1
|
Peng X, Li Y, Guo H, Yuan H, Li T, Xu X, Hu L. Gestational diabetes mellitus enhances cobalt placental transfer efficiency between mother and infant. J Matern Fetal Neonatal Med 2024; 37:2340597. [PMID: 38639583 DOI: 10.1080/14767058.2024.2340597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Background: The fetal stage is pivotal for growth and development, making it susceptible to the adverse effects of prenatal metal(loid)s exposure. This study evaluated the influence of gestational diabetes mellitus (GDM) on the placental transfer efficiency (PTE) of metal(loid)s and thus assessed the associated risks of prenatal metal(loid)s exposure. Materials and method: Designed as a case-control study, it incorporated 114 pregnant participants: 65 without complications and 49 diagnosed with GDM. We utilized inductively coupled plasma mass spectrometry to quantify seven metal(loid)s - manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), gallium (Ga), arsenic (As), and cadmium (Cd) - in both maternal venous blood and umbilical cord blood. Result: We compared metal(loid)s concentrations and their PTE in the maternal and cord blood between the two groups. Notably, Cu, Ga, As, and Co levels in the umbilical cord blood of the GDM group (657.9 ± 167.2 μg/L, 1.23 ± 0.34 μg/L, 5.19 ± 2.58 μg/L, 1.09 ± 2.03 μg/L) surpassed those of the control group, with PTE of Co showing a marked increase in GDM group (568.8 ± 150.4 μg/L, 1.05 ± 0.31 μg/L, 4.09 ± 2.54 μg/L, 0.47 ± 0.91 μg/L), with PTE of Co showing a marked increase in GDM group (p < 0.05). The PTE of Ni exhibited a reduction in the GDM group relative to the control group, yet this decrease did not reach statistical significance. Conclusion: This study indicates that GDM can influence the placental transfer efficiency of certain metal(loid)s, leading to higher concentrations of Co, Cu, Ga, and As in the umbilical cord blood of the GDM group. The marked increase in the PTE of Co suggests a potential link to placental abnormal angiogenesis due to GDM.
Collapse
Affiliation(s)
- Xianglian Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hao Yuan
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Ting Li
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Xi Xu
- Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Barrozo ER, Racusin DA, Jochum MD, Garcia BT, Suter MA, Delbeccaro M, Shope C, Antony K, Aagaard KM. Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy. Am J Obstet Gynecol 2024:S0002-9378(24)00596-9. [PMID: 38763341 DOI: 10.1016/j.ajog.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear. OBJECTIVE Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations. STUDY DESIGN In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence. RESULTS Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (-22 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata. CONCLUSION Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Diana A Racusin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Brandon T Garcia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Melanie Delbeccaro
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Cynthia Shope
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kathleen Antony
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
3
|
Mercado-Evans V, Mejia ME, Zulk JJ, Ottinger S, Hameed ZA, Serchejian C, Marunde MG, Robertson CM, Ballard MB, Ruano SH, Korotkova N, Flores AR, Pennington KA, Patras KA. Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota. Nat Commun 2024; 15:1035. [PMID: 38310089 PMCID: PMC10838280 DOI: 10.1038/s41467-024-45336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zainab A Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Madelynn G Marunde
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clare M Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Simone H Ruano
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, UTHealth Houston, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Kathleen A Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Hua S, Wang S, Cai J, Wu L, Cao Y. Myeloid-derived suppressor cells: Are they involved in gestational diabetes mellitus? Am J Reprod Immunol 2023:e13711. [PMID: 37157925 DOI: 10.1111/aji.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Collapse
Affiliation(s)
- Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lamei Wu
- Department of Perinatal Healthcare, Huai'an District Maternity and Child Health Hospital, Huai'an, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Kang YE, Yi HS, Yeo MK, Kim JT, Park D, Jung Y, Kim OS, Lee SE, Kim JM, Joung KH, Lee JH, Ku BJ, Lee M, Kim HJ. Increased Pro-Inflammatory T Cells, Senescent T Cells, and Immune-Check Point Molecules in the Placentas of Patients With Gestational Diabetes Mellitus. J Korean Med Sci 2022; 37:e338. [PMID: 36513052 PMCID: PMC9745681 DOI: 10.3346/jkms.2022.37.e338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common metabolic complication of pregnancy. To define the altered pathway in GDM placenta, we investigated the transcriptomic profiles from human placenta between GDM and controls. METHODS Clinical parameters and postpartum complications were reviewed in all participants. Differentially expressed canonical pathways were analyzed between the GDM and control groups based on transcriptomic analysis. CD4+ T, CD8+ T, and senescent T cell subsets were determined by flow cytometry based on staining for specific intracellular cytokines. RESULTS Gene ontology analysis revealed that the placenta of GDM revealed upregulation of diverse mitochondria or DNA replication related pathways and downregulation of T-cell immunity related pathways. The maternal placenta of the GDM group had a higher proportion of CD4+ T and CD8+ T cells than the control group. Interestingly, senescent CD4+ T cells tended to increase and CD8+ T cells were significantly increased in GDM compared to controls, along with increased programmed cell death-1 (CD274+) expression. Programmed death-ligand 1 expression in syncytotrophoblasts was also significantly increased in patients with GDM. CONCLUSION This study demonstrated increased proinflammatory T cells, senescent T cells and immune-check point molecules in GDM placentas, suggesting that changes in senescent T cells and immune-escape signaling might be related to the pathophysiology of GDM.
Collapse
Affiliation(s)
- Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jung Tae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Danbit Park
- Department of Obstetrics and Gynecology, Chungnam National University Hospital, Daejeon, Korea
| | - Yewon Jung
- Department of Obstetrics and Gynecology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Ok Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Mina Lee
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon, Korea.
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
6
|
Oliveira-Scussel ACDM, Ferreira PTM, Resende RDS, Ratkevicius-Andrade CM, Gomes ADO, Paschoini MC, De Vito FB, Farnesi-de-Assunção TS, da Silva MV, Mineo JR, Rodrigues DBR, Rodrigues V. Association of gestational diabetes mellitus and negative modulation of the specific humoral and cellular immune response against Toxoplasma gondii. Front Immunol 2022; 13:925762. [PMID: 36203592 PMCID: PMC9531261 DOI: 10.3389/fimmu.2022.925762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
In order to evaluate and compare the specific immune response of pregnant women (PW) chronically infected with Toxoplasma gondii, with and without gestational diabetes mellitus (GDM), and the humoral response of their respective newborns (NB), the study was carried out on 81 PW (34 GDM and 47 controls) from whose medical records the results of the oral glucose tolerance test (OGTT) were obtained, and blood samples were collected at the third trimester of pregnancy; also, on 45 NBs (20 GDM and 25 controls) from whom umbilical cord blood samples were obtained. Humoral immunity was analyzed by measuring anti-T. gondii total IgG, IgG subclasses and IgG avidity. To evaluate cellular immunity, peripheral blood mononuclear cells (PBMC) from 32 PW (16 GDM and 16 controls) were cultured, supernatant cytokines were determined, and flow cytometry was performed to analyze the expression at lymphocytes of surface molecules, cytokines and transcription factors. All PW and NBs were positive for total IgG, and the prevalent subclass was IgG1. There was a negative correlation between the OGTT glycemia of PW and the levels of total IgG, IgG1 and IgG avidity. The IgG avidity of the GDM group was significantly lower than the control group. Patients from the GDM group had a higher number of T lymphocytes expressing markers of cell activation and exhaustion (CD28 and PD-1). In the presence of T. gondii soluble antigen (STAg) the amount of CD4+ T cells producing IFN-γ, IL-10 and IL-17 was significantly lower in the GDM group, while there was no difference between groups in the number of CD4+ CD25HighFOXP3+LAP+ functional Treg cells. Additionally, under STAg stimulus, the secretion of IL-17, IL-4, TNF and IL-2 cytokines at PBMCs culture supernatant was lower in the GDM group. In conclusion, there was a correlation between the increase in blood glucose and the decrease in levels of anti-T. gondii antibodies, associated with the decreased IgG avidity in patients who develop GDM. Also, the GDM group had decreased immune responses in Th1, Th2 and Th17 profiles, suggesting an association between GDM and the negative modulation of the humoral and cellular immune responses against T. gondii.
Collapse
Affiliation(s)
- Ana Carolina de Morais Oliveira-Scussel
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Renata de Souza Resende
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Cristhianne Molinero Ratkevicius-Andrade
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Angelica de Oliveira Gomes
- Laboratory of Cellular Interactions, Institute of Biological and Natural Sciences, Department of Structural Biology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marina Carvalho Paschoini
- Institute of Health Sciences, Department of Obstetricy, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Fernanda Bernadelli De Vito
- Laboratory of Hematology and Hemotherapy, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Laboratory of Parasitology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Laboratory of Immunology “Dr. Mário Endsfeldz Camargo”, Institute of Biomedical Sciences, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology, Institute of Biological and Natural Sciences, Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
7
|
Omazić J, Viljetić B, Ivić V, Kadivnik M, Zibar L, Müller A, Wagner J. Early markers of gestational diabetes mellitus: what we know and which way forward? Biochem Med (Zagreb) 2021; 31:030502. [PMID: 34658643 PMCID: PMC8495622 DOI: 10.11613/bm.2021.030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Women's metabolism during pregnancy undergoes numerous changes that can lead to gestational diabetes mellitus (GDM). The cause and pathogenesis of GDM, a heterogeneous disease, are not completely clear, but GDM is increasing in prevalence and is associated with the modern lifestyle. Most diagnoses of GDM are made via the guidelines from the International Association of Diabetes and Pregnancy Study Groups (IADSPG), which involve an oral glucose tolerance test (OGTT) between 24 and 28 weeks of pregnancy. Diagnosis in this stage of pregnancy can lead to short- and long-term implications for the mother and child. Therefore, there is an urgent need for earlier GDM markers in order to enable prevention and earlier treatment. Routine GDM biomarkers (plasma glucose, insulin, C-peptide, homeostatic model assessment of insulin resistance, and sex hormone-binding globulin) can differentiate between healthy pregnant women and those with GDM but are not suitable for early GDM diagnosis. In this article, we present an overview of the potential early biomarkers for GDM that have been investigated recently. We also present our view of future developments in the laboratory diagnosis of GDM.
Collapse
Affiliation(s)
- Jelena Omazić
- Department of Laboratory and Transfusion Medicine, National Memorial Hospital Vukovar, Vukovar, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Mirta Kadivnik
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia
- Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Lada Zibar
- Department of Pathophysiology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- Department of Nephrology, Clinical Hospital Merkur, Zagreb, Croatia
| | - Andrijana Müller
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia
- Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| |
Collapse
|
8
|
Di Filippo D, Wanniarachchi T, Wei D, Yang JJ, Mc Sweeney A, Havard A, Henry A, Welsh A. The diagnostic indicators of gestational diabetes mellitus from second trimester to birth: a systematic review. Clin Diabetes Endocrinol 2021; 7:19. [PMID: 34635186 PMCID: PMC8504031 DOI: 10.1186/s40842-021-00126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is glucose intolerance first recognised during pregnancy. Both modalities and thresholds of the GDM diagnostic test, the Oral Glucose Tolerance Test (OGTT), have varied widely over time and among countries. Additionally, OGTT limitations include inconsistency, poor patient tolerability, and questionable diagnostic reliability. Many biological parameters have been reported to be modified by GDM and could potentially be used as diagnostic indicators. This study aimed to 1) systematically explore biomarkers reported in the literature as differentiating GDM from healthy pregnancies 2) screen those indicators assessed against OGTT to propose OGTT alternatives. MAIN BODY A systematic review of GDM diagnostic indicators was performed according to PRISMA guidelines (PROSPERO registration CRD42020145499). Inclusion criteria were full-text, comprehensible English-language articles published January 2009-January 2021, where a biomarker (from blood, ultrasound, amniotic fluid, placenta) was compared between GDM and normal glucose tolerance (NGT) women from the second trimester onward to immediately postpartum. GDM diagnostic method had to be clearly specified, and the number of patients per study higher than 30 in total or 15 per group. Results were synthesised by biomarkers. RESULTS Of 13,133 studies identified in initial screening, 174 studies (135,801 participants) were included. One hundred and twenty-nine studies described blood analytes, one amniotic fluid analytes, 27 ultrasound features, 17 post-natal features. Among the biomarkers evaluated in exploratory studies, Adiponectin, AFABP, Betatrophin, CRP, Cystatin-C, Delta-Neutrophil Index, GGT, TNF-A were those demonstrating statistically and clinically significant differences in substantial cohorts of patients (> 500). Regarding biomarkers assessed versus OGTT (i.e. potential OGTT alternatives) most promising were Leptin > 48.5 ng/ml, Ficolin3/adiponectin ratio ≥ 1.06, Chemerin/FABP > 0.71, and Ultrasound Gestational Diabetes Score > 4. These all demonstrated sensitivity and specificity > 80% in adequate sample sizes (> / = 100). CONCLUSIONS Numerous biomarkers may differentiate GDM from normoglycaemic pregnancy. Given the limitations of the OGTT and the lack of a gold standard for GDM diagnosis, advanced phase studies are needed to triangulate the most promising biomarkers. Further studies are also recommended to assess the sensitivity and specificity of promising biomarkers not yet assessed against OGTT. TRIAL REGISTRATION PROSPERO registration number CRD42020145499.
Collapse
Affiliation(s)
- Daria Di Filippo
- School, of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Daniel Wei
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer J Yang
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Aoife Mc Sweeney
- Department of Women's and Children's Health, St George Hospital, Sydney, NSW, Australia
| | - Alys Havard
- National Drug and Alcohol Research Centre - Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Big Data Research in Health - Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Amanda Henry
- School, of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Department of Women's and Children's Health, St George Hospital, Sydney, NSW, Australia
| | - Alec Welsh
- School, of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
- Department of Maternal-Fetal Medicine, Royal Hospital for Women, Locked Bag 2000, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
9
|
Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm 2021; 2021:9962860. [PMID: 34616234 PMCID: PMC8490076 DOI: 10.1155/2021/9962860] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore, we highlight the role of oxidative stress in pregnancy-related diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Baban Ali Rahu
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | | | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
10
|
McElwain CJ, McCarthy FP, McCarthy CM. Gestational Diabetes Mellitus and Maternal Immune Dysregulation: What We Know So Far. Int J Mol Sci 2021; 22:4261. [PMID: 33923959 PMCID: PMC8073796 DOI: 10.3390/ijms22084261] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5-10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a 'glucose stress' response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, T12 YE02 Cork, Ireland;
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| |
Collapse
|
11
|
De Luccia TPB, Pendeloski KPT, Ono E, Mattar R, Pares DBS, Yazaki Sun S, Daher S. Unveiling the pathophysiology of gestational diabetes: Studies on local and peripheral immune cells. Scand J Immunol 2020; 91:e12860. [PMID: 31849072 DOI: 10.1111/sji.12860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Gestational diabetes mellitus (GDM) has been associated with impaired maternal immune response. Our aim was to review the available literature linking immune cells profile to GDM, in order to comprehend the role that different subpopulations play in the development of this pathology. We searched in PubMed for studies published in the last decade on circulating levels and placenta expression of immune cells on GDM. We identified 18 studies with several differences regarding the study design, clinical characteristics, number of participants, cell subpopulation and type of sample. Most studies assessed only one subpopulation either in peripheral blood or placenta and did not analyse functional properties of the cells. The most frequently evaluated immune cells were T lymphocytes, especially regulatory T (Tregs), and natural killer (NK) cells in the peripheral blood, and placental macrophages. No studies analysing B cells were identified, and only one study each evaluating γδT cells, dendritic cell (DC) and monocytes was found. Although there are controversies, at least one study reported positive association between GDM and CD4+ (activated), Tregs, Th17 and γδT cells; neutrophil/lymphocyte; NK cell (cytotoxic); macrophages; and monocytes. The number of studies is still small, so caution should be exercised in interpreting the data, and further research is required to validate these findings and establish the role of adaptive and innate immune cells in GDM pathophysiology.
Collapse
Affiliation(s)
- Thiago P B De Luccia
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Karen P T Pendeloski
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Erika Ono
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Rosiane Mattar
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - David B S Pares
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Sue Yazaki Sun
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Silvia Daher
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
12
|
Barke TL, Goldstein JA, Sundermann AC, Reddy AP, Linder JE, Correa H, Velez-Edwards DR, Aronoff DM. Gestational diabetes mellitus is associated with increased CD163 expression and iron storage in the placenta. Am J Reprod Immunol 2018; 80:e13020. [PMID: 29984475 PMCID: PMC6193471 DOI: 10.1111/aji.13020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 11/26/2022] Open
Abstract
PROBLEM GDM has been associated with disturbances in iron homeostasis and exaggerated immune activation. We sought to investigate the extent to which placental iron storage and macrophage accumulations were altered in GDM. METHOD OF STUDY We conducted a retrospective, case-control study of archived placental tissues obtained from 22 pregnancies complicated by GDM and 22 unaffected controls. Controls were matched to cases based on maternal age, gestational age at birth, and method of delivery. Placental tissues were assessed for altered histology and CD68 and CD163 staining. Tissue iron was assessed using Prussian blue staining. RESULTS Maternal hematocrit levels were higher in GDM participants compared to controls (P = 0.02). The presence of meconium-laden macrophages was significantly greater within the amnion of GDM cases (adjusted odds ratio (OR) 12.51). Although the total abundance of CD68-expressing macrophages was not significantly different between groups, we detected a significantly greater abundance of CD163 expression within the chorion and decidua of cases. The total area staining positive for iron was 24% (95% confidence intervals of 2%-46%) greater in GDM placentae versus controls. CONCLUSION GDM is associated with altered placental histology and increases in meconium-laden macrophages. Greater iron stores within the placentae of women with GDM is consistent with reports that iron excess is associated with an increased risk for GDM. The higher level of expression of CD163 on macrophage-like cells of the chorion and decidua in GDM suggests an increase in M2-like macrophages. Overall, our results add to growing evidence that GDM has direct effects on placental structure.
Collapse
Affiliation(s)
- Theresa L Barke
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Alexandra C Sundermann
- Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Arun P Reddy
- College of Osteopathic Medicine, Oklahoma State University, Oklahoma City, Oklahoma
| | - Jodell E Linder
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hernan Correa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Digna R Velez-Edwards
- Vanderbilt Epidemiology Center, Institute of Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M, Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 2018; 238:R63-R77. [PMID: 29743342 DOI: 10.1530/joe-18-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus is defined as diabetes diagnosed in the second or third trimester of pregnancy in patients with no history of diabetes prior to gestation. It is the most common complication of pregnancy. The underlying pathophysiology shares some common features with type 2 diabetes mellitus (T2DM) combining relatively insufficient insulin secretion with increased peripheral insulin resistance. While a certain degree of insulin resistance is the physiological characteristics of the second half of pregnancy, it is significantly more pronounced in patients with gestational diabetes. Adipose tissue dysfunction and subclinical inflammation in obesity are well-described causes of increased insulin resistance in non-pregnant subjects and are often observed in individuals with T2DM. Emerging evidence of altered adipokine expression and local inflammation in adipose tissue in patients with gestational diabetes suggests an important involvement of adipose tissue in its etiopathogenesis. This review aims to summarize current knowledge of adipose tissue dysfunction and its role in the development of gestational diabetes. We specifically focus on the significance of alterations of adipokines and immunocompetent cells number and phenotype in fat. Detailed understanding of the role of adipose tissue in gestational diabetes may provide new insights into its pathophysiology and open new possibilities of its prevention and treatment.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 2nd Internal Department, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
14
|
Sheu A, Chan Y, Ferguson A, Bakhtyari MB, Hawke W, White C, Chan YF, Bertolino PJ, Woon HG, Palendira U, Sierro F, Lau SM. A proinflammatory CD4 + T cell phenotype in gestational diabetes mellitus. Diabetologia 2018; 61:1633-1643. [PMID: 29691600 DOI: 10.1007/s00125-018-4615-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Numerous adaptations of the maternal immune system are necessary during pregnancy to maintain immunological tolerance to the semi-allogeneic fetus. Several complications of pregnancy have been associated with dysregulation of these adaptive mechanisms. While gestational diabetes mellitus (GDM) has been associated with upregulation of circulating inflammatory factors linked to innate immunity, polarisation of the adaptive immune system has not been extensively characterised in this condition. We aimed to characterise pro- and anti-inflammatory CD4+ (T helper [Th]) T cell subsets in women with GDM vs women without GDM (of similar BMI), during and after pregnancy, and examine the relationship between CD4+ subsets and severity of GDM. METHODS This is a prospective longitudinal case-control study of 55 women with GDM (cases) and 65 women without GDM (controls) at a tertiary maternity hospital. Quantification of proinflammatory (Th17, Th17.1, Th1) and anti-inflammatory (regulatory T cell [Treg]) CD4+ T cell subsets was performed on peripheral blood at 37 weeks gestation and 7 weeks postpartum, and correlated with clinical characteristics and measures of blood glucose. RESULTS Women with GDM had a significantly greater percentage of Th17 (median 2.49% [interquartile range 1.62-4.60] vs 1.85% [1.13-2.98], p = 0.012) and Th17.1 (3.06% [1.30-4.33] vs 1.55% [0.65-3.13], p = 0.006) cells compared with the control group of women without GDM. Women with GDM also had higher proinflammatory cell ratios (Th17:Treg, Th17.1:Treg and Th1:Treg) in pregnancy compared with the control group of women without GDM. In the control group, there was a statistically significant independent association between 1 h glucose levels in the GTT and Th17 cell percentages, and also between 2 h glucose levels and percentage of Th17 cells. The percentage of Th17 cells and the Th17:Treg ratio declined significantly after delivery in women with GDM, whereas this was not the case with the control group of women. Nevertheless, a milder inflammatory phenotype persisted after delivery (higher Th17:Treg ratio) in women with GDM vs women without. CONCLUSIONS/INTERPRETATION Dysregulation of adaptive immunity supports a novel paradigm of GDM that extends beyond hyperglycaemia and altered innate immunity.
Collapse
Affiliation(s)
- Angela Sheu
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Yixian Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Angela Ferguson
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Mohammad B Bakhtyari
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Wendy Hawke
- The Royal Hospital for Women, Randwick, NSW, Australia
| | - Chris White
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
- The Royal Hospital for Women, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia
| | - Yuk Fun Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Patrick J Bertolino
- Liver Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Heng G Woon
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Umaimainthan Palendira
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Frederic Sierro
- Vascular Immunology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Sue Mei Lau
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia.
- The Royal Hospital for Women, Randwick, NSW, Australia.
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia.
| |
Collapse
|
15
|
Zhong JX, Chen J, Rao X, Duan L. Dichotomous roles of co-stimulatory molecules in diabetes mellitus. Oncotarget 2018; 9:2902-2911. [PMID: 29416823 PMCID: PMC5788691 DOI: 10.18632/oncotarget.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Numerous studies have established the importance of immune dysfunction in the development of diabetes mellitus, including typ1 and typ2 diabetes, and it is worth noting that T cell activation acts a key role in the pathogenesis of loss of β cell mass, adipose inflammation and insulin resistance. Regarding as an important checkpoint in the process of T cell activation, co-stimulatory molecules interaction between antigen present cells and T cells have been identified the critical role in the development of diabetes mellitus. Thus, blockage of co-stimulatory dyads interaction between antigen present cells and T cells was supposed to a potential of therapeutic strategies. However, studies also showed that inhibition or deletion of some co-stimulatory molecules do not always reduce the development of diabetes, and even exacerbate the disease activity. Here, in this context, we highlight the dichotomous role of co-stimulatory molecules interaction in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Ji-Xin Zhong
- Department of Endocrinology, Central Hospital of Wuhan, Wuhan, Hubei, China 430061
| | - Jie Chen
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
- Basic Medical Department of Medical College, Xiamen University, Xiamen, China 361102
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA 44106
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China 361003
| |
Collapse
|
16
|
Robakis TK, Aasly L, Williams KE, Clark C, Rasgon N. Roles of Inflammation and Depression in the Development of Gestational Diabetes. Curr Behav Neurosci Rep 2017; 4:369-383. [PMID: 30693175 DOI: 10.1007/s40473-017-0131-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation, the body's response to harmful external agents, has long been found to be associated with depressive symptoms. The relationship between inflammation and depression is well established in the general population of people with depression, but is less so among perinatal women. Depression in the perinatal period is a common disorder, however available data do not indicate that there is a specific inflammatory picture associated with perinatal depression. We suggest that perinatal depression may be a heterogeneous construct, and that inflammation may be relevant to it in the context of other inflammatory morbidities of pregnancy. In this review we explore the available support for the hypothesis that inflammation associated with depression can represent a precipitating insult for the development of gestational diabetes, a known inflammatory morbidity of pregnancy.
Collapse
Affiliation(s)
- Thalia K Robakis
- Stanford University, Department of Psychiatry and Behavioral Sciences
| | - Linn Aasly
- Stanford University, Department of Psychiatry and Behavioral Sciences
| | | | - Claire Clark
- Palo Alto University, Program in Clinical Psychology
| | - Natalie Rasgon
- Stanford University, Department of Psychiatry and Behavioral Sciences
| |
Collapse
|
17
|
Ye X, Ju S, Duan H, Yao Y, Wu J, Zhong S, Chen L, Cao S, Xu Y, Zheng X, Wang H, Ge Y, Ju S. Immune checkpoint molecule PD-1 acts as a novel biomarker for the pathological process of gestational diabetes mellitus. Biomark Med 2017; 11:741-749. [PMID: 28891298 DOI: 10.2217/bmm-2017-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Accumulating evidence suggested that challenge of the maternal-fetal interaction during pregnancy might cause the impairment of immunological hemostasis and lead to gestational diabetes mellitus (GDM) pathological process. Immune checkpoint molecule PD-1 is one of the critical molecule balancing immune response and immunological tolerance. METHODS PD-1 expressions on T-cell subsets of GDM patients and control groups were measured via flow cytometric analysis and followed up. RESULTS Downregulation of PD-1 acted as an indicator for GDM occurrence in the third trimester of pregnancy. With the recovery of GDM, PD-1 expression restored to normal level. CONCLUSION PD-1 expression on T-cell subsets is a novel biomarker for the occurrence and recovery of GDM.
Collapse
Affiliation(s)
- Xiaoying Ye
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,Clinical Laboratory of Kunshan First People's Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Songwen Ju
- Suzhou Digestive Diseases & Nutrition Research Center, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Houquan Duan
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China.,Clinical Laboratory of Kunshan First People's Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yongliang Yao
- Clinical Laboratory of Kunshan First People's Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Jianfen Wu
- Department of Gynaecology & Obstetrics of Kunshan First People's Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Shao Zhong
- Department of Endocrinology of Kunshan First People's Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Lei Chen
- Department of Endocrinology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - ShaSha Cao
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yongfang Xu
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Xiaocui Zheng
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Haiyan Wang
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Yan Ge
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Songguang Ju
- Department of Immunology, School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Ji JL, Muyayalo KP, Zhang YH, Hu XH, Liao AH. Immunological function of vitamin D during human pregnancy. Am J Reprod Immunol 2017; 78. [PMID: 28585734 DOI: 10.1111/aji.12716] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
The well-established classic role of vitamin D is implicated in the regulation of the balance between calcium and phosphorus. Furthermore, vitamin D is also involved in many non-classic physiological processes, mainly including the regulation of cell proliferation, differentiation, apoptosis and immune function, participation in the inflammatory response and maintenance of genome stability function. During pregnancy, vitamin D receptor and its metabolic enzymes are expressed at the placenta and decidua, indicating the potential role in the mechanism of immunomodulation at the maternal-fetal interface. The insufficiency or deficiency of vitamin D may affect the mother directly and is related to specific pregnancy outcomes, such as preeclampsia, gestational diabetes, and recurrent miscarriage. This article reviews the effects of vitamin D on immune regulation during pregnancy.
Collapse
Affiliation(s)
- Jin-Lu Ji
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Hong Zhang
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Hu
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Lekva T, Norwitz ER, Aukrust P, Ueland T. Impact of Systemic Inflammation on the Progression of Gestational Diabetes Mellitus. Curr Diab Rep 2016; 16:26. [PMID: 26879309 DOI: 10.1007/s11892-016-0715-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With increasing rates of obesity and new diagnostic criteria for gestational diabetes mellitus (GDM), the overall prevalence of GDM is increasing worldwide. Women with GDM have an increased risk of maternal and fetal complications during pregnancy as well as long-term risks including higher prevalence of type 2 diabetes mellitus and cardiovascular disease. In recent years, the role of immune activation and inflammation in the pathogenesis of GDM has gained increasing attention. This monograph explores the current state of the literature as regards the expression of markers of inflammation in the maternal circulation, placenta, and adipose tissue of women with GDM.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0027, Oslo, Norway.
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02116, USA.
| | - Errol R Norwitz
- Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02116, USA.
- Department of Obstetrics & Gynecology, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0027, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Sognsvannsveien 20, 0027, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|