1
|
Zhou J, Han X, Wei Z, Liu Y, Xu J, Xu M, Xia T, Cheng X, Gu X. Deciphering the CREB-NR2B axis: Unraveling the crosstalk of insulin and TGF-β signalling in ameliorating postoperative cognitive dysfunction. Life Sci 2025; 370:123574. [PMID: 40122334 DOI: 10.1016/j.lfs.2025.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant postoperative complication, particularly in the elderly, linked to inflammation-mediated neural dysfunction. Insulin resistance and disruptions in transforming growth factor beta (TGF-β) signalling are associated with cognitive decline in aging, yet their roles in POCD are not fully understood. Here, we demonstrated that both insulin and TGF-β pathways were disrupted in POCD mouse models, with recombinant insulin and TGF-β treatments improving cognitive outcomes. These treatments reversed neuroinflammation in vitro, while CREB knockdown abrogated the protective effects, both in vivo and in vitro. Mechanistically, CREB was found to mediate the protective effects of insulin and TGF-β in POCD by directly regulating the expression of the cognitive-related protein NR2B. Altogether, our study identifies a key molecular target involved in the critical signalling pathways associated with POCD, offering promising therapeutic strategies for prevention and treatment.
Collapse
Affiliation(s)
- Jiawen Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Ziqi Wei
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Jiyan Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Minhui Xu
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiaolei Cheng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Presta M, Zoratto F, Mulder D, Ottomana AM, Pisa E, Arias Vásquez A, Slattery DA, Glennon JC, Macrì S. Hyperglycemia and cognitive impairments anticipate the onset of an overt type 2 diabetes-like phenotype in TALLYHO/JngJ mice. Psychoneuroendocrinology 2024; 167:107102. [PMID: 38896988 DOI: 10.1016/j.psyneuen.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Type 2 Diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, resulting from deficits in insulin secretion, insulin action, or both. Whilst the role of insulin in the peripheral nervous system has been ascertained in countless studies, its role in the central nervous system (CNS) is emerging only recently. Brain insulin has been lately associated with brain disorders like Alzheimer's disease, obsessive compulsive disorder, and attention deficit hyperactivity disorder. Thus, understanding the role of insulin as a common risk factor for mental and somatic comorbidities may disclose novel preventative and therapeutic approaches. We evaluated general metabolism (glucose tolerance, insulin sensitivity, energy expenditure, lipid metabolism, and polydipsia) and cognitive capabilities (attention, cognitive flexibility, and memory), in adolescent, young adult, and adult male and female TALLYHO/JngJ mice (TH, previously reported to constitute a valid experimental model of T2DM due to impaired insulin signaling). Adult TH mice have also been studied for alterations in gut microbiota diversity and composition. While TH mice exhibited profound deficits in cognitive flexibility and altered glucose metabolism, we observed that these alterations emerged either much earlier (males) or independent of (females) a comprehensive constellation of symptoms, isomorphic to an overt T2DM-like phenotype (insulin resistance, polydipsia, higher energy expenditure, and altered lipid metabolism). We also observed significant sex-dependent alterations in gut microbiota alpha diversity and taxonomy in adult TH mice. Deficits in insulin signaling may represent a common risk factor for both T2DM and CNS-related deficits, which may stem from (partly) independent mechanisms.
Collapse
Affiliation(s)
- Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Danique Mulder
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy; Neuroscience Unit, Department of Medicine, University of Parma, Parma 43100, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Alejandro Arias Vásquez
- Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| |
Collapse
|
4
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
5
|
Rossi C, Distaso M, Raggi F, Kusmic C, Faita F, Solini A. Lacking P2X7-receptors protects substantia nigra dopaminergic neurons and hippocampal-related cognitive performance from the deleterious effects of high-fat diet exposure in adult male mice. Front Nutr 2024; 11:1289750. [PMID: 38344021 PMCID: PMC10854005 DOI: 10.3389/fnut.2024.1289750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Dietary fat consumption, involved in the pathogenesis of insulin resistance and impaired glucose metabolism, is linked with decline in cognitive functions, dementia, and development of Parkinson's disease and Alzheimer's disease. Mature IL-1β, requiring the activation of the P2X7 receptor (P2X7R)-inflammasome complex, is an important mediator of neuroinflammation. The aim of the study was to test whether P2X7R activation might interfere with systemic and cerebral metabolic homeostasis. METHODS We treated WT and P2X7R KO mice with a high-fat diet (HFD) for 16 weeks, evaluating the effects on the Substantia Nigra and Hippocampus, target areas of damage in several forms of cognitive impairment. RESULTS HFD-treated WT and P2X7R KO mice showed a different brain mRNA profile of Insulin and Igf-1, with these genes and relative receptors, more expressed in KO mice. Unlike P2X7R KO mice, WT mice treated with HFD displayed a diameter reduction in dopaminergic neurons in the Substantia Nigra, accompanied by an increased IBA1 expression in this area; they also showed poor performances during Y-Maze and Morris Water Maze, tasks involving Hippocampus activity. Conversely, Parkin, whose reduction might promote neuronal cell death, was increased in the brain of P2X7R KO animals. CONCLUSION We report for the first time that HFD induces damage in dopaminergic neurons of the Substantia Nigra and a Hippocampus-related worse cognitive performance, both attenuated in the absence of P2X7R. The involved mechanisms might differ in the two brain areas, with a predominant role of inflammation in the Substantia Nigra and a metabolic derangement in the Hippocampus.
Collapse
Affiliation(s)
- Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | - Mariarosaria Distaso
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| | | | | | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
7
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
8
|
Yang J, Wang Z, Fu Y, Xu J, Zhang Y, Qin W, Zhang Q. Prediction value of the genetic risk of type 2 diabetes on the amnestic mild cognitive impairment conversion to Alzheimer’s disease. Front Aging Neurosci 2022; 14:964463. [PMID: 36185474 PMCID: PMC9521369 DOI: 10.3389/fnagi.2022.964463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) and Type 2 diabetes mellitus (T2DM) are both important risk factors for Alzheimer’s disease (AD). We aimed to investigate whether a T2DM-specific polygenic risk score (PRSsT2DM) can predict the conversion of aMCI to AD and further explore the underlying neurological mechanism. All aMCI patients were from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database and were divided into conversion (aMCI-C, n = 164) and stable (aMCI-S, n = 222) groups. PRSsT2DM was calculated by PRSice-2 software to explore the predictive efficacy of the aMCI conversion to AD. We found that PRSsT2DM could independently predict the aMCI conversion to AD after removing the common variants of these two diseases. PRSsT2DM was significantly negatively correlated with gray matter volume (GMV) of the right superior frontal gyrus in the aMCI-C group. In all aMCI patients, PRSsT2DM was significantly negatively correlated with the cortical volume of the right superior occipital gyrus. The cortical volume of the right superior occipital gyrus could significantly mediate the association between PRSsT2DM and aMCI conversion. Gene-based analysis showed that T2DM-specific genes are highly expressed in cortical neurons and involved in ion and protein binding, neural development and generation, cell junction and projection, and PI3K-Akt and MAPK signaling pathway, which might increase the aMCI conversion by affecting the Tau phosphorylation and amyloid-beta (Aβ) accumulation. Therefore, the PRSsT2DM could be used as a measure to predict the conversion of aMCI to AD.
Collapse
|
9
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
10
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
11
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
12
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
13
|
Pisa E, Martire A, Chiodi V, Traversa A, Caputo V, Hauser J, Macrì S. Exposure to 3'Sialyllactose-Poor Milk during Lactation Impairs Cognitive Capabilities in Adulthood. Nutrients 2021; 13:nu13124191. [PMID: 34959743 PMCID: PMC8707534 DOI: 10.3390/nu13124191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Breast milk exerts pivotal regulatory functions early in development whereby it contributes to the maturation of brain and associated cognitive functions. However, the specific components of maternal milk mediating this process have remained elusive. Sialylated human milk oligosaccharides (HMOs) represent likely candidates since they constitute the principal neonatal dietary source of sialic acid, which is crucial for brain development and neuronal patterning. We hypothesize that the selective neonatal lactational deprivation of a specific sialylated HMOs, sialyl(alpha2,3)lactose (3′SL), may impair cognitive capabilities (attention, cognitive flexibility, and memory) in adulthood in a preclinical model. To operationalize this hypothesis, we cross-fostered wild-type (WT) mouse pups to B6.129-St3gal4tm1.1Jxm/J dams, knock-out (KO) for the gene synthesizing 3′SL, thereby providing milk with approximately 80% 3′SL content reduction. We thus exposed lactating WT pups to a selective reduction of 3′SL and investigated multiple cognitive domains (including memory and attention) in adulthood. Furthermore, to account for the underlying electrophysiological correlates, we investigated hippocampal long-term potentiation (LTP). Neonatal access to 3′SL-poor milk resulted in decreased attention, spatial and working memory, and altered LTP compared to the control group. These results support the hypothesis that early-life dietary sialylated HMOs exert a long-lasting role in the development of cognitive functions.
Collapse
Affiliation(s)
- Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Martire
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (V.C.)
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Jonas Hauser
- Brain Health, Nestlé Institute of Health Science, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne, Switzerland
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Correspondence: (J.H.); (S.M.); Tel.: +41-21-785-8933 (J.H.); +39-06-4990-6829 (S.M.); Fax: +39-06-4957-821 (S.M.)
| |
Collapse
|
14
|
Reagan L, Cowan H, Woodruff J, Piroli G, Erichsen J, Evans A, Burzynski H, Maxwell N, Loyo-Rosado F, Macht V, Grillo C. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol Stress 2021; 15:100354. [PMID: 34258333 PMCID: PMC8252121 DOI: 10.1016/j.ynstr.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.
Collapse
Affiliation(s)
- L.P. Reagan
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.B. Cowan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.L. Woodruff
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - G.G. Piroli
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.M. Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - A.N. Evans
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.E. Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - N.D. Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - F.Z. Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - V.A. Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - C.A. Grillo
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| |
Collapse
|
15
|
Wang M, Yoon G, Song J, Jo J. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. Sci Rep 2021; 11:8326. [PMID: 33859286 PMCID: PMC8050263 DOI: 10.1038/s41598-021-87809-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome, which increases the risk of obesity and type 2 diabetes has emerged as a significant issue worldwide. Recent studies have highlighted the relationship between metabolic imbalance and neurological pathologies such as memory loss. Glucagon-like peptide 1 (GLP-1) secreted from gut L-cells and specific brain nuclei plays multiple roles including regulation of insulin sensitivity, inflammation and synaptic plasticity. Although GLP-1 and GLP-1 receptor agonists appear to have neuroprotective function, the specific mechanism of their action in brain remains unclear. We investigated whether exendin-4, as a GLP-1RA, improves cognitive function and brain insulin resistance in metabolic-imbalanced mice fed a high-fat diet. Considering the result of electrophysiological experiments, exendin-4 inhibits the reduction of long term potentiation (LTP) in high fat diet mouse brain. Further, we identified the neuroprotective effect of exendin-4 in primary cultured hippocampal and cortical neurons in in vitro metabolic imbalanced condition. Our results showed the improvement of IRS-1 phosphorylation, neuronal complexity, and the mature of dendritic spine shape by exendin-4 treatment in metabolic imbalanced in vitro condition. Here, we provides significant evidences on the effect of exendin-4 on synaptic plasticity, long-term potentiation, and neural structure. We suggest that GLP-1 is important to treat neuropathology caused by metabolic syndrome.
Collapse
Affiliation(s)
- Ming Wang
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
| | - Gwangho Yoon
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Jihoon Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.
- Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
16
|
Hauser J, Pisa E, Arias Vásquez A, Tomasi F, Traversa A, Chiodi V, Martin FP, Sprenger N, Lukjancenko O, Zollinger A, Metairon S, Schneider N, Steiner P, Martire A, Caputo V, Macrì S. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol Psychiatry 2021; 26:2854-2871. [PMID: 33664475 PMCID: PMC8505264 DOI: 10.1038/s41380-021-01054-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.
Collapse
Affiliation(s)
- Jonas Hauser
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, “Sapienza” University of Rome, Rome, Italy
| | - Alejandro Arias Vásquez
- grid.10417.330000 0004 0444 9382Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Flavio Tomasi
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Valentina Chiodi
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Francois-Pierre Martin
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Norbert Sprenger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | | | - Alix Zollinger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Metairon
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Nora Schneider
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Pascal Steiner
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Alberto Martire
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
17
|
Tabassum S, Misrani A, Yang L. Exploiting Common Aspects of Obesity and Alzheimer's Disease. Front Hum Neurosci 2020; 14:602360. [PMID: 33384592 PMCID: PMC7769820 DOI: 10.3389/fnhum.2020.602360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an example of age-related dementia, and there are still no known preventive or curative measures for this disease. Obesity and associated metabolic changes are widely accepted as risk factors of age-related cognitive decline. Insulin is the prime mediator of metabolic homeostasis, which is impaired in obesity, and this impairment potentiates amyloid-β (Aβ) accumulation and the formation of neurofibrillary tangles (NFTs). Obesity is also linked with functional and morphological alterations in brain mitochondria leading to brain insulin resistance (IR) and memory deficits associated with AD. Also, increased peripheral inflammation and oxidative stress due to obesity are the main drivers that increase an individual’s susceptibility to cognitive deficits, thus doubling the risk of AD. This enhanced risk of AD is alarming in the context of a rapidly increasing global incidence of obesity and overweight in the general population. In this review, we summarize the risk factors that link obesity with AD and emphasize the point that the treatment and management of obesity may also provide a way to prevent AD.
Collapse
Affiliation(s)
- Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
18
|
Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. VITAMINS AND HORMONES 2020; 114:281-306. [PMID: 32723548 DOI: 10.1016/bs.vh.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrient-related signals have been demonstrated to influence brain development and cognitive functions. In particular, insulin signaling has been shown to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Alteration of brain insulin signaling interferes with the maintenance of neural stem cell niche and neuronal activity in the hippocampus. Brain insulin resistance is also emerging as key factor causing the cognitive impairment observed in metabolic and neurodegenerative diseases. Here, we review the molecular mechanisms involved in the insulin modulation of both adult neurogenesis and synaptic activity in the hippocampus. We also summarize the effects of altered insulin sensitivity on hippocampal plasticity. Finally, we reassume the experimental and epidemiological evidence highlighting the critical role of brain insulin resistance at the crossroad between type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
19
|
Muñoz-Arenas G, Pulido G, Treviño S, Vázquez-Roque R, Flores G, Moran C, Handal-Silva A, Guevara J, Venegas B, Díaz A. Effects of metformin on recognition memory and hippocampal neuroplasticity in rats with metabolic syndrome. Synapse 2020; 74:e22153. [PMID: 32190918 DOI: 10.1002/syn.22153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
Abstract
Metabolic syndrome (MS) is a health problem that is characterized by body fat accumulation, hypertension, dyslipidemia, and hyperglycemia; recently, it has been demonstrated that MS also damages memory processes. The first-line drug in the treatment of MS and type 2 diabetes mellitus is metformin, which is an antihyperglycemic agent. This drug has been shown to produce neuroprotection and to improve memory processes. However, the mechanism involved in this neuroprotection is unknown. A 90-day administration of metformin improved the cognitive processes of rats with MS as evaluated by the novel object recognition test, and this finding could be explained by an increase in the neuronal spine density and spine length. We also found that metformin increased the immunoreactivity of synaptophysin, sirtuin-1, AMP-activated protein kinase, and brain-derived neuronal factor, which are important plasticity markers. We conclude that metformin is an important therapeutic agent that increases neural plasticity and protects cognitive processes. The use of this drug is important in the minimization of the damage caused by MS.
Collapse
Affiliation(s)
- Guadalupe Muñoz-Arenas
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Guadalupe Pulido
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Rubén Vázquez-Roque
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatria, Instituto de Fisiologia, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Carolina Moran
- Laboratorio de Histologia, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Departamento de Biologia y Toxicologia de la Reproduccion, Instituto de Ciencias, Benemerita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Departamento de Bioquimica, Facultad de Medicina, Universidad Nacional Autonoma de México, Ciudad de Mexico, Mexico
| | - Berenice Venegas
- Facultad de Ciencias Biologicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| |
Collapse
|
20
|
Sankar SB, Infante-Garcia C, Weinstock LD, Ramos-Rodriguez JJ, Hierro-Bujalance C, Fernandez-Ponce C, Wood LB, Garcia-Alloza M. Amyloid beta and diabetic pathology cooperatively stimulate cytokine expression in an Alzheimer's mouse model. J Neuroinflammation 2020; 17:38. [PMID: 31992349 PMCID: PMC6988295 DOI: 10.1186/s12974-020-1707-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diabetes is a risk factor for developing Alzheimer's disease (AD); however, the mechanism by which diabetes can promote AD pathology remains unknown. Diabetes results in diverse molecular changes in the brain, including dysregulation of glucose metabolism and loss of cerebrovascular homeostasis. Although these changes have been associated with increased Aβ pathology and increased expression of glial activation markers in APPswe/PS1dE9 (APP/PS1) mice, there has been limited characterization, to date, of the neuroinflammatory changes associated with diabetic conditions. METHODS To more fully elucidate neuroinflammatory changes associated with diabetes that may drive AD pathology, we combined the APP/PS1 mouse model with either high-fat diet (HFD, a model of pre-diabetes), the genetic db/db model of type 2 diabetes, or the streptozotocin (STZ) model of type 1 diabetes. We then used a multiplexed immunoassay to quantify cortical changes in cytokine proteins. RESULTS Our analysis revealed that pathology associated with either db/db, HFD, or STZ models yielded upregulation of a broad profile of cytokines, including chemokines (e.g., MIP-1α, MIP-1β, and MCP-1) and pro-inflammatory cytokines, including IL-1α, IFN-γ, and IL-3. Moreover, multivariate partial least squares regression analysis showed that combined diabetic-APP/PS1 models yielded cooperatively enhanced expression of the cytokine profile associated with each diabetic model alone. Finally, in APP/PS1xdb/db mice, we found that circulating levels of Aβ1-40, Aβ1-42, glucose, and insulin all correlated with cytokine expression in the brain, suggesting a strong relationship between peripheral changes and brain pathology. CONCLUSIONS Altogether, our multiplexed analysis of cytokines shows that Alzheimer's and diabetic pathologies cooperate to enhance profiles of cytokines reported to be involved in both diseases. Moreover, since many of the identified cytokines promote neuronal injury, Aβ and tau pathology, and breakdown of the blood-brain barrier, our data suggest that neuroinflammation may mediate the effects of diabetes on AD pathogenesis. Therefore, strategies targeting neuroinflammatory signaling, as well as metabolic control, may provide a promising strategy for intervening in the development of diabetes-associated AD.
Collapse
Affiliation(s)
- Sitara B Sankar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Cadiz, Spain
- Departamento de Fisiología, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
- Área de Inmunología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Rm 3303, Atlanta, GA, 30332, USA.
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Cadiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
21
|
Spinelli M, Fusco S, Grassi C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front Neurosci 2019; 13:788. [PMID: 31417349 PMCID: PMC6685093 DOI: 10.3389/fnins.2019.00788] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, much attention has been devoted to the effects of nutrient-related signals on brain development and cognitive functions. A turning point was the discovery that brain areas other than the hypothalamus expressed receptors for hormones related to metabolism. In particular, insulin signaling has been demonstrated to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Here, we summarize the molecular evidence linking alteration of hippocampal insulin sensitivity with changes of both adult neurogenesis and synaptic plasticity. We also review the epidemiological studies and experimental models emphasizing the critical role of brain insulin resistance at the crossroad between metabolic and neurodegenerative disease. Finally, we brief novel findings suggesting how biomarkers of brain insulin resistance, involving the study of brain-derived extracellular vesicles and brain glucose metabolism, may predict the onset and/or the progression of cognitive decline.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
22
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Martín‐Segura A, Ahmed T, Casadomé‐Perales Á, Palomares‐Perez I, Palomer E, Kerstens A, Munck S, Balschun D, Dotti CG. Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell 2019; 18:e12932. [PMID: 30884121 PMCID: PMC6516156 DOI: 10.1111/acel.12932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023] Open
Abstract
In the brain, insulin plays an important role in cognitive processes. During aging, these faculties decline, as does insulin signaling. The mechanism behind this last phenomenon is unclear. In recent studies, we reported that the mild and gradual loss of cholesterol in the synaptic fraction of hippocampal neurons during aging leads to a decrease in synaptic plasticity evoked by glutamate receptor activation and also by receptor tyrosine kinase (RTK) signaling. As insulin and insulin growth factor activity are dependent on tyrosine kinase receptors, we investigated whether the constitutive loss of brain cholesterol is also involved in the decay of insulin function with age. Using long‐term depression (LTD) induced by application of insulin to hippocampal slices as a read‐out, we found that the decline in insulin function during aging could be monitored as a progressive impairment of insulin‐LTD. The application of a cholesterol inclusion complex, which donates cholesterol to the membrane and increases membrane cholesterol levels, rescued the insulin signaling deficit and insulin‐LTD. In contrast, extraction of cholesterol from hippocampal neurons of adult mice produced the opposite effect. Furthermore, in vivo inhibition of Cyp46A1, an enzyme involved in brain cholesterol loss with age, improved insulin signaling. Fluorescence resonance energy transfer (FRET) experiments pointed to a change in receptor conformation by reduced membrane cholesterol, favoring ligand‐independent autophosphorylation. Together, these results indicate that changes in membrane fluidity of brain cells during aging play a key role in the decay of synaptic plasticity and cognition that occurs at this late stage of life.
Collapse
Affiliation(s)
- Adrián Martín‐Segura
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa CSIC/UAM Madrid Spain
- Department of Developmental and Molecular Biology Albert Einstein College of Medicine Bronx New York
| | - Tariq Ahmed
- Faculty of Psychology & Educational Sciences University of Leuven Leuven Belgium
- Neurological Disorders Research Center QBRI‐HBKU Doha Qatar
| | - Álvaro Casadomé‐Perales
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa CSIC/UAM Madrid Spain
| | - Irene Palomares‐Perez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa CSIC/UAM Madrid Spain
| | - Ernest Palomer
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa CSIC/UAM Madrid Spain
- Cell & Developmental Biology Department University College London London UK
| | - Axelle Kerstens
- Department of Neuroscience, VIB Center for Brain and Disease Research University of Leuven Leuven Belgium
| | - Sebastian Munck
- Department of Neuroscience, VIB Center for Brain and Disease Research University of Leuven Leuven Belgium
| | - Detlef Balschun
- Faculty of Psychology & Educational Sciences University of Leuven Leuven Belgium
| | - Carlos G. Dotti
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa CSIC/UAM Madrid Spain
| |
Collapse
|
24
|
Wang Q, Hu J, Liu Y, Li J, Liu B, Li M, Lou S. Aerobic Exercise Improves Synaptic-Related Proteins of Diabetic Rats by Inhibiting FOXO1/NF-κB/NLRP3 Inflammatory Signaling Pathway and Ameliorating PI3K/Akt Insulin Signaling Pathway. J Mol Neurosci 2019; 69:28-38. [DOI: 10.1007/s12031-019-01302-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023]
|
25
|
Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 2019; 102:345-361. [PMID: 31102601 DOI: 10.1016/j.neubiorev.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a devastating condition which often initiates a sequel of neurological disorders that can last throughout lifespan. From metabolic perspective, TBI also compromises systemic physiology including the function of body organs with subsequent malfunctions in metabolism. The emerging panorama is that the effects of TBI on the periphery strike back on the brain and exacerbate the overall TBI pathogenesis. An increasing number of clinical reports are alarming to show that metabolic dysfunction is associated with incidence of long-term neurological and psychiatric disorders. The autonomic nervous system, associated hypothalamic-pituitary axis, and the immune system are at the center of the interface between brain and body and are central to the regulation of overall homeostasis and disease. We review the strong association between mechanisms that regulate cell metabolism and inflammation which has important clinical implications for the communication between body and brain. We also discuss the integrative actions of lifestyle interventions such as diet and exercise on promoting brain and body health and cognition after TBI.
Collapse
Affiliation(s)
- Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery, and Integrative and Biology and Physiology, UCLA Brain Injury Research Center, University of California, Los Angeles, USA.
| |
Collapse
|
26
|
Shefa U, Kim D, Kim MS, Jeong NY, Jung J. Roles of Gasotransmitters in Synaptic Plasticity and Neuropsychiatric Conditions. Neural Plast 2018; 2018:1824713. [PMID: 29853837 PMCID: PMC5960547 DOI: 10.1155/2018/1824713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for maintaining normal neuronal activity and proper neuronal functioning in the nervous system. It is crucial for regulating synaptic transmission or electrical signal transduction to neuronal networks, for sharing essential information among neurons, and for maintaining homeostasis in the body. Moreover, changes in synaptic or neural plasticity are associated with many neuropsychiatric conditions, such as schizophrenia (SCZ), bipolar disorder (BP), major depressive disorder (MDD), and Alzheimer's disease (AD). The improper maintenance of neural plasticity causes incorrect neurotransmitter transmission, which can also cause neuropsychiatric conditions. Gas neurotransmitters (gasotransmitters), such as hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), play roles in maintaining synaptic plasticity and in helping to restore such plasticity in the neuronal architecture in the central nervous system (CNS). Indeed, the upregulation or downregulation of these gasotransmitters may cause neuropsychiatric conditions, and their amelioration may restore synaptic plasticity and proper neuronal functioning and thereby improve such conditions. Understanding the specific molecular mechanisms underpinning these effects can help identify ways to treat these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, 13 Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Benedict C, Grillo CA. Insulin Resistance as a Therapeutic Target in the Treatment of Alzheimer's Disease: A State-of-the-Art Review. Front Neurosci 2018; 12:215. [PMID: 29743868 PMCID: PMC5932355 DOI: 10.3389/fnins.2018.00215] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
Research in animals and humans has shown that type 2 diabetes and its prodromal state, insulin resistance, promote major pathological hallmarks of Alzheimer's disease (AD), such as the formation of amyloid plaques and neurofibrillary tangles (NFT). Worrisomely, dysregulated amyloid beta (Aβ) metabolism has also been shown to promote central nervous system insulin resistance; although the role of tau metabolism remains controversial. Collectively, as proposed in this review, these findings suggest the existence of a mechanistic interplay between AD pathogenesis and disrupted insulin signaling. They also provide strong support for the hypothesis that pharmacologically restoring brain insulin signaling could represent a promising strategy to curb the development and progression of AD. In this context, great hopes have been attached to the use of intranasal insulin. This drug delivery method increases cerebrospinal fluid concentrations of insulin in the absence of peripheral side effects, such as hypoglycemia. With this in mind, the present review will also summarize current knowledge on the efficacy of intranasal insulin to mitigate major pathological symptoms of AD, i.e., cognitive impairment and deregulation of Aβ and tau metabolism.
Collapse
Affiliation(s)
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina-School of Medicine, Columbia, SC, United States
| |
Collapse
|
28
|
Bartolome F, de la Cueva M, Pascual C, Antequera D, Fernandez T, Gil C, Martinez A, Carro E. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition. ALZHEIMERS RESEARCH & THERAPY 2018; 10:24. [PMID: 29458418 PMCID: PMC5819290 DOI: 10.1186/s13195-018-0352-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/30/2018] [Indexed: 01/19/2023]
Abstract
Background The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood–brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer’s disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid β (Aβ) overload. Methods We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aβ-treated human neuroblastome SH-SY5Y cell line. Results Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aβ-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aβ. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aβ overload, and a reduction in the Aβ-increased mitochondrial clearance mechanism of mitophagy. Conclusions Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD. Electronic supplementary material The online version of this article (10.1186/s13195-018-0352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain. .,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| | - Macarena de la Cueva
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Consuelo Pascual
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Desiree Antequera
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Tamara Fernandez
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Eva Carro
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain. .,Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
29
|
Fried PJ, Schilberg L, Brem AK, Saxena S, Wong B, Cypess AM, Horton ES, Pascual-Leone A. Humans with Type-2 Diabetes Show Abnormal Long-Term Potentiation-Like Cortical Plasticity Associated with Verbal Learning Deficits. J Alzheimers Dis 2018; 55:89-100. [PMID: 27636847 DOI: 10.3233/jad-160505] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Type-2 diabetes mellitus (T2DM) accelerates cognitive aging and increases risk of Alzheimer's disease. Rodent models of T2DM show altered synaptic plasticity associated with reduced learning and memory. Humans with T2DM also show cognitive deficits, including reduced learning and memory, but the relationship of these impairments to the efficacy of neuroplastic mechanisms has never been assessed. OBJECTIVE Our primary objective was to compare mechanisms of cortical plasticity in humans with and without T2DM. Our secondary objective was to relate plasticity measures to standard measures of cognition. METHODS A prospective cross-sectional cohort study was conducted on 21 adults with T2DM and 15 demographically-similar non-diabetic controls. Long-term potentiation-like plasticity was assessed in primary motor cortex by comparing the amplitude of motor evoked potentials (MEPs) from single-pulse transcranial magnetic stimulation before and after intermittent theta-burst stimulation (iTBS). Plasticity measures were compared between groups and related to neuropsychological scores. RESULTS In T2DM, iTBS-induced modulation of MEPs was significantly less than controls, even after controlling for potential confounds. Furthermore, in T2DM, modulation of MEPs 10-min post-iTBS was significantly correlated with Rey Auditory Verbal Learning Task (RAVLT) performance. CONCLUSION Humans with T2DM show abnormal cortico-motor plasticity that is correlated with reduced verbal learning. Since iTBS after-effects and the RAVLT are both NMDA receptor-dependent measures, their relationship in T2DM may reflect brain-wide alterations in the efficacy of NMDA receptors. These findings offer novel mechanistic insights into the brain consequences of T2DM and provide a reliable means to monitor brain health and evaluate the efficacy of clinical interventions.
Collapse
Affiliation(s)
- Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lukas Schilberg
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna-Katharine Brem
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sadhvi Saxena
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Bonnie Wong
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.,Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Edward S Horton
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Interventional Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples. Neuromolecular Med 2018; 20:124-132. [PMID: 29450841 DOI: 10.1007/s12017-018-8480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/03/2018] [Indexed: 01/26/2023]
Abstract
Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease. In this study, we investigated the effect of ApoE genotype on the insulin signaling pathway in control and AD human brain samples. We found that targets of the insulin signaling pathway were attenuated in AD cases, regardless of ApoE isoform. We also found a decrease in GluR1 subunit expression, and an increase NR2B subunit expression in AD cases, regardless of ApoE isoform. Lastly, we observed that more insulin receptor (IR) was immunoprecipitated in control cases, and more Aβ was immunoprecipitated with AD cases. But, when comparing among AD cases, we found that more IR was immunoprecipitated with ApoE3 than ApoE4, and more Aβ was immunoprecipitated with ApoE4 than ApoE3. Our results suggest that the difference in IR binding and effect on protein expression downstream of the IR may affect onset and progression of AD.
Collapse
|
31
|
Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology 2017; 136:182-191. [PMID: 29217283 PMCID: PMC5988909 DOI: 10.1016/j.neuropharm.2017.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
Abstract
For decades the brain was erroneously considered an insulin insensitive organ. Although gaps in our knowledge base remain, conceptual frameworks are starting to emerge to provide insight into the mechanisms through which insulin facilitates critical brain functions like metabolism, cognition, and motivated behaviors. These diverse physiological and behavioral activities highlight the region-specific activities of insulin in the CNS; that is, there is an anatomical context to the activities of insulin in the CNS. Similarly, there is also a temporal context to the activities of insulin in the CNS. Indeed, brain insulin receptor activity can be conceptualized as a continuum in which insulin promotes neuroplasticity from development into adulthood where it is an integral part of healthy brain function. Unfortunately, brain insulin resistance likely contributes to neuroplasticity deficits in obesity and type 2 diabetes mellitus (T2DM). This neuroplasticity continuum can be conceptualized by the mechanisms through which insulin promotes cognitive function through its actions in brain regions like the hippocampus, as well as the ability of insulin to modulate motivated behaviors through actions in brain regions like the nucleus accumbens and the ventral tegmental area. Thus, the goals of this review are to highlight these anatomical, temporal, and functional contexts of insulin activity in these brain regions, and to identify potentially critical time points along this continuum where the transition from enhancement of neuroplasticity to impairment may take place.
Collapse
|
32
|
Laviola G, Zoratto F, Ingiosi D, Carito V, Huzard D, Fiore M, Macrì S. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations. PLoS One 2017; 12:e0188907. [PMID: 29200428 PMCID: PMC5714342 DOI: 10.1371/journal.pone.0188907] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Deficits in empathy have been proposed to constitute a hallmark of several psychiatric disturbances like conduct disorder, antisocial and narcissistic personality disorders. Limited sensitivity to punishment, shallow or deficient affect and reduced physiological reactivity to environmental stressors have been often reported to co-occur with limited empathy and contribute to the onset of antisocial phenotypes. Empathy in its simplest form (i.e. emotional contagion) is addressed in preclinical models through the evaluation of the social transmission of emotional states: mice exposed to a painful stimulus display a higher response if in the presence of a familiar individual experiencing a higher degree of discomfort, than in isolation. In the present study, we investigated whether a reduction of emotional contagion can be considered a predictor of reduced sociality, sensitivity to punishment and physiological stress reactivity. To this aim, we first evaluated emotional contagion in a group of Balb/cJ mice and then discretised their values in four quartiles. The upper (i.e. Emotional Contagion Prone, ECP) and the lower (i.e. Emotional Contagion Resistant, ECR) quartiles constituted the experimental groups. Our results indicate that mice in the lower quartile are characterized by reduced sociability, impaired memory of negative events and dampened hypothalamic-pituitary-adrenocortical reactivity to external stressors. Furthermore, in the absence of changes in oxytocin receptor density, we show that these mice exhibit elevated concentrations of oxytocin and vasopressin and reduced density of BDNF receptors in behaviourally-relevant brain areas. Thus, not only do present results translate to the preclinical investigation of psychiatric disturbances, but also they can contribute to the study of emotional contagion in terms of its adaptive significance.
Collapse
Affiliation(s)
- Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
- * E-mail:
| | - Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Danilo Ingiosi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Valentina Carito
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Damien Huzard
- Laboratory of Behavioural Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
33
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
34
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2016; 140:359-367. [PMID: 27889917 DOI: 10.1111/jnc.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Huang NQ, Jin H, Zhou SY, Shi JS, Jin F. TLR4 is a link between diabetes and Alzheimer's disease. Behav Brain Res 2016; 316:234-244. [PMID: 27591966 DOI: 10.1016/j.bbr.2016.08.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023]
Abstract
Recently, more and more studies have shown that there is an essential link between diabetes mellitus (DM) and Alzheimer's disease (AD). In addition, innate immunity plays an important role in the occurrence and development of DM and AD, which increase the risk of developing type 2 diabetes (T2D) and AD. Although the pathogenesis of those diseases is still a matter of debate, the important role of Toll-like receptor 4 (TLR4) in the two diseases has been receiving much attention at present. TLR4 and insulin resistance do have close ties, and chronic TLR4 activation may contribute to the insulin resistance. Aside from this, TLR4-mediated chronic inflammation also causes many DM complications such as diabetic nephropathy, diabetic retinopathy and diabetic neuropathy and has a profound impact on the internal environment of the body and brain's microenvironment. In parallel, TLR4 is widely distributed in the brain and also has an important role in the central nervous system (CNS) via regulation of neuroinflammation. The cerebrum under the circumstances of insulin resistance may lead to mitochondrial dysfunction in neurons. Interestingly, in the initial stage, the activation of TLR4 has a useful scavenging effect on amyloid beta (Aβ), but chronic long-term activation leads to Aβ deposition in the brain. Therefore we speculate that the TLR4 signaling pathway may be a potential link between DM and AD.
Collapse
Affiliation(s)
- Nan-Qu Huang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical College, Guizhou, China
| | - Shao-Yu Zhou
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China; Department of Environmental Health, Indiana University, Bloomington, Indiana, United States
| | - Jing-Shan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China
| | - Feng Jin
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Guizhou, China.
| |
Collapse
|
37
|
Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 2016; 36:941-53. [PMID: 26661172 PMCID: PMC4853835 DOI: 10.1177/0271678x15606719] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022]
Abstract
Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Emily Noble
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, USA Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, USA
| |
Collapse
|
38
|
Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia MA, Coccia R, Butterfield DA, Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med 2016; 91:127-42. [PMID: 26698666 DOI: 10.1016/j.freeradbiomed.2015.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 01/12/2023]
Abstract
Clinical studies suggest a link between peripheral insulin resistance and cognitive dysfunction. Interestingly, post-mortem analyses of Alzheimer disease (AD) subjects demonstrated insulin resistance in the brain proposing a role for cognitive deficits observed in AD. However, the mechanisms responsible for the onset of brain insulin resistance (BIR) need further elucidations. Biliverdin reductase-A (BVR-A) emerged as a unique Ser/Thr/Tyr kinase directly involved in the insulin signaling and represents an up-stream regulator of the insulin signaling cascade. Because we previously demonstrated the oxidative stress (OS)-induced impairment of BVR-A in human AD brain, we hypothesize that BVR-A dysregulation could be associated with the onset of BIR in AD. In the present work, we longitudinally analyze the age-dependent changes of (i) BVR-A protein levels and activation, (ii) total oxidative stress markers levels (PC, HNE, 3-NT) as well as (iii) IR/IRS1 levels and activation in the hippocampus of the triple transgenic model of AD (3xTg-AD) mice. Furthermore, ad hoc experiments have been performed in SH-SY5Y neuroblastoma cells to clarify the molecular mechanism(s) underlying changes observed in mice. Our results show that OS-induced impairment of BVR-A kinase activity is an early event, which starts prior the accumulation of Aβ and tau pathology or the elevation of TNF-α, and that greatly contribute to the onset of BIR along the progression of AD pathology in 3xTg-Ad mice. Based on these evidence we, therefore, propose a new paradigm for which: OS-induced impairment of BVR-A is firstly responsible for a sustained activation of IRS1, which then causes the stimulation of negative feedback mechanisms (i.e. mTOR) aimed to turn-off IRS1 hyper-activity and thus BIR. Similar alterations characterize also the normal aging process in mice, positing BVR-A impairment as a possible bridge in the transition from normal aging to AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122 Foggia, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Michele Angelo Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry, Markey Cancer Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
39
|
Fadel JR, Reagan LP. Stop signs in hippocampal insulin signaling: the role of insulin resistance in structural, functional and behavioral deficits. Curr Opin Behav Sci 2015; 9:47-54. [PMID: 26955646 DOI: 10.1016/j.cobeha.2015.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In peripheral tissues insulin activates signaling cascades to facilitate glucose uptake from the blood into tissues like liver, muscle and fat. While insulin appears to play a minor role in the regulation of glucose uptake in the central nervous system (CNS), insulin is known to play a major role in regulating synaptic plasticity in brain regions like the hippocampus. The concept that insulin regulates hippocampal neuroplasticity is further supported from animal models of type 2 diabetes (T2DM) and Alzheimer's disease (AD). The goal of this review is to provide an overview of these studies, as well as the studies that have examined whether deficits in hippocampal insulin signaling are amenable to intervention strategies.
Collapse
Affiliation(s)
- Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
40
|
Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, Sakai RR, Kelly SJ, Wilson MA, Mott DD, Reagan LP. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity. Diabetes 2015; 64. [PMID: 26216852 PMCID: PMC4613975 DOI: 10.2337/db15-0596] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control.
Collapse
Affiliation(s)
- Claudia A Grillo
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Robert C Lawrence
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Shayna A Wrighten
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Adrienne J Green
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Steven P Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Randall R Sakai
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH
| | - Sandra J Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Marlene A Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | - David D Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
41
|
Abstract
Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as a potential mediator of cognitive dysfunction in T2DM, as well as in Alzheimer disease (AD). This Review highlights these observations and discusses intervention studies which suggest that the restoration of insulin activity in the hippocampus may be an effective strategy to alleviate the cognitive decline associated with T2DM and AD.
Collapse
|
42
|
Cai Z, Xiao M, Chang L, Yan LJ. Role of insulin resistance in Alzheimer's disease. Metab Brain Dis 2015; 30:839-51. [PMID: 25399337 DOI: 10.1007/s11011-014-9631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China,
| | | | | | | |
Collapse
|
43
|
Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer's disease mice. J Neurosci 2015; 35:6893-902. [PMID: 25926464 DOI: 10.1523/jneurosci.4002-14.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synaptic plasticity deficits are increasingly recognized as causing the memory impairments which define Alzheimer's disease (AD). In AD mouse models, evidence of abnormal synaptic function is present before the onset of cognitive deficits, and presents as increased synaptic depression revealed only when synaptic homeostasis is challenged, such as with suppression of ryanodine receptor (RyR)-evoked calcium signaling. Otherwise, at early disease stages, the synaptic physiology phenotype appears normal. This suggests compensatory mechanisms are recruited to maintain a functionally normal net output of the hippocampal circuit. A candidate calcium-regulated synaptic modulator is nitric oxide (NO), which acts presynaptically to boost vesicle release and glutamatergic transmission. Here we tested whether there is a feedforward cycle between the increased RyR calcium release seen in presymptomatic AD mice and aberrant NO signaling which augments synaptic plasticity. Using a combination of electrophysiological approaches, two-photon calcium imaging, and protein biochemistry in hippocampal tissue from presymptomatic 3xTg-AD and NonTg mice, we show that blocking NO synthesis results in markedly augmented synaptic depression mediated through presynaptic mechanisms in 3xTg-AD mice. Additionally, blocking NO reduces the augmented synaptically evoked dendritic calcium release mediated by enhanced RyR calcium release. This is accompanied by increased nNOS levels in the AD mice and is reversed upon normalization of RyR-evoked calcium release with chronic dantrolene treatment. Thus, recruitment of NO is serving a compensatory role to boost synaptic transmission and plasticity during early AD stages. However, NO's dual role in neuroprotection and neurodegeneration may convert to maladaptive functions as the disease progresses.
Collapse
|
44
|
Wang Y, Wu L, Li J, Fang D, Zhong C, Chen JX, Yan SS. Synergistic exacerbation of mitochondrial and synaptic dysfunction and resultant learning and memory deficit in a mouse model of diabetic Alzheimer's disease. J Alzheimers Dis 2015; 43:451-63. [PMID: 25096625 DOI: 10.3233/jad-140972] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diabetes is considered to be a risk factor in Alzheimer's disease (AD) pathogenesis. Although recent evidence indicates that diabetes exaggerates pathologic features of AD, the underlying mechanisms are not well understood. To determine whether mitochondrial perturbation is associated with the contribution of diabetes to AD progression, we characterized mouse models of streptozotocin (STZ)-induced type 1 diabetes and transgenic AD mouse models with diabetes. Brains from mice with STZ-induced diabetes revealed a significant increase of cyclophilin D (CypD) expression, reduced respiratory function, and decreased hippocampal long-term potentiation (LTP); these animals had impaired spatial learning and memory. Hyperglycemia exacerbated the upregulation of CypD, mitochondrial defects, synaptic injury, and cognitive dysfunction in the brains of transgenic AD mice overexpressing amyloid-β as shown by decreased mitochondrial respiratory complex I and IV enzyme activity and greatly decreased mitochondrial respiratory rate. Concomitantly, hippocampal LTP reduction and spatial learning and memory decline, two early pathologic indicators of AD, were enhanced in the brains of diabetic AD mice. Our results suggest that the synergistic interaction between effects of diabetes and AD on mitochondria may be responsible for brain dysfunction that is in common in both diabetes and AD.
Collapse
Affiliation(s)
- Yongfu Wang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Jianping Li
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Changjia Zhong
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA College of Life Sciences, Beijing Normal University, Beijing, China
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
45
|
Lu H, Zhu XC, Jiang T, Yu JT, Tan L. Body fluid biomarkers in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:70. [PMID: 25992369 DOI: 10.3978/j.issn.2305-5839.2015.02.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 01/09/2023]
Abstract
A heterogeneous and slowly progressive disease with extracellular amyloid-β (Aβ) deposits and intracellular hyperphosphorylated tau protein aggregates, Alzheimer's disease (AD) is already a hard nut to crack, featured with cognitive decline and memory lapse. Body fluid biomarkers are proved to be useful in exploring further study of AD, might benefit for a full comprehension of the etiopathogenesis, an improved precision of the prognosis and diagnosis, and a positive response of treatments. The cerebrospinal fluid biomarkers Aβ, total tau, and hyperphosphorylated tau reflect the main pathologic changes of AD. We also review data from several novel biomarkers, such as, β-site APP cleaving enzyme 1, soluble amyloid precursor proteins α and β, soluble Aβ oligomers and so on, which are associated with the occurrence and deterioration of this disease and couldn't be ignored. The rationale for the clinical use of those biomarkers, the challenges faced with and the properties of the most appropriate biomarkers are also summarized in the paper. We aim to find several ideal biomarkers to improve the diagnosis and optimize the treatment respectively.
Collapse
Affiliation(s)
- Huan Lu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Xi-Chen Zhu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Teng Jiang
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
46
|
De Felice FG, Lourenco MV. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer's disease. Front Aging Neurosci 2015; 7:94. [PMID: 26042036 PMCID: PMC4436878 DOI: 10.3389/fnagi.2015.00094] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
47
|
Huang S, Wang Y, Gan X, Fang D, Zhong C, Wu L, Hu G, Sosunov AA, McKhann GM, Yu H, Yan SS. Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. Diabetes 2015; 64:1728-42. [PMID: 25412623 PMCID: PMC4407851 DOI: 10.2337/db14-0758] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/15/2014] [Indexed: 02/05/2023]
Abstract
Diabetes has adverse effects on the brain, especially the hippocampus, which is particularly susceptible to synaptic injury and cognitive dysfunction. The underlying mechanisms and strategies to rescue such injury and dysfunction are not well understood. Using a mouse model of type 2 diabetes (db/db mice) and a human neuronal cell line treated with high concentration of glucose, we demonstrate aberrant mitochondrial morphology, reduced ATP production, and impaired activity of complex I. These mitochondrial abnormalities are induced by imbalanced mitochondrial fusion and fission via a glycogen synthase kinase 3β (GSK3β)/dynamin-related protein-1 (Drp1)-dependent mechanism. Modulation of the Drp1 pathway or inhibition of GSK3β activity restores hippocampal long-term potentiation that is impaired in db/db mice. Our results point to a novel role for mitochondria in diabetes-induced synaptic impairment. Exploration of the mechanisms behind diabetes-induced synaptic deficit may provide a novel treatment for mitochondrial and synaptic injury in patients with diabetes.
Collapse
Affiliation(s)
- Shengbin Huang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongfu Wang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Xueqi Gan
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Fang
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Changjia Zhong
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Long Wu
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Gang Hu
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Alexander A Sosunov
- Department of Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Guy M McKhann
- Department of Neurosurgery, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shirley ShiDu Yan
- Department of Pharmacology & Toxicology and Higuchi Biosciences Center, School of Pharmacy, University of Kansas, Lawrence, KS
| |
Collapse
|
48
|
Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast 2015; 2015:657928. [PMID: 25977822 PMCID: PMC4419237 DOI: 10.1155/2015/657928] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.
Collapse
|
49
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
50
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|