1
|
Plichta J, Majos A, Kuna P, Panek M. Nasal allergen and methacholine provocation tests influence co‑expression patterns of TGF‑β/SMAD and MAPK signaling pathway genes in patients with asthma. Exp Ther Med 2024; 28:445. [PMID: 39386939 PMCID: PMC11462400 DOI: 10.3892/etm.2024.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/16/2024] [Indexed: 10/12/2024] Open
Abstract
Asthma is characterized by chronic bronchial inflammation and is a highly heterogeneous disease strongly influenced by both specific and non-specific exogenous factors. The present study was performed to assess the effect of nasal allergen provocation tests and methacholine provocation tests on the mRNA co-expression patterns of genes (SMAD1/3/6/7, MPK1/3 and TGFB1/3) involved in SMAD and non-SMAD TGF-β signaling pathways in patients with asthma. Reverse transcription-quantitative PCR was performed on blood samples taken pre-provocation and 1 h post-provocation to assess gene expression changes. Of the 59 patients studied, allergen provocations were administered to 27 patients and methacholine provocations to 32 patients. Correlations between expression levels of studied genes were found to be influenced markedly by the challenge administered, challenge test result and time elapsed since challenge. Importantly, increases in expression levels for four gene pairs (MAPK1-SMAD3, MAPK3-SMAD3, SMAD1-SMAD3 and SMAD3-TGFB1) were found to correlate significantly with asthma occurrence in the allergen provocation cohort, but not in the methacholine provocation cohort. The present study allows us to draw the conclusion that both intranasal allergen and bronchial methacholine challenges influence mRNA co-expression patterns of the SMAD1/3/6/7, MPK1/3 and TGFB1/3 genes.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Alicja Majos
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
- Department of General and Transplant Surgery, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
2
|
Pavord I, Chan R, Brown N, Howarth P, Gilson M, Price RG, Maspero J. Long-term safety of mepolizumab for up to ∼10 years in patients with severe asthma: open-label extension study. Ann Med 2024; 56:2417184. [PMID: 39465531 PMCID: PMC11520089 DOI: 10.1080/07853890.2024.2417184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES Long-term safety monitoring of mepolizumab is necessary to support real-world use for the treatment of severe asthma. This Long-Term Access Program assessed the safety and benefit:risk of mepolizumab in pediatric, adolescent, and adult patients with severe asthma. MATERIALS AND METHODS This was a multicenter, Phase IIIb safety, open-label extension study of multiple prior studies assessing mepolizumab in addition to standard of care (Aug 2015 - Aug 2022). Adults/adolescents (≥12 years of age) received mepolizumab 100 mg subcutaneously (SC) every 4 weeks until mepolizumab was commercialized. Pediatric patients (6-11 years of age) received mepolizumab 40 mg or 100 mg SC (bodyweight <40 or ≥40 kg, respectively) every 4 weeks. Safety was assessed every 4 weeks and benefit:risk every 12 weeks. RESULTS Of the 514 patients enrolled, 57% were female and the mean age was 51.1 (standard deviation: 14.9) years; 24 (5%) patients were 6-17 years of age. Total cumulative mepolizumab exposure across all mepolizumab studies included in this analysis was 1500.59 patient-years; median exposure was 2.03 (range, 0.08 to 9.97) years. Overall, 37 (7%) patients experienced on-treatment serious adverse events (SAEs): 34/502 (7%) in the 100 mg SC group and 3/7 (43%) in the 40 mg SC pediatric group. Two patients experienced SAEs considered to be treatment-related by the investigator. Infections were the most common SAEs of special interest (9 [2%] patients). Physician-assessed benefit:risk of mepolizumab supported continued treatment over the study period. CONCLUSIONS This long-term safety analysis of mepolizumab was consistent with previous reports, with no emerging safety concerns; most patients had a favorable benefit:risk up to ∼10 years. CLINICAL TRIAL IDENTIFIER NCT00244686 (GSK ID 201956).
Collapse
Affiliation(s)
- Ian Pavord
- Respiratory Medicine Unit and Oxford Respiratory National Institute for Health Research Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Chan
- Clinical Sciences, Respiratory, GSK, London, UK
| | | | - Peter Howarth
- Global Medical, Specialty Medicine TA, GSK, London, UK
| | - Martyn Gilson
- Respiratory Research and Development, GSK, Stevenage, Hertfordshire, UK
| | | | - Jorge Maspero
- Clinical Investigation, Allergy and Respiratory Research Unit, Fundacion CIDEA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang Z, Qu J, Chang C, Sun Y. Association of the gut microbiome and different phenotypes of COPD and asthma: a bidirectional Mendelian randomization study. Microbiol Spectr 2024; 12:e0176024. [PMID: 39373519 PMCID: PMC11537028 DOI: 10.1128/spectrum.01760-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Mounting evidence has revealed the association between gut microbiota and both chronic obstructive pulmonary disease (COPD) and asthma; however, the causal association between gut microbiota and specific disease phenotypes remains to be determined. This study employed bidirectional two-sample Mendelian randomization (MR) analyses to investigate the potential causal relationship between gut microbiota and these conditions. The research utilized genome-wide association study (GWAS) data from the MiBioGen consortium for gut microbiota and the integrative epidemiology unit (IEU) Open GWAS for these conditions. Four MR analysis methods were employed: the inverse variance weighted (IVW) test, MR-Egger, weighted median, and weighted mode methods. The IVW method results are considered the primary findings. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy analysis, and leave-one-out analysis, were used to enhance robustness. Our MR study identified eight gut microbiota taxa potentially associated with the risk of different types of COPD and asthma. These include two taxa for early-onset COPD: Streptococcaceae [odds ratio (OR) = 1.315, 95% confidence interval (CI) = 1.071-1.616, P = 0.009] and Holdemanella (OR = 1.199, 95% CI = 1.063-1.352, P = 0.003); three for later-onset COPD: Acidaminococcaceae (OR = 1.312, 95% CI = 1.098-1.567, P = 0.003), Holdemania (OR = 1.165, 95% CI = 1.039-1.305, P = 0.009), and Marvinbryantia (OR = 0.814, 95% CI = 0.697-0.951, P = 0.009); one for allergic asthma: Butyricimonas (OR = 0.794, 95% CI = 0.693-0.908, P = 0.001); and two for non-allergic asthma: Clostridia (OR = 1.255, 95% CI = 1.043-1.511, P = 0.016) and Clostridiales (OR = 1.256, 95% CI = 1.048-1.506, P = 0.014).IMPORTANCEIndividuals with diverse phenotypes of chronic obstructive pulmonary disease (COPD) and asthma exhibit different responses to the conventional "one treatment fits all" approach. Recent research has revealed the significant role of the gut-lung axis in both COPD and asthma. However, the specific impact of gut microbiota on different subtypes of these conditions remains poorly understood. Our study has identified eight gut microbiota that may be associated with the risk of different types of COPD and asthma. These findings provide evidence suggesting a potential causal relationship between gut microbiota and various phenotypes of COPD and asthma. This offers a new perspective on the origins of different disease phenotypes and points toward future exploration of phenotype-specific and personalized therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Jingge Qu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Van Asselt AJ, Beck JJ, Finnicum CT, Johnson BN, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, der Zee AHMV, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic signatures of asthma: a comprehensive study of DNA methylation and clinical markers. Clin Epigenetics 2024; 16:151. [PMID: 39488688 PMCID: PMC11531182 DOI: 10.1186/s13148-024-01765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. METHODS The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood from 319 participants from 94 families. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 individuals. Principal component analysis on the clinical asthma markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. RESULTS 221 unique CpGs reached genome-wide significance at timepoint 1 after Bonferroni correction. PC7, which correlated with loadings of eosinophil counts and immunoglobulin levels, accounted for the majority of associations (204). Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points yielded a correlation of 0.81. CONCLUSION We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to a robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
Affiliation(s)
- Austin J Van Asselt
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA.
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Jeffrey J Beck
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Casey T Finnicum
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Brandon N Johnson
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Noah Kallsen
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Sarah Viet
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Patricia Huizenga
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S J Vijverberg
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Mendes FC, Garcia-Larsen V, Moreira A. Obesity and Asthma: Implementing a Treatable Trait Care Model. Clin Exp Allergy 2024; 54:881-894. [PMID: 38938020 DOI: 10.1111/cea.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Recognition of obesity as a treatable trait of asthma, impacting its development, clinical presentation and management, is gaining widespread acceptance. Obesity is a significant risk factor and disease modifier for asthma, complicating treatment. Epidemiological evidence highlights that obese asthma correlates with poorer disease control, increased severity and persistence, compromised lung function and reduced quality of life. Various mechanisms contribute to the physiological and clinical complexities observed in individuals with obesity and asthma. These encompass different immune responses, including Type IVb, where T helper 2 cells are pivotal and driven by cytokines like interleukins 4, 5, 9 and 13, and Type IVc, characterised by T helper 17 cells and Type 3 innate lymphoid cells producing interleukin 17, which recruits neutrophils. Additionally, Type V involves immune response dysregulation with significant activation of T helper 1, 2 and 17 responses. Finally, Type VI is recognised as metabolic-induced immune dysregulation associated with obesity. Body mass index (BMI) stands out as a biomarker of a treatable trait in asthma, readily identifiable and targetable, with significant implications for disease management. There exists a notable gap in treatment options for individuals with obese asthma, where asthma management guidelines lack specificity. For example, there is currently no evidence supporting the use of incretin mimetics to improve asthma outcomes in asthmatic individuals without Type 2 diabetes mellitus (T2DM). In this review, we advocate for integrating BMI into asthma care models by establishing clear target BMI goals, promoting sustainable weight loss via healthy dietary choices and physical activity and implementing regular reassessment and referral as necessary.
Collapse
Affiliation(s)
- Francisca Castro Mendes
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - André Moreira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
6
|
Franz T, Stegemann-Koniszewski S, Schreiber J, Müller A, Bruder D, Dudeck A, Boehme JD, Kahlfuss S. Metabolic and ionic control of T cells in asthma endotypes. Am J Physiol Cell Physiol 2024; 327:C1300-C1307. [PMID: 39374078 DOI: 10.1152/ajpcell.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
CD4+ T cells play a central role in orchestrating the immune response in asthma, with dysregulated ion channel profiles and altered metabolic signatures contributing to disease progression and severity. An important classification of asthma is based on the presence of T-helper cell type 2 (Th2) inflammation, dividing patients into Th2-high and Th2-low endotypes. These distinct endotypes have implications for disease severity, treatment response, and prognosis. By elucidating how ion channels and energy metabolism control Th cells in asthma, this review contributes to the pathophysiological understanding and the prospective development of personalized therapeutic treatment strategies for patients suffering from distinct asthma endotypes.
Collapse
Affiliation(s)
- Tobias Franz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
7
|
Lee JH, Yang YH, Lin YT, Wang LC, Yu HH, Hu YC, Chiang BL. Characterizing Non-T2 Asthma: Key Pathways and Molecular Implications Indicative of Attenuated Th2 Response. Inflammation 2024:10.1007/s10753-024-02159-3. [PMID: 39466498 DOI: 10.1007/s10753-024-02159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Non-Type 2 (non-T2) asthma is characterized by a lack of allergic sensitization and normal to low total IgE levels. We aimed to explore molecular mechanisms and pathways differentiating non-T2 from T2-high pediatric asthma. We analyzed peripheral blood RNA samples from 11 non-T2 and 17 T2-high pediatric asthma patients using bulk RNA sequencing. Differentially expressed genes (DEGs) were identified, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and Protein-Protein Interaction (PPI) network construction. Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) were employed to explore significance of these DEGs. We utilized independent public datasets GSE145505 to validate our findings. We investigated Th cytokine profiles in an independent cohort of pediatric patients with non-T2 asthma (n = 38) and T2-high asthma (n = 64). We demonstrated that the total serum IgE levels of children with non-T2 asthma (128.4 ± 159.5 IU/mL) was significantly lower than that of those with T2-high asthma (405.8 ± 252.1 IU/mL). Our analysis revealed 136 DEGs distinguishing non-T2 from T2-high asthma. IPA identified predicted inhibition of IgE-FcεRI signaling pathways in non-T2 asthma. Our DEG data showed the expression of IGHV4-39, IGLV1-40, IGLV1-47, IGLV1-44, IGHV1-69, IGLV6-57, IGLV3-19, IGLV3-1, and IGLC7 were downregulated in our non-T2 asthma patient. The non-T2 group exhibited significantly higher concentrations of IL-2, IFN-γ, IL-6, and IL-17A compared to the T2-high group. Our integrated analysis differentiated non-T2 from T2-high asthma by revealing downregulation of specific immunoglobulin genes influencing FcεRI signaling, elevated Th1 cytokines and Th17 cytokines might affect IgE associated sensitization and alter Th2 allergic response.
Collapse
Affiliation(s)
- Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China.
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| |
Collapse
|
8
|
Zhang X, Liu J, Li X, Zheng G, Wang T, Sun H, Huang Z, He J, Qiu J, Zhao Z, Guo Y, He Y. Blocking the HIF-1α/glycolysis axis inhibits allergic airway inflammation by reducing ILC2 metabolism and function. Allergy 2024. [PMID: 39462230 DOI: 10.1111/all.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The role of lung group 2 innate lymphoid cell (ILC2) activation in allergic asthma is increasingly established. However, the regulatory mechanisms underlying hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis in ILC2-mediated allergic airway inflammation remain unclear. OBJECTIVE To investigate the role of the HIF-1α/glycolysis axis in ILC2-mediated allergic airway inflammation. METHODS Glycolysis and HIF-1α inhibitors were used to identify their effect on the function and glucose metabolism of mouse and human ILC2s in vivo and vitro. Blocking glycolysis and HIF-1α in mice under interleukin-33 (IL-33) stimulation were performed to test ILC2 responses. Conditional HIF-1α-deficient mice were used to confirm the specific role of HIF-1α in ILC2-driven airway inflammation models. Transcriptomic, metabolic, and chromatin immunoprecipitation analyses were performed to elucidate the underlying mechanism. RESULTS HIF-1α is involved in ILC2 metabolism and is crucial in allergic airway inflammation. Single-cell sequencing data analysis and qPCR confirmation revealed a significant upregulation of glycolysis-related genes, particularly HIF-1α, in murine lung ILC2s after IL-33 intranasal administration or injection. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) and the HIF-1α inhibitor 2-methoxyestradiol (2-ME) abrogated inflammation by suppressing ILC2s function. Conditional HIF-1α-deficient mice showed reduced ILC2 response and airway inflammation induced upon IL-33 or house dust mite (HDM) stimulation. Transcriptome and metabolic analyses revealed significantly impaired glycolysis in lung ILC2s in conditional HIF-1α knockout mice compared to that in their littermate controls. Chromatin immunoprecipitation results confirmed the transcriptional downregulation of glycolysis-related genes in HIF-1α-knockout and 2-DG-treated mice. Furthermore, impaired HIF-1α/glycolysis axis activation is correlated with downregulated ILC2 in patients with asthma. CONCLUSION The HIF-1α/glycolysis axis is critical for controlling ILC2 responses in allergic airway inflammation and has potential immunotherapeutic value in asthma.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianci Wang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yu J, Xu L, Han A, Xie M. The epidemiology of asthma in Mainland China: a systematic review and meta-analysis. BMC Public Health 2024; 24:2888. [PMID: 39434052 PMCID: PMC11492516 DOI: 10.1186/s12889-024-20330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Reliable estimates of asthma prevalence are essential for developing effective public health policies. However, discrepancies in published results have posed challenges for public health planning in China. To address this issue, we conducted this study to provide a comprehensive assessment of the epidemiology of asthma prevalence in China. METHODS We conducted a thorough systematic review across multiple databases including PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang Data, and Weipu database. The search was limited to studies published in either Chinese or English up to August 31, 2023, that reported on asthma prevalence in China. We extracted relevant study characteristics and performed meta-analyses. The study protocol was registered with PROSPERO (CRD42023397949). RESULTS A literature search yielded 192 studies that met the inclusion criteria out of 17,152 articles. The overall prevalence of asthma in Mainland China was found to be 2.20% (95% confidence interval, CI: 1.96-2.47%; I2 = 99.8%), with the prevalence of ever asthma at 2.21%, current asthma at 2.16%, ever asthma-like symptoms at 14.36%, and current asthma-like symptoms at 3.01%. Using a random-effects model, the prediction interval ranged from 0.44 to 10.27%. Meta-analysis subgroups indicated that men or children and the elderly generally have a higher prevalence of asthma. In addition, the prevalence of asthma is higher in urban areas and in the East China. The prevalence of asthma has been on the rise over the past three decades, from 0.69% in 1984 to 5.30% in 2021. Projections suggest that the prevalence could reach 9.76% by 2050 for the Chinese population. CONCLUSIONS Asthma remains less prevalent in China than in western countries, however its prevalence has been gradually increasing over the past thirty years. The disease burden shows notable variations based on sex, age, and geographic regions, indicating significant demographic and regional disparities. To guide decision-making priorities and direct future research, conducting high-quality epidemiological studies on asthma is crucial.
Collapse
Affiliation(s)
- Jiarui Yu
- First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Liang Xu
- Hospital 902, Joint Logistics Support Force, Bengbu, Anhui, 233000, China
| | - Azhu Han
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Maomao Xie
- First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China.
| |
Collapse
|
10
|
Guan J, Yao W, Zhang L, Xie H, Li L, Wen Y, Chen H, Huang Y, Wen J, Ou C, Liang C, Wang J, Zhang Q, Tao A, Yan J. Contribution of Pseudomonas aeruginosa - mediated club cell necroptosis to the bias of type 17 inflammation and steroid insensitivity in asthma. J Adv Res 2024:S2090-1232(24)00475-2. [PMID: 39442871 DOI: 10.1016/j.jare.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Opportunistic pathogen infection is one of the important inducements for asthma exacerbation. Pseudomonas aeruginosa (PA) is a kind of dominant pathogenic bacteria in the respiratory tract that is associated with severe asthma, but the underlying mechanisms still remains unclear. OBJECTIVES To examine the role of PA infection in the bias of the inflammatory endotype in asthma and its effect on the sensitivity to steroid therapy. METHODS An adjusted HDM (House Dust Mite) -induced asthma model with PA inoculation in the airway was utilized to mimic the process of opportunistic PA infection in asthma, focusing on the interaction between bacteria and epithelium. Dexamethasone administration in vivo was used to test the sensitivity to steroid therapy. RESULTS It was uncovered that PA could promote the loss of club cells in the necroptosis pattern through cellular CYP450 activation, leading to an imbalance of inflammatory response and steroid insensitivity. Club cell loss results in the activation of cellular E-cadherin/β-catenin axis in the rest of club cells for goblet metaplasia and mucus hypersecretion, as well as epithelial damage and GR downregulation for steroid resistance. For clinical applications, the necroptosis inhibitor Nec-1 can effectively relieve the pathological symptoms of asthma in vivo. Meanwhile, CCSP administration in the airway can regulate the pulmonary inflammation and restore the steroid sensitivity in asthma. CONCLUSION These experiments provide a novel mechanism of concurrent PA infection in asthma through club cell necroptosis and the pathological consequences. Nec-1 treatment and CCSP supplementation may be possible therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Jieying Guan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First People's Hospital of Zhaoqing, Guangdong province, China
| | - Wenruo Yao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Le Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Huancheng Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Linmei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuhuan Wen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuyi Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junjie Wen
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Canyang Liang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jing Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Visca D, Ardesi F, Zappa M, Pignatti P, Grossi S, Vanetti M, Migliori GB, Centis R, Angeli F, Spanevello A. Asthma and hypertension: the role of airway inflammation. Front Med (Lausanne) 2024; 11:1451625. [PMID: 39450103 PMCID: PMC11499200 DOI: 10.3389/fmed.2024.1451625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Asthma is a chronic inflammatory respiratory disease often associated with comorbidities. Among cardiovascular comorbidities, arterial hypertension seems to create an additional health burden in asthmatics. However, evidence on this relationship is lacking. Objective Our study aims to evaluate the characteristics of hypertensive asthmatics, focusing on the role of inflammation as a possible link between these diseases. Methods We conducted a monocentric retrospective analysis consecutively including asthmatics who underwent induced sputum (IS) at our asthma referral center. Patients were divided in two groups according to presence or absence of history of hypertension. Clinical, functional, and inflammatory (airway and systemic) data were collected. Results Data on two hundred and sixty asthmatic patients were analyzed. Seventy-nine (30.4%) of them had a diagnosis of hypertension requiring a specific pharmacological treatment. Asthmatics with hypertension were more frequently male (p = 0.047), older (p < 0.001), and with higher body max index (BMI) (p < 0.001) when compared to normotensive patients. No difference concerning asthma control, severity and pharmacological treatment was observed between the two groups (all p > 0.05); distribution of comorbidities and lung function impairment (forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC); all p < 0.05) were statistically different between groups. Mixed granulocytic airway inflammation was prevalent in the hypertensive asthmatics (p = 0.014). Interestingly, a multivariable analysis revealed that age ≥ 65 years and an increased percentage of sputum neutrophils (≥61%) were independent predictors of hypertensive status (p < 0.001). Conclusion Our data suggest that neutrophilic airway inflammation (as evaluated by induced sputum) is strictly associated with hypertension. In clinical practice, phenotyping asthmatic patients with comorbidities like hypertension could be useful also from a therapeutic point of view. Additional studies are mandatory to further elucidate the role of neutrophilic airway inflammation in asthma with cardiovascular diseases.
Collapse
Affiliation(s)
- Dina Visca
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Ardesi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Sarah Grossi
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Marco Vanetti
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Battista Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Antonio Spanevello
- Department of Pulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Vázquez-Mera S, Miguéns-Suárez P, Martelo-Vidal L, Rivas-López S, Uller L, Bravo SB, Domínguez-Arca V, Muñoz X, González-Barcala FJ, Nieto Fontarigo JJ, Salgado FJ. Signature Proteins in Small Extracellular Vesicles of Granulocytes and CD4 + T-Cell Subpopulations Identified by Comparative Proteomic Analysis. Int J Mol Sci 2024; 25:10848. [PMID: 39409176 PMCID: PMC11476868 DOI: 10.3390/ijms251910848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Several studies have described the proteomic profile of different immune cell types, but only a few have also analysed the content of their delivered small extracellular vesicles (sEVs). The aim of the present study was to compare the protein signature of sEVs delivered from granulocytes (i.e., neutrophils and eosinophils) and CD4+ T cells (i.e., TH1, TH2, and TH17) to identify potential biomarkers of the inflammatory profile in chronic inflammatory diseases. Qualitative (DDA) and quantitative (DIA-SWATH) analyses of in vitro-produced sEVs revealed proteome variations depending on the cell source. The main differences were found between granulocyte- and TH cell-derived sEVs, with a higher abundance of antimicrobial proteins (e.g., LCN2, LTF, MPO) in granulocyte-derived sEVs and an enrichment of ribosomal proteins (RPL and RPS proteins) in TH-derived sEVs. Additionally, we found differentially abundant proteins between neutrophil and eosinophil sEVs (e.g., ILF2, LTF, LCN2) and between sEVs from different TH subsets (e.g., ISG15, ITGA4, ITGB2, or NAMPT). A "proof-of-concept" assay was also performed, with TH2 biomarkers ITGA4 and ITGB2 displaying a differential abundance in sEVs from T2high and T2low asthma patients. Thus, our findings highlight the potential use of these sEVs as a source of biomarkers for diseases where the different immune cell subsets studied participate, particularly chronic inflammatory pathologies such as asthma or chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Rivas-López
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Susana B. Bravo
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Vicente Domínguez-Arca
- Biophysics and Interfaces Group, Applied Physics Department, Faculty of Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xavier Muñoz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Pneumology Service, Hospital Vall d’Hebron Barcelona, 08035 Barcelona, Spain
| | - Francisco J. González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan J. Nieto Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Francisco J. Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Carriera L, Caporuscio S, Fantò M, D'Abramo A, Puzio G, Triolo L, Coppola A. Combination treatment with monoclonal antibodies for the management of severe asthma and immune-mediated inflammatory diseases: a comprehensive review. Monaldi Arch Chest Dis 2024. [PMID: 39373458 DOI: 10.4081/monaldi.2024.3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Biological drugs have revolutionized the management of severe asthma, and a tailored treatment approach made it possible to consider remission as an achievable treatment target. The incidence of autoimmune diseases is increasing in many parts of the world. Patients suffering from severe asthma, eligible or already treated with an asthma-approved biologic agent, may suffer from another immune-mediated inflammatory disease (IMID) that could require the simultaneous use of a second monoclonal antibody. The real-life studies available in the literature describing the concurrent administration of an asthma-approved biologic agent with another biologic for a different immune disease, obtained through a systematic search on online databases based on monoclonal antibodies, were collected and analyzed. 26 articles were included in this review according to the prespecified inclusion and exclusion criteria. All included papers were retrospective in nature. Study designs were case reports (n=18), case series (n=3), retrospective chart reviews (n=3), retrospective observational studies (n=1), and cohort studies (n=1). The study is intended to present, within the current literature, all the administered combinations of severe asthma-approved biologics with monoclonal antibodies for a different indication. Those were grouped according to the IMID for whom the second biologic agent, with a different mechanism of action, was prescribed. The combinations prescribed to the cohort of patients specifically treating uncontrolled severe asthma were deeper evaluated in the discussion section, since an analysis of these therapeutic combinations deriving from real-life experiences may be useful to optimize the management of patients with severe asthma, ultimately leading to improved patient care and outcomes. Prospective registries and future studies are required to assess the safety and efficacy of combination therapies for severe asthmatic patients who suffer from an IMID.
Collapse
Affiliation(s)
- Lorenzo Carriera
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome.
| | - Sara Caporuscio
- Internal Medicine Complex Operational Unit, Ospedale San Filippo Neri, Local Health Unit Roma 1, Rome.
| | - Marta Fantò
- Casa di Cura Villa Benedetta, Villa Benedetta Group SRL, Rome.
| | - Alice D'Abramo
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Genesio Puzio
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Luca Triolo
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Angelo Coppola
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome; Saint Camillus International University of Health Sciences, Rome.
| |
Collapse
|
14
|
Han S, Kim B, Hyeon DY, Jeong D, Ryu J, Nam JS, Choi YH, Kim BR, Park SC, Chung YW, Shin SJ, Lee JY, Kim JK, Park J, Lee SW, Kim TB, Cheon JH, Cho HJ, Kim CH, Yoon JH, Hwang D, Ryu JH. Distinctive CD39 +CD9 + lung interstitial macrophages suppress IL-23/Th17-mediated neutrophilic asthma by inhibiting NETosis. Nat Commun 2024; 15:8628. [PMID: 39366998 PMCID: PMC11452667 DOI: 10.1038/s41467-024-53038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
The IL-23-Th17 axis is responsible for neutrophilic inflammation in various inflammatory diseases. Here, we discover a potential pathway to inhibit neutrophilic asthma. In our neutrophil-dominant asthma (NDA) model, single-cell RNA-seq analysis identifies a subpopulation of CD39+CD9+ interstitial macrophages (IMs) suppressed by IL-23 in NDA conditions but increased by an IL-23 inhibitor αIL-23p19. Adoptively transferred CD39+CD9+ IMs suppress neutrophil extracellular trap formation (NETosis), a representative phenotype of NDA, and also Th17 cell activation and neutrophilic inflammation. CD39+CD9+ IMs first attach to neutrophils in a CD9-dependent manner, and then remove ATP near neutrophils that contribute to NETosis in a CD39-dependent manner. Transcriptomic data from asthmatic patients finally show decreased CD39+CD9+ IMs in severe asthma than mild/moderate asthma. Our results suggest that CD39+CD9+ IMs function as a potent negative regulator of neutrophilic inflammation by suppressing NETosis in the IL-23-Th17 axis and can thus serve as a potential therapeutic target for IL-23-Th17-mediated neutrophilic asthma.
Collapse
Affiliation(s)
- Seunghan Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Bomin Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Do Young Hyeon
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Daeun Jeong
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jaechan Ryu
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
| | - Jae-Sung Nam
- Department of Otorhinolaryngology and Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Bo-Ram Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jae Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - June-Yong Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jihye Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology and Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology and Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology and Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Ji X, Zhou Y, He S, Chen H, Zhang X, Chen Z, Cai J. Bioinformatics analysis of G protein subunit gamma transduction protein 2-autophagy axis in CD11b+ dendritic cells as a potential regulator to skew airway neutrophilic inflammation in asthma endotypes. Immun Inflamm Dis 2024; 12:e70038. [PMID: 39417697 PMCID: PMC11484477 DOI: 10.1002/iid3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous inflammatory disease with two main clinical endotypes: type 2 (T2) high and low asthma. The plasticity and autophagy in dendritic cells (DCs) influence T helper (Th)2 or Th17 differentiation to regulate asthma endotypes. Enhanced autophagy in DCs fosters Th2 differentiation in allergic environments, while reduced autophagy favors Th17 cell differentiation in sensitized and infected environments. Autophagy regulation in DCs involves interaction with various pathways like G protein-coupled receptor (GPCR), mammalian target of rapamycin (mTOR), or phosphoinositide 3-kinase (PI3K) pathway. However, specific molecules within DCs influencing asthma endotypes remain unclear. METHODS Gene expression data series (GSE) 64896, 6858, 2276, and 55247 were obtained from gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between CD103+ and CD11b+ DCs after induction by ovalbumin (OVA) and lipopolysaccharide (LPS) were analyzed using GEO2R. DEGs were examined through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analyses. The hub gene network was construct with STRING database and Cytoscape. Autophagy differences in DCs and the selected hub gene in GSE6858, GSE2276, and GSE55247 were evaluated using student t tests. RESULTS Our analysis identified 635 upregulated and 360 downregulated genes in CD11b+ DCs, compared to CD103+ DCs. These DEGs were associated with "PI3K-AKT signaling pathway," "Ras signaling pathway," and so forth. Thirty-five hub genes were identified, in which G protein subunit gamma transduction protein 2 (Gngt2) in CD11b+ DCs exhibited a relatively specific increase in expression associated with autophagy defects under the induction environment similar to T2 low asthma model. No significant difference was found in lung Gngt2 expression between T2 high asthma model and control group. CONCLUSION Our analysis suggested Gngt2 acted as an adapter molecule that inhibited autophagy, promoting Th17-mediated airway inflammation via the GPCR pathway in a T2 low asthma mice model. Targeting this pathway provides new asthma treatment strategies in preclinical research.
Collapse
Affiliation(s)
- Xiaoying Ji
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyang CityGuizhou ProvinceChina
| | - Yaoliang Zhou
- Emergency and Disaster Medical CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen CityGuangdong ProvinceChina
| | - Shendong He
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Guangxi University of Chinese Medicine, Xianhu DistrictNanningGuangxiChina
| | - Hongda Chen
- Department of Traditional Chinese MedicineThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen CityGuangdong ProvinceChina
| | - Xianming Zhang
- Department of Respiratory and Critical Care MedicineAffiliated Hospital of Guizhou Medical UniversityGuiyang CityGuizhou ProvinceChina
| | - Zhifeng Chen
- Department of Respiratory and Critical Care MedicineThe Second Xiangya Hospital, Central South UniversityChangsha CityHunan ProvinceChina
| | - Jinwen Cai
- Department of Respiratory and Critical Care MedicineThe Third Xiangya Hospital of Central South UniversityChangsha CityHunan ProvinceChina
| |
Collapse
|
16
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
17
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
18
|
Tsukuda TK, Tsuji K, Nishimori A, Ito T, Kobayashi Y, Suzuki T, Yokoyama A. Elevated Proportions of Circulating CXCR5 + Follicular Helper T Cells Reflect the Presence of Airway Obstruction in Asthma. J Immunol Res 2024; 2024:2020514. [PMID: 39346781 PMCID: PMC11427719 DOI: 10.1155/2024/2020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Materials and Methods Using flow cytometry, we identified and quantified Group 2 innate lymphocytes, T helper 2 cells, follicular helper T cells, and T helper 17 cells in peripheral blood samples from 49 individuals with asthma. We then conducted cross-sectional analyses to assess relationships between levels of these immune cells and lung function parameters, including the percentage predicted forced expiratory volume in 1 s (%FEV1). We also examined correlations between the proportions of immune cells and type 2 biomarkers. Results Proportions of CXCR5+ follicular helper T cells in human peripheral blood, as opposed to Group 2 innate lymphoid cells (ILC2) or T helper 2 cells, were significantly higher in cases with %FEV1 < 80% compared to those with %FEV1 ≥ 80%. Further, these proportions correlated negatively with %FEV1 and positively with blood eosinophil counts. Conclusions The proportion of circulating follicular helper T cells, but not T helper 2 cells or Group 2 innate lymphoid cells, may reflect the presence of airway obstruction caused by persistent type 2 inflammation.
Collapse
Affiliation(s)
- Tsukie Kin Tsukuda
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Kimiko Tsuji
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akari Nishimori
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Takehiko Ito
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Yuka Kobayashi
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Taro Suzuki
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| |
Collapse
|
19
|
Wei W, Xie Z, Yan J, Luo R, He J. Progress in research on induced sputum in asthma: a narrative review. J Asthma 2024:1-16. [PMID: 39290080 DOI: 10.1080/02770903.2024.2395383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To explore the clinical significance of induced sputum in asthma through a retrospective analysis of induced sputum in patients with asthma. DATA SOURCES The data and references cited in this article were obtained from PubMed, Sci-Hub, and Web of Science. STUDY SELECTION Observational studies with reliable data were selected. CONCLUSIONS The cytological count, -omics, and pathogen detection of induced sputum are helpful for the clinical diagnosis of asthma and in guiding medication choices.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Zhihao Xie
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Jun Yan
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Renrui Luo
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| |
Collapse
|
20
|
Chen C, Yuan F, Meng X, Peng F, Shao X, Wang C, Shen Y, Du H, Lv D, Zhang N, Wang X, Wang T, Wang P. Genetic biomarker prediction based on gender disparity in asthma throughout machine learning. Front Med (Lausanne) 2024; 11:1397746. [PMID: 39346946 PMCID: PMC11427272 DOI: 10.3389/fmed.2024.1397746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background Asthma is a chronic respiratory condition affecting populations worldwide, with prevalence ranging from 1-18% across different nations. Gender differences in asthma prevalence have attracted much attention. Purpose The aim of this study was to investigate biomarkers of gender differences in asthma prevalence based on machine learning. Method The data came from the gene expression omnibus database (GSE69683, GSE76262, and GSE41863), which involved in a number of 575 individuals, including 240 males and 335 females. Theses samples were divided into male group and female group, respectively. Grid search and cross-validation were employed to adjust model parameters for support vector machine, random forest, decision tree and logistic regression model. Accuracy, precision, recall, and F1 score were used to evaluate the performance of the models during the training process. After model optimization, four machine learning models were utilized to predict biomarkers of sex differences in asthma. In order to validate the accuracy of our results, we performed Wilcoxon tests on the genes expression. Result In datasets GSE76262 and GSE69683, support vector machine, random forest, logistic regression, and decision tree all achieve 100% accuracy, precision, recall, and F1 score. Our findings reveal that XIST serves as a common biomarker among the three samples, comprising a total of 575 individuals, with higher expression levels in females compared to males (p < 0.01). Conclusion XIST serves as a genetic biomarker for gender differences in the prevalence of asthma.
Collapse
Affiliation(s)
- Cai Chen
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Fenglong Yuan
- Department of Pulmonary and Critical Care Medicine, Yantai Yeda Hospital, Yantai, China
| | - Xiangwei Meng
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Fulai Peng
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Xuekun Shao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Wang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Yang Shen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Danyang Lv
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Ningling Zhang
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Xiuli Wang
- Department of Pulmonary and Critical Care Medicine, Yantai Yeda Hospital, Yantai, China
| | - Tao Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Jones TW, Hendrick T, Chase AM. Heterogeneity, Bayesian thinking, and phenotyping in critical care: A primer. Am J Health Syst Pharm 2024; 81:812-832. [PMID: 38742459 DOI: 10.1093/ajhp/zxae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
PURPOSE To familiarize clinicians with the emerging concepts in critical care research of Bayesian thinking and personalized medicine through phenotyping and explain their clinical relevance by highlighting how they address the issues of frequent negative trials and heterogeneity of treatment effect. SUMMARY The past decades have seen many negative (effect-neutral) critical care trials of promising interventions, culminating in calls to improve the field's research through adopting Bayesian thinking and increasing personalization of critical care medicine through phenotyping. Bayesian analyses add interpretive power for clinicians as they summarize treatment effects based on probabilities of benefit or harm, contrasting with conventional frequentist statistics that either affirm or reject a null hypothesis. Critical care trials are beginning to include prospective Bayesian analyses, and many trials have undergone reanalysis with Bayesian methods. Phenotyping seeks to identify treatable traits to target interventions to patients expected to derive benefit. Phenotyping and subphenotyping have gained prominence in the most syndromic and heterogenous critical care disease states, acute respiratory distress syndrome and sepsis. Grouping of patients has been informative across a spectrum of clinically observable physiological parameters, biomarkers, and genomic data. Bayesian thinking and phenotyping are emerging as elements of adaptive clinical trials and predictive enrichment, paving the way for a new era of high-quality evidence. These concepts share a common goal, sifting through the noise of heterogeneity in critical care to increase the value of existing and future research. CONCLUSION The future of critical care medicine will inevitably involve modification of statistical methods through Bayesian analyses and targeted therapeutics via phenotyping. Clinicians must be familiar with these systems that support recommendations to improve decision-making in the gray areas of critical care practice.
Collapse
Affiliation(s)
- Timothy W Jones
- Department of Pharmacy, Piedmont Eastside Medical Center, Snellville, GA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA, USA
| | - Tanner Hendrick
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Aaron M Chase
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Athens, GA
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| |
Collapse
|
22
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Yin J, Chen J, Wang T, Sun H, Yan Y, Zhu C, Huang L, Chen Z. Coinhibitory Molecule VISTA Play an Important Negative Regulatory Role in the Immunopathology of Bronchial Asthma. J Asthma Allergy 2024; 17:813-832. [PMID: 39246611 PMCID: PMC11378793 DOI: 10.2147/jaa.s449867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/01/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the significance of VISTA in bronchial asthma and its impact on the disease. Methods Human peripheral blood of asthma children was gathered. The expression concentrations of VISTA, IL-4, IL-6, CD25, CD40L, and PD-L2 in peripheral blood plasma were detected by ELISA. We established the mouse model of asthma and intervened with agonistic anti-VISTA mAb (4C11) and VISTA fusion protein. ELISA, flow cytometry, and Western blotting were performed to detect the expression levels of Th1, Th2, and Th17 cell subsets and related characteristic cytokines, as well as the protein levels of MAPKs, NF-κB, and TRAF6 in lung tissues. In addition, the infiltration of eosinophils and inflammatory cells, airway mucus secretion, and VISTA protein expression in lung histopathological sections of different groups of mice were analyzed. Results The concentration of VISTA in human asthma group decreased significantly (p < 0.05); A positive correlation was observed between VISTA and CD40L. The intervention of 4C11 mAb and fusion protein respectively during the induction period increase the differentiation of Th1 cells and the secretion of IFN-γ, and inhibit the differentiation of Th2 and Th17 cells, as well as the secretion of IL-4, IL-5, IL-13 and IL-17, partially reduce the pathological changes of asthma in mouse lungs and correct the progress of asthma. The MAPK, NF-κB, and TRAF6 protein levels were the middle range in the 4C11 mAb and fusion protein groups (p < 0.05). Conclusion The findings suggest VISTA may play a negative regulatory role in the occurrence and development of bronchial asthma.
Collapse
Affiliation(s)
- Jianqun Yin
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiawei Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ting Wang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiming Sun
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongdong Yan
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Canhong Zhu
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Huang
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Respiratory Department, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
24
|
Kaviany P, Shah A. Current Practices in Pediatric Asthma Care. Clin Chest Med 2024; 45:611-623. [PMID: 39069325 DOI: 10.1016/j.ccm.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This article is a comprehensive review of the latest knowledge and developments on pediatric asthma. It serves as a guide for general practitioners and subspecialists who treat asthma. The pathophysiology and critical features of asthma that should be addressed and the latest therapies available are discussed. The areas where further investigation is needed are also highlighted.
Collapse
Affiliation(s)
- Parisa Kaviany
- Division of Pulmonary & Sleep Medicine, Children's National Hospital, George Washington University School of Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Avani Shah
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 155 East Superior Street, Box #48, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Papadopoulos NG, Bacharier LB, Jackson DJ, Deschildre A, Phipatanakul W, Szefler SJ, Gall R, Ledanois O, Jacob-Nara JA, Sacks H. Type 2 Inflammation and Asthma in Children: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2310-2324. [PMID: 38878861 DOI: 10.1016/j.jaip.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Increased understanding of the underlying pathophysiology has highlighted the heterogeneity of asthma and identified that most children with asthma have type 2 inflammation with elevated biomarkers, such as blood eosinophils and/or fractional exhaled nitric oxide. Although in the past most of these children may have been categorized as having allergic asthma, identifying the type 2 inflammatory phenotype provides a mechanism to explain both allergic and non-allergic triggers in pediatric patients with asthma. Most children achieve control with low to medium doses of inhaled corticosteroids. However, in a small but significant proportion of children, asthma remains uncontrolled despite maximum conventional treatment, with an increased risk of severe exacerbations. In this review, we focus on the role of type 2 inflammation and allergic processes in children with asthma, together with evidence of the efficacy of available treatment options for those who experience severe symptoms.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, University of Athens, Athens, Greece; Lydia Becker Institute of Immunity and Inflammation, The University of Manchester, Manchester, United Kingdom.
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Antoine Deschildre
- University Lille, CHU Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, Lille, France
| | - Wanda Phipatanakul
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Department of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Stanley J Szefler
- Section of Pediatric Pulmonary and Sleep Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colo
| | | | | | | | | |
Collapse
|
26
|
Rafiee A, Faridi S, Sly PD, Stone L, Kennedy LP, Mahabee-Gittens EM. Asthma and decreased lung function in children exposed to perfluoroalkyl and polyfluoroalkyl substances (PFAS): An updated meta-analysis unveiling research gaps. ENVIRONMENTAL RESEARCH 2024; 262:119827. [PMID: 39182754 DOI: 10.1016/j.envres.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Associations between exposure to per- and polyfluoroalkyl substances (PFAS) and pediatric asthma and reduced lung function in children are mixed and inconclusive. The study objective was to examine the extant research on exposure to PFAS and the diagnosis of asthma or decreased lung function in children <17 years of age to highlight what is known and to identify research gaps for future investigations. METHODS The present review was registered on the PROSPER database (CRD42023407172). We systematically searched several bibliographic databases (Scopus, Embase, Web of Science (core Collection), Medline, and CINAHL) along with grey literature sources in January 2023 to find relevant studies before this date. The National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) tool was applied to assess the risk of bias (RoB) assessment. We used a random-effects meta-analysis to assess the associations. From 12 observational epidemiological studies (out of 513) explored for qualitative analyses, 4 studies were included in quantitative analyses. RESULTS The meta-analysis revealed a significant association between exposures to perfluorooctanoate (PFOA) with the prevalence of children's asthma [Odds Ratios (OR) = 1.162 (95% CI: 1.004-1.321)] whereas the association for perfluorooctane sulfonate (PFOS) was not statistically significant [OR = 1.03 (95%CI: 0.806-1.265]. The narrative synthesis results of the four included studies that examined the effects of PFAS exposure on lung function did not demonstrate significant associations between exposure to PFAS and decreased lung function. The RoB for most included studies was assessed as probably low without serious limitations. However, two studies were at high risk of biases. CONCLUSION Our findings suggest that children who are exposed to PFOA are at a higher risk of developing asthma as well as the association between exposure to PFOS with impaired lung function. Large longitudinal studies with homogeneous PFAS exposures and standardized outcome measures are needed to ascertain these outcomes with improved certainty as well as toxicological studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Lara Stone
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lynsey P Kennedy
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Mazzuca C, Vitiello L, Travaglini S, Maurizi F, Finamore P, Santangelo S, Rigon A, Vadacca M, Angeletti S, Scarlata S. Immunological and homeostatic pathways of alpha -1 antitrypsin: a new therapeutic potential. Front Immunol 2024; 15:1443297. [PMID: 39224588 PMCID: PMC11366583 DOI: 10.3389/fimmu.2024.1443297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.
Collapse
Affiliation(s)
- Carmen Mazzuca
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
- Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Silvia Travaglini
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Fatima Maurizi
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Panaiotis Finamore
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Simona Santangelo
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marta Vadacca
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Simone Scarlata
- Unit of Internal Medicine and Geriatrics, Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Campus Bio Medico University Hospital- Rome, Rome, Italy
| |
Collapse
|
28
|
Boster JM, Moore Iii WJ, Stoffel ST, Barber BS, Houle MC, Walter RJ, Morris MJ. Characterizing the Asthma Phenotype of Military Personnel. Mil Med 2024; 189:137-141. [PMID: 39160851 DOI: 10.1093/milmed/usae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Asthma is the most common diagnosis in military personnel who endorse chronic dyspnea. Service members have unique occupational risk factors, and there is concern that airborne exposures in the deployed environment as well as other occupational exposures may contribute to the development of asthma or exacerbate pre-existing disease. Asthma phenotyping with clinical biomarkers such as serum immunoglobulin E (IgE) levels and eosinophil (EOS) counts is useful in defining treatment strategies for the management of asthma. This study sought to characterize the phenotype of medically separated military personnel with career-limiting asthma to define potential management strategies and guide future research evaluating the unexplained prevalence of asthma in this population. MATERIALS AND METHODS A retrospective chart review of active duty service members (ADSM) who underwent fitness for duty evaluation via medical evaluation board between 2005 and 2016 and were separated with a minimum 30% conditional disability rating for asthma was performed. Only ADSM who were diagnosed with asthma by a pulmonologist and had spirometry data available were included in the analysis. Demographics, spirometry data, and laboratory data to include IgE levels, radioallergosorbent panels, and EOS counts were analyzed from the DoD electronic medical record. RESULTS A total of 141 service members were evaluated with a mean age of 42 ± 6.8 years, mean serum EOS count of 300 ± 358 cells/μL, and mean IgE level of 305 ± 363 IU/mL. The patients were further categorized into 4 subgroups based on serum EOS count and IgE level: group A with IgE < 100 IU/mL and EOS < 300 cells/μL (n = 45; 33%), group B with IgE > 100 IU/mL and EOS < 300 cells/μL (n = 44; 32%), group C with IgE < 100 IU/mL and EOS > 300 cells/μL (n = 6; 1%), and group D with IgE > 100 IU/mL, EOS > 300 cells/μL (n = 46; 34%). Among the cohorts, there were no statistically significant differences in demographics, body mass index, spirometry, smoking history, or disability rating. CONCLUSION The majority of ADSM with a defined asthma history do not have concordant elevations in serum IgE and blood EOS suggestive of a Th2-high phenotype. Asthma in this population is heterogeneous, and phenotyping using clinical biomarkers may be useful to define optimal treatment strategies.
Collapse
Affiliation(s)
- Joshua M Boster
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - William J Moore Iii
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Steven T Stoffel
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Brian S Barber
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Mateo C Houle
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Robert J Walter
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| | - Michael J Morris
- Department of Medicine, Pulmonary/Critical Service, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
29
|
Thompson DA, Wabara YB, Duran S, Reichenbach A, Chen L, Collado K, Yon C, Greally JM, Rastogi D. Single-cell analysis identifies distinct CD4+ T cells associated with the pathobiology of pediatric obesity-related asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607447. [PMID: 39211259 PMCID: PMC11361012 DOI: 10.1101/2024.08.13.607447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pediatric obesity-related asthma is characterized by non-atopic T helper 1 (Th1) inflammation and steroid resistance. CDC42 upregulation in CD4+T cells underliesTh1 inflammation but the CD4+T cell subtype(s) with CDC42 upregulation and their contribution to steroid resistance are not known. Compared to healthy-weight asthma, obesity-alone and healthy-weight controls, single-cell transcriptomics of obese asthma CD4+T cells revealed CDC42 upregulation in 3 clusters comprised of naïve and central memory T cells, which differed from the cluster enriched for Th1 responses that was comprised of effector T cells. NR3C1, coding for glucocorticoid receptor, was downregulated, while genes coding for NLRP3 inflammasome were upregulated, in clusters with CDC42 upregulation and Th1 responses. Conserved genes in these clusters correlated with pulmonary function deficits in obese asthma. These findings suggest that several distinct CD4+T cell subtypes are programmed in obese asthma for CDC42 upregulation, Th1 inflammation, and steroid resistance, and together contribute to obese asthma phenotype. Summary CD4+T cells from obese children with asthma are distinctly programmed for non-allergic immune responses, steroid resistance and inflammasome activation, that underlie the obese asthma phenotype.
Collapse
|
30
|
Gomes LGDS, Cruz ÁASD, de Santana MBR, Pinheiro GP, Santana CVN, Santos CBS, Boorgula MP, Campbell M, Machado ADS, Veiga RV, Barnes KC, Costa RDS, Figueiredo CA. Predictive genetic panel for adult asthma using machine learning methods. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100282. [PMID: 38952894 PMCID: PMC11215340 DOI: 10.1016/j.jacig.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 04/05/2024] [Indexed: 07/03/2024]
Abstract
Background Asthma is a chronic inflammatory disease of the airways that is heterogeneous and multifactorial, making its accurate characterization a complex process. Therefore, identifying the genetic variations associated with asthma and discovering the molecular interactions between the omics that confer risk of developing this disease will help us to unravel the biological pathways involved in its pathogenesis. Objective We sought to develop a predictive genetic panel for asthma using machine learning methods. Methods We tested 3 variable selection methods: Boruta's algorithm, the top 200 genome-wide association study markers according to their respective P values, and an elastic net regression. Ten different algorithms were chosen for the classification tests. A predictive panel was built on the basis of joint scores between the classification algorithms. Results Two variable selection methods, Boruta and genome-wide association studies, were statistically similar in terms of the average accuracies generated, whereas elastic net had the worst overall performance. The predictive genetic panel was completed with 155 single-nucleotide variants, with 91.18% accuracy, 92.75% sensitivity, and 89.55% specificity using the support vector machine algorithm. The markers used range from known single-nucleotide variants to those not previously described in the literature. Our study shows potential in creating genetic prediction panels with tailored penalties per marker, aiding in the identification of optimal machine learning methods for intricate results. Conclusions This method is able to classify asthma and nonasthma effectively, proving its potential utility in clinical prediction and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Cinthia Vila Nova Santana
- Programa de Controle da Asma na Bahia (ProAR), Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | - Monica Campbell
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Adelmir de Souza Machado
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Programa de Controle da Asma na Bahia (ProAR), Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Rafael Valente Veiga
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | | | - Ryan dos Santos Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
31
|
Kleniewska P, Pawliczak R. Can probiotics be used in the prevention and treatment of bronchial asthma? Pharmacol Rep 2024; 76:740-753. [PMID: 38951480 PMCID: PMC11294272 DOI: 10.1007/s43440-024-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Asthma is a lifelong condition with varying degrees of severity and susceptibility to symptom control. Recent studies have examined the effects of individual genus, species, and strains of probiotic microorganisms on the course of asthma. The present review aims to provide an overview of current knowledge on the use of probiotic microorganisms, mainly bacteria of the genus Lactobacillus and Bifidobacterium, in asthma prevention and treatment. Recent data from clinical trials and mouse models of allergic asthma indicate that probiotics have therapeutic potential in this condition. Animal studies indicate that probiotic microorganisms demonstrate anti-inflammatory activity, attenuate airway hyperresponsiveness (AHR), and reduce airway mucus secretion. A randomized, double-blind, placebo-controlled human trials found that combining multi-strain probiotics with prebiotics yielded promising outcomes in the treatment of clinical manifestations of asthma. It appears that probiotic supplementation is safe and significantly reduces the frequency of asthma exacerbations, as well as improved forced expiratory volume and peak expiratory flow parameters, and greater attenuation of inflammation. Due to the small number of available clinical trials, and the use of a wide range of probiotic microorganisms and assessment methods, it is not possible to draw clear conclusions regarding the use of probiotics as asthma treatments.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland
| |
Collapse
|
32
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
33
|
Pham DD, Shin E, Lee JE, Lee JH, Song WJ, Kwon HS, Cho YS, Won S, Kim TB. Transcriptomic Expression of T2-Inflammation Genes in Peripheral Blood Mononuclear Cells and Longitudinal Clinical Outcomes in Asthma: Insights from the COREA Study. Lung 2024; 202:449-457. [PMID: 38995391 DOI: 10.1007/s00408-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Gene expression can provide distinct information compared to clinical biomarkers in the context of longitudinal clinical outcomes in asthma patients. OBJECTIVE This study examined the association between the gene expression levels of upstream (IL-25, IL-33, and TSLP) and downstream cytokines (IL-5, IL-4, and IL-13) in the T2 inflammatory pathway with a 12-month follow-up of exacerbation, lung function, and steroid use. METHODS Transcriptomic sequencing analysis was performed on peripheral blood mononuclear cells from 279 adult asthmatics. Survival analysis and linear mixed-effect models were used to investigate potential differences between the high-level and low-level gene expression groups and the clinical outcomes. Analysis was performed separately for the upstream, downstream, and all 6 cytokines. RESULTS In general, T2 inflammatory cytokine gene expression showed a weak correlation with blood eosinophil counts (all r < 0.1) and clinical outcomes. Among moderate-to-severe eosinophilic asthma (MSEA) patients, individuals with elevated levels of downstream cytokines were at increased risk of time-to-first exacerbation (p = 0.044) and a greater increase of inhaled corticosteroid use over time (p = 0.002) compared to those with lower gene expression. There was no association between baseline T2 inflammatory cytokine gene expression and the longitudinal changes in lung function over time among MSEA patients. CONCLUSION These findings suggest that, among MSEA patients, the gene expression levels of downstream cytokines in the T2 inflammatory pathway may serve as indicators for endotyping asthma.
Collapse
Affiliation(s)
- Duong Duc Pham
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | | | | | - Ji-Hyang Lee
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Woo-Jung Song
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Interdisciplinary Program of Bioinformatics, College of Natural Science, Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43 gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
34
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Campen M, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances Th17 Responses and Promotes Airway Neutrophilia. Am J Respir Cell Mol Biol 2024; 71:169-181. [PMID: 38593442 PMCID: PMC11299091 DOI: 10.1165/rcmb.2023-0424oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with T helper (Th)17 responses. However, how UPRs participate in the deregulation of Th17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in Th17 cells relative to naive CD4+ T cells. Cytokine (e.g., IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse Th17 cells. Ern1 (encoding IRE1) deficiency decreases the expression of endoplasmic reticulum stress factors and impairs the differentiation and cytokine secretion of Th17 cells. Genetic ablation of Ern1 leads to alleviated Th17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances Th17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of Th17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in Th17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology and
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | | - Ruoning Wang
- Department of Molecular Genetics and Microbiology and
| | | | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas; and
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology and
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Matthew Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | | | - Meilian Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, and
| | | |
Collapse
|
35
|
Fractional Exhaled Nitric Oxide Testing for the Diagnosis and Management of Asthma: a Health Technology Assessment. ONTARIO HEALTH TECHNOLOGY ASSESSMENT SERIES 2024; 24:1-225. [PMID: 39329005 PMCID: PMC11423898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background Asthma is a common respiratory disease characterized by airflow obstruction caused by inflammation and narrowing of the airways. Nitric oxide is a gas that is present at low levels in the lungs, but that is elevated in the presence of airway inflammation. Fractional exhaled nitric oxide (FeNO) testing may help in the diagnosis and management of asthma by measuring the amount of nitric oxide in the breath. We conducted a health technology assessment of FeNO testing for the diagnosis and management of asthma in children and adults, which included an evaluation of the accuracy, effectiveness, cost-effectiveness, the budget impact of publicly funding FeNO testing, and patient preferences and values. Methods We performed a systematic literature search of the clinical evidence. We assessed the risk of bias of each included study using the Quality Assessment of Diagnostic Accuracy Studies tool, version 2 (QUADAS-2) and of each systematic review using the Risk of Bias Assessment Tool for Systematic Reviews (ROBIS). We evaluated the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic economic literature search and conducted cost-utility analyses with a 20-year time horizon from a public payer perspective. We also analyzed the budget impact of publicly funding FeNO testing in children and adults in Ontario. To contextualize the potential value of FeNO testing, we spoke with people with asthma and their care partners. Results We included 48 primary studies assessing the diagnostic accuracy of FeNO testing and 2 reviews evaluating the effectiveness of FeNO testing for asthma management in the clinical evidence review. The use of FeNO testing for the diagnosis of asthma reported variable (~30% to 90%) sensitivities (GRADE: Very low) and consistently high (~70% to 100%) specificities (GRADE: Low) in children and adults. FeNO testing for asthma management likely reduced exacerbations in children (GRADE: Moderate) and adults (GRADE: Moderate), lowered oral corticosteroid use in children (GRADE: Moderate), and slightly improved lung function in a mixed population (GRADE: Moderate), but little to no improvement was seen in other outcomes. We found that, for asthma diagnosis, FeNO testing in addition to standard testing is cost-effective in children, with an incremental cost-effectiveness ratio (ICER) of $6,192 per quality-adjusted life-year (QALY) gained. FeNO testing is not cost-effective for asthma diagnosis in adults except when a higher FeNO cut-off is applied. For asthma management, the ICER of FeNO testing compared with standard care alone is $103,893 per QALY gained in children and $200,135 per QALY gained in adults. Publicly funding FeNO testing as an adjunct to standard testing for asthma diagnosis over the next 5 years would cost about $0.10 million to $0.22 million for children and $1.19 million to $1.61 million for adults over the next 5 years, and for asthma management would cost about $22.37 million for children and $195.99 million for adults over the next 5 years. Participants were unaware if they had experience with FeNO testing because of its similarity to other types of asthma testing, but they reported valuing the potential of FeNO testing to provide more information about their condition as well as aid in the diagnosis and management. Barriers to access include lack of awareness and the limited availability of FeNO testing across the province. Conclusions We found that FeNO testing had good diagnostic specificity (i.e., low false positive rate), supporting its use as an adjunct to standard testing to help rule-in an asthma diagnosis in both children and adults. FeNO testing to monitor and manage asthma likely resulted in a reduction in the number of people who experienced exacerbations and used oral corticosteroids, but may make little to no difference in improving other health outcomes. FeNO testing is likely cost-effective as an additional test to support the diagnosis of asthma in children, as well as in adults when a higher FeNO cut-off is applied, but is likely not cost-effective as an additional test to monitor and manage asthma in both children and adults. We estimate that publicly funding FeNO testing as an adjunct to standard testing for asthma diagnosis in Ontario would result in additional costs of $0.10 million to $0.22 million for children and $1.19 million to $1.61 million for adults over the next 5 years. For monitoring and managing asthma, FeNO testing would result in additional costs of $22.37 million for children and $195.99 million for adults over the next 5 years. People we spoke with were unaware if they had experience with FeNO testing because of its similarity to other types of asthma testing, but they reported valuing the potential of FeNO testing to provide more information about their condition as well as aid in the diagnosis and management of asthma.
Collapse
|
36
|
Rogerson C, Nelson Sanchez-Pinto L, Gaston B, Wiehe S, Schleyer T, Tu W, Mendonca E. Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning. Pediatr Pulmonol 2024. [PMID: 39073377 DOI: 10.1002/ppul.27197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
RATIONALE More targeted management of severe acute pediatric asthma could improve clinical outcomes. OBJECTIVES To identify distinct clinical phenotypes of severe acute pediatric asthma using variables obtained in the first 12 h of hospitalization. METHODS We conducted a retrospective cohort study in a quaternary care children's hospital from 2014 to 2022. Encounters for children ages 2-18 years admitted to the hospital for asthma were included. We used consensus k means clustering with patient demographics, vital signs, diagnostics, and laboratory data obtained in the first 12 h of hospitalization. MEASUREMENTS AND MAIN RESULTS The study population included 683 encounters divided into derivation (80%) and validation (20%) sets, and two distinct clusters were identified. Compared to Cluster 1 in the derivation set, Cluster 2 encounters (177 [32%]) were older (11 years [8; 14] vs. 5 years [3; 8]; p < .01) and more commonly males (63% vs. 53%; p = .03) of Black race (51% vs. 40%; p = .03) with non-Hispanic ethnicity (96% vs. 84%; p < .01). Cluster 2 encounters had smaller improvements in vital signs at 12-h including percent change in heart rate (-1.7 [-11.7; 12.7] vs. -7.8 [-18.5; 1.7]; p < .01), and respiratory rate (0.0 [-20.0; 22.2] vs. -11.4 [-27.3; 9.0]; p < .01). Encounters in Cluster 2 had lower percentages of neutrophils (70.0 [55.0; 83.0] vs. 85.0 [77.0; 90.0]; p < .01) and higher percentages of lymphocytes (17.0 [8.0; 32.0] vs. 9.0 [5.3; 14.0]; p < .01). Cluster 2 encounters had higher rates of invasive mechanical ventilation (23% vs. 5%; p < .01), longer hospital length of stay (4.5 [2.6; 8.8] vs. 2.9 [2.0; 4.3]; p < .01), and a higher mortality rate (7.3% vs. 0.0%; p < .01). The predicted cluster assignments in the validation set shared the same ratio (~2:1), and many of the same characteristics. CONCLUSIONS We identified two clinical phenotypes of severe acute pediatric asthma which exhibited distinct clinical features and outcomes.
Collapse
Affiliation(s)
- Colin Rogerson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Regenstrief Institute Center for Biomedical Informatics, Indianapolis, Indiana, USA
| | - L Nelson Sanchez-Pinto
- Anne & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| | - Benjamin Gaston
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah Wiehe
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Regenstrief Institute Center for Health Services Research, Indianapolis, Indiana, USA
| | - Titus Schleyer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Regenstrief Institute Center for Biomedical Informatics, Indianapolis, Indiana, USA
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University, Indianapolis, Indiana, USA
| | - Eneida Mendonca
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
38
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
39
|
Rodrigo-Muñoz JM, Gil-Martínez M, Naharro-González S, Del Pozo V. Eosinophil-derived extracellular vesicles: isolation and classification techniques and implications for disease pathophysiology. J Leukoc Biol 2024; 116:260-270. [PMID: 38836652 DOI: 10.1093/jleuko/qiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Eosinophils are leukocytes characterized by their ability to release granule content that is highly rich in enzymes and proteins. Besides the antihelminthic, bactericidal, and antiviral properties of eosinophils and their secretory granules, these also play a prominent role in the pathophysiology of diseases such as asthma, eosinophilic esophagitis, and other hypereosinophilic conditions by causing tissue damage and airway hyperresponsiveness. Although this cell was first recognized mainly for its capacity to release granule content, nowadays other capabilities such as cytokine secretion have been linked to its physiology, and research has found that eosinophils are not only involved in innate immunity, but also as orchestrators of immune responses. Nearly 10 yr ago, eosinophil-derived extracellular vesicles (EVs) were first described; since then, the EV field has grown exponentially, revealing their vital roles in intracellular communication. In this review, we synthesize current knowledge on eosinophil-derived EVs, beginning with a description of what they are and what makes them important regulators of disease, followed by an account of the methodologies used to isolate and characterize EVs. We also summarize current understanding of eosinophil-derived vesicles functionality, especially in asthma, the disease in which eosinophil-derived EVs have been most widely studied, describing how they modulate the role of eosinophils themselves (through autocrine signaling) and the way they affect airway structural cells and airway remodeling. Deeper understanding of this cell type could lead to novel research in eosinophil biology, its role in other diseases, and possible use of eosinophil-derived EVs as therapeutic targets.
Collapse
Affiliation(s)
- José Manuel Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sara Naharro-González
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
| | - Victoria Del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Avda. Reyes Católicos, 228040 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
40
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
41
|
Van Asselt AJ, Beck JJ, Johnson BN, Finnicum CT, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, Maitland-van der Zee AH, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic Signatures of Asthma: A Comprehensive Study of DNA Methylation and Clinical Markers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310829. [PMID: 39108502 PMCID: PMC11302610 DOI: 10.1101/2024.07.22.24310829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Background Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
|
42
|
Persson J, Aakko J, Kaijala S, Lassenius MI, Viinanen A, Kankaanranta H, Lehtimäki L. Healthcare Resource Utilisation of Severe Uncontrolled T2low and Non-T2low Asthma in Finland During 2018-2021. J Asthma Allergy 2024; 17:681-691. [PMID: 39050030 PMCID: PMC11268766 DOI: 10.2147/jaa.s455911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Patients with asthma and low levels of type 2 inflammatory biomarkers (T2 low) have limited effective treatment options. Such biomarkers include eg blood eosinophils (b-eos) and fractional exhaled nitric oxide (FeNO). The healthcare resource utilisation (HCRU) of severe uncontrolled T2 low asthma remains unexplored. Thus, this study aimed to estimate the HCRU of T2 low and non-T2 low severe uncontrolled asthma patients using real-world data in Finland. Patients and Methods Adult patients with an asthma diagnosis during baseline (2012-2017) at the pulmonary department of Turku University Hospital were included and followed during 2018-2021, or until death. Total HCRU costs and respiratory-related HCRU costs were evaluated. The main drivers for the HCRU and costs were assessed with gamma and negative binomial regression models. Results Of the severe uncontrolled asthma patients with T2 status available, 40% (N=66) were identified with T2 low and 60% (N=103) with non-T2 low asthma. The average cumulative cost per patient was similar in patients with T2 low compared with non-T2 low, with all-cause costs cumulating in four years of follow-up to 37,524€ (95% CI: 27,160, 47,888) in T2 low compared to 34,712€ (25,484, 43,940) in non-T2 low. The corresponding average cumulative respiratory-related costs were 5178€ (3150, 7205) in T2 low compared to 5209€ (4104, 6313) in non-T2 low. Regression modelling identified no differences between the T2-status groups when assessing all-cause healthcare costs per patient-year (PPY). On the other hand, the regression modelling predicted more inpatient days PPY for severe uncontrolled patients with T2 low status compared to the patients with non-T2 low status. Conclusion Patients with uncontrolled severe T2 low asthma use equal healthcare resources as corresponding non-T2 low patients. This study brought new insights into the HCRU of severe uncontrolled asthma patients per T2 status, which has not previously been investigated.
Collapse
Affiliation(s)
| | | | | | | | - Arja Viinanen
- Turku University Hospital, Division of Medicine, Department of Pulmonary Diseases and the University of Turku, Department of Pulmonary Diseases and Clinical Allergology, Turku, Finland
| | - Hannu Kankaanranta
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland, Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
43
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
44
|
Boada-Fernández-del-Campo C, García-Sánchez-Colomer M, Fernández-Quintana E, Poza-Guedes P, Rolingson-Landaeta JL, Sánchez-Machín I, González-Pérez R. Real-World Safety Profile of Biologic Drugs for Severe Uncontrolled Asthma: A Descriptive Analysis from the Spanish Pharmacovigilance Database. J Clin Med 2024; 13:4192. [PMID: 39064232 PMCID: PMC11277876 DOI: 10.3390/jcm13144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The present investigation provides a thorough analysis of adverse drug reactions (ADRs) reported in the Database of the Spanish Pharmacovigilance System (FEDRA) for biologic medications primarily indicated for severe refractory asthma, including omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab, and tezepelumab. Our main objective was to identify ADRs not documented in the drugs' Technical Sheets (summary of product characteristics, SmPC), potentially indicating unrecognized risks meriting pharmacovigilance attention. Methods: Data spanning from each drug's market introduction until 22 January 2024, were analyzed, sourced from direct submissions to the Spanish Pharmacovigilance System, industry communications, and literature reviews. We evaluated notifications impartially to ensure a comprehensive review of all the ADRs associated with these medications. Results: This investigation underlines the critical role of post-marketing surveillance in enhancing patient safety. It emphasizes the necessity for healthcare professionals to report ADRs comprehensively to foster a robust pharmacovigilance system. Furthermore, the study highlights gaps between the reported ADRs and the information provided in SmPCs, signaling potential areas for improvement in drug safety monitoring and regulatory oversight. Conclusions: Finally, these findings may contribute to informed decision making in clinical practice and regulatory policy, ultimately advancing patient care and safety in the management of severe uncontrolled asthma.
Collapse
Affiliation(s)
- Carlos Boada-Fernández-del-Campo
- Autonomous Pharmacovigilance Center of the Canary Islands (CAFV), Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (C.B.-F.-d.-C.); (M.G.-S.-C.); (E.F.-Q.)
- Canary Islands Health Service, Spanish Pharmacovigilance System for Medicines for Human Use (SEFV-H), 38200 Santa Cruz de Tenerife, Spain
- Clinical Pharmacology Service, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain;
| | - Marcelino García-Sánchez-Colomer
- Autonomous Pharmacovigilance Center of the Canary Islands (CAFV), Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (C.B.-F.-d.-C.); (M.G.-S.-C.); (E.F.-Q.)
- Canary Islands Health Service, Spanish Pharmacovigilance System for Medicines for Human Use (SEFV-H), 38200 Santa Cruz de Tenerife, Spain
| | - Eduardo Fernández-Quintana
- Autonomous Pharmacovigilance Center of the Canary Islands (CAFV), Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (C.B.-F.-d.-C.); (M.G.-S.-C.); (E.F.-Q.)
- Canary Islands Health Service, Spanish Pharmacovigilance System for Medicines for Human Use (SEFV-H), 38200 Santa Cruz de Tenerife, Spain
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Santa Cruz de Tenerife, Spain
| | | | - Inmaculada Sánchez-Machín
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Santa Cruz de Tenerife, Spain
- Immunotherapy Unit, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Santa Cruz de Tenerife, Spain
| |
Collapse
|
45
|
Ali KM, Jamal N, Wasman Smail S, Lauran M, Bystrom J, Janson C, Amin K. Biomarkers of type 2 and non-type 2 inflammation in asthma exacerbations. Cent Eur J Immunol 2024; 49:203-213. [PMID: 39381551 PMCID: PMC11457570 DOI: 10.5114/ceji.2024.141345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/18/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction In adult-onset asthma, two major endotypes have been proposed: T2 with eosinophilia and non-T2 characterised by neutrophils and interleukin (IL)-17. The objective of the study was to examine the endotype marker profile in patients with severe asthma who were hospitalized for exacerbations, with a focus on differentiating between viral and non-viral triggers. Material and methods Forty-nine patients with asthma, admitted for exacerbations, and 51 healthy controls (HCs) were recruited. We further categorized the exacerbated asthma patients into two groups: non-viral infected (n = 38) and viral infected (n = 11) groups. Blood was drawn and a nasopharyngeal swab taken at the time of admission and eosinophil numbers, eosinophil cationic protein (ECP), immuno- globulin E (IgE), tryptase and viral infection were determined. Additionally, levels of IL-17, IL-33 and IL-31 were assessed. Results The majority of patients had adult onset asthma (age of diagnosis, 42.8 ±16.1) with a duration of 7.7 ±10.8 years, 24.5% being atopic. Patients had higher levels of eosinophils, ECP and IgE than healthy controls (eosinophils, p = 0.003; ECP and IgE, p = 0.0001). Immunohistochemistry confirmed eosinophils as a source of ECP. Tryptase (p = 0.0001), IL-17 (p = 0.0005), IL-31 (p = 0.0001) and IL-33 (p = 0.0002) were also higher in patients than controls. ECP correlated with tryptase (r = 0.08, p = 0.62). IL-17 showed the best correlation with other mediators, including ECP (r = 0.35, p = 0.24), tryptase (r = 0.69, p = 0.0001), IgE (r = 0.50, p = 0.0001), IL-33 (r = 0.95, p = 0.0001) and IL-31 (r = 0.89, p = 0.0001). IgE, IL-17, and IL-31 had a high AUC when differentiating those with severe and non-severe asthma. The group with exacerbated viral infection showed elevated levels of serum IL-17 and IL-31 compared to the non-infected group. Conclusions Patients with asthmatic exacerbations were found to have higher levels of both T2 and non-T2 inflammatory markers than healthy controls. In the study, levels of IgE, IL-17, and IL-31 differentiated between patients with severe and non-severe asthma. The last two cytokines were also able to distinguish between exacerbated asthma caused by viral infection and exacerbated asthma caused by non-viral infection.
Collapse
Affiliation(s)
- Kosar M. Ali
- Department of Medicine, Microbiology/Immunology, College of Medicine, University of Sulaimani, Iraq
| | - Nsar Jamal
- Department of Medicine, Microbiology/Immunology, College of Medicine, University of Sulaimani, Iraq
| | - Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Martin Lauran
- Luton and Dunstable Hospital, Bedfordshire Hospitals NHS Foundation Trust, Luton, UK
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Christer Janson
- Department of Medical Science, Respiratory, Allergy and Sleep Research, Uppsala University and University Hospital, Uppsala, Sweden
| | - Kawa Amin
- Department of Medicine, Microbiology/Immunology, College of Medicine, University of Sulaimani, Iraq
- Department of Medical Science, Respiratory, Allergy and Sleep Research, Uppsala University and University Hospital, Uppsala, Sweden
| |
Collapse
|
46
|
Hur GY. Autoimmune Mechanisms and Extracellular Traps in Non-eosinophilic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:320-322. [PMID: 39155733 PMCID: PMC11331191 DOI: 10.4168/aair.2024.16.4.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Sim S, Choi Y, Yang EM, Park HS. Association between specific IgE to staphylococcal enterotoxin B and the eosinophilic phenotype of asthma. Korean J Intern Med 2024; 39:659-667. [PMID: 38986495 PMCID: PMC11236811 DOI: 10.3904/kjim.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND/AIMS Sensitization to staphylococcal superantigens (SAgs) could contribute to asthma severity. However, its relevance with eosinophilic phenotype has not yet been clarified. This study aimed to investigate associations between serum specific IgE levels to SAg and eosinophilic airway inflammation in adult asthmatics. METHODS The serum specific IgE levels to 3 SAgs, including staphylococcal enterotoxin A (SEA) and B (SEB), and toxic shock syndrome toxin-1 (TSST-1) were measured by ImmunoCAP in 230 adult asthmatic patients and 50 healthy controls (HCs). Clinical characteristics and laboratory parameters, including serum total/free IgE, and 2 eosinophil-activation markers, eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin (EDN), were analyzed according to blood eosinophil counts (BEC; 150 cells/μL) and serum specific IgE levels to 3 SAgs (0.35 kU/L). RESULTS Asthmatic patients showed higher serum specific IgE levels to 3 SAgs than HCs (p < 0.05 for all). The serum total/clinfree IgE levels were significantly higher in asthmatics with positive IgE responses to 3 SAgs than those without (p < 0.05 for all). There were no significant differences in clinical parameters including age, asthma severity, comorbidities, or smoking according to IgE responses to 3 SAgs. Patients with positive IgE responses to SEB (not to SEA/TSST-1) had higher serum specific IgE levels to house dust mites and ECP/EDN as well as higher BEC with positive correlations between serum SEB-specific IgE levels and BEC/ECP/EDN (p < 0.05 for all). CONCLUSION These findings suggest that serum SEB-specific IgE levels could contribute to eosinophil activation as well as IgE production in adult asthma.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
48
|
Maldonado-Puebla M, Cardet JC. The International Variation in Asthma Phenotypes. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:317-319. [PMID: 39155732 PMCID: PMC11331190 DOI: 10.4168/aair.2024.16.4.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Martin Maldonado-Puebla
- Allergy & Immunology, Specialty Clinic at the Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
49
|
Thompson EJ, Wood CT, Hornik CP. Pediatric Pharmacology for the Primary Care Provider: Advances and Limitations. Pediatrics 2024; 154:e2023064158. [PMID: 38841764 PMCID: PMC11211696 DOI: 10.1542/peds.2023-064158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024] Open
Abstract
Despite >1 in 5 children taking prescription drugs in the United States, off-label drug use is common. To increase the study of drugs in children, regulatory bodies have enacted legislation to incentivize and require pediatric drug studies. As a result of this legislation, novel trial approaches, and an increase in personnel with pediatric expertise, there have been numerous advancements in pediatric drug development. With this review, we aim to highlight developments in pediatric pharmacology over the past 6 years for the most common disease processes that may be treated pharmacologically by the pediatric primary care provider. Using information extracted from label changes between 2018 and 2023, the published literature, and Clinicaltrials.gov, we discuss advances across multiple therapeutic areas relevant to the pediatric primary care provider, including asthma, obesity and related disorders, mental health disorders, infections, and dermatologic conditions. We highlight instances in which new drugs have been developed on the basis of a deeper mechanistic understanding of illness and instances in which labels have been expanded in older drugs on the basis of newly available data. We then consider additional factors that affect pediatric drug use, including cost and nonpharmacologic therapies. Although there is work to be done, efforts focused on pediatric-specific drug development will increase the availability of evidence-based, labeled guidance for commonly prescribed drugs and improve outcomes through the safe and effective use of drugs in children.
Collapse
Affiliation(s)
- Elizabeth J. Thompson
- Duke University Hospital, Durham, North Carolina
- Duke Clinical Research Institute, Durham, North Carolina
| | | | - Christoph P. Hornik
- Duke University Hospital, Durham, North Carolina
- Duke Clinical Research Institute, Durham, North Carolina
| |
Collapse
|
50
|
Ryan JM, Navaneethan S, Damaso N, Dilchert S, Hartogensis W, Natale JL, Hecht FM, Mason AE, Smarr BL. Information theory reveals physiological manifestations of COVID-19 that correlate with symptom density of illness. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1211413. [PMID: 38948084 PMCID: PMC11211556 DOI: 10.3389/fnetp.2024.1211413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Algorithms for the detection of COVID-19 illness from wearable sensor devices tend to implicitly treat the disease as causing a stereotyped (and therefore recognizable) deviation from healthy physiology. In contrast, a substantial diversity of bodily responses to SARS-CoV-2 infection have been reported in the clinical milieu. This raises the question of how to characterize the diversity of illness manifestations, and whether such characterization could reveal meaningful relationships across different illness manifestations. Here, we present a framework motivated by information theory to generate quantified maps of illness presentation, which we term "manifestations," as resolved by continuous physiological data from a wearable device (Oura Ring). We test this framework on five physiological data streams (heart rate, heart rate variability, respiratory rate, metabolic activity, and sleep temperature) assessed at the time of reported illness onset in a previously reported COVID-19-positive cohort (N = 73). We find that the number of distinct manifestations are few in this cohort, compared to the space of all possible manifestations. In addition, manifestation frequency correlates with the rough number of symptoms reported by a given individual, over a several-day period prior to their imputed onset of illness. These findings suggest that information-theoretic approaches can be used to sort COVID-19 illness manifestations into types with real-world value. This proof of concept supports the use of information-theoretic approaches to map illness manifestations from continuous physiological data. Such approaches could likely inform algorithm design and real-time treatment decisions if developed on large, diverse samples.
Collapse
Affiliation(s)
- Jacob M. Ryan
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, United States
| | - Shreenithi Navaneethan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Natalie Damaso
- MIT Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, United States
| | - Stephan Dilchert
- Department of Management, Zicklin School of Business, Baruch College, The City University of New York, New York, NY, United States
| | - Wendy Hartogensis
- Osher Center for Integrative Health, University of California, San Francisco, San Francisco, CA, United States
| | - Joseph L. Natale
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, United States
| | - Frederick M. Hecht
- Osher Center for Integrative Health, University of California, San Francisco, San Francisco, CA, United States
| | - Ashley E. Mason
- Osher Center for Integrative Health, University of California, San Francisco, San Francisco, CA, United States
| | - Benjamin L. Smarr
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|