recipient cells. We recently developed a size exclusion chromatography (SEC)-based method for EV isolation capable of high-quality enrichments from human SF. Here, we employed this method to accurately characterise the SF EV proteome and investigate potential contributions to inflammatory pathways in RA. Methods Using our SEC-based approach, SF EVs were purified from the joints of RA patients classified as having high-level (n = 7) or low-level inflammation (n = 5), and from osteoarthritis (OA) patients (n = 5). Protein profiles were characterised by mass spectrometry. Potential contributions of EV proteins to pathological pathways and differences in protein expression between disease groups were investigated. Results Synovial fluid EVs were present at higher concentrations in RA joints with high-level inflammation (P-value = 0.004) but were smaller in diameter (P-value = 0.03) than in low-level inflammation. In total, 1058 SF EV proteins were identified by mass spectrometry analysis. Neutrophil and fibroblast markers were overrepresented in all disease groups. Numerous proteins with potential to modulate inflammatory and immunological processes were detected, including nine citrullinated peptides. Forty-five and 135 EV-associated proteins were significantly elevated in RA joints with high-level inflammation than in RA joints with low-level inflammation and OA joints, respectively. Gene ontology analysis revealed significant enrichment for proteins associated with 'neutrophil degranulation' within SF EVs from RA joints with high-level inflammation. Conclusion Our results provide new information about SF EVs and insight into how EVs might contribute to the perpetuation of RA.
Collapse
Affiliation(s)
- Andrew D Foers
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Simon Chatfield
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Rheumatology Royal Melbourne Hospital Parkville VIC Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Rheumatology Royal Melbourne Hospital Parkville VIC Australia
| | - Ken C Pang
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics University of Melbourne Parkville VIC Australia.,Department of Adolescent Medicine Royal Children's Hospital. Parkville VIC Australia
| |
Collapse
|
20
|
Qin G, Lin X, Liang P, Li Y, Zhou C, Kutty SN, Rikard H. [Strong inflammation is essential for expression of articular cartilage-specific citrullinated antigens]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1081-1089. [PMID: 32895186 DOI: 10.12122/j.issn.1673-4254.2020.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression of citrullinated epitopes in articular cartilage protein and whether its expression is sufficient to induce anti-citrullinated protein antibody (ACPA) response in mice. METHODS The experimental group was treated with different concentrations of lipopolysaccharide (LPS), heat-inactivated bacteria (Escherichia coli and Staphylococcus aureus) or specific monoclonal antibody against type Ⅱ collagen to induce citrullination of articular cartilage protein, with PBS as the control. Immunohistochemistry with the monoclonal antibody ACC4 (IgG1) that specifically binds to the citrullinated epitope of cartilage protein was performed for detecting the expression of citrullinated protein, with ACC1 (IgG2a) as a positive control antibody and L243 (IgG2a) and Hy2.15 (IgG1) as the negative isotype control. In the in vivo experiment, SD rats were subjected to injection of different doses of LPS in the right knee (with PBS as the controls in the left knee), and 3 days later frozen sections were prepared for immunohistochemical detection of the expression of citrullinated protein. Models of collagen-induced arthritis (CIA) established in different mouse strains were observed for incidence and severity of CIA. Serum samples collected from these models and the sera from rheumatoid arthritis patients were examined for anti-citrullinated protein antibody, and immunohistochemistry was performed to detect the expression of citrullinated protein in the cartilage of the mouse. RESULTS The citrullinated CII epitope-specific antibody ACC4 did not bind to articular cartilage tissues with different treatments as compared with the positive control antibody ACC1. The ACC4 antibody and the antibodies from patients with rheumatoid arthritis with high titers of anti-citrullinated protein antibody were capable of binding to the synovial tissue around the articular cartilage of the CIA. Luminex analysis showed that the anti-citrullinated protein antibody was lowly expressed in mouse serum, but the anti-type Ⅱ collagen triple helix structure peptide antibody exhibited strong reactivity. CONCLUSIONS Mild acute inflammatory response is not enough to cause citrullination of articular cartilage protein, and the expression of specific epitope requires a high-intensity inflammatory response. Inflammatory articular cartilage protein can express citrullinated epitopes in type Ⅱ collagen-induced arthritis in mice, but the expression of citrullinated epitopes is not sufficient to induce an immune response to anti-citrullinated antibodies. Stronger stimulation signals are required to induce an immune response for producing anti-citrullinated protein antibodies.
Collapse
Affiliation(s)
- Guicheng Qin
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyin Lin
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peibin Liang
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanpeng Li
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Selva Nandakumar Kutty
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Holmdahl Rikard
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
21
|
|
22
|
Wang J, Tie N, Li H, Kang X. Inhibitory Effect of Tetramerized Single-Chain Variable Fragment of Anti-Cyclic Citrullinated Peptide Antibodies on the Proliferation, Activation, and Secretion of Cytokines of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis In Vitro Co-Culture System. Inflammation 2020; 43:2245-2255. [PMID: 32737657 DOI: 10.1007/s10753-020-01292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tetramerized single-chain variable fragment (ScFv) of anti-cyclic citrullinated peptide (TeAb-CCP) is a constructed tetramerized ScFv of anti-cyclic citrullinated peptide (CCP) antibodies with p53 tetrameric domain, aim to investigate its effect on fibroblast-like synoviocytes (FLSs) proliferation, migration, invasion, and production of inflammatory mediators in the in vitro co-culture system of peripheral mononuclear cells (PBMCs) and FLSs. TeAb-CCP was constructed by modifying a monovalent ScFv antibody to CCP with p53 tetrameric domain to improve its affinity. FLSs were isolated and cultured from rheumatoid arthritis (RA) patients and control subjects. A co-culture system of peripheral mononuclear cells (PBMCs) and FLSs was used. FLSs proliferation, migration, and invasion were measured by MTT, scratch test, and Transwell chamber. Supernatants were measured for cytokines, chemokines, metalloproteinases, and anti-CCP antibodies by Luminex liquid phase protein chip and ELISA. TeAb-CCP significantly inhibited FLSs proliferation in a dose-dependent mode, with maximal action at concentration of 100 μg/ml on the 7th day in the co-culture system with PBMCs and FLSs, but not the same with only FLSs. TeAb-CCP significantly suppressed FLSs migration and invasive ability compared with the controls. Significantly lower levels of interleukin (IL)-6, IL-8, RANKL, protein arginine deiminase (PAD)-2, PAD4, metalloproteinase (MMP)-1 and MMP-3 and anti-CCP antibodies were found in co-culture supernatant of TeAb-CCP group. In contrast, transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinases-2 (TIMP-2) was significantly increased in the TeAb-CCP group. No significant difference of IL-1a, IL-10, IL-17, TNFα, VEGF, and FGF was found between two groups. As a blocking antibody, TeAb-CCP can significantly inhibit PBMCs of RA to produce pro-inflammatory mediators, and furthermore, inhibit the proliferation, activation, migration, and invasion of FLSs in vitro. In turn, it is suggested that citrullinated modified self-epitopes may be a new target for RA therapy.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ning Tie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Xixiong Kang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Type III intermediate filaments as targets and effectors of electrophiles and oxidants. Redox Biol 2020; 36:101582. [PMID: 32711378 PMCID: PMC7381704 DOI: 10.1016/j.redox.2020.101582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) play key roles in cell mechanics, signaling and homeostasis. Their assembly and dynamics are finely regulated by posttranslational modifications. The type III IFs, vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP), are targets for diverse modifications by oxidants and electrophiles, for which their conserved cysteine residue emerges as a hot spot. Pathophysiological examples of these modifications include lipoxidation in cell senescence and rheumatoid arthritis, disulfide formation in cataracts and nitrosation in endothelial shear stress, although some oxidative modifications can also be detected under basal conditions. We previously proposed that cysteine residues of vimentin and GFAP act as sensors for oxidative and electrophilic stress, and as hinges influencing filament assembly. Accumulating evidence indicates that the structurally diverse cysteine modifications, either per se or in combination with other posttranslational modifications, elicit specific functional outcomes inducing distinct assemblies or network rearrangements, including filament stabilization, bundling or fragmentation. Cysteine-deficient mutants are protected from these alterations but show compromised cellular performance in network assembly and expansion, organelle positioning and aggresome formation, revealing the importance of this residue. Therefore, the high susceptibility to modification of the conserved cysteine of type III IFs and its cornerstone position in filament architecture sustains their role in redox sensing and integration of cellular responses. This has deep pathophysiological implications and supports the potential of this residue as a drug target. Type III intermediate filaments can be modified by many oxidants and electrophiles. Oxidative modifications of type III IFs occur in normal and pathological conditions. The conserved cysteine residue acts as a hub for redox/electrophilic modifications. Cysteine modifications elicit structure-dependent type III IF rearrangements. Type III intermediate filaments act as sensors for oxidative and electrophilic stress.
Collapse
|
24
|
Gollomp K, Sarkar A, Harikumar S, Seeholzer SH, Arepally GM, Hudock K, Rauova L, Kowalska MA, Poncz M. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood 2020; 135:743-754. [PMID: 31722003 PMCID: PMC7059515 DOI: 10.1182/blood.2019002329] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.
Collapse
Affiliation(s)
- Kandace Gollomp
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Amrita Sarkar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sanjiv Harikumar
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Steven H Seeholzer
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Kristin Hudock
- Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, OH; and
| | - Lubica Rauova
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - M Anna Kowalska
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | - Mortimer Poncz
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
26
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
27
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
28
|
Navarro Quiroz E, Chavez-Estrada V, Macias-Ochoa K, Ayala-Navarro MF, Flores-Aguilar AS, Morales-Navarrete F, de la Cruz Lopez F, Gomez Escorcia L, Musso CG, Aroca Martinez G, Gonzales Torres H, Diaz Perez A, Cadena Bonfanti A, Sarmiento Gutierrez J, Meza J, Diaz Arroyo E, Bello Lemus Y, Ahmad M, Navarro Quiroz R. Epigenetic Mechanisms and Posttranslational Modifications in Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:E5679. [PMID: 31766160 PMCID: PMC6888206 DOI: 10.3390/ijms20225679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
The complex physiology of eukaryotic cells is regulated through numerous mechanisms, including epigenetic changes and posttranslational modifications. The wide-ranging diversity of these mechanisms constitutes a way of dynamic regulation of the functionality of proteins, their activity, and their subcellular localization as well as modulation of the differential expression of genes in response to external and internal stimuli that allow an organism to respond or adapt to accordingly. However, alterations in these mechanisms have been evidenced in several autoimmune diseases, including systemic lupus erythematosus (SLE). The present review aims to provide an approach to the current knowledge of the implications of these mechanisms in SLE pathophysiology.
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Valeria Chavez-Estrada
- School of Medicine, Universidad de Guadalajara, Jalisco 44100, Mexico; (V.C.-E.); (K.M.-O.); (M.F.A.-N.)
| | - Karime Macias-Ochoa
- School of Medicine, Universidad de Guadalajara, Jalisco 44100, Mexico; (V.C.-E.); (K.M.-O.); (M.F.A.-N.)
| | | | | | | | - Fernando de la Cruz Lopez
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Lorena Gomez Escorcia
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Carlos G. Musso
- Department of Nephrology, Hospital Italiano de Buenos Aires, Buenos Aires B1675, Argentina;
| | - Gustavo Aroca Martinez
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
- Department of Nephrology, Clinica de la Costa, Barranquilla 080001, Colombia
| | - Henry Gonzales Torres
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Anderson Diaz Perez
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
- Faculty of Health Sciences, Corporacion Universitaria Rafael Nuñez, Cartagena de Indias 130001, Colombia
| | - Andres Cadena Bonfanti
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
- Department of Nephrology, Clinica de la Costa, Barranquilla 080001, Colombia
| | - Joany Sarmiento Gutierrez
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
- Department of Nephrology, Clinica de la Costa, Barranquilla 080001, Colombia
| | - Jainy Meza
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | | | - Yesit Bello Lemus
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Mostapha Ahmad
- Faculty of Basic and Biomedical Sciences, Universidad Simon Bolivar, Barranquilla 080001, Colombia; (F.d.l.C.L.); (L.G.E.); (G.A.M.); (H.G.T.); (A.D.P.); (A.C.B.); (J.S.G.); (J.M.); (Y.B.L.); (M.A.)
| | - Roberto Navarro Quiroz
- CMCC—Centro de Matemática, Computação e Cognição, Laboratório do Biología Computacional e Bioinformática—LBCB, Universidade Federal do ABC, Sao Paulo 01023, Brazil;
| |
Collapse
|
29
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
30
|
Sensitization to endothelial cell antigens: Unraveling the cause or effect paradox. Hum Immunol 2019; 80:614-620. [PMID: 31054781 DOI: 10.1016/j.humimm.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
Abstract
Anti-endothelial cell antibodies (AECAs) have been correlated with increased acute and chronic rejection across all organ types and early graft dysfunction in kidney and heart transplantation. Nevertheless, the lack of appropriate tools and clear criteria for defining injurious versus non-injurious AECAs prohibits their routine inclusion in clinical risk assessments and diagnostic algorithms for antibody mediated injury. Clinical characterization of AECAs is complicated due to the wide range of polymorphic and non-polymorphic antigens expressed across different vascular tissues and the diverse array of specificities observed between individuals. This complexity is also reflected in the broad spectrum of reported injury phenotypes. AECAs detected at time of allograft dysfunction may represent biomarkers of past vascular injury or active contributors to a current rejection process. New tools within the fields of proteomics, genomics, bioinformatics, and imaging are currently being validated and hold great promise for unraveling the AECA paradox.
Collapse
|
31
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
32
|
Kongpachith S, Lingampalli N, Ju CH, Blum LK, Lu DR, Elliott SE, Mao R, Robinson WH. Affinity Maturation of the Anti-Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:507-517. [PMID: 30811898 DOI: 10.1002/art.40760] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA). While epitope spreading of the serum ACPA response is believed to contribute to RA pathogenesis, little is understood regarding how this phenomenon occurs. This study was undertaken to analyze the antibody repertoires of individuals with RA to gain insight into the mechanisms leading to epitope spreading of the serum ACPA response in RA. METHODS Plasmablasts from the blood of 6 RA patients were stained with citrullinated peptide tetramers to identify ACPA-producing B cells by flow cytometry. Plasmablasts were single-cell sorted and sequenced to obtain antibody repertoires. Sixty-nine antibodies were recombinantly expressed, and their anticitrulline reactivities were characterized using a cyclic citrullinated peptide enzyme-linked immuosorbent assay and synovial antigen arrays. Thirty-six mutated antibodies designed either to represent ancestral antibodies or to test paratope residues critical for binding, as determined from molecular modeling studies, were also tested for anticitrulline reactivities. RESULTS Clonally related monoclonal ACPAs and their shared ancestral antibodies each exhibited differential reactivity against citrullinated antigens. Molecular modeling identified residues within the complementarity-determining region loops and framework regions predicted to be important for citrullinated antigen binding. Affinity maturation resulted in mutations of these key residues, which conferred binding to different citrullinated epitopes and/or increased polyreactivity to citrullinated epitopes. CONCLUSION These results demonstrate that the different somatic hypermutations accumulated by clonally related B cells during affinity maturation alter the antibody paratope to mediate epitope spreading and polyreactivity of the ACPA response in RA, suggesting that these may be key properties that likely contribute to the pathogenicity of ACPAs.
Collapse
Affiliation(s)
- Sarah Kongpachith
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Nithya Lingampalli
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Chia-Hsin Ju
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Lisa K Blum
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Daniel R Lu
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Serra E Elliott
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Rong Mao
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - William H Robinson
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
33
|
Serhal L, Edwards CJ. Upadacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol 2018; 15:13-25. [DOI: 10.1080/1744666x.2019.1544892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lina Serhal
- Department of Rheumatology, Royal Hampshire County Hospital NHS Foundation Trust, Winchester, UK
| | - Christopher J. Edwards
- Department of Rheumatology and NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
34
|
Buitinga M, Callebaut A, Marques Câmara Sodré F, Crèvecoeur I, Blahnik-Fagan G, Yang ML, Bugliani M, Arribas-Layton D, Marré M, Cook DP, Waelkens E, Mallone R, Piganelli JD, Marchetti P, Mamula MJ, Derua R, James EA, Mathieu C, Overbergh L. Inflammation-Induced Citrullinated Glucose-Regulated Protein 78 Elicits Immune Responses in Human Type 1 Diabetes. Diabetes 2018; 67:2337-2348. [PMID: 30348823 PMCID: PMC6973547 DOI: 10.2337/db18-0295] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
The β-cell has become recognized as a central player in the pathogenesis of type 1 diabetes with the generation of neoantigens as potential triggers for breaking immune tolerance. We report that posttranslationally modified glucose-regulated protein 78 (GRP78) is a novel autoantigen in human type 1 diabetes. When human islets were exposed to inflammatory stress induced by interleukin-1β, tumor necrosis factor-α, and interferon-γ, arginine residue R510 within GRP78 was converted into citrulline, as evidenced by liquid chromatography-tandem mass spectrometry. This conversion, known as citrullination, led to the generation of neoepitopes, which effectively could be presented by HLA-DRB1*04:01 molecules. With the use of HLA-DRB1*04:01 tetramers and ELISA techniques, we demonstrate enhanced antigenicity of citrullinated GRP78 with significantly increased CD4+ T-cell responses and autoantibody titers in patients with type 1 diabetes compared with healthy control subjects. Of note, patients with type 1 diabetes had a predominantly higher percentage of central memory cells and a lower percentage of effector memory cells directed against citrullinated GRP78 compared with the native epitope. These results strongly suggest that citrullination of β-cell proteins, exemplified here by the citrullination of GRP78, contributes to loss of self-tolerance toward β-cells in human type 1 diabetes, indicating that β-cells actively participate in their own demise.
Collapse
Affiliation(s)
- Mijke Buitinga
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Aïsha Callebaut
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Meghan Marré
- Division of Pediatric Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Dana P Cook
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Roberto Mallone
- INSERM, U1016, CNRS, UMR8104, Paris Descartes University, Sorbonne Paris Cité, Cochin Institute, Paris, France
| | - Jon D Piganelli
- Division of Pediatric Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | | | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Bendorius M, Neeli I, Wang F, Bonam SR, Dombi E, Buron N, Borgne-Sanchez A, Poulton J, Radic M, Muller S. The Mitochondrion-lysosome Axis in Adaptive and Innate Immunity: Effect of Lupus Regulator Peptide P140 on Mitochondria Autophagy and NETosis. Front Immunol 2018; 9:2158. [PMID: 30319621 PMCID: PMC6168670 DOI: 10.3389/fimmu.2018.02158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondria deserve special attention as sensors of cellular energy homeostasis and metabolic state. Moreover, mitochondria integrate intra- and extra-cellular signals to determine appropriate cellular responses that range from proliferation to cell death. In autoimmunity, as in other inflammatory chronic disorders, the metabolism of immune cells may be extensively remodeled, perturbing sensitive tolerogenic mechanisms. Here, we examine the distribution and effects of the therapeutic 21-mer peptide called P140, which shows remarkable efficacy in modulating immune responses in inflammatory settings. We measured P140 and control peptide effects on isolated mitochondria, the distribution of peptides in live cells, and their influence on the levels of key autophagy regulators. Our data indicate that while P140 targets macro- and chaperone-mediated autophagy processes, it has little effect, if any, on mitochondrial autophagy. Remarkably, however, it suppresses NET release from neutrophils exposed to immobilized NET-anti-DNA IgG complexes. Together, our results suggest that in the mitochondrion-lysosome axis, a likely driver of NETosis and inflammation, the P140 peptide does not operate by affecting mitochondria directly.
Collapse
Affiliation(s)
- Mykolas Bendorius
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fengjuan Wang
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Srinivasa Reddy Bonam
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France
| | - Eszter Dombi
- Nuffield Department of Women's and Reproductive Health, Women's Centre, Oxford, United Kingdom
| | | | | | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, Women's Centre, Oxford, United Kingdom
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sylviane Muller
- Unit Biotechnology and Cell Signaling, Laboratory of Excellence Medalis, CNRS, Strasbourg University, Illkirch, France.,Institute for Advanced Study, University of Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Heluany CS, Kupa LDVK, Viana MN, Fernandes CM, Farsky SHP. Hydroquinone exposure worsens the symptomatology of rheumatoid arthritis. Chem Biol Interact 2018; 291:120-127. [PMID: 29908986 DOI: 10.1016/j.cbi.2018.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
The genesis of rheumatoid arthritis (RA) is complex and dependent on genetic background and exposure to environmental xenobiotic. Indeed, smoking is associated to developing and worsening pre-existing RA. Nevertheless, the mechanisms and cigarette compounds involved in the harmful processes have not been elucidated. Here, we investigated if the exposure to hydroquinone (HQ), an abundant pro-oxidative compound of cigarette and benzene metabolite, could worsen the ongoing RA. Hence, collagen-induced arthritis (CIA) was induced in male Wistar rats by s.c. injection of 400 μg (200 μL) of bovine collagen type II emulsified in complete Freund's adjuvant on day 1, and a booster injection was performed on day 7. Exposures to nebulized HQ (25 ppm), saline solution or HQ vehicle solution (5% ethanol in saline) were carried out for 1 h, once a day, on days 21-27 after CIA induction. On day 27, animals were euthanized and samples were collected for further analyses. Exposure to HQ caused loss of weight, intensified paw edema, enhanced levels of tumor necrosis factor-α (TNF-α) and anti-citrullinated protein antibody (ACPA) in the serum; augmented synoviocyte proliferation and influx of aril hydrocarbon receptor (AhR) positive cells into the synovial membrane, altered collagen fibre rearrangement in the synovia, and synoviocytes isolated from HQ exposed rats secreted higher levels of pro-inflammatory cytokines, TNF-α and interleukin-1β. Associated, we point out HQ as an environmental pollutant that aggravates RA, suggesting its participation on worsening RA in smoking patients.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Leonard de Vinci Kanda Kupa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
37
|
Radic M, Pattanaik D. Cellular and Molecular Mechanisms of Anti-Phospholipid Syndrome. Front Immunol 2018; 9:969. [PMID: 29867951 PMCID: PMC5949565 DOI: 10.3389/fimmu.2018.00969] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
The primary anti-phospholipid syndrome (APS) is characterized by the production of antibodies that bind the phospholipid-binding protein β2 glycoprotein I (β2GPI) or that directly recognize negatively charged membrane phospholipids in a manner that may contribute to arterial or venous thrombosis. Clinically, the binding of antibodies to β2GPI could contribute to pathogenesis by formation of immune complexes or modification of coagulation steps that operate along cell surfaces. However, additional events are likely to play a role in pathogenesis, including platelet and endothelial cell activation. Recent studies focus on neutrophil release of chromatin in the form of neutrophil extracellular traps as an important disease contributor. Jointly, the participation of both the innate and adaptive arms of the immune system in aspects of the APS make the complete understanding of crucial steps in pathogenesis extremely difficult. Only coordinated and comprehensive analyses, carried out in different clinical and research settings, are likely to advance the understanding of this complex disease condition.
Collapse
Affiliation(s)
- Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Debendra Pattanaik
- Division of Rheumatology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
38
|
Yu R, Li C, Sun L, Jian L, Ma Z, Zhao J, Liu X. Hypoxia induces production of citrullinated proteins in human fibroblast-like synoviocytes through regulating HIF1α. Scand J Immunol 2018; 87:e12654. [PMID: 29484680 DOI: 10.1111/sji.12654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/20/2018] [Indexed: 12/28/2022]
Abstract
Hypoxia is a prominent microenvironment feature in a range of disorders including cancer, rheumatoid arthritis (RA), atherosclerosis, inflammatory bowel disease (IBD), infection and obesity. Hypoxia promotes biological functions of fibroblast-like synoviocytes via regulating hypoxia-inducible factor 1α (HIF1α). Dysregulated protein citrullination in RA drives the production of antibodies to citrullinated proteins, a highly specific biomarker of RA. However, the mechanisms promoting citrullination in RA are not yet fully elucidated. In this study, we investigated whether pathophysiological hypoxia as found in the rheumatoid synovium modulates the citrullination in human fibroblast-like synoviocytes (HFLS). Here, we found that peptidylarginine deiminase 2 (PAD2) and citrullinated proteins were increased in HFLS after exposure to hypoxia. Moreover, knocking down HIF1α by HIF1α siRNA ameliorated the expression of PAD2 and citrullinated proteins. Collectively, this study provides a new mechanism involved in generating citrullinated proteins: hypoxia promotes citrullination and PAD production in HFLS. Concurrently, we also proposed a novel hypoxia involved mechanism in RA pathogenesis. This study deepens our understanding of the role of hypoxia in the pathogenesis of RA and provides a potential therapeutic strategy for RA.
Collapse
Affiliation(s)
- R Yu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - C Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - L Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - L Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Z Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - J Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
39
|
Alessandri C, Agmon-Levin N, Conti F, Perricone C, Ortona E, Pendolino M, Capozzi A, Delunardo F, Mancini R, Truglia S, Spinelli FR, Ceccarelli F, Sorice M, Shoenfeld Y, Valesini G. Anti-mutated citrullinated vimentin antibodies in antiphospholipid syndrome: diagnostic value and relationship with clinical features. Immunol Res 2018; 65:524-531. [PMID: 28215033 DOI: 10.1007/s12026-017-8899-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a heterogeneous group of autoantibodies essential for the diagnosis of antiphospholipid syndrome (APS) but do not predict clinical manifestations or disease progression. Hence, the co-presence of other antibodies may prove useful. Autoimmunity directed toward vimentin and other citrullinated peptides was established in rheumatoid arthritis (RA) and in other autoimmune conditions including systemic lupus erythematosus (SLE). We have previously described the presence of autoantibodies directed against vimentin/cardiolipin complex in patients with antiphospholipid syndrome (APS), but there are no data on the role of citrullinated vimentin in APS. Thus, we evaluated the prevalence and clinical significance of anti-MCV in APS patients. The study group consisted of 79 unselected outpatients with APS. Control groups included 25 patients with SLE, 30 patients with RA, and 20 healthy subjects age- and sex-matched. To detect anti-MCV, anti-vimentin, anti-vimentin/cardiolipin, and anti-CCP2 antibodies, commercial or homemade enzyme-linked immunosorbent assays (ELISA) were performed. Anti-MCV antibodies were found in a high percentage of APS patients (26.6%). A significant correlation between anti-MCV and anti-vimentin/cardiolipin serum levels was observed (p = 0.029). Moreover, vimentin reactivity was increased by its citrullination or conjugation with cardiolipin (p = 0.01 and p < 0.001, respectively). Interestingly, anti-MCV was found associated with the presence of arthritis (p = 0.011) and anti-vimentin/cardiolipin was highly specific for the presence of arterial or venous thrombosis in APS (p = 0.003 and p = 0.002, respectively). The detection of additional autoantibodies may contribute to clinical assessment of APS patients. Citrullination may occur in APS and play a role in the pathogenesis of this condition. KEY POINTS •Anti-MCV antibodies can be found in APS patients and are associated with the presence of arthritis. •Anti-vimentin/cardiolipin is strongly associated with the presence of thrombosis (both arterial and venous). •Citrullination occurs in APS, participate in disease pathogenesis, and influence clinical picture.
Collapse
Affiliation(s)
- Cristiano Alessandri
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Nancy Agmon-Levin
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Carlo Perricone
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Elena Ortona
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Pendolino
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Antonella Capozzi
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Federica Delunardo
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Mancini
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Simona Truglia
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesca Romana Spinelli
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maurizio Sorice
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Guido Valesini
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
40
|
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. Rheumatoid arthritis. Nat Rev Dis Primers 2018; 4:18001. [PMID: 29417936 DOI: 10.1038/nrdp.2018.1] [Citation(s) in RCA: 1358] [Impact Index Per Article: 226.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints and is associated with autoantibodies that target various molecules including modified self-epitopes. The identification of novel autoantibodies has improved diagnostic accuracy, and newly developed classification criteria facilitate the recognition and study of the disease early in its course. New clinical assessment tools are able to better characterize disease activity states, which are correlated with progression of damage and disability, and permit improved follow-up. In addition, better understanding of the pathogenesis of RA through recognition of key cells and cytokines has led to the development of targeted disease-modifying antirheumatic drugs. Altogether, the improved understanding of the pathogenetic processes involved, rational use of established drugs and development of new drugs and reliable assessment tools have drastically altered the lives of individuals with RA over the past 2 decades. Current strategies strive for early referral, early diagnosis and early start of effective therapy aimed at remission or, at the least, low disease activity, with rapid adaptation of treatment if this target is not reached. This treat-to-target approach prevents progression of joint damage and optimizes physical functioning, work and social participation. In this Primer, we discuss the epidemiology, pathophysiology, diagnosis and management of RA.
Collapse
Affiliation(s)
- Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics and NIHR Manchester Biomedical Research Centre, Manchester Academic Health Sciences Centre, The University of Manchester and Central Manchester Foundation Trust, Manchester, UK
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Arthur Kavanaugh
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Daniel H Solomon
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vibeke Strand
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
41
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Sirotti S, Generali E, Ceribelli A, Isailovic N, De Santis M, Selmi C. Personalized medicine in rheumatology: the paradigm of serum autoantibodies. AUTOIMMUNITY HIGHLIGHTS 2017; 8:10. [PMID: 28702930 PMCID: PMC5507804 DOI: 10.1007/s13317-017-0098-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
The sequencing of the human genome is now well recognized as the starting point of personalized medicine. Nonetheless, everyone is unique and can develop different phenotypes of the same disease, despite identical genotypes, as well illustrated by discordant monozygotic twins. To recognize these differences, one of the easiest and most familiar examples of biomarkers capable of identifying and predicting the outcome of patients is represented by serum autoantibodies. In this review, we will describe the concept of personalized medicine and discuss the predictive, prognostic and preventive role of antinuclear antibodies (ANA), anti-citrullinated peptide antibodies (ACPA), rare autoantibodies and anti-drug antibodies (ADA), to evaluate how these can help to identify different disease immune phenotypes and to choose the best option for treating and monitoring rheumatic patients in everyday practice. The importance of ANA resides in the prediction of clinical manifestations in systemic sclerosis and systemic lupus erythematosus and their association with malignancies. ACPA have a predictive role in rheumatoid arthritis, they are associated with the development of a more aggressive disease, extra-articular manifestations and premature mortality in RA patients; moreover, they are capable of predicting therapeutic response. Rare autoantibodies are associated with different disease manifestations and also with a greater incidence of cancer. The determination of ADA levels may be useful in patients where the clinical efficacy of TNF-α inhibitor has dropped, for the assessment of a right management. The resulting scenario supports serum autoantibodies as the cornerstone of personalized medicine in autoimmune diseases.
Collapse
Affiliation(s)
- Silvia Sirotti
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Elena Generali
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Via A. Manzoni 56, Rozzano, 20089, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
43
|
Lourido L, Blanco FJ, Ruiz-Romero C. Defining the proteomic landscape of rheumatoid arthritis: progress and prospective clinical applications. Expert Rev Proteomics 2017; 14:431-444. [PMID: 28425787 DOI: 10.1080/14789450.2017.1321481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The heterogeneity of Rheumatoid Arthritis (RA) and the absence of clinical tests accurate enough to identify the early stages of this disease have hampered its management. Therefore, proteomics research is increasingly focused on the discovery of novel biological markers, which would not only be able make an early diagnosis, but also to gain insight into the different pathological mechanisms underlying the heterogeneity of RA and also to stratify patients, which is critical to enabling effective treatments. Areas covered: The proteomic approaches that have been utilised to provide knowledge about RA pathogenesis, and to identify biomarkers for RA diagnosis, prognosis, disease monitoring and prediction of response to therapy, are summarized. Expert commentary: Although each proteomic study is unique in its design, all of them have contributed to the understanding of RA pathogenesis and the discovery of promising biomarkers for patient stratification, which would improve clinical care of RA patients. Still, efforts need to be made to validate these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Lucía Lourido
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Francisco J Blanco
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,b RIER-RED de Inflamación y Enfermedades Reumáticas , INIBIC-CHUAC , A Coruña , Spain
| | - Cristina Ruiz-Romero
- a Rheumatology Division, ProteoRed/ISCIII Proteomics Group , INIBIC - Hospital Universitario de A Coruña , A Coruña , Spain.,c CIBER-BBN Instituto de Salud Carlos III , INIBIC-CHUAC , A Coruña , Spain
| |
Collapse
|
44
|
Dwivedi N, Hedberg A, Zheng YY, Neeli I, Satoh M, Morel L, Rekvig OP, Radic M. B Cell Tolerance to Deiminated Histones in BALB/c, C57BL/6, and Autoimmune-Prone Mouse Strains. Front Immunol 2017; 8:362. [PMID: 28424695 PMCID: PMC5371714 DOI: 10.3389/fimmu.2017.00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/14/2017] [Indexed: 12/03/2022] Open
Abstract
Deimination, a posttranslational modification of arginine to citrulline carried out by peptidylarginine deiminases, may compromise tolerance of self-antigens. Patients with connective tissue autoimmunity, particularly rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), or Felty’s syndrome, present with autoantibodies to deiminated histones (dH), which thus form a category of antibodies to citrullinated protein antigens (ACPA). In general, ACPA are a sensitive diagnostic for RA and may form in response to the release of nuclear chromatin (DNA plus dH) from granulocytes, usually referred to as neutrophil extracellular traps. The aim of this study was to examine spontaneously autoimmune mice for autoantibodies and T cell responses to dH. We compared IgG binding to deiminated and non-deiminated histones (nH) by ELISA and Western blotting in spontaneously autoimmune strains of (NZB × NZW) F1 and NZM2410 together with their derivative congenic strains, C57BL/6.Sle1 and C57BL/6.Sle1.Sle3, which display profound autoreactivity against nuclear self-antigens. The splenocyte proliferation against the two antigens was determined in the spontaneously autoimmune (NZB × NZW) F1 strain from which other autoimmune strains used in the study were derived. Immunizations with dH and nH were attempted in BALB/c mice to assess their splenocyte response. Splenocytes from BALB/c mice and from autoimmune mice at the time of conversion to autoimmunity proliferated strongly in response to dH, yet serum IgG from autoimmune (NZB × NZW) F1, NZM2410, and C57BL/6.Sle1.Sle3 mice displayed a remarkable bias against binding to dH. At the time of seroconversion, the antibodies already exhibited preference for nH, and only nH were recovered from circulating immune complexes. Analysis of histone deimination showed constitutive deimination in thymic extracts from C57BL/6 and C57BL/6.Sle1.Sle2.Sle3 triply congenic mice and in spleens of autoimmune triply congenic mice. Our study demonstrates that tolerance mechanisms against dH are intact in BALB/c and C57BL/6 mice and continue to be effective in mice with overt autoimmunity to nH. We conclude that, in contrast to human RA and SLE patients, where we frequently observe autoantibodies against dH, autoimmune mice maintain strong tolerance mechanisms to prevent the development of autoantibodies to dH.
Collapse
Affiliation(s)
- Nishant Dwivedi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Annica Hedberg
- Medical Faculty, Department of RNA and Molecular Pathology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Ying Yi Zheng
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Minoru Satoh
- Department of Clinical Nursing, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Laurence Morel
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Ole Petter Rekvig
- Medical Faculty, Department of RNA and Molecular Pathology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
45
|
Yang F, Yang Y, Wang Q, Wang Z, Miao Q, Xiao X, Wei Y, Bian Z, Sheng L, Chen X, Qiu D, Fang J, Tang R, Gershwin ME, Ma X. The risk predictive values of UK-PBC and GLOBE scoring system in Chinese patients with primary biliary cholangitis: the additional effect of anti-gp210. Aliment Pharmacol Ther 2017; 45:733-743. [PMID: 28083929 DOI: 10.1111/apt.13927] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adequate risk stratification is critical for the management of the patients with primary biliary cholangitis (PBC). The UK-PBC and GLOBE scoring systems for prognosis of PBC have been proposed recently, but have not been validated in Asian population. AIM To validate the UK-PBC and GLOBE scoring systems in Chinese patients for prognosis of PBC. To clarify the role of anti-gp210 as a biomarker, and to investigate whether anti-gp210 could affect the prognostic values of UK-PBC and GLOBE scoring systems. METHODS We retrospectively analysed 276 patients with PBC evaluated between September 2004 and May 2016, including 133 anti-gp210+ and 143 anti-gp210- patients. RESULTS The 5-year adverse outcome-free survivals of anti-gp210+ vs. anti-gp210- patients were 70% and 85%, respectively (P = 0.005). Cirrhosis (P = 0.001), albumin level ≤40 g/L (P = 0.011) and platelet count ≤153 × 109 (P < 0.001) had a superimposition effect on anti-gp210 antibody as a risk factor. Furthermore, long-term prognoses were evaluated using the UK-PBC and GLOBE scores. For UK-PBC scoring system, the area under receiver operating characteristic curve (AUROC) was 0.924 for all patients with PBC (n = 223), 0.940 for anti-gp210+ patients (n = 110) and 0.888 for anti-gp210- patients (n = 113). For GLOBE scoring system, the area under receiver operating characteristic curve was 0.901 for all patients with PBC (n = 223), 0.924 for anti-gp210+ patients (n = 110) and 0.848 for anti-gp210- patients (n = 113). UK-PBC score >0.0578 (P < 0.001, HR: 32.736, 95% CI: 11.368-94.267) and GLOBE score <0.850 (P < 0.001, HR: 18.763, 95% CI: 7.968-44.180) were associated with poorer outcomes in the whole cohort. CONCLUSIONS The UK-PBC and GLOBE scoring systems were good 5-year prognostic predictors in Chinese patients with PBC, especially in anti-gp210+ patients. As a biomarker, anti-gp210 antibody was associated with a more severe cholestatic manifestation and a worse long-term prognosis. The anti-gp210 antibody could be added to further optimise the UK-PBC and GLOBE scoring systems.
Collapse
Affiliation(s)
- F Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Y Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Q Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Z Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Q Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - X Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Y Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Z Bian
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Jiangsu, China
| | - L Sheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - X Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - D Qiu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - R Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - M E Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - X Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
46
|
Wei Y, Liu R, Liu C, Jin J, Li D, Lin J. Identification of novel PAD4 inhibitors based on a pharmacophore model derived from transition state coordinates. J Mol Graph Model 2017; 72:88-95. [PMID: 28064083 DOI: 10.1016/j.jmgm.2016.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
1.4 Protein arginine deiminases 4 (PAD4) is an attractive target for the development of novel and selective inhibitors of Rheumatoid Arthritis (RA). F-amidine is known as mechanism-based inhibitor targeting PAD4 and used as inactivators by covalently modifying the active site Cys645. To identify novel structural inhibitors of PAD4, we investigated the flexibility of protein on basis of the transition state geometry of PAD4 inhibited by F-amidine from our previous QM/MM calculation. And a pharmacophore model was generated containing four features (ADHH) using five representative structures from molecular dynamic (MD) simulation on basis of the transition state geometry of PAD4 inhibited by F-amidine. We performed virtual screening using the pharmacophore model and molecular docking methods, resulting in the discovery of two molecules with KD (dissociation equilibrium constant) values of 112μM and 218μΜ against PAD4 through Surface Plasmon Resonance (SPR) experiments. These two molecules could potentially serve as PAD4 inhibitors.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cui Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
47
|
Shenoy MK, Iwai S, Lin DL, Worodria W, Ayakaka I, Byanyima P, Kaswabuli S, Fong S, Stone S, Chang E, Davis JL, Faruqi AA, Segal MR, Huang L, Lynch SV. Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in Patients with HIV and Pneumonia. Am J Respir Crit Care Med 2017; 195:104-114. [PMID: 27447987 PMCID: PMC5214918 DOI: 10.1164/rccm.201603-0523oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/22/2016] [Indexed: 02/01/2023] Open
Abstract
RATIONALE The potential role of the airway microbiota in dictating immune responses and infection outcomes in HIV-associated pneumonia is largely unknown. OBJECTIVES To investigate whether microbiologically and immunologically distinct subsets of patients with HIV and pneumonia exist and are related to mortality. METHODS Bronchoalveolar lavage samples from Ugandan patients with HIV and pneumonia (n = 182) were obtained at study enrollment (following antibiotic treatment); patient demographics including 8- and 70-day mortality were collected. Lower airway bacterial community composition was assessed via amplification and sequencing of the V4 region of the 16S ribosomal RNA gene. Host immune response gene expression profiles were generated by quantitative polymerase chain reaction using RNA extracted from bronchoalveolar lavage fluid. Liquid and gas chromatography mass spectrometry was used to profile serum metabolites. MEASUREMENTS AND MAIN RESULTS Based on airway microbiome composition, most patients segregated into three distinct groups, each of which were predicted to encode metagenomes capable of producing metabolites characteristically enriched in paired serum samples from these patients. These three groups also exhibited differences in mortality; those with the highest rate had increased ceftriaxone administration and culturable Aspergillus, and demonstrated significantly increased induction of airway T-helper cell type 2 responses. The group with the lowest mortality was characterized by increased expression of T-cell immunoglobulin and mucin domain 3, which down-regulates T-helper cell type 1 proinflammatory responses and is associated with chronic viral infection. CONCLUSIONS These data provide evidence that compositionally and structurally distinct lower airway microbiomes are associated with discrete local host immune responses, peripheral metabolic reprogramming, and different rates of mortality.
Collapse
Affiliation(s)
- Meera K. Shenoy
- Division of Gastroenterology, Department of Medicine
- Biomedical Sciences Graduate Program
| | - Shoko Iwai
- Division of Gastroenterology, Department of Medicine
| | - Din L. Lin
- Division of Gastroenterology, Department of Medicine
| | - William Worodria
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Irene Ayakaka
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Patrick Byanyima
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Sylvia Kaswabuli
- Infectious Diseases Research Collaboration, Mulago Hospital, Makerere University, Kampala, Uganda
| | - Serena Fong
- HIV, Infectious Diseases and Global Medicine Division, San Francisco General Hospital
| | - Stephen Stone
- HIV, Infectious Diseases and Global Medicine Division, San Francisco General Hospital
| | - Emily Chang
- HIV, Infectious Diseases and Global Medicine Division, San Francisco General Hospital
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, and
| | - J. Lucian Davis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut; and
- Pulmonary, Critical Care, and Sleep Medicine Section, Yale School of Medicine, New Haven, Connecticut
| | | | - Mark R. Segal
- Division of Biostatistics, University of California San Francisco, San Francisco, California
| | - Laurence Huang
- HIV, Infectious Diseases and Global Medicine Division, San Francisco General Hospital
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, and
| | | |
Collapse
|
48
|
Characterization of Autoantigens Targeted by Anti-Citrullinated Protein Antibodies In Vivo: Prominent Role for Epitopes Derived from Histone 4 Proteins. PLoS One 2016; 11:e0165501. [PMID: 27788229 PMCID: PMC5082836 DOI: 10.1371/journal.pone.0165501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023] Open
Abstract
Anti-citrullinated protein antibodies (ACPA) have become an integral part of the clinical definition of rheumatoid arthritis, and are hypothesized to be important in the immunopathogenesis of this autoimmune disease. Several citrullinated proteins have been demonstrated to serve as candidate autoantigens for the ACPA, based on in vitro immune reactions between citrullinated peptides/proteins and RA sera. Yet it remains unclear whether the autoantigens identified in vitro are indeed directly and specifically targeted by the ACPA in vivo. Moreover, it is unclear whether ACPA present in RA sera are directed towards the same spectrum of autoantigens as the ACPA present within the synovial compartment. In this study, we isolated ACPA immune complexes from RA synovial fluids (SF) and sera by using immobilized cyclic citrullinated peptides (CCP3) based immune affinity, and characterized the proteins that are directly and specifically associated with them by mass spectrometry. The results demonstrate that four histone proteins are prominent ACPA autoantigens, with the frequency of detection being histone H4 (89%), H2B (63%), H3 (63%), and H2A (58%) in ACPA positive RA SF. We further demonstrate that a histone 4 peptide containing citrulline at position Cit39 was recognized by 100% of ACPA positive RA SF. An adjacent citrulline residue at Cit40 was recognized by 34% of ACPA positive RA SF. An H4 peptide containing Cit39-40 was recognized in the serum of 94% ACPA positive RA, 77% ACPA positive first-degree relatives (FDR) of RA patients, and 2.5% of healthy controls. The Cit39-40 peptide substantially blocked the ACPA reactivity in both SF and serum. Although the spectrum of ACPA we identified was limited to those isolated using immobilized CCP3 peptides, the findings indicate that H4 is a widely recognized RA autoantigen in both the synovial and serum compartments. The identification of this immunodominant ACPA epitope may be valuable in designing approaches to immune tolerance induction in RA.
Collapse
|
49
|
Abstract
Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, via A. Manzoni 56, 20089 Rozzano, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
50
|
|