1
|
Guo J, Chen J, Wang Y, Bai X, Feng H, Sheng S, Wang H, Xu K, Huang M, Lei Z, Chu X. Putative function and prognostic molecular marker of mast cells in colorectal cancer. BMC Med Genomics 2025; 18:65. [PMID: 40205370 DOI: 10.1186/s12920-025-02117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND The increased demand for markers for colorectal cancer (CRC) highlights the importance of investigating immune cells involved in CRC progression. This study aims to dissect the mast cells in CRC, characterize the role of mast cells in CRC development, coordinate molecular communication between mast cells and malignant cells, and construct and validate a prognostic classification model based on mast cell markers. METHODS Single-cell transcriptome data of CRC patients were extracted from GSE146771 for cell classification and annotation. The malignant cells were identified by copykat and the communication between mast cells and malignant cells was analyzed by CellChat. Least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis of mast cell markers were performed in the TCGA-COAD cohort to construct a prognostic classification model. qRT-PCR was performed to detect the mRNA expression of the molecules in the classification model in P815 and MC-9 cells. The co-culture experiment of MC38 and P815 cells were performed in 12-well transwell dish. Wound healing assay and Transwell assay were performed to detect cell migration and invasion. RESULTS 10,186 high-quality cells in GSE146771 were annotated to 9 cell types. Six markers in mast cells (HDC, GATA2, ASAH1, BTBD19, TIMP1, FAM110A) were selected to construct a classification model. The high-risk score defined showed high infiltration of immunosuppressive cells, including endothelial cells, CAFs, Tregs and high angiogenesis and epithelial-mesenchymal transition (EMT) activities. In the model, HDC were abnormally low expressed in P815 cells, while BTBD19, FAM110A, GATA2, ASAH1 and TIMP1 showed excessive expression in P815 cells. Knockdown of GATA2 in the co-culture system of P815 and MC38 cells blocked cell migration and invasion. CONCLUSION This study identified the cell types within CRC, elaborated the cellular functions of mast cells in CRC development and their molecular communication to coordinate malignant cells, and highlighted the molecular components and biological features that constitute promising prognostic classification model.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Chen
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ke Xu
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
2
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Elieh-Ali-Komi D, Maurer M, Siebenhaar F. The Impact of Mast Cells on the Anatomy, Cellular Communication, and Molecular Immune Network of Lymph Nodes. Clin Rev Allergy Immunol 2025; 68:35. [PMID: 40175843 PMCID: PMC11965237 DOI: 10.1007/s12016-025-09050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Lymph nodes (LNs) are ovoid-shape capsulated structures interposed along the lymphatic vessels. Owing to their unique architecture, LNs place immune cell types in distinct compartments allowing effective contact of antigens to them. Their efficient function results in the concentration of antigens and bridging of antigen-presenting cells like DCs and B cells and cells of adaptive immunity (circulating B and T lymphocytes remaining in LNs to monitor antigens) to coordinate efficient immune responses. In a healthy LN, B cells are primarily clustered in lymphoid follicles, whereas T cells are organized in the deeper paracortex region. Mast cells (MCs) are among the immune cells; their normal presence or pathologic infiltration has been reported in LNs. MCs enter LNs through afferent lymphatic vessels and can be found in all compartments, ranging from subcapsular sinus to the deepest sections of medullary sinus; however, they are commonly found in the T cell zone and medullary sinus but rarely in follicles. In pathologies with LN involvement and solid tumors, features like MC accumulation and the anatomical region of accumulation within LNs differ based on the type of tumor and the organ. Moreover, MC accumulation in LNs may influence the trafficking of other cell types and immune responses. MCs out of LNs can facilitate the migration of DCs into LN, which is crucial for orchestrating immune responses, especially in vaccination; moreover, MCs play a role in the induction of peripheral tolerance. MC-released mediators including TNF from tissue-resident MCs and tryptase from LN-MCs mediate hyperplasia and extension of LN vasculature, respectively. MCs support lymphangiogenesis by releasing VEGF-C and VEGF-D in vivo. Further research on the role of MCs in LNs is anticipated due to the development of pharmaceuticals that impact MC survival or inhibit their activation. In this review, we summarize the current literature regarding the outcomes of MC presence in LNs with a focus on the MC-mediated immune responses in two categories: direct cell-to-cell and mediator-based interactions.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Marcus Maurer
- Institute of Allergology, Charité - Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
4
|
Przygodzka P, Szulc-Kielbik I, Kielbik M, Pacholczyk M, Klink M. Neuromedin U in the tumor microenvironment - Possible actions in tumor progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189269. [PMID: 39842617 DOI: 10.1016/j.bbcan.2025.189269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion. Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells. We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Marcin Pacholczyk
- Silesian University of Technology, Department of Systems Biology and Engineering, 16 Akademicka Str., 44-100 Gliwice, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| |
Collapse
|
5
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
6
|
Fan J, Chen Y, Gong Y, Sun H, Hou R, Dou X, Zhang Y, Huo C. Single-cell RNA sequencing reveals potential therapeutic targets in the tumor microenvironment of lung squamous cell carcinoma. Sci Rep 2025; 15:10374. [PMID: 40140461 PMCID: PMC11947091 DOI: 10.1038/s41598-025-93916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC), accounting for 30% of lung cancer cases, lacks adequate research due to limited understanding of its molecular abnormalities. Our study analyzed public LUSC datasets to explore the tumor microenvironment (TME) composition using scRNA-seq from two cohorts. Applying non-negative matrix factorization, we identified unique malignant cell phenotypes, or meta-programs (MPs), based on gene expression patterns. Survival analysis revealed the clinical relevance of these MPs. Findings illuminated a TME landscape enriched with immune cells-CD8 + T, exhausted T, CD4 + T, and naive T cells-and suggested roles for myeloid cells, like cDC1 and pDCs, in LUSC progression. Different MPs highlighted the heterogeneity of malignant cells and their clinical implications. Targeting MP-specific genes may enable personalized therapy, especially for early-stage LUSC. This study offers insights into immune cell function in tumor dynamics, identifies MPs, and paves the way for novel LUSC strategies, enhancing early intervention, personalized treatment, and prognosis, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junda Fan
- Department of Oncology, 242 Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Yu Chen
- Jiamusi Central Hospital, Jiamusi, 154000, China
| | - Yue Gong
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Hongmei Sun
- Department of Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, 154000, China
| | - Rui Hou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Xiaoya Dou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Yanping Zhang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Cheng Huo
- Departmen of Pathology, Sinopharm Tongmei General Hospital, Datong, 037003, China.
| |
Collapse
|
7
|
Lanzloth R, Harris NL, Cannon AM, Kaplan MH, O’Hagan HM. Mast cells interact directly with colorectal cancer cells to promote epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644113. [PMID: 40166179 PMCID: PMC11957126 DOI: 10.1101/2025.03.19.644113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mast cells (MCs), a type of granulocytic immune cell, can be both pro- and anti-tumorigenic in colorectal cancer (CRC). We hypothesized that these contrasting findings may be in part due to di_erential interactions of MCs with CRC subtypes. BRAF mutant CRC uniquely contains intestinal secretory cell types. In this study, we demonstrated that MCs are enriched in BRAF mutant CRC, likely because they are recruited by factors released from cancer secretory cells. To investigate the functional consequences of MC-CRC cell interactions, we performed direct coculture experiments. We demonstrated that MCs promote epithelial-to-mesenchymal transition (EMT) in CRC cells in a calcium- and contact-dependent fashion. Furthermore, inhibiting LFA-1 and ICAM1 integrin binding reduced the coculture-induced EMT-related marker expression in CRC cells. The MC-CRC cell interaction facilitates the transfer of biological materials, including mRNA molecules, from MCs to CRC cells. This study is the first to report a contact-dependent, pro-tumorigenic role of MCs in CRC, as well as the transfer of molecules encoded by MCs to CRC cells. These findings enhance our comprehension of cell-cell communication between immune and cancer cells. Furthermore, this work suggests that targeting MC-CRC interactions, particularly through modulating integrin pathways, could o_er new therapeutic strategies for aggressive CRC subtypes.
Collapse
Affiliation(s)
- Rosie Lanzloth
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Nicole L. Harris
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Anthony M. Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
8
|
Wen Z, Liu T, Xu X, Acharya N, Shen Z, Lu Y, Xu J, Guo K, Shen S, Zhao Y, Wang P, Li S, Chen W, Li H, Ding Y, Shang M, Guo H, Hou Y, Cui B, Shen M, Huang Y, Pan T, Qingqing W, Cao Q, Wang K, Xiao P. Interleukin-16 enhances anti-tumor immune responses by establishing a Th1 cell-macrophage crosstalk through reprogramming glutamine metabolism in mice. Nat Commun 2025; 16:2362. [PMID: 40064918 PMCID: PMC11893787 DOI: 10.1038/s41467-025-57603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Overcoming immunosuppression in the tumor microenvironment (TME) is crucial for developing novel cancer immunotherapies. Here, we report that IL-16 administration enhances the polarization of T helper 1 (Th1) cells by inhibiting glutamine catabolism through the downregulation of glutaminase in CD4+ T cells and increases the production of Th1 effector cytokine IFN-γ, thus improving anti-tumor immune responses. Moreover, we find that establishing an IL-16-dependent, Th1-dominant TME relies on mast cell-produced histamine and results in the increased expression of the CXCR3 ligands in tumor-associated macrophages (TAM), thereby improving the therapeutic effectiveness of immune checkpoint blockade (ICB). Cancer patients exhibit impaired production of IL-16, which correlates with poorer prognosis. Additionally, low IL-16 production is associated with unresponsiveness to immunotherapy in cancer patients. Collectively, our findings provided new insights into the biological function of IL-16, emphasizing its potential clinical significance as a therapeutic approach to augment anti-tumor immunity and sensitize ICB-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Xutao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nandini Acharya
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, The Ohio State University, Columbus, OH, USA
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunkun Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Guo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yimin Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshan Guo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yu Hou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Bijun Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manlu Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youling Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wang Qingqing
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Zhang Y, Chen H, Mo H, Zhao N, Sun X, Liu B, Gao R, Xu B, Zhang Z, Liu Z, Ma F. Distinct cellular mechanisms underlie chemotherapies and PD-L1 blockade combinations in triple-negative breast cancer. Cancer Cell 2025; 43:446-463.e7. [PMID: 39919737 DOI: 10.1016/j.ccell.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Combining immune checkpoint blockade (ICB) with chemotherapy shows promise for treating triple-negative breast cancer (TNBC), though the mechanisms remain incompletely understood. Here, we integrate published and new single-cell RNA sequencing (scRNA-seq) data to investigate the tumor immune microenvironment (TIME) in TNBC patients treated with paclitaxel (PTX), nab-paclitaxel (Nab-PTX), and their combinations with the anti-PD-L1 antibody atezolizumab (ATZ). Compared to ATZ plus PTX, ATZ plus Nab-PTX rewires TCF7+ stem-like effector memory CD8+ T cells (Tsem) and CD4+ T follicular helper (Tfh) cells. Nab-paclitaxel, unlike PTX, also reshapes the myeloid compartment, expanding mast cells and pro-inflammatory macrophages. Our analyses in human TNBC and murine models underscore the crucial role of mast cells in orchestrating anti-tumor immune responses, likely by promoting the recruitment and activation of T and B cells. In vivo experiments demonstrate that activating mast cells alongside PD-L1 blockade attenuates TNBC progression, suggesting mast cells as a promising adjunct for enhancing ICB therapy efficacy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongnan Mo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing, ChaoYang District, Beijing 100005, China
| | - Baolin Liu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
10
|
Choi J, Sung S, Sung M, Kang K, Park SH, Kim D, Lee S. Spontaneous Undifferentiated Pleomorphic Sarcoma With Mast Cell Infiltration in a Sprague-Dawley Rat: A Case Report. Vet Med Sci 2025; 11:e70242. [PMID: 39912735 PMCID: PMC11800376 DOI: 10.1002/vms3.70242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Undifferentiated pleomorphic sarcomas (UPSs) are tumours of mesenchymal origin typically seen in soft tissues and histologically characterized by pleomorphic tumour cell and multinucleated giant cell (MGC) infiltration. Here, we report UPS in a 23-month-old Sprague-Dawley rat, notable for the absence of MGC infiltration and the presence of mast cells. The tumour was located in the left axillary region and was assessed using haematoxylin and eosin, Masson's trichrome, and toluidine blue staining, along with immunohistochemistry. Neoplastic cells showed pleomorphism and storiform arrangement, with no MGCs, but with significant mast cell infiltration. Vimentin positivity confirmed the mesenchymal origin. The results in this case indicate a potential role of mast cells in UPS pathology and emphasize the need for further studies on their role in tumour progression.
Collapse
Affiliation(s)
- Joo‐Hee Choi
- Preclinical Research Center, Daegu‐Gyeongbuk Medical Innovation FoundationDaeguSouth Korea
| | - Soo‐Eun Sung
- Preclinical Research Center, Daegu‐Gyeongbuk Medical Innovation FoundationDaeguSouth Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu‐Gyeongbuk Medical Innovation FoundationDaeguSouth Korea
| | - Kyung‐Ku Kang
- Preclinical Research Center, Daegu‐Gyeongbuk Medical Innovation FoundationDaeguSouth Korea
| | | | | | - Sijoon Lee
- Preclinical Research Center, Daegu‐Gyeongbuk Medical Innovation FoundationDaeguSouth Korea
| |
Collapse
|
11
|
Shestakova VA, Smirnova EI, Atiakshin DA, Kisel AA, Koryakin SN, Litun EV, Saburov VO, Demyashkin GA, Lagoda TS, Yakimova AO, Kabakov AE, Ignatyuk MA, Yatsenko EM, Kudlay DA, Ivanov SA, Shegay PV, Kaprin AD, Baranovskii DS, Komarova LN, Klabukov ID. Impact of Minimally Manipulated Cell Therapy on Immune Responses in Radiation-Induced Skin Wound Healing. Int J Mol Sci 2025; 26:1994. [PMID: 40076619 PMCID: PMC11900442 DOI: 10.3390/ijms26051994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The current treatment of radiation-induced skin wounds utilizes mainly conventional therapies, including topical steroids, creams, ointments, and hydrogel dressings, which do not take into account the immunologic changes that occur in the skin after radiation exposure. Therefore, it is relevant to consider alternative therapies and their impact on changes in the immune landscape of the skin. The aim of this study was to investigate the effect of allogeneic minimally manipulated keratinocytes and fibroblasts on rat skin repair and the development of immune responses. We found that the use of cell therapy compared to treatment with syntazone ointment and no treatment resulted in faster healing and a reduction in the size of radiation-induced skin wounds, area of inflammation, and edema. Additionally, in the group receiving the cell therapy application, there was an observed increase in the number of mast cells (MCs), activation of MC interaction with M2 macrophages, a reduction in the direct contact of MCs with the vascular bed, an increase in the content of collagen fibers due to the intensification of collagen fibrillogenesis, and a restoration of their histotopographic organization. Thus, the positive effect of cell therapy based on allogeneic minimally manipulated keratinocytes and fibroblasts on skin regeneration indicated that it can be used in clinical practice to improve the effectiveness of rehabilitation after radiation therapy.
Collapse
Affiliation(s)
- Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Ekaterina I. Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastas A. Kisel
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Sergey N. Koryakin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Evgeniy V. Litun
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Vyacheslav O. Saburov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Grigory A. Demyashkin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Tatyana S. Lagoda
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Anna O. Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena M. Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Dmitry A. Kudlay
- Immunology Department, Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey A. Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis S. Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- University Hospital Basel, Basel University, 4001 Basel, Switzerland
- Research and Educational Resource Center for Cellular Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Lyudmila N. Komarova
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Ilya D. Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia; (V.A.S.)
- Department of Biotechnology, Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| |
Collapse
|
12
|
Zhao F, Chen M, Wu T, Ji M, Li F. Integration of single-cell and bulk RNA sequencing to identify a distinct tumor stem cells and construct a novel prognostic signature for evaluating prognosis and immunotherapy in LUAD. J Transl Med 2025; 23:222. [PMID: 39987127 PMCID: PMC11847374 DOI: 10.1186/s12967-025-06243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are crucial for lung adenocarcinoma (LUAD). This study investigates tumor stem cell gene signatures in LUAD using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq), aiming to develop a prognostic tumor stem cell marker signature (TSCMS) model. METHODS LUAD scRNA-seq and RNA-seq data were analyzed. CytoTRACE software quantified the stemness score of tumor-derived epithelial cell clusters. Gene Set Variation Analysis (GSVA) identified potential biological functions in different clusters. The TSCMS model was constructed using Lasso-Cox regression, and its prognostic value was assessed through Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses. Immune infiltration was evaluated using the Cibersortx algorithm, and drug response prediction was performed using the pRRophetic package. TAF10 functional investigations in LUAD cells involved bioinformatics analysis, qRT-PCR, Western blot, immunohistochemistry, and assays for cell proliferation. RESULTS Seven distinct cell clusters were identified by CytoTRACE, with epithelial cell cluster 1 (Epi_C1) showing the highest stemness potential. The TSCMS model included 49 tumor stemness-related genes; high-risk patients exhibited lower immune and ESTIMATE scores and increased tumor purity. Significant differences in immune landscapes and chemotherapy sensitivity were observed between risk groups. TAF10 positively correlated with RNA expression-based stemness scores in various tumors, including LUAD. It was over-expressed in LUAD cell lines and clinical tumor tissues, with high expression linked to poor prognosis. Silencing TAF10 inhibited LUAD cell proliferation and tumor sphere formation. CONCLUSIONS This study demonstrates the TSCMS model's prognostic value in LUAD, reveals insights into immune infiltration and therapeutic response, and identifies TAF10 as a potential therapeutic target.
Collapse
Affiliation(s)
- Fengyun Zhao
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| | - Mengting Chen
- South China Normal University, Guangzhou, 510630, Guangdong, China
| | - Tianjiao Wu
- Guangdong Medical University, Zhanjiang, 523000, Guangdong, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
13
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
14
|
Franković L, Degoricija M, Gabela I, Vilović K, Korac-Prlic J. Pro-Tumorigenic Effect of Continuous Cromolyn Treatment in Bladder Cancer. Int J Mol Sci 2025; 26:1619. [PMID: 40004083 PMCID: PMC11855506 DOI: 10.3390/ijms26041619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Globally, bladder cancer is the sixth most frequently diagnosed cancer among men. Despite the increasing availability of immunomodulatory treatments for bladder cancer, the survival rates are still low, which calls for potential new drug-repurposing targets. This study aimed to investigate the effects of cromolyn, a mast cell (MC) stabilizer in allergic reactions, on a subcutaneous tumor model with a syngeneic mouse MB49 bladder cancer cell line. A concentration of 50 mg/kg of cromolyn was daily administered intraperitoneally in a 4-day therapeutic protocol to mice with established tumors and in a continuous 11-day protocol which started one day prior to the subcutaneous injection of tumor cells. Therapeutic treatment demonstrated a marked downregulation of genes related to angiogenesis and upregulation of genes related to cytotoxic T-cell and NK cell activity. Conversely, continuous cromolyn treatment suppressed genes involved in immune cell recruitment and activation, as well as apoptotic and necroptotic pathways, leading to a greater tumor burden (+142.4 mg [95CI + 28.42, +256.4], p = 0.0158). The same pro-tumorigenic effect was found in mast cell-deficient mice (KitW-sh/W-sh + 301.7 mg [95CI + 87.99, 515.4], p = 0.0079; Cpa3Cre/+ +107.2 mg [95CI - 39.37, +253.57], p = 0.1423), indicating that continuous cromolyn treatment mostly acts through the inhibition of mast cell degranulation. In summary, our results demonstrate the distinct effects of cromolyn on tumor progression, which depend on the protocol of cromolyn administration.
Collapse
Affiliation(s)
- Lucija Franković
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| | - Marina Degoricija
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Gabela
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
- Department of Anatomy, School of Medicine, University of Split, 21000 Split, Croatia
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, Department of Immunology and Medical Genetics, School of Medicine, University of Split, 21000 Split, Croatia; (L.F.)
| |
Collapse
|
15
|
Juodžiukynienė N, Lasienė K, Savickienė N, Aniulienė A. Mast Cell Density in Squamous Cell Carcinoma of Skin in Dogs and Cats. Animals (Basel) 2025; 15:316. [PMID: 39943085 PMCID: PMC11816034 DOI: 10.3390/ani15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of the present study was to evaluate mast cell density in squamous cell carcinoma tissues of dogs and cats to assess species differences. Skin squamous cell carcinoma tissues from dogs (n = 15: n = 10 from body sites and n = 5 nail bed specimens) and cats (n = 15, n = 10 from ears and n = 5 nasal planum specimens) were examined. Intratumoral mast cell density (IMCD), peritumoral mast cell density (PMCD) and total mast cells density (TMCD) as a sum of IMCD and PMCD were calculated from Giemsa-stained slides at high magnification in 1 mm2 using an Olympus microscope (Olympus BX41, Tokyo, Japan) equipped with a digital Olympus DP72 image camera and CellSensDimension software V1.16). Both intratumoral and peritumoral tissues of the squa.mous cell carcinoma were divided into two categories: (1) loose, well-vascularized, rich in lymphocytes and plasmocytes, macrophages and neutrophils; and (2) fibrous, with few or no lymphocytes, plasmocytes, macrophages and neutrophils (the presence of neutrophils can be associated with actinic keratosis, mechanical irritation of the tumor in some anatomical areas during scratching with teeth, but, in general, neutrophils are associated with more invasive squamous cell carcinoma). In cats, a markedly higher total number of mast cells was found, and the number was also higher in intratumoral and peritumoral tissues. A similar tendency was found in both dogs and cats-a markedly higher number of mastocytes was found in both peritumoral and intratumoral loose, well-vascularized connective tissue. Conversely, lower numbers of mast cells were found in both intratumoral and peritumoral compact fibrous tissue in both animal species.
Collapse
Affiliation(s)
- Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Kristina Lasienė
- Deparment of Histology and Embryology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Albina Aniulienė
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
16
|
Nishi M, Yamashita S, Takasu C, Wada Y, Yoshikawa K, Tokunaga T, Nakao T, Kashihara H, Yoshimoto T, Shimada M. Role of mast cell in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. BMC Cancer 2025; 25:99. [PMID: 39825280 PMCID: PMC11740561 DOI: 10.1186/s12885-025-13458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC). Ninety-five LARC patients who recieved nCRT were enrolled in this study. Protein levels of the MC marker tryptase and TAM marker CD206 were evaluated with immunohistochemistry (IHC). The correlation between MC infiltration and prognostic factors was evaluated. The effects of MCs on the malignant potential were examined using in vitro proliferation and invasion assays with a colorectal cancer (CRC) cell line (HCT-116). Following nCRT, 31.6% of resected LARC patient specimens were positive for MC infiltration by tryptase IHC analysis. MC infiltration was significantly correlated with nCRT response. The 5-year disease-free survival (DFS) rate was significantly lower in the MC-positive group compared with the MC-negative group (52.3% vs. 76.8%). Univariate and multivariate analyses revealed that MC infiltration was the independent prognostic indicator for DFS. MC infiltration was significantly correlated with CD206 expression, and therefore TAMs. In vitro experiments suggested that tumor activated mast cells could promote CRC cell malignant behavior via production of macrophage inhibitory factor. MC infiltration in LARC patients was positively correlated with TAM infiltration and resistance to nCRT, and was also an independent poor prognostic indicator.
Collapse
Affiliation(s)
- Masaaki Nishi
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Shoko Yamashita
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Chie Takasu
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Yuma Wada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Kozo Yoshikawa
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Takuya Tokunaga
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Toshihiro Nakao
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hideya Kashihara
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Toshiaki Yoshimoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| |
Collapse
|
17
|
Shu F, Yu J, Liu Y, Wang F, Gou G, Wen M, Luo C, Lu X, Hu Y, Du Q, Xu J, Xie R. Mast cells: key players in digestive system tumors and their interactions with immune cells. Cell Death Discov 2025; 11:8. [PMID: 39814702 PMCID: PMC11735678 DOI: 10.1038/s41420-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Mast cells (MCs) are critical components of both innate and adaptive immune processes. They play a significant role in protecting human health and in the pathophysiology of various illnesses, including allergies, cardiovascular diseases and autoimmune diseases. Recent studies in tumor-related research have demonstrated that mast cells exert a substantial influence on tumor cell behavior and the tumor microenvironment, exhibiting both pro- and anti-tumor effects. Specifically, mast cells not only secrete mediators related to pro-tumor function such as trypsin-like enzymes, chymotrypsin, vascular endothelial cell growth factor and histamine, but also mediators related to anti-tumor progression such as cystatin C and IL-17F. This dual role of mast cells renders them an under-recognized but very promising target for tumor immunotherapy. Digestive system tumors, characterized by high morbidity and associated mortality rates globally, are increasingly recognized as a significant healthcare burden. This paper examines the influence of mast cell-derived mediators on the development of tumors in the digestive system. It also explores the prognostic significance of mast cells in patients with various gastrointestinal cancers at different stages of the disease. Additionally, the article investigates the interactions between mast cells and immune cells, as well as the potential relationships among intratumoral bacteria, immune cells, and mast cell within digestive system microenvironment. The aim is to propose new strategies for the immunotherapy of digestive system tumors by targeting mast cells.
Collapse
Affiliation(s)
- Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Yu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Youjia Liu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Wang
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoyou Gou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Wen
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Chen Luo
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianmin Lu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanxia Hu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingyu Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Xie
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
18
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
19
|
Pang J, Huang X, Gao Y, Guan X, Xiong L, Li L, Yin N, Dai M, Han T, Yi W. Multiomics analysis reveals the involvement of NET1 in tumour immune regulation and malignant progression. Sci Rep 2025; 15:56. [PMID: 39747410 PMCID: PMC11695589 DOI: 10.1038/s41598-024-83714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Neuroepithelial cell transforming gene 1 (NET1) is a member of the Ras homologue family member A (RhoA) subfamily of guanine nucleotide exchange factors and a key protein involved in the activation of Rho guanosine triphosphatases, which act as regulators of cell proliferation, cytoskeletal organization, and cell movement and are crucial for cancer spread. Research has shown that NET1 can regulate the malignant biological functions of tumour cells, such as growth, invasion, and metastasis, and it is closely related to the progression of pancreatic cancer, gastric cancer, and liver cancer. However, the comprehensive role and mechanistic function of NET1 in other types of cancer remain largely unexplored. A deeper understanding of the role of NET1 may provide new insights into the molecular mechanisms of cancer progression and metastasis. This study aims to fill this knowledge gap and provide a more comprehensive understanding of the role of NET1 in cancer biology. The Cancer Genome Atlas and Genotype-Tissue Expression databases were utilized to analyse the differential expression of NET1 in normal and cancer tissues. The prognostic value of NET1 in cancer was evaluated through log-rank tests and Cox regression models. Further analysis was conducted to assess the relationships between NET1 expression and clinical features, as well as its diagnostic value. We investigated potential factors contributing to genetic alterations in NET1 to elucidate the role of NET1 in cancer progression. We also explored the relationships between NET1 and genes associated with epigenetic modifications, oncogenes, and tumour characteristics, such as RNA stemness scores (RNAss), DNA stemness scores (DNAss), the tumour mutation burden (TMB), and microsatellite instability (MSI). Additionally, we analysed the associations between NET1 expression and immune cell infiltration, immunoregulatory genes, and sensitivity to therapeutic drugs. We conducted gene set enrichment analysis to further investigate the signalling pathways that might be affected by changes in NET1. The prognostic value of NET1 in triple-negative breast cancer (TNBC) was further validated using real-world and Gene Expression Omnibus (GEO) data. Finally, through both in vivo and in vitro experiments, we confirmed that the overexpression of NET1 contributed to the malignant progression of TNBC cells, and we explored the potential mechanism by which NET1 regulates malignant biological behaviour through cellular experiments. Our study revealed a higher expression level of NET1 in 18 types of tumour tissues than in their corresponding normal tissues. Specifically, we observed high expression of NET1 in LIHC, LUSC, PAAD, and BRCA tumour tissues, which was associated with a poor prognosis. In terms of gene alterations, "amplification", "mutation", and "deep deletion" were identified as the main types of changes occurring in NET1. Among these, "amplification" was predominantly observed in LIHC, LUSC, PAAD, and BRCA. Furthermore, a significant positive correlation was found between copy number variations and the NET1 expression level in various tumours, including LIHC, LUSC, PAAD, and BRCA. We also discovered that NET1 expression was positively correlated with the expression of genes related to epigenetic modification in almost all types of cancer and was related to the expression levels of numerous oncogenes. In certain tumours, a significant positive correlation was noted between the expression of NET1 and TMB, MSI, DNAss, and RNAss. Intriguingly, in most tumours, NET1 expression was strongly negatively correlated with the levels of infiltrating natural killer cells and M1 macrophages. Moreover, NET1 expression was significantly positively correlated with the expression of immune genes in nearly all types of cancer. An analysis of single-cell data revealed that NET1 was expressed primarily in malignant tumour cells in most tumours, with little to no expression in immune cells. Additionally, the expression level of NET1 was associated with sensitivity to various therapeutic drugs. Data from GEO and real-world studies indicated high expression of NET1 in TNBC tissues, which was correlated with a poor prognosis. Cellular experiments indicated that NET1 could regulate the proliferation, invasion, cell cycle, and apoptosis of TNBC cells. Furthermore, NET1 may mediate the malignant proliferation of tumour cells through the AKT signalling pathway. NET1 can serve as a potential prognostic marker for LIHC, LUSC, PAAD, and BRCA tumours. Real-world data further suggest that NET1 can also serve as a prognostic indicator for TNBC. High expression of NET1 may contribute to the malignant proliferation of TNBC cells, potentially through the AKT signalling pathway. Moreover, NET1 may contribute to the formation of an immunosuppressive microenvironment that can promote tumour progression. Therefore, targeting NET1 may represents a promising approach for inhibiting tumour progression.
Collapse
Affiliation(s)
- Jian Pang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Xiaoyan Huang
- Department of Breast Surgery, Fudan University Affiliated Cancer Hospital, Shanghai, People's Republic of China
| | - Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Lejia Xiong
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China
| | - Nana Yin
- Department of Operating Room, Changde First People's Hospital, Changde, People's Republic of China
| | - Mei Dai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 People's Road, Changsha, 410011, Hunan, People's Republic of China.
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, People's Republic of China.
| |
Collapse
|
20
|
Fathi Kazerooni A, Kraya A, Rathi KS, Kim MC, Vossough A, Khalili N, Familiar AM, Gandhi D, Khalili N, Kesherwani V, Haldar D, Anderson H, Jin R, Mahtabfar A, Bagheri S, Guo Y, Li Q, Huang X, Zhu Y, Sickler A, Lueder MR, Phul S, Koptyra M, Storm PB, Ware JB, Song Y, Davatzikos C, Foster JB, Mueller S, Fisher MJ, Resnick AC, Nabavizadeh A. Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma. Nat Commun 2025; 16:340. [PMID: 39747214 PMCID: PMC11697432 DOI: 10.1038/s41467-024-55659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness and suitability for immunotherapy has the potential to improve clinical management and outcomes. Here, we present a radiogenomic analysis of pLGGs, integrating MRI and RNA sequencing data. We identify three immunologically distinct clusters, with one group characterized by increased immune activity and poorer prognosis, indicating potential benefit from immunotherapies. We develop a radiomic signature that predicts these immune profiles with over 80% accuracy. Furthermore, our clinicoradiomic model predicts progression-free survival and correlates with treatment response. We also identify genetic variants and transcriptomic pathways associated with progression risk, highlighting links to tumor growth and immune response. This radiogenomic study in pLGGs provides a framework for the identification of high-risk patients who may benefit from targeted therapies.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Adam Kraya
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariana M Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deep Gandhi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neda Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Varun Kesherwani
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hannah Anderson
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aria Mahtabfar
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sina Bagheri
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qi Li
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Sickler
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saksham Phul
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanquan Song
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Mueller
- Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Chen M, Tang X, Liang Y, Ding T, He M, Wang D, Wang R. CENPF as a Potential Biomarker Associated with the Immune Microenvironment of Renal Cancer. Technol Cancer Res Treat 2025; 24:15330338251330791. [PMID: 40165474 PMCID: PMC11960158 DOI: 10.1177/15330338251330791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
IntroductionRenal cancer, particularly Kidney Renal Clear Cell Carcinoma (KIRC), remains a major clinical challenge due to its aggressive nature and poor prognosis. Identifying reliable biomarkers for tumor progression and survival is critical for improving patient outcomes. This study aimed to investigate the role of Centromere Protein F (CENPF) as a potential prognostic biomarker for renal cancer.MethodData from the TCGA database, including Kidney Chromophobe (KICH), Kidney Renal Papillary Cell Carcinoma (KIRP), and KIRC, were analyzed to identify differentially expressed genes. Molecular Complex Detection (MCODE) was used to identify significant gene modules among upregulated genes, and univariate Cox regression analyses assessed the prognostic value of hub genes. Retrospective qPCR was conducted on tissue and plasma samples from KIRC patients to validate findings. Single-cell sequencing data from the GSE159115 dataset were analyzed, and the CIBERSORT algorithm was applied to evaluate the composition of tumor immune infiltrating cells (TIICs).ResultsCENPF was identified as a hub gene significantly upregulated in renal cancer subtypes, with overexpression linked to worse survival outcomes in KIRC patients. Retrospective qPCR confirmed high CENPF expression was associated with poorer prognosis. Single-cell sequencing revealed that CENPF is predominantly expressed in T-cell clusters. TIIC analysis showed a negative correlation between CENPF and resting mast cells, but positive correlations with follicular helper T-cells and memory-activated CD4T-cells. Prognostic analysis indicated that high follicular helper T-cell expression predicted poorer survival, while high plasma cell expression correlated with better outcomes.ConclusionCENPF plays a critical role in tumor progression and the modulation of the tumor immune microenvironment in KIRC. These findings suggest that CENPF could serve as a valuable prognostic biomarker and potential target for therapeutic intervention in renal cancer.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Prognosis
- Gene Expression Regulation, Neoplastic
- Chromosomal Proteins, Non-Histone/genetics
- Female
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/mortality
- Gene Expression Profiling
- Male
- Computational Biology/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Retrospective Studies
- Databases, Genetic
- Single-Cell Analysis
- Middle Aged
- Microfilament Proteins
Collapse
Affiliation(s)
- Meilin Chen
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxin Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - YanPing Liang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tangdang Ding
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meifang He
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruizhi Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Villareal-Rivota B, Meneses-Preza YG, Campillo-Navarro M, Ruiz-Sánchez BP, Soria-Castro R, Barrios-Payán J, Mata-Espinosa D, Donis-Maturano L, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Hernández-Pando R, Chacón-Salinas R. Impaired control of Mycobacterium tuberculosis infection in mast cell-deficient Kit W-sh/W-sh mice. Tuberculosis (Edinb) 2025; 150:102587. [PMID: 39612800 DOI: 10.1016/j.tube.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Tuberculosis (TB) is a global health problem with diverse clinical manifestations. Different cells of the immune response participate in containing the infection, mainly through the development of granulomas. Mast cells (MCs) are hematopoietic cells that participate in the immune response to different pathogens, and in vitro evidence indicates that they can be activated by Mycobacterium tuberculosis (Mtb). The aim of this study was to evaluate the role of MCs in a murine TB model. We observed that KitW-sh/W-sh mast cell-deficient mice showed increased bacterial load in the lungs and the spleen compared to wild-type C57BL/6 mice. Furthermore, MC-deficient mice showed fewer pulmonary granulomas but an early higher inflammatory infiltrate. Interestingly, serum cytokine levels were altered in MC-deficient mice, which showed increased levels of IL-4, IL-5, and IL-22 during the early phase of the infection but increased levels of IFN-γ, IL-9, IL-10, and IL-21 during the late phase of the infection. These results show that mast cells play an important role during Mtb infection by modulating the immune response to the bacteria.
Collapse
Affiliation(s)
- Berenice Villareal-Rivota
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Luis Donis-Maturano
- Faculty of Higher Studies-Iztacala, National Autonomous University of Mexico, Tlalnepantla de Baz, 54090, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.
| |
Collapse
|
23
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Ribatti D. Mast cell proteases and metastasis. Pathol Res Pract 2024; 266:155801. [PMID: 39755049 DOI: 10.1016/j.prp.2024.155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Mast cells exert multiple roles beyond their classical role in IgE-mediated allergic reactions. These cells secrete pro-inflammatory and anti-inflammatory agents and change from protective immune cells to pro-inflammatory cells, capable of influencing the progression of different pathological conditions, including tumors, in which they exert anti-tumorigenic and pro-tumorigenic roles. In this context, this article analyzes the potential role played by mast cell-derived proteases in tumor progression and more specifically in driving metastatic process and the potential therapeutic approaches that inhibiting the activation of these cells could help faith cancer spreading.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
25
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y, Wang X. Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int 2024; 24:400. [PMID: 39696439 DOI: 10.1186/s12935-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Histone lactylation is a novel epigenetic modification that is involved in a variety of critical biological regulations. However, the role of lactylation-related genes in lung adenocarcinoma has yet to be investigated. METHODS RNA-seq data and clinical information of LUAD were downloaded from TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed to identify differentially expressed genes (DEGs) between the two clusters, and risk prediction models were constructed by Cox regression analysis and LASSO analysis. Kaplan-Meier (KM) survival analysis, ROC curves and nomograms were used to validate the accuracy of the models. We also explored the differences in risk scores in terms of immune cell infiltration, immune cell function, TMB, TIDE, and anticancer drug sensitivity. In addition, single-cell clustering and trajectory analysis were performed to further understand the significance of lactylation-related genes. We further analyzed lactate content and glucose uptake in lung adenocarcinoma cells and tissues. Changes in LUAD cell function after knockdown of lactate dehydrogenase (LDHA) by CCK-8, colony formation and transwell assays. Finally, we analyzed the expression of KRT81 in LUAD tissues and cell lines using qRT-PCR, WB, and IHC. Changes in KRT81 function in LUAD cells were detected by CCK-8, colony formation, wound healing, transwell, and flow cytometry. A nude mouse xenograft model and a KrasLSL-G12D in situ lung adenocarcinoma mouse model were used to elucidate the role of KRT81 in LUAD. RESULTS After identifying 26 lactylation-associated DEGs, we constructed 10 lactylation-associated lung adenocarcinoma prognostic models with prognostic value for LUAD patients. A high score indicates a poor prognosis. There were significant differences between the high-risk and low-risk groups in the phenotypes of immune cell infiltration rate, immune cell function, gene mutation frequency, and anticancer drug sensitivity. TMB and TIDE scores were higher in high-risk score patients than in low-risk score patients. MS4A1 was predominantly expressed in B-cell clusters and was identified to play a key role in B-cell differentiation. We further found that lactate content was abnormally elevated in lung adenocarcinoma cells and cancer tissues, and glucose uptake by lung adenocarcinoma cells was significantly increased. Down-regulation of LDHA inhibits tumor cell proliferation, migration and invasion. Finally, we verified that the model gene KRT81 is highly expressed in LUAD tissues and cell lines. Knockdown of KRT81 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. KRT81 may play a tumorigenic role in LUAD through the EMT and PI3K/AKT pathways. In vivo, KRT81 knockdown inhibited tumor growth. CONCLUSION We successfully constructed a new prognostic model for lactylation-related genes. Lactate content and glucose uptake are significantly higher in lung adenocarcinoma cells and cancer tissues. In addition, KRT81 was validated at cellular and animal levels as a possible new target for the treatment of LUAD, and this study provides a new perspective for the individualized treatment of LUAD.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Mengmeng Wang
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Siding Zhou
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaqi Hou
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| | - Xiaolin Wang
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
26
|
Huang J, Xiong L, Tang S, Zhao J, Zuo L. Balancing Tumor Immunotherapy and Immune-Related Adverse Events: Unveiling the Key Regulators. Int J Mol Sci 2024; 25:10919. [PMID: 39456702 PMCID: PMC11507008 DOI: 10.3390/ijms252010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Tumor immunotherapy has emerged as a promising approach in cancer treatment in recent years, offering vast potential. This method primarily involves targeting and inhibiting the suppressive checkpoints present in different immune cells to enhance their activation, ultimately leading to tumor regression. However, tumor cells exploit the surrounding immune cells and tissues to establish a tumor microenvironment (TME) that supports their survival and growth. Within the TME, the efficacy of effector immune cells is compromised, as tumor cells exploit inhibitory immune cells to suppress their function. Furthermore, certain immune cells can be co-opted by tumor cells to facilitate tumor growth. While significantly enhancing the body's tumor immunity can lead to tumor regression, it can also result in severe toxic side effects and an inflammatory factor storm. As a consequence, patients often discontinue treatment due to immune-related adverse events (irAEs) or, in extreme cases, succumb to toxic side effects before experiencing tumor regression. In this analysis, we examined several remission regimens for irAEs, each with its own drawbacks, including toxic side effects or suppression of tumor immunotherapy, which is undesirable. A recent research study, specifically aimed at downregulating intestinal epithelial barrier permeability, has shown promising results in reducing the severity of inflammatory bowel disease (IBD) while preserving immune function. This approach effectively reduces the severity of IBD without compromising the levels of TNF-α and IFN-γ, which are crucial for maintaining the efficacy of tumor immunotherapy. Based on the substantial similarities between IBD and ICI colitis (combo immune checkpoint inhibitors-induced colitis), this review proposes that targeting epithelial cells represents a crucial research direction for mitigating irAEs in the future.
Collapse
Affiliation(s)
- Jianshang Huang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Lei Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Sainan Tang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Junhao Zhao
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| |
Collapse
|
27
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
28
|
Huang T, Lian D, Chen M, Liu Y, Zhang M, Zeng D, Zhou SK, Ying W. Prognostic value of a lactate metabolism gene signature in lung adenocarcinoma and its associations with immune checkpoint blockade therapy response. Medicine (Baltimore) 2024; 103:e39371. [PMID: 39465750 PMCID: PMC11460856 DOI: 10.1097/md.0000000000039371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 10/29/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a study that examines the prognostic value of lactate metabolism genes in tumor cells, which are associated with clinical prognosis. We analyzed the expression and clinical data for LUAD from The Cancer Genome Atlas database, using the GSE68465 dataset from the Gene Expression Omnibus and the MSigDB database. LASSO Cox regression and stepwise Cox regression were used to identify the optimal lactate metabolism gene signature. Differences in immune infiltration, tumor mutation burden (TMB), and response to immune checkpoint blockade (ICB) therapy were evaluated between groups. LASSO and Cox regression analyses showed an eight-lactate metabolism gene signature for model construction in both TCGA cohort and GSE68465 data, with higher survival outcomes in high-risk groups. The lactate metabolism risk score had an independent prognostic value (hazard ratio: 2.279 [1.652-3.146], P < .001). Immune cell infiltration differed between the risk groups, such as CD8+ T cells, macrophages, dendritic cells, mast cells, and neutrophils. The high-risk group had higher tumor purity, lower immune and stromal scores, and higher TMB. High-risk samples had high tumor immune dysfunction and exclusion (TIDE) scores and low cytolytic activity (CYT) scores, indicating a poor response to ICB therapy. Similarly, most immune checkpoint molecules, immune inhibitors/stimulators, and major histocompatibility complex (MHC) molecules were highly expressed in the high-risk group. The 8-lactate metabolism gene-based prognostic model predicts patient survival, immune infiltration, and ICB response in patients with LUAD, driving the development of therapeutic strategies to target lactate metabolism.
Collapse
Affiliation(s)
- Tengfei Huang
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - DuoHuang Lian
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - MengMeng Chen
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - YaMing Liu
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - MeiQing Zhang
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - DeHua Zeng
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - Shun-Kai Zhou
- Department of Thoracic and Cardiac Surgery, The 900th Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Fuzhou, Fujian Province, China
| | - WenMin Ying
- Department of Radiotherapy, Fuding Hospital, Fuding, Fujian Province, China
| |
Collapse
|
29
|
Han Y, Shi L, Jiang N, Huang J, Jia X, Zhu B. Dissecting the Single-Cell Diversity and Heterogeneity Underlying Cervical Precancerous Lesions and Cancer Tissues. Reprod Sci 2024:10.1007/s43032-024-01695-5. [PMID: 39354287 DOI: 10.1007/s43032-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
The underlying cellular diversity and heterogeneity from cervix precancerous lesions to cervical squamous cell carcinoma (CSCC) is investigated. Four single-cell datasets including normal tissues, normal adjacent tissues, precancerous lesions, and cervical tumors were integrated to perform disease stage analysis. Single-cell compositional data analysis (scCODA) was utilized to reveal the compositional changes of each cell type. Differentially expressed genes (DEGs) among cell types were annotated using BioCarta. An assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis was performed to correlate epigenetic alterations with gene expression profiles. Lastly, a logistic regression model was used to assess the similarity between the original and new cohort data (HRA001742). After global annotation, seven distinct cell types were categorized. Eight consensus-upregulated DEGs were identified in B cells among different disease statuses, which could be utilized to predict the overall survival of CSCC patients. Inferred copy number variation (CNV) analysis of epithelial cells guided disease progression classification. Trajectory and ATAC-seq integration analysis identified 95 key transcription factors (TF) and one immunohistochemistry (IHC) testified key-node TF (YY1) involved in epithelial cells from CSCC initiation to progression. The consistency of epithelial cell subpopulation markers was revealed with single-cell sequencing, bulk sequencing, and RT-qPCR detection. KRT8 and KRT15, markers of Epi6, showed progressively higher expression with disease progression as revealed by IHC detection. The logistic regression model testified the robustness of the resemblance of clusters among the various datasets utilized in this study. Valuable insights into CSCC cellular diversity and heterogeneity provide a foundation for future targeted therapy.
Collapse
Affiliation(s)
- Yanling Han
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lu Shi
- CRE Life Institute, Beijing, 100000, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, 323000, China.
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
30
|
Bongiorno R, Lecchi M, Botti L, Bosco O, Ratti C, Fontanella E, Mercurio N, Pratesi P, Chiodoni C, Verderio P, Colombo MP, Lecis D. Mast cell heparanase promotes breast cancer stem-like features via MUC1/estrogen receptor axis. Cell Death Dis 2024; 15:709. [PMID: 39349458 PMCID: PMC11442964 DOI: 10.1038/s41419-024-07092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Breast cancer is the most frequent type of tumor in women and is characterized by variable outcomes due to its heterogeneity and the presence of many cancer cell-autonomous and -non-autonomous factors. A major determinant of breast cancer aggressiveness is represented by immune infiltration, which can support tumor development. In our work, we studied the role of mast cells in breast cancer and identified a novel activity in promoting the tumor-initiating properties of cancer cells. Mast cells are known to affect breast cancer prognosis, but show different effects according to the diverse subtypes. Starting from the observation that co-injection of mast cells with limiting concentrations of cancer cells increased their in vivo engraftment rate, we characterized the molecular mechanisms by which mast cells promote the tumor stem-like features. We provide evidence that mast cell heparanase plays a pivotal role since both its activity and the stimulation of mast cells with heparan sulfate, the product of heparanase activity, are crucial for this process. Moreover, the pharmacological inhibition of heparanase prevents the function of mast cells. Our data show that soluble factors released by mast cells favor the expression of estrogen receptor in a MUC1-dependent manner. The MUC1/estrogen receptor axis is eventually essential for cancer stem-like features, specifically in HER2-negative cells, and promotes the capability of cancer cells to form mammospheres and express stem-related genes, also reducing their sensitivity to tamoxifen administration. Altogether our findings describe a novel mechanism by which mast cells could increase the aggressiveness of breast cancer uncovering a molecular mechanism displaying differences based on the specific breast cancer subtype.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Oriana Bosco
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Chiara Ratti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Enrico Fontanella
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Nicolò Mercurio
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Pietro Pratesi
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, MI, Italy.
| |
Collapse
|
31
|
Liu Z, Huang C, Mao X, Mi J, Zhang Q, Xie Y, Yuan H, Jili M, Zhang J, Chen J, Huang S, Mo Z, Yang R. Single cell RNA-Sequencing Reveals Mast Cells Enhance Mononuclear Phagocytes Infiltration in Bladder Cancer Microenvironment. J Cancer 2024; 15:5672-5690. [PMID: 39308672 PMCID: PMC11414625 DOI: 10.7150/jca.99554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Objective: Investigating the interaction between Mast cells (MCs) and Mononuclear Phagocytes (MPs) in the tumor microenvironment (TME) of blader cancer (BCa) to uncover potential immunotherapeutic targets. Methods: Single-cell RNA sequencing (scRNA-Seq) was conducted on 12 BCa patients to identify distinct subgroups of MCs and MPs. Transcriptome data was analyzed to characterize the phenotype, gene enrichment, cell-cell communication, and biological processes. The expression levels of cytokines were assessed by enzyme-linked immunosorbent assay (ELISA), while the chemotactic effects of cytokines were evaluated through Transwell assay. Results: In muscle-invasive bladder cancer (MIBC), the proportion of interferon-stimulated MC subtype (Mast-ISG15) increased. Mast-IL13 subgroup and Mast-CCL2 subgroups were functionally enriched in interferon (IFN) and nuclear factor kappa-B (NF-κB) signaling pathways. The Mast-CCL2 subgroup overexpressed the CCL2 gene, which could chemoattract MPs through CCL2. In vitro experiments confirmed that under stimulation, activated MCs activated IFN and NF-κB signaling, increasing the secretion of CCL2 and IL-13, chemoattracted THP-1 monocyte. Conclusion: This study revealed the vital role of MCs in shaping the TME of BCa. And provides new insights for the precise treatment of BCa.
Collapse
Affiliation(s)
- Zige Liu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Caisheng Huang
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Urology, The Nanning Second People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xingning Mao
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Junhao Mi
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qingyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuli Xie
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Yuan
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Mujia Jili
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiange Zhang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jianxin Chen
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Urology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
32
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
33
|
Ma X, Ligan C, Huang S, Chen Y, Li M, Cao Y, Zhao W, Zhao S. Mitochondrial activity related genes of mast cells identify poor prognosis and metastasis of ovarian cancer. Immunobiology 2024; 229:152831. [PMID: 38944891 DOI: 10.1016/j.imbio.2024.152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.
Collapse
Affiliation(s)
- Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shijia Huang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yirong Chen
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
A N, Lyu P, Yu Y, Liu M, Cheng S, Chen M, Liu Y, Cao X. PICALM as a Novel Prognostic Biomarker and Its Correlation with Immune Infiltration in Breast Cancer. Appl Biochem Biotechnol 2024; 196:6011-6027. [PMID: 38175412 DOI: 10.1007/s12010-023-04840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
PICALM (phosphatidylinositol-binding clathrin assembly protein) mutations have been linked to a number of human disorders, including leukemia, Alzheimer's disease, and Parkinson's disease. Nevertheless, the effect of PICALM on cancer, particularly on prognosis and immune infiltration in individuals with BRCA, is unknown. We obtained the data of breast cancer patients from The Cancer Genome Atlas (TCGA) database, and analyzed the expression of PICALM in breast cancer, its impact on survival' and its role in tumor immune invasion. Finally, in vitro cellular experiments were performed to validate the results. Research has found that PICALM expression was shown to be downregulated in BRCA and to be substantially linked with clinical stage, histological type, PAM50, and age. PICALM downregulation was linked to a lower overall survival (OS) and disease-specific survival (DSS) in BRCA patients. A multivariate Cox analysis revealed that PICALM is an independent predictor of OS. The enriched pathways revealed by functional enrichment analysis included oxidative phosphorylation, angiogenesis, the TGF signaling pathway, and the IL-6/JAK/STAT3 signaling system. Furthermore, the amount of immune cell infiltration by B cells, eosinophils, mast cells, neutrophils, and T cells was positively linked with PICALM expression. Finally, we experimentally verified that low expression of PICALM can reduce proliferation, migration, and invasion in tumor cells. This evidence shows that PICALM expression impacts prognosis, immune infiltration, and pathway expression in breast cancer patients, and it might be a potential predictive biomarker for the disease.
Collapse
Affiliation(s)
- Naer A
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Pengfei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China
| | - Meiling Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Shaohua Cheng
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Meiyan Chen
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Yunhong Liu
- Department of Thyroid and Breast Surgery, Shenzhen Bao'an District Songgang People's Hospital, No. 2 Shajiang Road, Shenzhen City, 518105, Guangdong Province, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
35
|
Sirek T, Sirek A, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Strojny D, Grabarek BO. Expression profile of messenger and micro RNAs related to the histaminergic system in patients with five subtypes of breast cancer. Front Oncol 2024; 14:1407538. [PMID: 39267843 PMCID: PMC11390352 DOI: 10.3389/fonc.2024.1407538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Disparities in estrogen receptor (ER), progesterone receptor, human epidermal growth factor receptor 2 (HER2), and Ki67 proliferation indices facilitate the categorization of breast cancer into four principal subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). Preclinical studies investigating the therapeutic potential of histaminergic system targeting in breast cancer have shown promising results. This study aimed to assess the expression profiles of messenger ribonucleic acid (mRNA) and micro RNA (miRNA) related to the histaminergic system in five subtypes of breast cancer among Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n =100; HER2+, n= 96), HER2+ (n = 36), and TNBC (n = 43). They underwent surgery during which the tumor tissue was removed along with a margin of healthy tissue (control material). Molecular analysis included the determination of a microarray profile of mRNAs and miRNAs associated with the histaminergic system, real-time polymerase chain reaction preceded by reverse transcription of selected genes, and determination of histamine receptors (human histamine H1 receptor [HRH1], human histamine H2 receptor [HRH2], and human histamine H4 receptor [HRH4]) using an enzyme-linked immunosorbent assay. Statistical analysis was performed with statistical significance at p < 0.05. Nine mRNAs were significantly differentiated in breast cancer sections, regardless of subtype, compared to control samples: HRH1, HRH2, HRH4, histamine N-methyltransferase (HNMT), 5-hydroxytryptamine receptor 6 (HTR6), endothelin 1 (EDN1), endothelin receptor type A (EDNRA), adenosine deaminase (ADA), solute carrier family 22 member 3 (SLC3A2). Predictive analysis showed that hsa-miR-34a potentially regulates HRH1 expression, whereas hsa-miR-3140-5p and hsa-miR-4251 potentially affect HRH2 expression. In contrast, HRH4 and EDN1 expression were regulated by hsa-miR-1-3p. The expression of HNMT is potentially regulated by one miRNA, hsa-miR-382, whereas EDNRA expression is regulated by two miRNA molecules: hsa-miR-34a and hsa-miR-16. In contrast, hsa-miR-650 is involved in the regulation of HTR6 expression, whereas hsa-miR-1275 potentially interacts with three mRNAs: ADA, SLC23A2, and HRH1. Molecular analysis confirmed that the selected mRNA and miRNA transcripts could be promising molecular markers and therapeutic targets.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Agata Sirek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, Kraków, Poland
| | - Dariusz Boroń
- Uczelnia Medyczna im, Marii Skłodowskiej-Curie, Warszawa, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, Poznan, Poland
- Bieńkowski Medical Center-Plastic Surgery, Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Damian Strojny
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, Poland
- Department of Medical Science, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, Rzeszów, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
36
|
Zhao F, Hong J, Zhou G, Huang T, Lin Z, Zhang Y, Liang L, Tang H. Elucidating the role of tumor-associated ALOX5+ mast cells with transformative function in cervical cancer progression via single-cell RNA sequencing. Front Immunol 2024; 15:1434450. [PMID: 39224598 PMCID: PMC11366577 DOI: 10.3389/fimmu.2024.1434450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development. However, research on the role MCs played in CC is still very limited at that time. Thus, the study conducted a single-cell multi-omics analysis on human CC cells, aiming to explore the mechanisms by which MCs interact with the tumor microenvironment in CC. The goal was to provide a scientific basis for the prevention, diagnosis, and treatment of CC, with the hope of improving patients' prognoses and quality of life. Method The present study acquired single-cell RNA sequencing data from ten CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were utilized to infer and assess the differentiation trajectory and cell plasticity of MCs subpopulations. Differential expression analysis of MCs subpopulations in CC was performed, employing Gene Ontology, gene set enrichment analysis, and gene set variation analysis. CellChat software package was applied to predict cell communication between MCs subpopulations and CC cells. Cellular functional experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines. Additionally, a risk scoring model was constructed to evaluate the differences in clinical features, prognosis, immune infiltration, immune checkpoint, and functional enrichment across various risk scores. Copy number variation levels were computed using inference of copy number variations. Result The obtained 93,524 high-quality cells were classified into ten cell types, including T_NK cells, endothelial cells, fibroblasts, smooth muscle cells, epithelial cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs, C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+ MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close associations with tumor-related MCs, with Slingshot results indicating that C2 subpopulation resided at the intermediate-to-late stage of differentiation, potentially representing a crucial transition point in the benign-to-malignant transformation of CC. CNVscore and bulk analysis results further confirmed the transforming state of the C2 subpopulation. CellChat analysis revealed TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs. Moreover, in vitro experiments indicated that downregulating the TNFRSF12A gene may partially inhibit the development of CC. Additionally, a prognosis model and immune infiltration analysis based on the marker genes of the C2 subpopulation provided valuable guidance for patient prognosis and clinical intervention strategies. Conclusions We first identified the transformative tumor-associated MCs subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of tumor differentiation and impacted the progression of CC. In vitro experiments confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the development of CC. The prognostic model constructed based on the C2 ALOX5+MCs subset demonstrated excellent predictive value. These findings offer a fresh perspective for clinical decision-making in CC.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yining Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Leilei Liang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huarong Tang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
37
|
Zúñiga-Hernández SR, García-Iglesias T, Macías-Carballo M, Pérez-Larios A, Gutiérrez-Mercado YK, Camargo-Hernández G, Rodríguez-Razón CM. A Bioinformatic Assay of Quercetin in Gastric Cancer. Int J Mol Sci 2024; 25:7934. [PMID: 39063176 PMCID: PMC11277512 DOI: 10.3390/ijms25147934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy.
Collapse
Affiliation(s)
- Sergio Raúl Zúñiga-Hernández
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Trinidad García-Iglesias
- Instituto de Investigación de Cáncer en la Infancia y Adolescencia, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico;
| | - Monserrat Macías-Carballo
- Laboratorio de Biociencias, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Alejandro Pérez-Larios
- Laboratorio de Nanomateriales, Agua y Energia, Departamento de Ingenierias, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Yanet Karina Gutiérrez-Mercado
- Laboratorio Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico;
| | - Gabriela Camargo-Hernández
- Instituto de Investigación en Ciencias Médicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico;
| | - Christian Martín Rodríguez-Razón
- Laboratorio de Experimentación Animal (Bioterio), Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Tepatitlán de Morelos 47620, Mexico
| |
Collapse
|
38
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
39
|
Kalkusova K, Taborska P, Stakheev D, Rataj M, Smite S, Darras E, Albo J, Bartunkova J, Vannucci L, Smrz D. Impaired Proliferation of CD8 + T Cells Stimulated with Monocyte-Derived Dendritic Cells Previously Matured with Thapsigargin-Stimulated LAD2 Human Mast Cells. J Immunol Res 2024; 2024:5537948. [PMID: 39056014 PMCID: PMC11272405 DOI: 10.1155/2024/5537948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Sindija Smite
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Elea Darras
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Albo
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of ImmunologySecond Faculty of MedicineCharles University and University Hospital Motol, Prague, Czech Republic
- Laboratory of ImmunotherapyInstitute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
40
|
Fabris L, Pol J. Mast cells and histamine in cholangiocarcinoma: exploring overlooked avenues for enhanced patient management. Gut 2024; 73:1229-1231. [PMID: 38631898 DOI: 10.1136/gutjnl-2024-332288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Luca Fabris
- Department of Medicine (DIMED), 1st Clinical Medicine Unit, University of Padova, Padova, Italy
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, CT, USA
| | - Jonathan Pol
- Centre de Recherche des Cordeliers Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
41
|
Di Vito A, Donato A, Bria J, Conforti F, La Torre D, Malara N, Donato G. Extracellular Matrix Structure and Interaction with Immune Cells in Adult Astrocytic Tumors. Cell Mol Neurobiol 2024; 44:54. [PMID: 38969910 PMCID: PMC11226480 DOI: 10.1007/s10571-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Domenico La Torre
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
42
|
Elieh-Ali-Komi *D, Kazemi T, Shekari N, Farzamifar P, Eghbali E, Mansoori B, Baradaran B, Shirmohamadi M. Linoleic Acid Modulates the Expression of Metastatic and Angiogenic Markers MMP-2 and Talin-2 in Gastric Cancer Cell Line MKN-45. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1612-1620. [PMID: 39086406 PMCID: PMC11287596 DOI: 10.18502/ijph.v53i7.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Background Linoleic acid (LA) has modulatory effects on gastric cancer cell lines. This study aimed to investigate the effects of linoleic acid on the expression of metastatic and angiogenic molecular markers in gastric cancer cell line MKN-45. Methods In this study performed in Tabriz, Iran in 2021, MKN-45 cells were treated with LA in the presence or absence of docetaxel. Total RNA was extracted, and cDNA synthesized from the cells before and after treatment. The expression levels of Talin-2 and MMP-2 genes and mir-20, mir-30, mir-126, and mir-194, were determined by quantitative real-time PCR. Results LA treatment reduced the expression levels of mir-126, mir-194, mir-30, and MMP-2, while increased the expression levels of Talin-2 mRNA. Docetaxel treatment could decrease the expression levels of mir-20, Talin-2, and MMP-2 mRNA levels while increasing the expression levels of mir-126, mir-194, and mir-30. Additionally, the combined treatment of MKN-45 cells with LA and docetaxel could reduce the expression levels of mir-20 and mir-126 and increased the expression levels of mir-194, mir-30, Talin-2, and MMP-2 mRNAs. Conclusion Modulation of the expression levels of gastric cancer involved microRNAs, Talin-2, and MMP-2 may be a mechanism through which LA may exert its biological effects on GC cell line MKN-45. LA may have an antimetastatic effect by reducing the MMP-2 expression and pro-angiogenic effect through increasing Talin-2 expression levels.
Collapse
Affiliation(s)
- *Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Farzamifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Eghbali
- Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohamadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
44
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Khan Y, Rehani S, Sharma M. To evaluate the role of mast cells on angiogenesis in various grades of oral squamous cell carcinoma: A histochemical study. J Oral Maxillofac Pathol 2024; 28:403-408. [PMID: 39670125 PMCID: PMC11633918 DOI: 10.4103/jomfp.jomfp_17_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 12/14/2024] Open
Abstract
Background Oral cancer is the sixth most common cancer, and 90% of them are oral squamous cell carcinomas (OSCC). As most OSCC are asymptomatic and are only detected at an advanced stage, the 5-year survival rate is only 50%. Thus, using novel prognosticators can minimise mortality and morbidity associated with OSCC. This study aims to evaluate the relationship between mast cells and angiogenesis in different grades of OSCC to analyse their role in its progression. Material and Methods A total of 45 cases were included, comprising 10 well-differentiated SCCs (WDOSCC), 10 moderately differentiated SCCs (MDOSCC), and 10 poorly differentiated SCCs (PDOSCC). Additionally, five normal buccal mucosae (NBM) samples served as negative controls for OSCC. Five cases of neurofibroma and pyogenic granuloma were used as positive controls for mast cells and angiogenesis, respectively. Results The mean MCD in WDOSCC, MDOSCC, and PDOSCC were 3.2620 ± 2.65177, 3.0310 ± 1.38276, and 4.1580 ± 2.49482, respectively. The MVD in WDOSCC, MDOSCC, and PDOSCC were 10.2850 ± 4.35032, 9.9240 ± 2.72533, and 7.1520 ± 2.26966, respectively. Discussion MCD was the highest in PDOSCC, followed by WDOSCC and MDOSCC. These results indicate a redundant role of mast cells in OSCC, or they might jumpstart malignancy but are retarded with OSCC progression. The MVD decreased with higher grades, in contrast to the prevalent literature. The correlation analysis between MVD and MCD revealed no significant correlation between them. Conclusion We found a non-significant role of mast cells in tumour biology and a decrease in vascularity with advancing grades. These results indicate a lower need for mast cell activation to augment vascularisation. A study with a larger sample size is needed to confirm our results.
Collapse
Affiliation(s)
- Yusra Khan
- Department of Oral Pathology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Shweta Rehani
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad, Haryana, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital and Research Institute, Gurugram, Haryana, India
| |
Collapse
|
46
|
Wang M, Ying Q, Ding R, Xing Y, Wang J, Pan Y, Pan B, Xiang G, Liu Z. Elucidating prognosis in cervical squamous cell carcinoma and endocervical adenocarcinoma: a novel anoikis-related gene signature model. Front Oncol 2024; 14:1352638. [PMID: 38988712 PMCID: PMC11234598 DOI: 10.3389/fonc.2024.1352638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are among the most prevalent gynecologic malignancies globally. The prognosis is abysmal once cervical cancer progresses to lymphatic metastasis. Anoikis, a specialized form of apoptosis induced by loss of cell adhesion to the extracellular matrix, plays a critical role. The prediction model based on anoikis-related genes (ARGs) expression and clinical data could greatly aid clinical decision-making. However, the relationship between ARGs and CESC remains unclear. Methods ARGs curated from the GeneCards and Harmonizome portals were instrumental in delineating CESC subtypes and in developing a prognostic framework for patients afflicted with this condition. We further delved into the intricacies of the immune microenvironment and pathway enrichment across the identified subtypes. Finally, our efforts culminated in the creation of an innovative nomogram that integrates ARGs. The utility of this prognostic tool was underscored by Decision Curve Analysis (DCA), which illuminate its prospective benefits in guiding clinical interventions. Results In our study, We discerned a set of 17 survival-pertinent, anoikis-related differentially expressed genes (DEGs) in CESC, from which nine were meticulously selected for the construction of prognostic models. The derived prognostic risk score was subsequently validated as an autonomous prognostic determinant. Through comprehensive functional analyses, we observed distinct immune profiles and drug response patterns among divergent prognostic stratifications. Further, we integrated the risk scores with the clinicopathological characteristics of CESC to develop a robust nomogram. DCA corroborated the utility of our model, demonstrating its potential to enhance patient outcomes through tailored clinical treatment strategies. Conclusion The predictive signature, encompassing nine pivotal genes, alongside the meticulously constructed nomogram developed in this research, furnishes clinicians with a sophisticated tool for tailoring treatment strategies to individual patients diagnosed with CESC.
Collapse
Affiliation(s)
- Mingwei- Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Qiaohui- Ying
- Institute of Oral Basic Research, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ru Ding
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yuncan- Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jue Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yiming- Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Guifen- Xiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
47
|
Chekmaryova I, Kalinin D, Kostin A, Buchwalow I, Tiemann M, Elieh-Ali-Komi D, Atiakshin D. Ultrastructural features of tumor-associated mast cells in parasympathetic paragangliomas (chemodectomas) of the neck. Microsc Res Tech 2024; 87:1373-1383. [PMID: 38380731 DOI: 10.1002/jemt.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms of the pathogenesis of neck paraganglioma (PGL) and the possible role of mast cells (MCs) in its development and metastasis are still poorly understood. We analyzed MCs' morphologic characterization, activation, and the properties of their cytoplasmic/released granules in PGLs, using light and transmission electron microscopy. Paragangliomas showed a large tumor-associated MC population both in the connective tissue layers of the tumor and between the tumor cells. Notably, MCs were presented by a high expression of specific proteases, size variation, polymorphism, and variable ultrastructural phenotype of granules. A massive number of granules were released surrounding the degranulated MCs while the integrity of MC membrane was maintained. Granules were electron-dense with or without a membrane, ranging from 0.2 to 0.8 μm in diameter. MC plasmalemma was not found at the site of MC-collagen fibrils contact, whereas the secretome and fibrils were directly contacted. We observed direct and mediator-based interactions between MCs and paraganglioma cells. The latter preserved their membrane integrity when MC granules were not in proximity. The effects of the MC secretome on the paraganglioma microenvironment demonstrated its pathogenetic role in tumor progression and allow its application to new diagnostic criteria and the development of protocols for personalized therapy. RESEARCH HIGHLIGHTS: Ultrastructural analysis reveals novel regulatory effects of mast cells via diverse secretory pathways on the pathogenesis of parasympathetic paraganglioma, including fibrous extracellular matrix remodeling and mediator-based interactions between MCs and cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Irina Chekmaryova
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Kalinin
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Institute for Hematopathology, Hamburg, Germany
| | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| |
Collapse
|
48
|
Heidari Moghadam R, Babajani F, Karami A, Elieh-Ali-Komi D, Hoseini F, Salehi N, Elahirad S, Mohammadi-Noori E, Mohammadi H, Kiani A. Association of Matrix Metalloproteinase-2 (MMP-2) and MMP-9 Promoter Variants, Their Serum Levels, and Activities with Aortic Valve Calcification (AVC) in a Population from Western Iran. Genet Test Mol Biomarkers 2024; 28:223-232. [PMID: 38708584 DOI: 10.1089/gtmb.2023.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Background: Matrix metalloproteinase (MMP) enzyme gene polymorphisms MMP-2-1575G/A and MMP-9-1562C/T promoter polymorphism, their serum levels, and activity are associated with aortic valve calcification (AVC). Materials and Methods: The synergistic link between the risk of AVC and the alleles T and A of MMP-9 and MMP-2 was investigated, respectively. Ninety-two cases with AVC and 92 healthy individuals from the west of Iran were included, and MMP- 2-1575G/A and MMP-9-1562C/T promoter polymorphisms were detected using PCR-RFLP. The serum levels and activity of MMP-2 and -9 were assessed using ELISA and gelatin zymography methods, respectively. In addition, serum biochemical markers, including FBS, urea and creatinine, cholesterol, triglyceride, HDL, LDL, calcium, phosphorus, and blood pressure: systolic blood pressure and diastolic blood pressure were measured. Results: Heart valve calcification disease was associated with a comparatively higher frequency of the A allele of the MMP2-1575 variation (p = 0.002). In addition, the frequency of T allele of the MMP9-1562 variant was higher than the control group (p = 0.007). Conclusion: MMP-2 and MMP-9 serum levels and activities were observed to be considerably higher in the experimental group than in the control group (p < 0.001). Patients are more susceptible to cardiovascular disease than the control group due to elevated serum levels and activity of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Reza Heidari Moghadam
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Babajani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Faeghe Hoseini
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Salehi
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Elahirad
- Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
49
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
50
|
Alipoor SD, Elieh-Ali-Komi D. Significance of extracellular vesicles in orchestration of immune responses in Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2024; 14:1398077. [PMID: 38836056 PMCID: PMC11148335 DOI: 10.3389/fcimb.2024.1398077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| |
Collapse
|