1
|
Sandhu A, Rawat K, Gautam V, Kumar A, Sharma A, Bhatia A, Grover S, Saini L, Saha L. Neuroprotective effect of PPAR gamma agonist in rat model of autism spectrum disorder: Role of Wnt/β-catenin pathway. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111126. [PMID: 39179196 DOI: 10.1016/j.pnpbp.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The clinical manifestation of autism spectrum disorder (ASD) is linked to the disruption of fundamental neurodevelopmental pathways. Emerging evidences claim to have an upregulation of canonical Wnt/β-catenin pathway while downregulation of PPARγ pathway in ASD. This study aims to investigate the therapeutic potential of pioglitazone, a PPARγ agonist, in rat model of ASD. The study further explores the possible role of PPARγ and Wnt/β-catenin pathway and their interaction in ASD by using their modulators. MATERIAL AND METHODS Pregnant female Wistar rats received 600 mg/kg of valproic acid (VPA) to induce autistic symptoms in pups. Pioglitazone (10 mg/kg) was used to evaluate neurobehaviors, relative mRNA expression of inflammatory (IL-1β, IL-6, IL-10, TNF-α), apoptotic markers (Bcl-2, Bax, & Caspase-3) and histopathology (H&E, Nissl stain, Immunohistochemistry). Effect of pioglitazone was evaluated on Wnt pathway and 4 μg/kg dose of 6-BIO (Wnt modulator) was used to study the PPARγ pathway. RESULTS ASD model was established in pups as indicated by core autistic symptoms, increased neuroinflammation, apoptosis and histopathological neurodegeneration in cerebellum, hippocampus and amygdala. Pioglitazone significantly attenuated these alterations in VPA-exposed rats. The expression study results indicated an increase in key transcription factor, β-catenin in VPA-rats suggesting an upregulation of canonical Wnt pathway in them. Pioglitazone significantly downregulated the Wnt signaling by suppressing the expression of Wnt signaling-associated proteins. The inhibiting effect of Wnt pathway on PPARγ activity was indicated by downregulation of PPARγ-associated protein in VPA-exposed rats and those administered with 6-BIO. CONCLUSION In the present study, upregulation of canonical Wnt/β-catenin pathway was demonstrated in ASD rat model. Pioglitazone administration significantly ameliorated these symptoms potentially through its neuroprotective effect and its ability to downregulate the Wnt/β-catenin pathway. The antagonism between the PPARγ and Wnt pathway offers a promising therapeutic approach for addressing ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute ofMedical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan 342001, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
2
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
3
|
King C, Rogers LG, Jansen J, Sivayokan B, Neyhard J, Warnes E, Hall SE, Plakke B. Adolescent treadmill exercise enhances hippocampal brain-derived neurotrophic factor (BDNF) expression and improves cognition in autism-modeled rats. Physiol Behav 2024; 284:114638. [PMID: 39004196 DOI: 10.1016/j.physbeh.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by repetitive behaviors and altered communication abilities. Exercise is a low-cost intervention that could improve cognitive function and improve brain plasticity mechanisms. Here, the valproic acid (VPA) model was utilized to induce ASD-like phenotypes in rodents. Animals were exercised on a treadmill and performance was evaluated on a cognitive flexibility task. Biomarkers related to exercise and plasticity regulation were quantified from the prefrontal cortex, hippocampus, and skeletal muscle. Exercised VPA animals had higher levels of hippocampal BDNF compared to sedentary VPA animals and upregulated antioxidant enzyme expression in skeletal muscle. Cognitive improvements were demonstrated in both sexes, but in different domains of cognitive flexibility. This research demonstrates the benefits of exercise and provides evidence that molecular responses to exercise occur in both the central nervous system and in the periphery. These results suggest that improving regulation of BDNF via exercise, even at low intensity, could provide better synaptic regulation and cognitive benefits for individuals with ASD.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Liza G Rogers
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeremy Jansen
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jenna Neyhard
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ellie Warnes
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephanie E Hall
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Santos TCD, Obando JMC, Leite PEC, Pereira MR, Leitão MDF, Abujadi C, Pimenta LDFL, Martins RCC, Cavalcanti DN. Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges. Eur J Med Chem 2024; 266:116153. [PMID: 38277916 DOI: 10.1016/j.ejmech.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.
Collapse
Affiliation(s)
- Thalisia Cunha Dos Santos
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Johana Marcela Concha Obando
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mônica de Freitas Leitão
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Camp), Campinas, SP, Brazil
| | - Caio Abujadi
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Roberto Carlos Campos Martins
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diana Negrão Cavalcanti
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
5
|
Prince N, Chu SH, Chen Y, Mendez KM, Hanson E, Green-Snyder L, Brooks E, Korrick S, Lasky-Su JA, Kelly RS. Phenotypically driven subgroups of ASD display distinct metabolomic profiles. Brain Behav Immun 2023; 111:21-29. [PMID: 37004757 PMCID: PMC11099628 DOI: 10.1016/j.bbi.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous condition that includes a broad range of characteristics and associated comorbidities; however, the biology underlying the variability in phenotypes is not well understood. As ASD impacts approximately 1 in 100 children globally, there is an urgent need to better understand the biological mechanisms that contribute to features of ASD. In this study, we leveraged rich phenotypic and diagnostic information related to ASD in 2001 individuals aged 4 to 17 years from the Simons Simplex Collection to derive phenotypically driven subgroups and investigate their respective metabolomes. We performed hierarchical clustering on 40 phenotypes spanning four ASD clinical domains, resulting in three subgroups with distinct phenotype patterns. Using global plasma metabolomic profiling generated by ultrahigh-performance liquid chromatography mass spectrometry, we characterized the metabolome of individuals in each subgroup to interrogate underlying biology related to the subgroups. Subgroup 1 included children with the least maladaptive behavioral traits (N = 862); global decreases in lipid metabolites and concomitant increases in amino acid and nucleotide pathways were observed for children in this subgroup. Subgroup 2 included children with the highest degree of challenges across all phenotype domains (N = 631), and their metabolome profiles demonstrated aberrant metabolism of membrane lipids and increases in lipid oxidation products. Subgroup 3 included children with maladaptive behaviors and co-occurring conditions that showed the highest IQ scores (N = 508); these individuals had increases in sphingolipid metabolites and fatty acid byproducts. Overall, these findings indicated distinct metabolic patterns within ASD subgroups, which may reflect the biological mechanisms giving rise to specific patterns of ASD characteristics. Our results may have important clinical applications relevant to personalized medicine approaches towards managing ASD symptoms.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M Mendez
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ellen Hanson
- Divisions of Neurology and Developmental Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Susan Korrick
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Gevezova M, Sbirkov Y, Sarafian V, Plaimas K, Suratanee A, Maes M. Autistic spectrum disorder (ASD) - Gene, molecular and pathway signatures linking systemic inflammation, mitochondrial dysfunction, transsynaptic signalling, and neurodevelopment. Brain Behav Immun Health 2023; 30:100646. [PMID: 37334258 PMCID: PMC10275703 DOI: 10.1016/j.bbih.2023.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Despite advances in autism spectrum disorder (ASD) research and the vast genomic, transcriptomic, and proteomic data available, there are still controversies regarding the pathways and molecular signatures underlying the neurodevelopmental disorders leading to ASD. Purpose To delineate these underpinning signatures, we examined the two largest gene expression meta-analysis datasets obtained from the brain and peripheral blood mononuclear cells (PBMCs) of 1355 ASD patients and 1110 controls. Methods We performed network, enrichment, and annotation analyses using the differentially expressed genes, transcripts, and proteins identified in ASD patients. Results Transcription factor network analyses in up- and down-regulated genes in brain tissue and PBMCs in ASD showed eight main transcription factors, namely: BCL3, CEBPB, IRF1, IRF8, KAT2A, NELFE, RELA, and TRIM28. The upregulated gene networks in PBMCs of ASD patients are strongly associated with activated immune-inflammatory pathways, including interferon-α signaling, and cellular responses to DNA repair. Enrichment analyses of the upregulated CNS gene networks indicate involvement of immune-inflammatory pathways, cytokine production, Toll-Like Receptor signalling, with a major involvement of the PI3K-Akt pathway. Analyses of the downregulated CNS genes suggest electron transport chain dysfunctions at multiple levels. Network topological analyses revealed that the consequent aberrations in axonogenesis, neurogenesis, synaptic transmission, and regulation of transsynaptic signalling affect neurodevelopment with subsequent impairments in social behaviours and neurocognition. The results suggest a defense response against viral infection. Conclusions Peripheral activation of immune-inflammatory pathways, most likely induced by viral infections, may result in CNS neuroinflammation and mitochondrial dysfunction, leading to abnormalities in transsynaptic transmission, and brain neurodevelopment.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Bulgaria
- Research Institute at MU-Plovdiv, Bulgaria
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Michael Maes
- Research Institute at MU-Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Meng G, Tang W, Huang E, Li Z, Feng H. A comprehensive assessment of cell type-specific differential expression methods in bulk data. Brief Bioinform 2023; 24:bbac516. [PMID: 36472568 PMCID: PMC9851321 DOI: 10.1093/bib/bbac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Accounting for cell type compositions has been very successful at analyzing high-throughput data from heterogeneous tissues. Differential gene expression analysis at cell type level is becoming increasingly popular, yielding biomarker discovery in a finer granularity within a particular cell type. Although several computational methods have been developed to identify cell type-specific differentially expressed genes (csDEG) from RNA-seq data, a systematic evaluation is yet to be performed. Here, we thoroughly benchmark six recently published methods: CellDMC, CARseq, TOAST, LRCDE, CeDAR and TCA, together with two classical methods, csSAM and DESeq2, for a comprehensive comparison. We aim to systematically evaluate the performance of popular csDEG detection methods and provide guidance to researchers. In simulation studies, we benchmark available methods under various scenarios of baseline expression levels, sample sizes, cell type compositions, expression level alterations, technical noises and biological dispersions. Real data analyses of three large datasets on inflammatory bowel disease, lung cancer and autism provide evaluation in both the gene level and the pathway level. We find that csDEG calling is strongly affected by effect size, baseline expression level and cell type compositions. Results imply that csDEG discovery is a challenging task itself, with room to improvements on handling low signal-to-noise ratio and low expression genes.
Collapse
Affiliation(s)
- Guanqun Meng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| | - Wen Tang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| | - Emina Huang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, 75390, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, Ohio, USA
| |
Collapse
|
8
|
Singh R, Kisku A, Kungumaraj H, Nagaraj V, Pal A, Kumar S, Sulakhiya K. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 2023; 11:115. [PMID: 36672623 PMCID: PMC9856079 DOI: 10.3390/biomedicines11010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous category of developmental psychiatric disorders which is characterized by inadequate social interaction, less communication, and repetitive phenotype behavior. ASD is comorbid with various types of disorders. The reported prevalence is 1% in the United Kingdom, 1.5% in the United States, and ~0.2% in India at present. The natural anti-inflammatory agents on brain development are linked to interaction with many types of inflammatory pathways affected by genetic, epigenetic, and environmental variables. Inflammatory targeting pathways have already been linked to ASD. However, these routes are diluted, and new strategies are being developed in natural anti-inflammatory medicines to treat ASD. This review summarizes the numerous preclinical and clinical studies having potential protective effects and natural anti-inflammatory agents on the developing brain during pregnancy. Inflammation during pregnancy activates the maternal infection that likely leads to the development of neuropsychiatric disorders in the offspring. The inflammatory pathways have been an effective target for the subject of translational research studies on ASD.
Collapse
Affiliation(s)
- Ramu Singh
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Anglina Kisku
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Haripriya Kungumaraj
- Department of Kinesiology and Health, School of Art and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vini Nagaraj
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Ajay Pal
- Shriners Hospitals Pediatric Research Center (Center for Neural Rehabilitation and Repair), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
9
|
Majerczyk D, Ayad E, Brewton K, Saing P, Hart P. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 2022; 42:BSR20220713. [PMID: 36300375 PMCID: PMC9670245 DOI: 10.1042/bsr20220713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that manifests during early development, impacting individuals through their ways of communicating, social behaviors, and their ability to perform day-to-day activities. There have been different proposed mechanisms on how ASD precipitates within a patient, one of which being the impact cytokines have on fetal development once a mother's immune system has been activated (referred to as maternal immune activation, MIA). The occurrence of ASD has long been associated with elevated levels of several cytokines, including interleukin-6 (IL-6) and interferon gamma (IFN-γ). These proinflammatory cytokines can achieve high systemic levels in response to immune activating pathogens from various extrinsic sources. Transfer of cytokines such as IL-6 across the placental barrier allows accumulation in the fetus, potentially inducing neuroinflammation and consequently altering neurodevelopmental processes. Individuals who have been later diagnosed with ASD have been observed to have elevated levels of IL-6 and other proinflammatory cytokines during gestation. Moreover, the outcome of MIA has been associated with neurological effects such as impaired social interaction and an increase in repetitive behavior in animal models, supporting a mechanistic link between gestational inflammation and development of ASD-like characteristics. The present review attempts to provide a concise overview of the available preclinical and clinical data that suggest cross-talk between IL-6 and IFN-γ through both extrinsic and intrinsic factors as a central mechanism of MIA that may promote the development of ASD.
Collapse
Affiliation(s)
- Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
- Loyola Medicine, Berwyn, Illinois 60402, U.S.A
| | - Elizabeth G. Ayad
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Kari L. Brewton
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Pichrasmei Saing
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| |
Collapse
|
10
|
Filippova YY, Devyatova EV, Alekseeva AS, Burmistrova AL. Cytokines and neurotrophic factors in the severity assessment of children autism. Klin Lab Diagn 2022; 67:647-651. [PMID: 36398773 DOI: 10.51620/0869-2084-2022-67-11-647-651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the steady increase in the number of children with autism and the high heterogeneity of clinical groups, the diagnosis of these disorders and their severity is an urgent problem in modern medicine. In the course of the work, 126 children from 3 to 13 years old with typical neurodevelopment and with severe and mild autism spectrum disorders (ASD) were examined. Disease severity was determined according to the Childhood Autism Rating Scale (CARS). The levels of pro-/anti-inflammatory cytokines and neurotrophic factors (nerve growth factor beta and brain-derived neurotrophic factor) in blood plasma were assessed by enzyme immunoassay. Associations between indicators in each group of patients were assessed using the Spearman test and visualized as a heatmap of correlations. Statistical data processing was carried out in the R software. Significantly high levels of IL-4 in blood plasma and a decrease in the number of significant correlations within/between systems were revealed in children with mild autism compared with children with typical neurodevelopment. Such data can probably reflect the theory that some children with ASD are characterized by slow brain development, as a variant of the evolutionary norm. On the contrary, in children with severe ASD, high systemic levels of IL-6 and IFNg are shown against the background of low values of IL-10, IL-1β, TNFα and NGFβ, supported by the almost complete absence of intra/ and intersystem interactions. This may act as an indicator of maladaptation of the immune and nervous systems in severe autism, which contributes to the pathogenesis of the disease. Thus, a set of indicators: high levels of key pro-inflammatory cytokines - IL-6 and IFNg, low levels of IL-10, NGFβ and disintegration of the cytokine and nervous systems in the periphery can be proposed as an approach to indicate the severity of the condition in children with ASD.
Collapse
|
11
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Perfilyeva A, Bespalova K, Perfilyeva Y, Skvortsova L, Musralina L, Zhunussova G, Khussainova E, Iskakova U, Bekmanov B, Djansugurova L. Integrative Functional Genomic Analysis in Multiplex Autism Families from Kazakhstan. DISEASE MARKERS 2022; 2022:1509994. [PMID: 36199823 PMCID: PMC9529466 DOI: 10.1155/2022/1509994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.
Collapse
Affiliation(s)
| | - Kira Bespalova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Yuliya Perfilyeva
- M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
- Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Lyazzat Musralina
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Elmira Khussainova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Ulzhan Iskakova
- Kazakh National Medical University, 94 Tole Bi St., Almaty 050000, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
13
|
BDNF, proBDNF and IGF-1 serum levels in naïve and medicated subjects with autism. Sci Rep 2022; 12:13768. [PMID: 35962006 PMCID: PMC9374711 DOI: 10.1038/s41598-022-17503-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) promote the development and maintenance of neural circuits. Alterations in these factors might contribute to autism spectrum disorder (ASD). We asked whether serum BDNF, proBDNF, and IGF-1 levels are altered in an ASD population compared to controls. We measured serum BDNF, proBDNF, and IGF-1 immunoreactive protein in boys and girls aged 5–15 years old with mild to moderate ASD and non-autistic controls by ELISA. IGF-1 was increased in ASD serum compared to controls and was correlated with age and with CARS scores. Serum BDNF levels did not differ between groups, however, proBDNF serum levels were decreased in subjects with ASD compared to non-autistic controls. Medicated, but not unmedicated, ASD subjects exhibited lower serum proBDNF levels compared to controls, while neither IGF-1 nor BDNF levels differed between treatment groups. These data support the involvement of proBDNF and IGF-1 in the pathogenesis and treatment of autism.
Collapse
|
14
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
16
|
Qiao Y, Gong W, Li B, Xu R, Wang M, Shen L, Shi H, Li Y. Oral Microbiota Changes Contribute to Autism Spectrum Disorder in Mice. J Dent Res 2022; 101:821-831. [PMID: 35114831 DOI: 10.1177/00220345211070470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The oral microbiota has been implicated in various neurologic conditions, including autism spectrum disorder (ASD), a category of neurodevelopmental disorders defined by core behavioral impairments. Recent data propose the etiopathogenetic role of intestinal microbiota in ASD. The aim of the present study was to elucidate whether the oral microbiota contributes to the pathogenesis of ASD. On the basis of microbial changes detected in the oral cavity of children with ASD, we transferred oral microbiota from donors with ASD and typical development (TD) into an antibiotic-mediated microbiota-depleted mouse model and found that the ASD microbiota is sufficient to induce ASD-like behaviors, such as impaired social behavior. Mice receiving oral microbiota from the ASD donor showed significantly different microbiota structures in their oral cavity and intestinal tract as compared with those receiving TD microbiota and those not receiving any bacterium. The prefrontal cortex of ASD microbiota recipient mice displayed an alternative transcriptional profile with significant upregulation of serotonin-related gene expression, neuroactive ligand-receptor interaction, and TGF-β signaling pathway relative to that in TD microbiota recipient mice. The expression of serotonin-related genes was significantly increased in ASD microbiota recipient mice and was associated with selective autistic behaviors and changes in abundance of specific oral microbiota, including species of Bacteroidetes [G-7], Porphyromonas, and Tannerella. Machine learning based on the causal inference method confirmed a contributing role of Porphyromonas sp. HMT 930 in ASD. Taken together, the oral microbiota of children with ASD can lead to ASD-like behaviors, differences in microbial community structures, and altered neurosignaling activities in recipient mice; this highlights the mouth-microbial-brain connections in the development of neuropathology and provides a novel strategy to fully understand the etiologic mechanism of ASD.
Collapse
Affiliation(s)
- Y Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - W Gong
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - B Li
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - R Xu
- Department of Clinical Laboratory, Longgang District People's Hospital of Shenzhen, The Third Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - M Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China
| | - L Shen
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai, China
| | - H Shi
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Y Li
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
17
|
Onishchenko D, Huang Y, van Horne J, Smith PJ, Msall ME, Chattopadhyay I. Reduced false positives in autism screening via digital biomarkers inferred from deep comorbidity patterns. SCIENCE ADVANCES 2021; 7:eabf0354. [PMID: 34613766 PMCID: PMC8494294 DOI: 10.1126/sciadv.abf0354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 08/11/2021] [Indexed: 05/13/2023]
Abstract
Here, we develop digital biomarkers for autism spectrum disorder (ASD), computed from patterns of past medical encounters, identifying children at high risk with an area under the receiver operating characteristic exceeding 80% from shortly after 2 years of age for either sex, and across two independent patient databases. We leverage uncharted ASD comorbidities, with no requirement of additional blood work, or procedures, to estimate the autism comorbid risk score (ACoR), during the earliest years when interventions are the most effective. ACoR has superior predictive performance to common questionnaire-based screenings and can reduce their current socioeconomic, ethnic, and demographic biases. In addition, we can condition on current screening scores to either halve the state-of-the-art false-positive rate or boost sensitivity to over 60%, while maintaining specificity above 95%. Thus, ACoR can significantly reduce the median diagnostic age, reducing diagnostic delays and accelerating access to evidence-based interventions.
Collapse
Affiliation(s)
| | - Yi Huang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James van Horne
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Peter J. Smith
- Section of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- American Academy of Pediatrics, Itasca, IL, USA
| | - Michael E. Msall
- Section of Developmental and Behavioral Pediatrics, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- Joseph P. Kennedy Research Center on Intellectual and Neurodevelopmental Disabilities, University of Chicago, Chicago, IL, USA
| | - Ishanu Chattopadhyay
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
- Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
19
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
21
|
Baranova J, Dragunas G, Botellho MCS, Ayub ALP, Bueno-Alves R, Alencar RR, Papaiz DD, Sogayar MC, Ulrich H, Correa RG. Autism Spectrum Disorder: Signaling Pathways and Prospective Therapeutic Targets. Cell Mol Neurobiol 2021; 41:619-649. [PMID: 32468442 DOI: 10.1007/s10571-020-00882-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Mayara C S Botellho
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ana Luisa P Ayub
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Rebeca Bueno-Alves
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Rebeca R Alencar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Debora D Papaiz
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Mari C Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
- Cell and Molecular Therapy Center, School of Medicine, University of São Paulo, Rua Pangaré 100 (Edifício NUCEL), Butantã, São Paulo, SP, 05360-130, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ricardo G Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Upadhyay J, Patra J, Tiwari N, Salankar N, Ansari MN, Ahmad W. Dysregulation of Multiple Signaling Neurodevelopmental Pathways during Embryogenesis: A Possible Cause of Autism Spectrum Disorder. Cells 2021; 10:958. [PMID: 33924211 PMCID: PMC8074600 DOI: 10.3390/cells10040958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the autistic brain and the involvement of genetic, non-genetic, and numerous signaling pathways in the etiology and pathophysiology of autism spectrum disorder (ASD) is complex, as is evident from various studies. Apart from multiple developmental disorders of the brain, autistic subjects show a few characteristics like impairment in social communications related to repetitive, restricted, or stereotypical behavior, which suggests alterations in neuronal circuits caused by defects in various signaling pathways during embryogenesis. Most of the research studies on ASD subjects and genetic models revealed the involvement of mutated genes with alterations of numerous signaling pathways like Wnt, hedgehog, and Retinoic Acid (RA). Despite significant improvement in understanding the pathogenesis and etiology of ASD, there is an increasing awareness related to it as well as a need for more in-depth research because no effective therapy has been developed to address ASD symptoms. Therefore, identifying better therapeutic interventions like "novel drugs for ASD" and biomarkers for early detection and disease condition determination are required. This review article investigated various etiological factors as well as the signaling mechanisms and their alterations to understand ASD pathophysiology. It summarizes the mechanism of signaling pathways, their significance, and implications for ASD.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Jeevan Patra
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Nidhi Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India;
| | - Nilima Salankar
- School of Computer Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India;
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
23
|
Robinson-Agramonte MDLA, Michalski B, Fernández LG, Vidal-Martinez B, Cuesta HV, Rizo CM, Fahnestock M. Effect of non-invasive brain stimulation on behavior and serum brain-derived neurotrophic factor and insulin-like growth factor-1 levels in autistic patients. Drug Dev Res 2021; 82:716-723. [PMID: 33734467 DOI: 10.1002/ddr.21808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Aberrant neural connectivity and intra-cortical inhibitory dysfunction are key features of autism. Non-invasive brain stimulation (NIBS) protocols have been proposed that modulate this aberrant plasticity. However, additional investigations are needed to evaluate the impact of this intervention on biological biomarkers of the disease. We recently demonstrated alterations in serum insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF) immunoreactivity in subjects with autism compared to controls. The aim of this pilot study was to explore the change in serum levels of the neurotrophic factors BDNF and IGF-1 in patients undergoing NIBS therapy. Sixteen subjects with autism spectrum disorder (ASD) were tested 1 week before and 1 week after NIBS to determine the short-term outcome on behavior using the total score on the autism behavior checklist, autism treatment evaluation checklist, clinical global impression severity and the autism diagnostic interview. ASD subjects younger than 11 years old (n = 11) were treated with transcranial direct current stimulation (tDCS), and those 11 years and older (n = 5) were treated with repetitive transcranial magnetic stimulation (rTMS). Serum levels of BDNF and IGF-1 were evaluated by Enzyme-Linked Immuno-Sorbent Assay before and after the intervention with NIBS. A significant reduction in scores on the clinical behavioral scales was observed in patients treated with NIBS (ABC-T p = .002, CGI-S p = .008, ADI-T and ATEC-T p < .0001). There was a trend towards reduced serum BDNF levels after NIBS (p = .061), while there was no change in IGF-1 levels. These data support further studies on the potential of BDNF as a biomarker to measure the effectiveness of NIBS in autism.
Collapse
Affiliation(s)
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Lázaro Gomez Fernández
- Clinical Neurophysiology Department, International Center for Neurological Restoration, Havana, Cuba
| | - Belkis Vidal-Martinez
- Child and Adolescent Mental Health Service, Borrás-Marfán University Hospital, Havana, Cuba
| | - Hector Vera Cuesta
- Childhood Neurology Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Carlos Maragoto Rizo
- Childhood Neurology Unit, International Center for Neurological Restoration, Havana, Cuba
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Autism is a grand challenge in global mental health to be dealt with on a priority basis. Phenotypic knowledge, biological understanding, and evidence-based intervention studies are all from western countries. We know very little about autism in the low- and middle-income countries (LMIC). Lack of infrastructure and difficulties in operationalizing research has widened the knowledge gap. We performed a comprehensive scoping review of research in Autism Spectrum Disorder in India to have an overall impression, identify gaps, and formulate evidence-based recommendations for further study. We searched PubMed, SCOPUS, and Cochrane Library to identify relevant Indian studies. A hundred and fifty-nine publications met the inclusion criteria. Most of the research contribution in autism is from few tertiary care medical centres, technological institutes, and not-for-profit organizations. We identified various themes of research like clinical profile, interventions, biomarkers, psychological, social, epidemiological, and risk factors. Evidence-based intervention studies, translation and adaptation of standard diagnostic instruments, and qualitative research on the experience of autism appeared to be state of the art. However, epidemiological studies, biomarkers identification, risk assessment studies were of low quality. There is a need for nationwide studies with representative sampling on epidemiology, biomarkers, and risk factors for a complete evaluation of the actual burden and biology of autism in India. Also, there is a need to design implementation research to evaluate the effectiveness of evidence-based interventions in routine healthcare settings. We recommend that future research should fill these gaps in understanding autism and improving its outcome in India.
Collapse
Affiliation(s)
- Suravi Patra
- Department of Psychiatry, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
|
27
|
Serum Ischemia-Modified Albumin Levels, Myeloperoxidase Activity and Peripheral Blood Mononuclear cells in Autism Spectrum Disorder (ASD). J Autism Dev Disord 2020; 51:2511-2517. [DOI: 10.1007/s10803-020-04740-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8396708. [PMID: 33062148 PMCID: PMC7547345 DOI: 10.1155/2020/8396708] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASDs) are a kind of neurodevelopmental disorder with rapidly increasing morbidity. In recent years, many studies have proposed a possible link between ASD and multiple environmental as well as genetic risk factors; nevertheless, recent studies have still failed to identify the specific pathogenesis. An analysis of the literature showed that oxidative stress and redox imbalance caused by high levels of reactive oxygen species (ROS) are thought to be integral parts of ASD pathophysiology. On the one hand, this review aims to elucidate the communications between oxidative stress, as a risk factor, and ASD. As such, there is also evidence to suggest that early assessment and treatment of antioxidant status are likely to result in improved long-term prognosis by disturbing oxidative stress in the brain to avoid additional irreversible brain damage. Accordingly, we will also discuss the possibility of novel therapies regarding oxidative stress as a target according to recent literature. On the other hand, this review suggests a definite relationship between ASD and an unbalanced gastrointestinal tract (GIT) microbiota (i.e., GIT dysbiosis). A variety of studies have concluded that the intestinal microbiota influences many aspects of human health, including metabolism, the immune and nervous systems, and the mucosal barrier. Additionally, the oxidative stress and GIT dysfunction in autistic children have both been reported to be related to mitochondrial dysfunction. What is the connection between them? Moreover, specific changes in the GIT microbiota are clearly observed in most autistic children, and the related mechanisms and the connection among ASD, the GIT microbiota, and oxidative stress are also discussed, providing a theory and molecular strategies for clinical practice as well as further studies.
Collapse
|
29
|
Liao X, Li Y. Nuclear Factor Kappa B in Autism Spectrum Disorder: A Systematic Review. Pharmacol Res 2020; 159:104918. [PMID: 32461184 DOI: 10.1016/j.phrs.2020.104918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is composed of a series of transcription factors, which are involved in the expression of a plethora of target genes, many of these genes contributing to the regulation of inflammatory responses. Consistent with its central role in inflammatory responses, existing studies of the neurobiological basis for ASD propose the involvement of NF-κB in the etiology of this disorder. OBJECTIVES The present review aimed to systematically characterize extant literatures regarding the role of NF-κB in the etiology of ASD through data derived from both human studies and animal models. METHODS A systematic electronic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible studies. Study inclusion and data extraction was agreed by two independent authors after reviewing the abstract and full text. RESULTS Among the 371 articles identified in the initial screening, 18 articles met the eligibility criteria for this review, including 14 human case-control studies compared the expression or activation of NF-κB between ASD cases and controls as well as 4 animal studies used mouse model of ASD to examine the level of NF-κB and further evaluate its changes after different drug treatments. These included 18 studies, although relatively small in quantity, appear to support the role of NF-κB in the etiology of ASD. CONCLUSIONS Evidence generated from both human studies and animal models supported the involvement of NF-κB in the neurobiological basis of ASD, despite some concern about whether it functions as a primary contributor causes ASD onset or rather an ancillary factor regulates ASD pathogenesis. The increased understanding of NF-κB in the neurobiological basis of ASD could aid the emergence of clinically relevant diagnostic biomarkers and novel therapeutic strategies acting on the underlying disease pathogenesis. These results suggested that potential methodological differences between studies need to be accounted for and keep open the discussion over the existence of aberrantly NF-κB signaling in ASD subjects.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
30
|
Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10050309. [PMID: 32443912 PMCID: PMC7287879 DOI: 10.3390/brainsci10050309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined, neurodevelopmental disorder that has been modeled as a brain-based disease. The behavioral and cognitive features of ASD are associated with pervasive atypicalities in the central nervous system (CNS). To date, the exact mechanisms underlying the pathophysiology of ASD still remain unknown and there is currently no cure or effective treatment for this disorder. Many publications implicated the association of ASD with inflammation, immune dysregulation, neurotransmission dysfunction, mitochondrial impairment and cell signaling dysregulation. This review attempts to highlight evidence of the major pathophysiology of ASD including abnormalities in the brain structure and function, neuroglial activation and neuroinflammation, glutamatergic neurotransmission, mitochondrial dysfunction and mechanistic target of rapamycin (mTOR) signaling pathway dysregulation. Molecular and cellular factors that contributed to the pathogenesis of ASD and how they may affect the development and function of CNS are compiled in this review. However, findings of published studies have been complicated by the fact that autism is a very heterogeneous disorder; hence, we addressed the limitations that led to discrepancies in the reported findings. This review emphasizes the need for future studies to control study variables such as sample size, gender, age range and intelligence quotient (IQ), all of which that could affect the study measurements. Neuroinflammation or immune dysregulation, microglial activation, genetically linked neurotransmission, mitochondrial dysfunctions and mTOR signaling pathway could be the primary targets for treating and preventing ASD. Further research is required to better understand the molecular causes and how they may contribute to the pathophysiology of ASD.
Collapse
|
31
|
Pangrazzi L, Balasco L, Bozzi Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21093293. [PMID: 32384730 PMCID: PMC7247582 DOI: 10.3390/ijms21093293] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.
Collapse
|
32
|
Inflammation (IL-1β) Modifies the Effect of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids on Core Symptoms of Autism Spectrum Disorder-An Exploratory Pilot Study ‡. Nutrients 2020; 12:nu12030661. [PMID: 32121236 PMCID: PMC7146497 DOI: 10.3390/nu12030661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The role of vitamin D and omega-3 long chain polyunsaturated fatty acids (omega-3 LCPUFA) in improving core symptoms of autism spectrum disorder (ASD) in children has been investigated by a few randomised controlled trials and the results are mixed and inconclusive. The response to treatment with these nutrients is heterogenous and may be influenced by inflammatory state. As an exploratory analysis, we investigated whether inflammatory state would modulate the effect of these nutrients on core symptoms of ASD. Methods: Seventy-three New Zealand children with ASD (2.5-8.0 years) completed a 12-month randomised, double-blind, placebo-controlled trial of vitamin D (VID, 2000 IU/day), omega-3 LCPUFA; (OM, 722 mg/day docosahexaenoic acid), or both (VIDOM). Non-fasting baseline plasma interleukin-1β (IL-1β) was available for 67 children (VID = 15, OM = 21, VIDOM = 15, placebo = 16). Children were categorised as having undetectable/normal IL-1β (<3.2 pg/ml, n=15) or elevated IL-1β (≥3.2 pg/mL, n = 52). The Social Responsiveness Scale (SRS) questionnaire was used to assess core symptoms of ASD (baseline, 12-month). Mixed model repeated measure analyses (including all children or only children with elevated IL-1β) were used. RESULTS We found evidence for an interaction between baseline IL-1β and treatment response for SRS-total, SRS-social communicative functioning, SRS-awareness and SRS-communication (all Pinteraction < 0.10). When all children were included in the analysis, two outcome comparisons (treatments vs. placebo) showed greater improvements: VID, no effect (all P > 0.10); OM and VIDOM (P = 0.01) for SRS-awareness. When only children with elevated IL-1β were included, five outcomes showed greater improvements: OM (P = 0.01) for SRS-total; OM (P = 0.03) for SRS-social communicative functioning; VID (P = 0.01), OM (P = 0.003) and VIDOM (P = 0.01) for SRS-awareness. CONCLUSION Inflammatory state may have modulated responses to vitamin D and omega-3 LCPUFA intervention in children with ASD, suggesting children with elevated inflammation may benefit more from daily vitamin D and omega-3 LCPUFA supplementation.
Collapse
|
33
|
Oxiracetam and Zinc Ameliorates Autism-Like Symptoms in Propionic Acid Model of Rats. Neurotox Res 2020; 37:815-826. [PMID: 32026359 DOI: 10.1007/s12640-020-00169-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by restrictive behaviour, deficit in social skills and interaction. The multifactorial etiology, complex pathophysiology and different combination of symptoms (unusual speech patterns, frequent repetition of phrases) make it difficult to treat. Thus, present study aimed to find the protective effects of oxiracetam alone and in combination with zinc on brain behavioral, biochemical, pro-inflammatory cytokines and neurotransmitters level. Rats were administered with propionic acid (250 mg/kg p.o.) for 3 days and immediately on next day treatment were given with oxiracetam (25, 50 mg/kg i.p), zinc (4 mg/kg) as well as oxiracetam (25 mg/kg i.p) in combination with zinc (4 mg/kg p.o). Behavioral parameters were performed from 22th to 28th day. On 29th day, all the animals were sacrificed by cervical dislocation and the brain was preserved for biochemical (LPO, GSH, nitrite, mitochondrial complex I, IV and cAMP), neuroinflammatory (TNF-α, IL-1β, IL-6) and neurotransmitters (5-HT, GABA, glutamate and acetylcholine) analysis. The propionic acid administration showed memory impairment, restrictive behavior, increased proinflammatory cytokines level, biochemical and neurotransmitters alteration. However, treatment with oxiracetam alone and in combination with zinc significantly attenuated behavioral, biochemical, inflammatory cytokines and restored neurotransmitters level. The finding of present study demonstrated that oxiracetam alone and in combination with zinc afforded superior anti-autistic effect through antioxidant, anti-inflammatory and anti-excitotoxic mechanisms and could serve as attractive strategy in managing autism.
Collapse
|
34
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
35
|
Tsafaras GP, Ntontsi P, Xanthou G. Advantages and Limitations of the Neonatal Immune System. Front Pediatr 2020; 8:5. [PMID: 32047730 PMCID: PMC6997472 DOI: 10.3389/fped.2020.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
During early post-natal life, neonates must adjust to the transition from the sheltered intra-uterine environment to the microbe-laden external world, wherein they encounter a constellation of antigens and the colonization by the microbiome. At this vulnerable stage, neonatal immune responses are considered immature and present significant differences to those of adults. Pertinent to innate immunity, functional and quantitative deficiencies in antigen-presenting cells and phagocytes are often documented. Exposure to environmental antigens and microbial colonization is associated with epigenetic immune cell reprogramming and activation of effector and regulatory mechanisms that ensure age-depended immune system maturation and prevention of tissue damage. Moreover, neonatal innate immune memory has emerged as a critical mechanism providing protection against infectious agents. Still, in neonates, inexperience to antigenic exposure, along with enhancement of tissue-protective immunosuppressive mechanisms are often associated with severe immunopathological conditions, including sepsis and neurodevelopmental disorders. Despite significant advances in the field, adequate vaccination in newborns is still in its infancy due to elemental restrictions associated also with defective immune responses. In this review, we provide an overview of neonatal innate immune cells, highlighting phenotypic and functional disparities with their adult counterparts. We also discuss the effects of epigenetic modifications and microbial colonization on the regulation of neonatal immunity. A recent update on mechanisms underlying dysregulated neonatal innate immunity and linked infectious and neurodevelopmental diseases is provided. Understanding of the mechanisms that augment innate immune responsiveness in neonates may facilitate the development of improved vaccination protocols that can protect against pathogens and organ damage.
Collapse
Affiliation(s)
- George P Tsafaras
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polyxeni Ntontsi
- Second Respiratory Medicine Department, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
36
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
37
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
38
|
Rivell A, Mattson MP. Intergenerational Metabolic Syndrome and Neuronal Network Hyperexcitability in Autism. Trends Neurosci 2019; 42:709-726. [PMID: 31495451 PMCID: PMC6779523 DOI: 10.1016/j.tins.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
We review evidence that suggests a role for excessive consumption of energy-dense foods, particularly fructose, and consequent obesity and insulin resistance (metabolic syndrome) in the recent increase in prevalence of autism spectrum disorders (ASD). Maternal insulin resistance, obesity, and diabetes may predispose offspring to ASD by mechanisms involving chronic activation of anabolic cellular pathways and a lack of metabolic switching to ketosis resulting in a deficit in GABAergic signaling and neuronal network hyperexcitability. Metabolic reprogramming by epigenetic DNA and chromatin modifications may contribute to alterations in gene expression that result in ASD. These mechanistic insights suggest that interventions that improve metabolic health such as intermittent fasting and exercise may ameliorate developmental neuronal network abnormalities and consequent behavioral manifestations in ASD.
Collapse
Affiliation(s)
- Aileen Rivell
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Golia MT, Poggini S, Alboni S, Garofalo S, Ciano Albanese N, Viglione A, Ajmone-Cat MA, St-Pierre A, Brunello N, Limatola C, Branchi I, Maggi L. Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav Immun 2019; 81:484-494. [PMID: 31279682 DOI: 10.1016/j.bbi.2019.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1β, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.
Collapse
Affiliation(s)
- Maria Teresa Golia
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Aurelia Viglione
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; PhD Program in Neuroscience, Scuola Superiore di Pisa, Pisa, Italy
| | | | - Abygaël St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur-Italy, Sapienza University of Rome, Italy.
| |
Collapse
|
40
|
Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis. Front Psychiatry 2019; 10:416. [PMID: 31275178 PMCID: PMC6591651 DOI: 10.3389/fpsyt.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Autism is a genetically complex neurobehavioral disorder with a population prevalence of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, are consistently reported, and rodent models of cerebellar dysfunction exhibit features analogous to human autism. We previously analyzed the regulation and expression of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching morphogenesis and is strongly expressed in Purkinje cells. We previously showed that mouse Spry3 is not expressed in cerebellar vermis lobules VI-VII and X, regions which exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules have relatively high expression of p75NTR, which encodes a neurotrophin receptor implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression in these lobules could interact with TrkB and p75NTR signaling pathways resulting in Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-linked regulatory sequences upstream of SPRY3, which are polymorphic in the general population. We suggest that an OREG-annotated region on chromosome Yq12 ∼60 kb from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite repeat, or alterations in chromatin structure in this region due to trans-acting factors, could affect the proposed silencing function, leading to reactivation and inappropriate expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute to the male bias in autism prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Abstract
After been exposed to the visual input, in the first year of life, the brain experiences subtle but massive changes apparently crucial for communicative/emotional and social human development. Its lack could be the explanation of the very high prevalence of autism in children with total congenital blindness. The present theory postulates that the superior colliculus is the key structure for such changes for several reasons: it dominates visual behavior during the first months of life; it is ready at birth for complex visual tasks; it has a significant influence on several hemispheric regions; it is the main brain hub that permanently integrates visual and non-visual, external and internal information (bottom-up and top-down respectively); and it owns the enigmatic ability to take non-conscious decisions about where to focus attention. It is also a sentinel that triggers the subcortical mechanisms which drive social motivation to follow faces from birth and to react automatically to emotional stimuli. Through indirect connections it also activates simultaneously several cortical structures necessary to develop social cognition and to accomplish the multiattentional task required for conscious social interaction in real life settings. Genetic or non-genetic prenatal or early postnatal factors could disrupt the SC functions resulting in autism. The timing of postnatal biological disruption matches the timing of clinical autism manifestations. Astonishing coincidences between etiologies, clinical manifestations, cognitive and pathogenic autism theories on one side and SC functions on the other are disclosed in this review. Although the visual system dependent of the SC is usually considered as accessory of the LGN canonical pathway, its imprinting gives the brain a qualitatively specific functions not supplied by any other brain structure.
Collapse
Affiliation(s)
- Rubin Jure
- Centro Privado de Neurología y Neuropsicología Infanto Juvenil WERNICKE, Córdoba, Argentina
| |
Collapse
|
42
|
Wang L, Cai Y, Fan X. Metformin Administration During Early Postnatal Life Rescues Autistic-Like Behaviors in the BTBR T+ Itpr3tf/J Mouse Model of Autism. Front Behav Neurosci 2018; 12:290. [PMID: 30555309 PMCID: PMC6281763 DOI: 10.3389/fnbeh.2018.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability characterized by impaired social interactions, stereotypical repetitive behavior and restricted interests. Although the global incidence of ASD has increased over time, the etiology of ASD is poorly understood, and there is no effective pharmacological intervention for treating ASD. Recent studies have suggested that metformin has the potential to treat ASD. Thus, in this study, we assessed the therapeutic effects of early metformin treatment in a BTBR T+ Itpr3tf/J (BTBR) mouse model of ASD. We observed that early metformin administration significantly reversed social approach deficits, attenuated repetitive grooming and reduced marble burying in BTBR mice. Metformin did not change the general locomotor activity or anxiety-like behavior in both BTBR and C57BL/6J (B6) mice. Our findings suggest that early metformin treatment may have beneficial effects on ameliorating behavioral deficits in ASD.
Collapse
Affiliation(s)
- Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Win-Shwe TT, Nway NC, Imai M, Lwin TT, Mar O, Watanabe H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J Toxicol Sci 2018; 43:631-643. [PMID: 30404997 DOI: 10.2131/jts.43.631] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism is a complex neurodevelopmental disorder characterized by impaired social communication and social interactions, and repetitive behaviors. The etiology of autism remains unknown and its molecular basis is not yet well understood. Pregnant Sprague-Dawley (SD) rats were administered 600 mg/kg of valproic acid (VPA) by intraperitoneal injection on day 12.5 of gestation. Both 11- to 13-week-old male and female rat models of VPA-induced autism showed impaired sociability and impaired preference for social novelty as compared to the corresponding control SD rats. Significantly reduced mRNA expressions of social behavior-related genes, such as those encoding the serotonin receptor, brain-derived neurotrophic factor and neuroligin3, and significantly increased expression levels of proinflammatory cytokines, such as interleukin-1 β and tumor necrosis factor-α, were noted in the hippocampi of both male and female rats exposed to VPA in utero. The hippocampal expression level of gamma amino butyric acid (GABA) enzyme glutamic acid decarboxylase (GAD) 67 protein was reduced in both male and female VPA-exposed rats as compared to the corresponding control animals. Our results indicate that developmental exposure to VPA affects the social behavior in rats by modulating the expression levels of social behavior-related genes and inflammatory mediators accompanied with changes in GABA enzyme in the hippocampus.
Collapse
Affiliation(s)
| | | | - Motoki Imai
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Thet-Thet Lwin
- Graduate School of Medical Sciences, Kitasato University, Japan
| | - Ohn Mar
- University of Medicine 1, Myanmar
| | | |
Collapse
|
44
|
Iacobas DA, Velíšek L. Regeneration of neurotransmission transcriptome in a model of epileptic encephalopathy after antiinflammatory treatment. Neural Regen Res 2018; 13:1715-1718. [PMID: 30136682 PMCID: PMC6128045 DOI: 10.4103/1673-5374.238607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inflammation is an established etiopathogenesis factor of infantile spasms (IS), a therapy-resistant epileptic syndrome of infancy. We investigated the IS-associated transcriptomic alterations of neurotransmission in rat hypothalamic arcuate nucleus, how they are corrected by antiinflamatory treatments and whether there are sex differences. IS was triggered by repeated intraperitoneal administration of N-methyl-D-aspartic acid following anti-inflammatory treatment (adreno-cortico-tropic-hormone (ACTH) or PMX53) or normal saline vehicle to prenatally exposed to betamethasone young rats. We found that treatments with both ACTH and PMX53 resulted in substantial recovery of the genomic fabrics of all types of synaptic transmission altered by IS. While ACTH represents the first line of treatment for IS, the even higher efficiency of PMX53 (an antagonist of the complement C5a receptor) in restoring the normal transcriptome was not expected. In addition to the childhood epilepsy, the recovery of the neurotransmission genomic fabrics by PMX53 also gives hope for the autism spectrum disorders that share a high comorbidity with IS. Our results revealed significant sex dichotomy in both IS-associated transcriptomic alterations (males more affected) and in the efficiency of PMX53 anti-inflammatory treatment (better for males). Our data further suggest that anti-inflammatory treatments correcting alterations in the inflammatory transcriptome may become successful therapies for refractory epilepsies.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Center for Computational Systems Biology, Prairie View AM University, Prairie View, TX; D.P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College; Department of Neurology, New York Medical College; Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
45
|
Wang L, Cai Y, Fan X. Metformin Administration During Early Postnatal Life Rescues Autistic-Like Behaviors in the BTBR T+ Itpr3tf/J Mouse Model of Autism. Front Behav Neurosci 2018; 12:290. [PMID: 30555309 DOI: 10.3389/fnbeh.2018.00290/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/09/2018] [Indexed: 05/20/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disability characterized by impaired social interactions, stereotypical repetitive behavior and restricted interests. Although the global incidence of ASD has increased over time, the etiology of ASD is poorly understood, and there is no effective pharmacological intervention for treating ASD. Recent studies have suggested that metformin has the potential to treat ASD. Thus, in this study, we assessed the therapeutic effects of early metformin treatment in a BTBR T+ Itpr3tf/J (BTBR) mouse model of ASD. We observed that early metformin administration significantly reversed social approach deficits, attenuated repetitive grooming and reduced marble burying in BTBR mice. Metformin did not change the general locomotor activity or anxiety-like behavior in both BTBR and C57BL/6J (B6) mice. Our findings suggest that early metformin treatment may have beneficial effects on ameliorating behavioral deficits in ASD.
Collapse
Affiliation(s)
- Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| |
Collapse
|