1
|
Shi X, Zhang J, Zhao H, Li H, Zhu J, Xiong H. Differential tissue and cellular distribution of chemokine C-C motif ligand 2 in grey/white matters of healthy and simian immunodeficiency virus infected monkey. Brain Res Bull 2025; 223:111291. [PMID: 40054539 DOI: 10.1016/j.brainresbull.2025.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Previous studies have shown that CCL2 concentration is higher in cerebrospinal fluid than in plasma of health and human immunodeficiency virus (HIV) infected individuals, suggesting an extra source of CCL2 in brain. Brain cellular CCL2 has been broadly studied in cultured cells and its in-vivo cellular distribution has been investigated in rodent experimental autoimmune encephalomyelitis model. However, its cellular distribution in grey and white matter (GM, WM) remains elusive. We explored this issue using healthy and simian immunodeficiency virus (SIV) infected monkeys and found: 1) Neurons were a major source of CCL2-like immunoreactivity (CCL2-ir) in normal GM, and corpus callosum (CC) ependyma showed high density of CCL2-ir. 2) Upon SIV infection, CCL2-ir was strikingly raised in GM neurons, and in CC ependyma. 3) Brain vascular-perivascular cells were a large source of CCL2-ir in normal GM and WM, which was relatively larger in CC WM than in GM. 4) Vascular-perivascular CCL2-ir proportional areas were significantly enhanced by SIV infection in both GM and CC WM. 5) Microglia seemed not to express CCL2 in healthy brain. Microglia-marker and CCL2-ir co-labeled cells were significantly increased by SIV infection. 6) A vast of macrophage-like cells were situated along infected CC ependyma, suggesting a large number of monocytes be crossing ependyma, which may be related to establishment of viral reservoir. In conclusion, our study provides valuable insights into the cellular sources and alterations of CCL2 in the monkey brain under normal and SIV-infected conditions, which may promote better understanding of CCL2 in related neurological processes.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangying Zhao
- Division of Pharmaceutical Science, University of Cincinnati College of Pharmacy, Cincinnati, OH 45267, USA
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Krüger J, Behrangi N, Schliep D, Heinig L, Vankriekelsvenne E, Wigger N, Kipp M. Siponimod supports remyelination in the non-supportive environment. Sci Rep 2025; 15:4216. [PMID: 39905182 PMCID: PMC11794462 DOI: 10.1038/s41598-025-87825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Inflammatory demyelination, a hallmark of multiple sclerosis (MS) lesions, leads to functional impairments and progressive axonal loss over time. Although remyelination is thought to protect axons, endogenous regenerative processes are often incomplete or fail entirely in many MS patients. While the precise reasons for remyelination failure remain unclear, repeated demyelination in previously affected white matter regions is a recognized contributing factor. In a previous study, we demonstrated that the sphingosine-1-phosphate modulator Siponimod ameliorates metabolic oligodendrocyte injury in an MS animal model. In this study, we explored the potential of Siponimod to enhance remyelination in a non-supportive environment. To this end, male mice were subjected to Cuprizone intoxication for seven weeks. From the onset of the fifth week, when oligodendrocyte progenitor cells begin to differentiate, mice were administered either a vehicle or Siponimod solution. Post-treatment, brain specimens were processed for (immune-) histochemical analyses. After four weeks of Cuprizone intoxication, staining intensities for various myelination markers, were significantly reduced. At the end of week seven, loss of myelin staining intensities was still pronounced, but anti-myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) expression was significantly higher in Siponimod- versus vehicle-treated mice. Consistent with this finding, densities of OLIG2+ oligodendrocytes significantly recovered in Siponimod-treated but not in vehicle-treated mice. This enhanced recovery was paralleled by the trend of lower densities of Ki67+ proliferating oligodendrocyte progenitor cells. Our findings suggest that Siponimod has modest pro-regenerative capacities, partly explaining the amelioration of disease progression in secondary progressive MS patients.
Collapse
Affiliation(s)
- Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - David Schliep
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Leo Heinig
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.
| |
Collapse
|
3
|
Mwema A, Gratpain V, Ucakar B, Vanvarenberg K, Perdaens O, van Pesch V, Muccioli GG, des Rieux A. Impact of calcitriol and PGD 2-G-loaded lipid nanocapsules on oligodendrocyte progenitor cell differentiation and remyelination. Drug Deliv Transl Res 2024; 14:3128-3146. [PMID: 38366115 DOI: 10.1007/s13346-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.
Collapse
Affiliation(s)
- Ariane Mwema
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Viridiane Gratpain
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Océane Perdaens
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| |
Collapse
|
4
|
Gu J, Huang W, Duanmu Z, Zhuang R, Yang X. Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis 2024; 29:1007-1018. [PMID: 38649508 DOI: 10.1007/s10495-024-01969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Huang
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science and Technology University, Beijing, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xilan Yang
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Gharighnia S, Omidi A, Ragerdi Kashani I, Sepand MR, Pour Beiranvand S. Ameliorative effects of acetyl-L-carnitine on corpus callosum and functional recovery in demyelinated mouse model. Int J Neurosci 2024; 134:409-419. [PMID: 35912879 DOI: 10.1080/00207454.2022.2107515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
AIM Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system. Oxidative stress via distinct pathobiological pathways plays a pivotal role in the formation and persistence of MS lesions. Acetyl-L-carnitine (ALC) facilitates the uptake of acetyl coenzyme-A into the mitochondria by a fatty acid oxidation process. ALC could be a therapeutic antioxidant in the myelin repair process. This study explored the potential neuroprotective effects of ALC in cuprizone (CPZ) intoxicated mice. MATERIALS AND METHODS Thirty male C57BL/6 mice were divided into three groups. The control animals received a normal diet. The CPZ and CPZ + ALC groups were fed with a 0.2% cuprizone diet for 12 weeks. In the CPZ + ALC group, animals received ALC (300 mg/kg/day) from the 10th -12th weeks. Animals were evaluated functionally by beam walking test (BWT) weekly. Eventually, the corpus callosum (CC) was extracted for histological, biochemical, and molecular studies. RESULTS BWT data showed ALC significantly improves balance and gait in the demyelinating mouse model. Histological staining represented ALC effectively increased remyelination in the CC. Biochemical evaluations demonstrated ALC decreased the malondialdehyde level with a parallel increase in the reduced glutathione and catalase activity levels in the CC. Molecular analysis revealed that ALC significantly increased the expression of oligodendrocyte transcription-2 (Olig-2) and Poly lipoproteins (Plp) genes in the CC. CONCLUSIONS ALC improved balance and motor coordination in the demyelinated mouse model. It may be by reducing the levels of free radicals and increasing the expression of Olig-2 and Plp as myelin-related genes.
Collapse
Affiliation(s)
- Sanaz Gharighnia
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Pour Beiranvand
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Kipp M. How to Use the Cuprizone Model to Study De- and Remyelination. Int J Mol Sci 2024; 25:1445. [PMID: 38338724 PMCID: PMC10855335 DOI: 10.3390/ijms25031445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and inflammatory disorder affecting the central nervous system whose cause is still largely unknown. Oligodendrocyte degeneration results in demyelination of axons, which can eventually be repaired by a mechanism called remyelination. Prevention of demyelination and the pharmacological support of remyelination are two promising strategies to ameliorate disease progression in MS patients. The cuprizone model is commonly employed to investigate oligodendrocyte degeneration mechanisms or to explore remyelination pathways. During the last decades, several different protocols have been applied, and all have their pros and cons. This article intends to offer guidance for conducting pre-clinical trials using the cuprizone model in mice, focusing on discovering new treatment approaches to prevent oligodendrocyte degeneration or enhance remyelination.
Collapse
Affiliation(s)
- Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, 18057 Rostock, Germany
| |
Collapse
|
8
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
9
|
Xavier S, Younesi S, Sominsky L, Spencer SJ. Inhibiting microglia exacerbates the early effects of cuprizone in males in a rat model of multiple sclerosis, with no effect in females. Front Neurol 2023; 14:989132. [PMID: 37745672 PMCID: PMC10516553 DOI: 10.3389/fneur.2023.989132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Hyper-activity of the brain's innate immune cells, microglia, is a hallmark of multiple sclerosis (MS). However, it is not clear whether this involvement of microglia is beneficial or detrimental or whether manipulating microglial activity may be therapeutic. We investigated if inhibiting microglial activity with minocycline prevents the early changes in oligodendrocyte and myelin-related markers associated with a demyelinating challenge in adult female and male rats. Cuprizone reduced the expression of myelin and oligodendrocyte genes in both females and males, reflective of cuprizone intoxication and the early phases demyelination, and reduced the number of oligodendrocytes in the corpus callosum. However, we see notable differences in the role for microglia in this response between females and males. In males, myelin and oligodendrocyte genes, as well as oligodendrocytes were also reduced by minocycline treatment; an effect that was not seen in females. In males, but not females, early changes in oligodendrocyte and myelin-related genes were associated with microglial proliferation in corpus callosum, and this increase was reversed by minocycline. These data indicate sex-specific effects of inhibiting microglia on the early changes leading to demyelination in an MS model and suggest microglia may play a key role in myelin stability in males but not in females. This highlights a strong need for sex-specific understanding of disease development in MS and suggest that treatments targeting microglia may be more effective in males than in females due to differing mechanisms of disease progression.
Collapse
Affiliation(s)
- Soniya Xavier
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, VIC, Australia
- School of Medicine, Institute for Physical and Mental Health and Clinical Transformation, Deakin University, Geelong, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Lindsay SL, McCanney GA, Zhan J, Scheld M, Smith RS, Goodyear CS, Yates EA, Kipp M, Turnbull JE, Barnett SC. Low sulfated heparan sulfate mimetic differentially affects repair in immune-mediated and toxin-induced experimental models of demyelination. Glia 2023; 71:1683-1698. [PMID: 36945189 PMCID: PMC10952530 DOI: 10.1002/glia.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.
Collapse
Affiliation(s)
- Susan L. Lindsay
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - George A. McCanney
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Jiangshan Zhan
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Miriam Scheld
- Institute of Neuroanatomy, Faculty of MedicineRWTH Aachen University52074AachenGermany
| | - Rebecca Sherrard Smith
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Carl S. Goodyear
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Edwin A. Yates
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - Markus Kipp
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Jeremy E. Turnbull
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
- Centre for GlycosciencesKeele UniversityKeeleST5 5BGUK
| | - Susan C. Barnett
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| |
Collapse
|
11
|
Dixit A, Savage HS, Greer JM. An appraisal of emerging therapeutic targets for multiple sclerosis derived from current preclinical models. Expert Opin Ther Targets 2023; 27:553-574. [PMID: 37438986 DOI: 10.1080/14728222.2023.2236301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative condition affecting the central nervous system (CNS). Although therapeutic approaches have become available over the last 20 years that markedly slow the progression of disease, there is no cure for MS. Furthermore, the capacity to repair existing CNS damage caused by MS remains very limited. AREAS COVERED Several animal models are widely used in MS research to identify potential druggable targets for new treatment of MS. In this review, we look at targets identified since 2019 in studies using these models, and their potential for effecting a cure for MS. EXPERT OPINION Refinement of therapeutic strategies targeting key molecules involved in the activation of immune cells, cytokine, and chemokine signaling, and the polarization of the immune response have dominated recent publications. While some progress has been made in identifying effective targets to combat chronic demyelination and neurodegeneration, much more work is required. Progress is largely limited by the gaps in knowledge of how the immune system and the nervous system interact in MS and its animal models, and whether the numerous targets present in both systems respond in the same way in each system to the same therapeutic manipulation.
Collapse
Affiliation(s)
- Aakanksha Dixit
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Hannah S Savage
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| | - Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospita, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Packer D, Fresenko EE, Harrington EP. Remyelination in animal models of multiple sclerosis: finding the elusive grail of regeneration. Front Mol Neurosci 2023; 16:1207007. [PMID: 37448959 PMCID: PMC10338073 DOI: 10.3389/fnmol.2023.1207007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Remyelination biology and the therapeutic potential of restoring myelin sheaths to prevent neurodegeneration and disability in multiple sclerosis (MS) has made considerable gains over the past decade with many regeneration strategies undergoing tested in MS clinical trials. Animal models used to investigate oligodendroglial responses and regeneration of myelin vary considerably in the mechanism of demyelination, involvement of inflammatory cells, neurodegeneration and capacity for remyelination. The investigation of remyelination in the context of aging and an inflammatory environment are of considerable interest for the potential translation to progressive multiple sclerosis. Here we review how remyelination is assessed in mouse models of demyelination, differences and advantages of these models, therapeutic strategies that have emerged and current pro-remyelination clinical trials.
Collapse
|
13
|
Alnaqbi N, Mohammad MG, Hamoudi R, Mabondzo A, Harati R. Molecular Heterogeneity of the Brain Endothelium. Curr Issues Mol Biol 2023; 45:3462-3478. [PMID: 37185751 PMCID: PMC10136751 DOI: 10.3390/cimb45040227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The blood-brain barrier (BBB) is part of a neurovascular structure located in the brain's micro vessels, that is essential to maintain brain homeostasis, but prevents the brain uptake of most drugs. Because of its importance in neuro-pharmacotherapy, the BBB has been the subject of extensive research since its discovery over 100 years ago. Major advances in understanding the structure and function of the barrier have been made. Drugs are re-designed to cross the BBB. However, despite these efforts, overcoming the BBB efficiently to treat brain diseases safely remains challenging. The majority of BBB research studies focus on the BBB as a homogenous structure throughout the different brain regions. However, this simplification may lead to an inadequate understanding of the BBB function with significant therapeutic consequences. From this perspective, we analyzed the gene and protein expression profiles of the BBB in the micro vessels from the brains of mice that were isolated from two different brain regions, namely the cortex and the hippocampus. The expression profile of the inter-endothelial junctional protein (claudin-5), three ABC transporters (P-glycoprotein, Bcrp and Mrp-1), and three BBB receptors (lrp-1, TRF and GLUT-1) were analyzed. Our gene and protein analysis showed that the brain endothelium in the hippocampus exhibits different expression profiles compared to the brain cortex. Specifically, brain endothelial cells (BECs) of the hippocampus express higher gene levels of abcb1, abcg2, lrp1, and slc2a1 compared to the BECs of the cortex regions with a trend of increase for claudin-5, while BECs of the cortex express higher gene levels of abcc1 and trf compared to the hippocampus. At the protein levels, the P-gp expression was found to be significantly higher in the hippocampus compared to the cortex, while TRF was found to be up-regulated in the cortex. These data suggest that the structure and function of the BBB are not homogeneous, and imply that drugs are not delivered similarly among the different brain regions. Appreciation of the BBB heterogeneity by future research programs is thus critical for efficient drug delivery and the treatment of brain diseases.
Collapse
Affiliation(s)
- Nada Alnaqbi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Medical Laboratories, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Aloïse Mabondzo
- Department of Medicines and Healthcare Technologies, Paris-Saclay University, The French Alternative Energies and Atomic Energy Commission, 91191 Gif-sur-Yvette, France
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
14
|
Molinari YA, Byrne AJ, Pérez MJ, Silvestroff L, Franco PG. The Effects of Cuprizone on Murine Subventricular Zone-Derived Neural Stem Cells and Progenitor Cells Grown as Neurospheres. Mol Neurobiol 2023; 60:1195-1213. [PMID: 36424468 DOI: 10.1007/s12035-022-03096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
Despite the extensive use of the cuprizone (CPZ) demyelination animal model, there is little evidence regarding the effects of CPZ on a cellular level. Initial studies have suggested that oligodendrocytes (OL) are the main cell targets for CPZ toxicity. However, recent data have revealed additional effects on neural stem cells and progenitor cells (NSC/NPC), which constitute a reservoir for OL regeneration during brain remyelination. We cultured NSC/NPC as neurospheres to investigate CPZ effects on cell mechanisms which are thought to be involved in demyelination and remyelination processes in vivo. Proliferating NSC/NPC cultures exposed to CPZ showed overproduction of intracellular reactive oxygen species and increased progenitor migration at the expense of a significant inhibition of cell proliferation. Although NSC/NPC survival was not affected by CPZ in proliferative conditions, we found that CPZ-treated cultures undergoing cell differentiation were more prone to cell death than controls. The commitment and cell differentiation towards neural lineages did not seem to be affected by CPZ, as shown by the conserved proportions of OL, astrocytes, and neurons. Nevertheless, when CPZ treatment was performed after cell differentiation, we detected a significant reduction in the number and the morphological complexity of OL, astrogliosis, and neuronal damage. We conclude that, in addition to damaging mature OL, CPZ also reduces NSC/NPC proliferation and activates progenitor migration. These results shed light on CPZ direct effects on NSC proliferation and the progression of in vitro differentiation.
Collapse
Affiliation(s)
- Yamila Azul Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Agustín Jesús Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - María Julia Pérez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Lucas Silvestroff
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula Gabriela Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Delfino G, Bénardais K, Graff J, Samama B, Antal MC, Ghandour MS, Boehm N. Oligodendroglial primary cilium heterogeneity during development and demyelination/remyelination. Front Cell Neurosci 2022; 16:1049468. [PMID: 36505511 PMCID: PMC9729284 DOI: 10.3389/fncel.2022.1049468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The primary cilium (PC) has emerged as an indispensable cellular antenna essential for signal transduction of important cell signaling pathways. The rapid acquisition of knowledge about PC biology has raised attention to PC as a therapeutic target in some neurological and psychiatric diseases. However, the role of PC in oligodendrocytes and its participation in myelination/remyelination remain poorly understood. Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes during central nervous system (CNS) development. In adult, a small percentage of OPCs remains as undifferentiated cells located sparsely in the different regions of the CNS. These cells can regenerate oligodendrocytes and participate to certain extent in remyelination. This study aims characterize PC in oligodendrocyte lineage cells during post-natal development and in a mouse model of demyelination/remyelination. We show heterogeneity in the frequency of cilium presence on OPCs, depending on culture conditions in vitro and cerebral regions in vivo during development and demyelination/remyelination. In vitro, Lithium chloride (LiCl), Forskolin and Chloral Hydrate differentially affect cilium, depending on culture environment and PC length correlates with the cell differentiation state. Beside the role of PC as a keeper of cell proliferation, our results suggest its involvement in myelination/remyelination.
Collapse
Affiliation(s)
- Giada Delfino
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,*Correspondence: Giada Delfino,
| | - Karelle Bénardais
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Julien Graff
- Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Brigitte Samama
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Maria Cristina Antal
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M. Said Ghandour
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nelly Boehm
- ICube Laboratory UMR 7357, Team IMIS, Strasbourg, France,Institut d’Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Zarini D, Pasbakhsh P, Shabani M, Mojaverrostami S, Hashemi M, Amirizadeh S, Majidpoor J, Omidi A, Mortezaee K, Kashani IR. Glial Response to Intranasal Mesenchymal Stem Cells in Intermittent Cuprizone Model of Demyelination. Neurotox Res 2022; 40:1415-1426. [PMID: 36053462 DOI: 10.1007/s12640-022-00556-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
Intranasal mesenchymal stem cells (MSCs) delivery is a non-invasive method that has received interests for treatment of neurodegenerative diseases, such as multiple sclerosis (MS). The impact of intranasal MSCs on intermittent cuprizone model of demyelination was a focus of this study. C57/BL6 mice were fed with 0.3% cuprizone in an intermittent or single ways. Luxol fast blue (LFB), Rotarod test, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and western blot (WB) were used for interpretation of outcomes. MSCs effectively homed to the corpus callosum area, were able to improve motor coordination and to promote myelin recovery in the intermittent cuprizone (INTRCPZ/MSCs). Astrogliosis (GFAP+ cells) and microgliosis (Iba-1+ cells) were hampered, and more mature oligodendrocyte cells (APC+ cells) were identified in mice receiving INTRCPZ/MSCs. Such treatment also considerably reduced markers related to the macrophage type 1 (M1) cells, namely iNOS and CD86, but it recovered the M2 markers MRC-1 and TREM-2. In addition, a remarkable decrease in the expressions of pro-inflammatory IL-1β and TNFα but an increase in the rate of anti-inflammatory TGF-β and IL-10 were identified in mice that underwent INTRCPZ/MSCs therapy. Finally, microvascular changes were evaluated, and a noticeable increase in the expression of the endothelial cell marker CD31 was found in the INTRCPZ/MSCs-treated mice (p < 0.05 for all). The outcomes are representative of the efficacy of intranasal MSCs delivery in intermittent cuprizone model of MS for reshaping macrophage polarity along with modification of glial, inflammatory, and angiogenic markers in favor of therapy.
Collapse
Affiliation(s)
- Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Hashemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Amirizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ameneh Omidi
- Department of Anatomical Science, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Wittekindt M, Kaddatz H, Joost S, Staffeld A, Bitar Y, Kipp M, Frintrop L. Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells 2022; 11:cells11111723. [PMID: 35681418 PMCID: PMC9179561 DOI: 10.3390/cells11111723] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Microglia play an important role in the pathology of various central nervous system disorders, including multiple sclerosis (MS). While different methods exist to evaluate the extent of microglia activation, comparative studies investigating the sensitivity of these methods are missing for most models. In this study, we systematically evaluated which of the three commonly used histological methods (id est, quantification of microglia density, densitometrically evaluated staining intensity, or cellular morphology based on the determination of a ramification index, all measured in anti-ionized calcium-binding adaptor protein-1 (IBA1) immunohistochemical stains) is the most sensitive method to detect subtle changes in the microglia activation status in the context of MS. To this end, we used the toxin-induced cuprizone model which allows the experimental induction of a highly reproducible demyelination in several central nervous system regions, paralleled by early microglia activation. In this study, we showed that after 3 weeks of cuprizone intoxication, all methods reveal a significant microglia activation in the white matter corpus callosum. In contrast, in the affected neocortical grey matter, the evaluation of anti-IBA1 cell morphologies was the most sensitive method to detect subtle changes of microglial activation. The results of this study provide a useful guide for future immunohistochemical evaluations in the cuprizone and other neurodegenerative models.
Collapse
|
18
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
19
|
Tanaka A, Anada K, Yasue M, Honda T, Nakamura H, Murayama T. Ceramide kinase knockout ameliorates multiple sclerosis-like behaviors and demyelination in cuprizone-treated mice. Life Sci 2022; 296:120446. [PMID: 35245521 DOI: 10.1016/j.lfs.2022.120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022]
Abstract
Changes in sphingolipid metabolism regulate and/or alter many cellular functions in the brain. Ceramide, a central molecule of sphingolipid metabolism, is phosphorylated to ceramide-1-phosphate (C1P) by ceramide kinase (CerK). CerK and C1P were reported to regulate many cellular responses, but their roles in immune-related diseases in vivo have not been well elucidated. Thus, we investigated the effects of CerK knockout on the onset/progression of multiple sclerosis (MS), which is a chronic neurodegenerative disease accompanied by the loss of myelin sheaths in the brain. MS-model mice were prepared using a diet containing the copper chelator cuprizone (CPZ). Treatment of 8-week-old mice with 0.2% CPZ for 8 weeks resulted in motor dysfunction based on the Rota-rod test, and caused the loss of myelin-related proteins (MRPs) in the brain and demyelination in the corpus callosum without affecting synaptophysin levels. CerK knockout, which did not affect developmental changes in MRPs, ameliorated the motor dysfunction, loss of MRPs, and demyelination in the brain in CPZ-treated mice. Loss of tail tonus, another marker of motor dysfunction, was detected at 1 week without demyelination after CPZ treatment in a CerK knockout-independent manner. CPZ-induced loss of tail tonus progressed, specifically in female mice, to 6-8 weeks, and the loss was ameliorated by CerK knockout. Activities of ceramide metabolic enzymes including CerK in the lysates of the brain were not affected by CPZ treatment. Inhibition of CerK as a candidate for MS treatment was discussed.
Collapse
Affiliation(s)
- Ai Tanaka
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kohei Anada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masataka Yasue
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
20
|
Shi X, Gong X, Xiong H, Zhang J. Cellular distribution of C-C motif chemokine ligand 2 like immunoreactivities in frontal cortex and corpus callosum of normal and lipopolysaccharide treated animal. BMC Neurosci 2022; 23:20. [PMID: 35354428 PMCID: PMC8965573 DOI: 10.1186/s12868-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-C motif chemokine ligand 2 (CCL2) is reported to be involved in the pathogenesis of various neurological and/or psychiatric diseases. Tissue or cellular expression of CCL2, in normal or pathological condition, may play an essential role in recruiting monocytes or macrophages into targeted organs, and be involved in a certain pathogenic mechanism. However, few studies focused on tissue and cellular distribution of the CCL2 peptide in brain grey and white matters (GM, WM), and the changes of the GM and WM cellular CCL2 level in septic or endotoxic encephalopathy was not explored. Hence, the CCL2 cellular distribution in the front brain cortex and the corpus callosum (CC) was investigated in the present work by using immunofluorescent staining. RESULTS (1) CCL2 like immunoreactivity (CCL2-ir) in the CC is evidently higher than the cortex. When the measurement includes ependymal layer attached to the CC, CCL2-ir intensity is significantly higher than cortex. (2) Structures in perivascular areas, most of them are GFAP positive, contribute major CCL2-ir positive profiles in both GM and WM, but apparently more in the CC, where they are bilaterally distributed in the lateral CC between the cingulate cortex and ventricles. (3) The neuron-like CCL2-ir positive cells in cortex are significantly more than in the CC, and that number is significantly increased in the cortex following systemic lipopolysaccharide (LPS), but not in the CC. (4) In addition to CCL2-ir positive perivascular rings, more CCL2-ir filled cashew shape elements are observed, probably inside of microvasculature, especially in the CC following systemic LPS. (5) Few macrophage/microglia marker-Iba-1 and CCL2-ir co-labeled structures especially the soma is found in normal cortex and CC; the co-localizations are significantly augmented following systemic LPS, and co-labeled amoeba like somata are presented. (6) CCL2-ir and astrocyte marker GFAP or Iba-1 double labeled structures are also observed within the ependymal layer. No accumulation of neutrophils was detected. CONCLUSION There exist differences in the cellular distribution of the CCL2 peptide in frontal cortex GM and subcortical WM-CC, in both the physiological condition and experimental endotoxemia. Which might cause different pathological change in the GM and WM.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated to Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, China.
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jingdong Zhang
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA. .,Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
21
|
Vankriekelsvenne E, Chrzanowski U, Manzhula K, Greiner T, Wree A, Hawlitschka A, Llovera G, Zhan J, Joost S, Schmitz C, Ponsaerts P, Amor S, Nutma E, Kipp M, Kaddatz H. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 2022; 70:1170-1190. [PMID: 35246882 DOI: 10.1002/glia.24164] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.
Collapse
Affiliation(s)
| | - Uta Chrzanowski
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany.,Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Katerina Manzhula
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Theresa Greiner
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | | | - Gemma Llovera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jiangshan Zhan
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Sarah Joost
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
22
|
Rg1 exerts protective effect in CPZ-induced demyelination mouse model via inhibiting CXCL10-mediated glial response. Acta Pharmacol Sin 2022; 43:563-576. [PMID: 34103690 PMCID: PMC8888649 DOI: 10.1038/s41401-021-00696-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Myelin damage and abnormal remyelination processes lead to central nervous system dysfunction. Glial activation-induced microenvironment changes are characteristic features of the diseases with myelin abnormalities. We previously showed that ginsenoside Rg1, a main component of ginseng, ameliorated MPTP-mediated myelin damage in mice, but the underlying mechanisms are unclear. In this study we investigated the effects of Rg1 and mechanisms in cuprizone (CPZ)-induced demyelination mouse model. Mice were treated with CPZ solution (300 mg· kg-1· d-1, ig) for 5 weeks; from week 2, the mice received Rg1 (5, 10, and 20 mg· kg-1· d-1, ig) for 4 weeks. We showed that Rg1 administration dose-dependently alleviated bradykinesia and improved CPZ-disrupted motor coordination ability in CPZ-treated mice. Furthermore, Rg1 administration significantly decreased demyelination and axonal injury in pathological assays. We further revealed that the neuroprotective effects of Rg1 were associated with inhibiting CXCL10-mediated modulation of glial response, which was mediated by NF-κB nuclear translocation and CXCL10 promoter activation. In microglial cell line BV-2, we demonstrated that the effects of Rg1 on pro-inflammatory and migratory phenotypes of microglia were related to CXCL10, while Rg1-induced phagocytosis of microglia was not directly related to CXCL10. In CPZ-induced demyelination mouse model, injection of AAV-CXCL10 shRNA into mouse lateral ventricles 3 weeks prior CPZ treatment occluded the beneficial effects of Rg1 administration in behavioral and pathological assays. In conclusion, CXCL10 mediates the protective role of Rg1 in CPZ-induced demyelination mouse model. This study provides new insight into potential disease-modifying therapies for myelin abnormalities.
Collapse
|
23
|
Rai NK, Singh V, Li L, Willard B, Tripathi A, Dutta R. Comparative Proteomic Profiling Identifies Reciprocal Expression of Mitochondrial Proteins Between White and Gray Matter Lesions From Multiple Sclerosis Brains. Front Neurol 2022; 12:779003. [PMID: 35002930 PMCID: PMC8740228 DOI: 10.3389/fneur.2021.779003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system, where ongoing demyelination and remyelination failure are the major factors for progressive neurological disability. In this report, we employed a comprehensive proteomic approach and immunohistochemical validation to gain insight into the pathobiological mechanisms that may be associated with the progressive phase of MS. Isolated proteins from myelinated regions, demyelinated white-matter lesions (WMLs), and gray-matter lesions (GMLs) from well-characterized progressive MS brain tissues were subjected to label-free quantitative mass spectrometry. Using a system-biology approach, we detected increased expression of proteins belonging to mitochondrial electron transport complexes and oxidative phosphorylation pathway in WMLs. Intriguingly, many of these proteins and pathways had opposite expression patterns and were downregulated in GMLs of progressive MS brains. A comparison to the human MitoCarta database mapped the mitochondrial proteins to mitochondrial subunits in both WMLs and GMLs. Taken together, we provide evidence of opposite expression of mitochondrial proteins in response to demyelination of white- and gray-matter regions in progressive MS brain.
Collapse
Affiliation(s)
- Nagendra Kumar Rai
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ling Li
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Belinda Willard
- Proteomic Core Facility, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States.,Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
24
|
Pavic G, Petzsch P, Jansen R, Raba K, Rychlik N, Simiantonakis I, Küry P, Göttle P, Köhrer K, Hartung HP, Meuth SG, Jander S, Gliem M. Microglia contributes to remyelination in cerebral but not spinal cord ischemia. Glia 2021; 69:2739-2751. [PMID: 34390590 DOI: 10.1002/glia.24068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
Inflammation after injury of the central nervous system (CNS) is increasingly viewed as a therapeutic target. However, comparative studies in different CNS compartments are sparse. To date only few studies based on immunohistochemical data and all referring to mechanical injury have directly compared inflammation in different CNS compartments. These studies revealed that inflammation is more pronounced in spinal cord than in brain. Therefore, it is unclear whether concepts and treatments established in the cerebral cortex can be transferred to spinal cord lesions and vice versa or whether immunological treatments must be adapted to different CNS compartments. By use of transcriptomic and flow cytometry analysis of equally sized photothrombotically induced lesions in the cerebral cortex and the spinal cord, we could document an overall comparable inflammatory reaction and repair activity in brain and spinal cord between day 1 and day 7 after ischemia. However, remyelination was increased after cerebral versus spinal cord ischemia which is in line with increased remyelination in gray matter in previous analyses and was accompanied by microglia dominated inflammation opposed to monocytes/macrophages dominated inflammation after spinal cord ischemia. Interestingly remyelination could be reduced by microglia and not hematogenous macrophage depletion. Our results show that despite different cellular composition of the postischemic infiltrate the inflammatory response in cerebral cortex and spinal cord are comparable between day 1 and day 7. A striking difference was higher remyelination capacity in the cerebral cortex, which seems to be supported by microglia dominance.
Collapse
Affiliation(s)
- Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nicole Rychlik
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
25
|
Roufagalas I, Avloniti M, Fortosi A, Xingi E, Thomaidou D, Probert L, Kyrargyri V. Novel cell-based analysis reveals region-dependent changes in microglial dynamics in grey matter in a cuprizone model of demyelination. Neurobiol Dis 2021; 157:105449. [PMID: 34274460 DOI: 10.1016/j.nbd.2021.105449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Microglia are key players in Multiple Sclerosis (MS), expressing many susceptibility genes for this disease. They constantly survey the brain microenvironment, but the precise functional relationships between microglia and pathological processes remain unknown. We performed a detailed assessment of microglial dynamics in three distinct grey matter regions in a cuprizone-induced demyelination model. We found that microglial activation preceded detectable demyelination and showed regional specificities, such as prominent phagocytic activity in cortical layer 5 and early hypertrophic morphology in hippocampal CA1. Demyelination happened earliest in cortical layer 5, although was more complete in CA1. In cortical layer 2/3, microglial activation and demyelination were less pronounced but microglia became hyper-ramified with slower process movement during remyelination, thereby maintaining local brain surveillance. Profiling of microglia using specific morphological and motility parameters revealed region-specific heterogeneity of microglial responses in the grey matter that might serve as sensitive indicators of progression in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Ilias Roufagalas
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Avloniti
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Alexandra Fortosi
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitra Thomaidou
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece; Department of Neurobiology, Neural Stem Cells & Neuroimaging Group, Hellenic Pasteur Institute, Athens, Greece
| | - Lesley Probert
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Vasiliki Kyrargyri
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
26
|
Aryanpour R, Zibara K, Pasbakhsh P, Jame'ei SB, Namjoo Z, Ghanbari A, Mahmoudi R, Amani S, Kashani IR. 17β-Estradiol Reduces Demyelination in Cuprizone-fed Mice by Promoting M2 Microglia Polarity and Regulating NLRP3 Inflammasome. Neuroscience 2021; 463:116-127. [PMID: 33794337 DOI: 10.1016/j.neuroscience.2021.03.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
Estrogen produces a beneficial role in animal models of multiple sclerosis (MS). The effect of 17β-estradiol therapy on microglia polarization and neuroinflammation in the corpus callosum of the cuprizone-induced demyelination model has not been elucidated. In this study, mice were given 0.2% cuprizone (CPZ) for 5 weeks to induce demyelination during which they received 50 ng of 17β-estradiol (EST), injected subcutaneously in the neck region, twice weekly. Data revealed that treatment with 17β-estradiol therapy (CPZ+EST) improved neurological behavioral deficits, displayed by a significant reduction in escape latencies, in comparison to untreated CPZ mice. Also, administration of 17β-estradiol caused a decrease in demyelination levels and axonal injury, as demonstrated by staining with Luxol fast blue, immunofluorescence to myelin basic protein, and transmission electron microscopy analysis. In addition, at the transcriptional level in the brain, mice treated with 17β-estradiol (CPZ+EST) showed a decrease in the levels of M1-assosicted microglia markers (CD86, iNOS and MHC-II) whereas M2-associated genes (Arg-1, CD206 and Trem-2) were increased, compared to CPZ mice. Moreover, administration of 17β-estradiol resulted in a significant reduction (∼3-fold) in transcript levels of NLRP3 inflammasome and its downstream product IL-18, compared to controls. In summary, this study demonstrated for the first time that exogenous 17β-estradiol therapy robustly leads to the reduction of M1 phenotype, stimulation of polarized M2 microglia, and repression of NLRP3 inflammasome in the corpus callosum of CPZ demyelination model of MS. The positive effects of 17β-estradiol on microglia and inflammasome seems to facilitate and accelerate the remyelination process.
Collapse
Affiliation(s)
- Roya Aryanpour
- Department of Anatomy, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zeinab Namjoo
- Department of Anatomical Science, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghanbari
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cell and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Showan Amani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Ramasamy R, Smith PP. PART 2: Mouse models for multiple sclerosis research. Neurourol Urodyn 2021; 40:958-967. [PMID: 33739481 DOI: 10.1002/nau.24654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Lower urinary tract symptoms and dysfunction (LUTS/LUTD) contribute to loss of quality of life, morbidity, and need for medical intervention in most patients with multiple sclerosis (MS). Although MS is an inflammatory neurodegenerative disease, clinical manifestations including continence control disorders have traditionally been attributed to the loss of neural signaling due to neurodegeneration. Clinical approaches to MS-LUTS/LUTD have focused on addressing symptoms in the context of urodynamic dysfunctions as pathophysiologic understandings are incomplete. The mouse model provides a useful research platform for discovery of more detailed molecular, cellular, and tissue-level knowledge of the disease and its clinical manifestations. The aim of this two-part review is to provide a state-of-the-art update on the use of the mouse model for MS research, with a focus on lower urinary tract symptoms. Part I presents a summary of current understanding of MS pathophysiology, the impact on lower urinary tract symptoms, and briefly introduces the types of mouse models available to study MS. Part II presents the common animal models that are currently available to study MS, their mechanism, relevance to MS-LUTS/LUTD and their urinary pathophysiology, advantages and disadvantages.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
29
|
Zhang J, Gong X, Xiong H. Significant higher-level C-C motif chemokine ligand 2/3 and chemotactic power in cerebral white matter than grey matter in rat and human. Eur J Neurosci 2021; 54:10.1111/ejn.15187. [PMID: 33725384 PMCID: PMC8443722 DOI: 10.1111/ejn.15187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022]
Abstract
Recent observations indicate that cerebral white matter (WM) exhibits a higher chemoattractant capability for immune cells. The C-C motif chemokine ligands 2 and 3 (CCL2, CCL3) are key chemokines for monocytes and T cells. However, tissue differential of these chemokines is unclear, although the higher CCL2/3 mRNA levels were found in rodent WM. It has been shown that more immune cells infiltrated to WM than to grey matter (GM) in multiple sclerosis (MS) and human/simian immunodeficiency virus (HIV/SIV)-infected brains. More nodular lesions have also been identified in the WM of patients with MS or HIV/SIV encephalitis. We hypothesize that higher levels of CCL2/3 in the WM may associate with neuropathogenesis. To test this hypothesis, we compared CCL2 and CCL3 peptide levels in WM and GM of rat and human, and found both were significantly higher in the WM. Next, we tested the effect of CCL2 on primary rat microglia migration and observed a dose-dependent migratory pattern. Then, we assessed effects of WM and GM homogenates on microglia chemotaxis and observed significant stronger effects of WM than GM in a concentration-dependent manner. The concentration-dependent pattern of tissue homogenates on chemotaxis was similar to the effect of CCL2. Finally, we found the chemoattractant effects of WM on microglia were significantly attenuated by addition of a CCL2 receptor blocker to culture medium and a neutralizing antibody against CCL3 functional motif in the WM homogenate. Taking together, these results suggest that CCL2/3 played significant roles in the microglia chemotaxis toward WM homogenate.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
30
|
Duncan GJ, Simkins TJ, Emery B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front Cell Dev Biol 2021; 9:653101. [PMID: 33763430 PMCID: PMC7982542 DOI: 10.3389/fcell.2021.653101] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The myelination of axons by oligodendrocytes is a highly complex cell-to-cell interaction. Oligodendrocytes and axons have a reciprocal signaling relationship in which oligodendrocytes receive cues from axons that direct their myelination, and oligodendrocytes subsequently shape axonal structure and conduction. Oligodendrocytes are necessary for the maturation of excitatory domains on the axon including nodes of Ranvier, help buffer potassium, and support neuronal energy metabolism. Disruption of the oligodendrocyte-axon unit in traumatic injuries, Alzheimer's disease and demyelinating diseases such as multiple sclerosis results in axonal dysfunction and can culminate in neurodegeneration. In this review, we discuss the mechanisms by which demyelination and loss of oligodendrocytes compromise axons. We highlight the intra-axonal cascades initiated by demyelination that can result in irreversible axonal damage. Both the restoration of oligodendrocyte myelination or neuroprotective therapies targeting these intra-axonal cascades are likely to have therapeutic potential in disorders in which oligodendrocyte support of axons is disrupted.
Collapse
Affiliation(s)
- Greg J. Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Tyrell J. Simkins
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Vollum Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Neurology, VA Portland Health Care System, Portland, OR, United States
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
31
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Cuprizone-Induced Neurotoxicity in Human Neural Cell Lines Is Mediated by a Reversible Mitochondrial Dysfunction: Relevance for Demyelination Models. Brain Sci 2021; 11:brainsci11020272. [PMID: 33671675 PMCID: PMC7926891 DOI: 10.3390/brainsci11020272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Suitable in vivo and in vitro models are instrumental for the development of new drugs aimed at improving symptoms or progression of multiple sclerosis (MS). The cuprizone (CPZ)-induced murine model has gained momentum in recent decades, aiming to address the demyelination component of the disease. This work aims at assessing the differential cytotoxicity of CPZ in cells of different types and from different species: human oligodendroglial (HOG), human neuroblastoma (SH-SY5Y), human glioblastoma (T-98), and mouse microglial (N-9) cell lines. Moreover, the effect of CPZ was investigated in primary rat brain cells. Cell viability was assayed by oxygen rate consumption and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based (MTT) method. Our results demonstrated that CPZ did not cause death in any of the assayed cell models but affected mitochondrial function and aerobic cell respiration, thus compromising cell metabolism in neural cells and neuron-glia co-cultures. In this sense, we found differential vulnerability between glial cells and neurons as is the case of the CPZ-induced mouse model of MS. In addition, our findings demonstrated that reduced viability was spontaneous reverted in a time-dependent manner by treatment discontinuation. This reversible cell-based model may help to further investigate the role of mitochondria in the disease, and study the molecular intricacies underlying the pathophysiology of the MS and other demyelinating diseases.
Collapse
|
33
|
He Y, An J, Yin JJ, Miao Q, Sui RX, Han QX, Ding ZB, Huang JJ, Ma CG, Xiao BG. Ethyl Pyruvate-Derived Transdifferentiation of Astrocytes to Oligodendrogenesis in Cuprizone-Induced Demyelinating Model. Neurotherapeutics 2021; 18:488-502. [PMID: 33140235 PMCID: PMC8116372 DOI: 10.1007/s13311-020-00947-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
Astrocytes redifferentiate into oligodendrogenesis, raising the possibility that astrocytes may be a potential target in the treatment of adult demyelinated lesion. Upon the basis of the improvement of behavior abnormality and demyelination by ethyl pyruvate (EP) treatment, we further explored whether EP affects the function of astrocytes, especially the transdifferentiation of astrocytes into oligodendrogenesis. The results showed that EP treatment increased the accumulation of astrocytes in myelin sheath and promoted the phagocytosis of myelin debris by astrocytes in vivo and in vitro. At the same time, EP treatment induced astrocytes to upregulate the expression of CNTF and BDNF in the corpus callosum and striatum as well as cultured astrocytes, accompanied by increased expression of nestin, Sox2, and β-catenin and decreased expression of Notch1 by astrocytes. As a result, EP treatment effectively promoted the generation of NG2+ and PDGF-Ra+ oligodendrocyte precursor cells (OPCs) that, in part, express astrocyte marker GFAP. Further confirmation was performed by intracerebral injection of primary astrocytes labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). As expected, NG2+ OPCs expressing CFSE and Sox2 were elevated in the corpus callosum of mice treated with EP following transplantation, revealing that EP can convert astrocytes into myelinating cells. Our results indicate the possibility that EP lead to effective myelin repair in patients suffering from myelination deficit.Graphical Abstract The diagram of EP action for promoting myelin regeneration in CPZ model. EP promoted migration and enrichment of astrocytes to demyelinated tissue and induced astrocytes to express neurotrophic CNTF and BDNF as well as translation factor nestin, Sox2, and β-catenin, which should contribute to astrocytes to differentiate of oligodendrogenesis. At the same time, EP promoted astrocytes to phagocytized myelin debris for removing the harmful substances of myelin regeneration.
Collapse
Affiliation(s)
- Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Jian-Jun Huang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China.
- Department of Neurosurgery, First Hospital, Datong Coalmine Group, Datong, 037006, China.
| | - Bao-Guo Xiao
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
34
|
Lee DW, Kwon JI, Woo CW, Heo H, Kim KW, Woo DC, Kim JK, Lee DH. In Vivo Measurement of Neurochemical Abnormalities in the Hippocampus in a Rat Model of Cuprizone-Induced Demyelination. Diagnostics (Basel) 2020; 11:diagnostics11010045. [PMID: 33396601 PMCID: PMC7823778 DOI: 10.3390/diagnostics11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022] Open
Abstract
This study quantitatively measured the changes in metabolites in the hippocampal lesions of a rat model of cuprizone-induced demyelination as detected using in vivo 7 T proton magnetic resonance spectroscopy. Nineteen Sprague Dawley rats were randomly divided into two groups and fed a normal chow diet or cuprizone (0.2%, w/w) for 7 weeks. Demyelinated hippocampal lesions were quantitatively measured using a 7 T magnetic resonance imaging scanner. All proton spectra were quantified for metabolite concentrations and relative ratios. Compared to those in the controls, the cuprizone-induced rats had significantly higher concentrations of glutamate (p = 0.001), gamma-aminobutyric acid (p = 0.019), and glutamate + glutamine (p = 0.001); however, creatine + phosphocreatine (p = 0.006) and myo-inositol (p = 0.001) concentrations were lower. In addition, we found that the glutamine and glutamate complex/total creatine (p < 0.001), glutamate/total creatine (p < 0.001), and GABA/total creatine (p = 0.002) ratios were significantly higher in cuprizone-treated rats than in control rats. Our results showed that cuprizone-induced neuronal demyelination may influence the severe abnormal metabolism in hippocampal lesions, and these responses could be caused by microglial activation, mitochondrial dysfunction, and astrocytic necrosis.
Collapse
Affiliation(s)
- Do-Wan Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
- Correspondence: (D.-W.L.); (D.-H.L.)
| | - Jae-Im Kwon
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Hwon Heo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Hoon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Korea
- Correspondence: (D.-W.L.); (D.-H.L.)
| |
Collapse
|
35
|
Werkman IL, Dubbelaar ML, van der Vlies P, de Boer-Bergsma JJ, Eggen BJL, Baron W. Transcriptional heterogeneity between primary adult grey and white matter astrocytes underlie differences in modulation of in vitro myelination. J Neuroinflammation 2020; 17:373. [PMID: 33308248 PMCID: PMC7733297 DOI: 10.1186/s12974-020-02045-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammation-mediated demyelinating disease of the central nervous system that eventually results in secondary axonal degeneration due to remyelination failure. Successful remyelination is orchestrated by astrocytes (ASTRs) and requires sequential activation, recruitment, and maturation of oligodendrocyte progenitor cells (OPCs). In both MS and experimental models, remyelination is more robust in grey matter (GM) than white matter (WM), which is likely related to local differences between GM and WM lesions. Here, we investigated whether adult gmASTRs and wmASTRs per se and in response to MS relevant Toll-like receptor (TLR) activation differently modulate myelination. Methods Differences in modulation of myelination between adult gmASTRs and wmASTRs were examined using an in vitro myelinating system that relies on a feeding layer of ASTRs. Transcriptional profiling and weighted gene co-expression network analysis were used to analyze differentially expressed genes and gene networks. Potential differential modulation of OPC proliferation and maturation by untreated adult gmASTRs and wmASTRs and in response to TLR3 and TLR4 agonists were assessed. Results Our data reveal that adult wmASTRs are less supportive to in vitro myelination than gmASTRs. WmASTRs more abundantly express reactive ASTR genes and genes of a neurotoxic subtype of ASTRs, while gmASTRs have more neuro-reparative transcripts. We identified a gene network module containing cholesterol biosynthesis enzyme genes that positively correlated with gmASTRs, and a network module containing extracellular matrix-related genes that positively correlated with wmASTRs. Adult wmASTRs and gmASTRs responding to TLR3 agonist Poly(I:C) distinctly modulate OPC behavior, while exposure to TLR4 agonist LPS of both gmASTRs and wmASTRs results in a prominent decrease in myelin membrane formation. Conclusions Primary adult gmASTRs and wmASTRs are heterogeneous at the transcriptional level, differed in their support of in vitro myelination, and their pre-existing phenotype determined TLR3 agonist responses. These findings point to a role of ASTR heterogeneity in regional differences in remyelination efficiency between GM and WM lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02045-3.
Collapse
Affiliation(s)
- Inge L Werkman
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Marissa L Dubbelaar
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart J L Eggen
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Wia Baron
- Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| |
Collapse
|
36
|
Abstract
Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease. Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.
Collapse
|
37
|
Rüger M, Kipp E, Schubert N, Schröder N, Pufe T, Stope MB, Kipp M, Blume C, Tauber SC, Brandenburg LO. The formyl peptide receptor agonist Ac2-26 alleviates neuroinflammation in a mouse model of pneumococcal meningitis. J Neuroinflammation 2020; 17:325. [PMID: 33121515 PMCID: PMC7596991 DOI: 10.1186/s12974-020-02006-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background Bacterial meningitis is still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein-coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands, including pro- and anti-inflammatory ones. Here, we investigated the effects of the annexin A1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis. Methods Wildtype (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8, and 24 h post-infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR) 30 h post-infection. Results Ac2-26-treated WT mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glial cell responses in the hippocampal formation and cortex. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice. Irrespective of Ac2-26 treatment, inflammation was more severe in Fpr2-deficient compared to Fpr1-deficient mice. Conclusions In summary, this study demonstrates anti-inflammatory properties of Ac2-26 in a model of bacterial meningitis, which are mediated via FPR2, but not FPR1. Ac2-26 and other FPR2 modulators might be promising targets for the development of novel therapies for Streptococcus pneumoniae-induced meningitis.
Collapse
Affiliation(s)
- Marvin Rüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nadine Schubert
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.,Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
38
|
Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. J Neurosci 2020; 40:9327-9341. [PMID: 33106352 DOI: 10.1523/jneurosci.1749-20.2020] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS. Cuprizone (CZ), a copper chelator, is widely used to study demyelination and remyelination in the CNS, in the context of MS. However, the mechanisms underlying oligodendrocyte (OL) cell loss and demyelination are not known. As copper-containing enzymes play important roles in iron homeostasis and controlling oxidative stress, we examined whether chelating copper leads to disruption of molecules involved in iron homeostasis that can trigger iron-mediated OL loss. We show that giving mice (male) CZ in the diet induces rapid loss of OL in the corpus callosum by 2 d, accompanied by expression of several markers for ferroptosis, a relatively newly described form of iron-mediated cell death. In ferroptosis, iron-mediated free radicals trigger lipid peroxidation under conditions of glutathione insufficiency, and a reduced capacity to repair lipid damage. This was further confirmed using a small-molecule inhibitor of ferroptosis that prevents CZ-induced loss of OL and demyelination, providing clear evidence of a copper-iron connection in CZ-induced neurotoxicity. This work has wider implications for disorders, such as multiple sclerosis and CNS injury.SIGNIFICANCE STATEMENT Cuprizone (CZ) is a copper chelator that induces demyelination. Although it is a widely used model to study demyelination and remyelination in the context of multiple sclerosis, the mechanisms mediating demyelination is not fully understood. This study shows, for the first time, that CZ induces demyelination via ferroptosis-mediated rapid loss of oligodendrocytes. This work shows that chelating copper with CZ leads to the expression of molecules that rapidly mobilize iron from ferritin (an iron storage protein), that triggers iron-mediated lipid peroxidation and oligodendrocyte loss (via ferroptosis). Such rapid mobilization of iron from cellular stores may also play a role in cell death in other neurologic conditions.
Collapse
|
39
|
Transcriptomic Analysis of Age-Associated Periventricular Lesions Reveals Dysregulation of the Immune Response. Int J Mol Sci 2020; 21:ijms21217924. [PMID: 33113879 PMCID: PMC7663268 DOI: 10.3390/ijms21217924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
White matter lesions (WML) are a common feature of the ageing brain associated with cognitive impairment. The gene expression profiles of periventricular lesions (PVL, n = 7) and radiologically-normal-appearing (control) periventricular white matter cases (n = 11) obtained from the Cognitive Function and Ageing Study (CFAS) neuropathology cohort were interrogated using microarray analysis and NanoString to identify novel mechanisms potentially underlying their formation. Histological characterisation of control white matter cases identified a subgroup (n = 4) which contained high levels of MHC-II immunoreactive microglia, and were classified as “pre-lesional.” Microarray analysis identified 2256 significantly differentially-expressed genes (p ≤ 0.05, FC ≥ 1.2) in PVL compared to non-lesional control white matter (1378 upregulated and 878 downregulated); 2649 significantly differentially-expressed genes in “pre-lesional” cases compared to PVL (1390 upregulated and 1259 downregulated); and 2398 significantly differentially-expressed genes in “pre-lesional” versus non-lesional control cases (1527 upregulated and 871 downregulated). Whilst histological evaluation of a single marker (MHC-II) implicates immune-activated microglia in lesion pathology, transcriptomic analysis indicates significant downregulation of a number of activated microglial markers and suggests established PVL are part of a continuous spectrum of white matter injury. The gene expression profile of “pre-lesional” periventricular white matter suggests upregulation of several signalling pathways may be a neuroprotective response to prevent the pathogenesis of PVL.
Collapse
|
40
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
41
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
42
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
43
|
Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, Korotcov A, Bosomtwi A, Dardzinski BJ, Bernstock JD, Rizzi S, Edenhofer F, Pluchino S, Armstrong RC. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 2020; 8:84. [PMID: 32517808 PMCID: PMC7285785 DOI: 10.1186/s40478-020-00960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.
Collapse
|
44
|
Martin NA, Hyrlov KH, Elkjaer ML, Thygesen EK, Wlodarczyk A, Elbaek KJ, Aboo C, Okarmus J, Benedikz E, Reynolds R, Hegedus Z, Stensballe A, Svenningsen ÅF, Owens T, Illes Z. Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Front Immunol 2020; 11:1110. [PMID: 32582192 PMCID: PMC7292149 DOI: 10.3389/fimmu.2020.01110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background: MiR-146a is an important regulator of innate inflammatory responses and is also implicated in cell death and survival. Methods: By sorting CNS resident cells, microglia were the main cellular source of miR-146a. Therefore, we investigated microglia function and phenotype in miR-146a knock-out (KO) mice, analyzed the proteome of KO and wild-type (WT) microglia by LC-MS/MS, and examined miR-146a expression in different brain lesions of patients with multiple sclerosis (MS). Results: When stimulated with LPS or myelin in vitro, microglia from KO mice expressed higher levels of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 compared to WT. Stimulation increased migration and phagocytosis of WT but not KO microglia. CD11c+ microglia were induced by cuprizone (CPZ) in the WT mice but less in the KO. The proteome of ex vivo microglia was not different in miR-146a KO compared to WT mice, but CPZ treatment induced differential and reduced protein responses in the KO: GOT1, COX5b, CRYL1, and cystatin-C were specifically changed in KO microglia. We explored discriminative features of microglia proteomes: sparse Partial Least Squares-Discriminant Analysis showed the best discrimination when control and CPZ-treated conditions were compared. Cluster of ten proteins separated WT and miR-146a KO microglia after CPZ: among them were sensomes allowing to perceive the environment, Atp1a3 that belongs to the signature of CD11c+ microglia, and proteins related to inflammatory responses (S100A9, Ppm1g). Finally, we examined the expression of miR-146a and its validated target genes in different brain lesions of MS patients. MiR-146 was upregulated in all lesion types, and the highest expression was in active lesions. Nineteen of 88 validated target genes were significantly changed in active lesions, while none were changed in NAWM. Conclusion: Our data indicated that microglia is the major source of miR-146a in the CNS. The absence of miR-146a differentially affected microglia function and proteome, and miR-146a may play an important role in gene regulation of active MS lesions.
Collapse
Affiliation(s)
- Nellie A Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Kirsten H Hyrlov
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| | - Kirstine J Elbaek
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Justyna Okarmus
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eirikur Benedikz
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Åsa Fex Svenningsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Kopanitsa MV, Lehtimäki KK, Forsman M, Suhonen A, Koponen J, Piiponniemi TO, Kärkkäinen AM, Pavlidi P, Shatillo A, Sweeney PJ, Merenlender-Wagner A, Kaye J, Orbach A, Nurmi A. Cognitive disturbances in the cuprizone model of multiple sclerosis. GENES BRAIN AND BEHAVIOR 2020; 20:e12663. [PMID: 32372528 DOI: 10.1111/gbb.12663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10-week-old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle-treated mice. Cuprizone-treated animals showed multiple deficits in short touchscreen-based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule-learning task. In contextual/cued fear conditioning experiments, cuprizone-treated mice showed significantly lower levels of contextual freezing than vehicle-treated mice. Diffusion tensor imaging showed treatment-dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone-treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits.
Collapse
Affiliation(s)
- Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute, Department of Brain Sciences, Imperial College, London, UK
| | | | | | - Ari Suhonen
- Charles River Discovery Services, Kuopio, Finland
| | - Juho Koponen
- Charles River Discovery Services, Kuopio, Finland
| | | | | | - Pavlina Pavlidi
- MSc Programme in Translational Neuroscience, Imperial College, London, UK
| | | | | | | | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Aric Orbach
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| |
Collapse
|
46
|
The Cuprizone Model: Dos and Do Nots. Cells 2020; 9:cells9040843. [PMID: 32244377 PMCID: PMC7226799 DOI: 10.3390/cells9040843] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Various pre-clinical models with different specific features of the disease are available to study MS pathogenesis and to develop new therapeutic options. During the last decade, the model of toxic demyelination induced by cuprizone has become more and more popular, and it has contributed substantially to our understanding of distinct yet important aspects of the MS pathology. Here, we aim to provide a practical guide on how to use the cuprizone model and which pitfalls should be avoided.
Collapse
|
47
|
Khaw YM, Cunningham C, Tierney A, Sivaguru M, Inoue M. Neutrophil-selective deletion of Cxcr2 protects against CNS neurodegeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2020; 17:49. [PMID: 32019585 PMCID: PMC7001284 DOI: 10.1186/s12974-020-1730-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system (CNS) driven by demyelination and gray matter neurodegeneration. We previously reported an experimental autoimmune encephalomyelitis (EAE) MS mouse model with elevated serum CXCL1 that developed severe and prolonged neuron damage. Our findings suggested that CXCR2 signaling may be important in neuronal damage, thus implicating neutrophils, which express CXCR2 in abundance, as a potential cell type involved. The goals of this study were to determine if CXCR2 signaling in neutrophils mediate neuronal damage and to identify potential mechanisms of damage. Methods EAE was induced in wild-type control and neutrophil-specific Cxcr2 knockout (Cxcr2 cKO) mice by repeated high-dose injections of heat-killed Mycobacterium tuberculosis and MOG35–55 peptide. Mice were examined daily for motor deficit. Serum CXCL1 level was determined at different time points throughout disease development. Neuronal morphology in Golgi-Cox stained lumbar spinal cord ventral horn was assessed using recently developed confocal reflection super-resolution technique. Immune cells from CNS and lymphoid organs were quantified by flow cytometry. CNS-derived neutrophils were co-cultured with neuronal crest cells and neuronal cell death was measured. Neutrophils isolated from lymphoid organs were examined for expression of reactive oxygen species (ROS) and ROS-related genes. Thioglycolate-activated neutrophils were isolated, treated with recombinant CXCL1, and measured for ROS production. Results Cxcr2 cKO mice had less severe disease symptoms at peak and late phase when compared to control mice with similar levels of CNS-infiltrating neutrophils and other immune cells despite high levels of circulating CXCL1. Additionally, Cxcr2 cKO mice had significantly reduced CNS neuronal damage in the ventral horn of the spinal cord. Neutrophils isolated from control EAE mice induced vast neuronal cell death in vitro when compared with neutrophils isolated from Cxcr2 cKO EAE mice. Neutrophils isolated from control EAE mice, but not Cxcr2 cKO mice, exhibited elevated ROS generation, in addition to heightened Ncf1 and Il1b transcription. Furthermore, recombinant CXCL1 was sufficient to significantly increase neutrophils ROS production. Conclusions CXCR2 signal in neutrophils is critical in triggering CNS neuronal damage via ROS generation, which leads to prolonged EAE disease. These findings emphasize that CXCR2 signaling in neutrophils may be a viable target for therapeutic intervention against CNS neuronal damage.
Collapse
Affiliation(s)
- Yee Ming Khaw
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Claire Cunningham
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Abigail Tierney
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mayandi Sivaguru
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
48
|
Diverse Gene Expressions in the Prediction of Cuprizone-Induced Demyelination. Neurotox Res 2020; 37:732-742. [DOI: 10.1007/s12640-019-00154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
|
49
|
He Y, An J, Yin JJ, Sui RX, Miao Q, Ding ZB, Han QX, Wang Q, Ma CG, Xiao BG. Ethyl pyruvate enhances spontaneous remyelination by targeting microglia phagocytosis. Int Immunopharmacol 2019; 77:105929. [DOI: 10.1016/j.intimp.2019.105929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/21/2019] [Indexed: 01/09/2023]
|
50
|
Zhang Y, Cai L, Fan K, Fan B, Li N, Gao W, Yang X, Ma J. The Spatial and Temporal Characters of Demyelination and Remyelination in the Cuprizone Animal Model. Anat Rec (Hoboken) 2019; 302:2020-2029. [PMID: 31251832 DOI: 10.1002/ar.24216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/03/2019] [Accepted: 03/23/2019] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system disease due to demyelination in young adults, and currently, there is no cure. Some experimental animal models were generated to mimic specific aspects of MS pathological characteristics. Among them, the cuprizone (CPZ)-induced mouse demyelination model presents heterogeneous pathologies with both focal and diffuse lesions. Considering that MS is a progressive disease, it is important to study the spatial and temporal characters of de- and remyelination in MS animal models. However, such data especially in some brain regions such as lateral septal area, fimbria of hippocampus, and hippocampus are still lacking. In this study, we investigated the alterations of myelin in these areas in parallel to the changes in corpus callosum using coronal sections. We found that the progression of demyelinating varied in different brain regions in C57BL/6J mice treated with CPZ for 1 to 5 weeks. This result suggests that each brain region has a distinct sensitivity to CPZ intoxication. Interestingly, activated microglia appeared not only in the active demyelinating areas but also in the non-myelinolysis regions. After CPZ withdrawal, significant remyelination was started in corpus callosum as early as 3 days. The completion of remyelination in the entire brain regions took 3 weeks. Our study detailed characterized the dynamics of myelin alterations and microglial status in the brain of the CPZ model. This information is valuable to facilitate further MS studies utilizing the CPZ model. Anat Rec, 302:2020-2029, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lin Cai
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Bin Fan
- General Surgery, Liaoyang Central Hospital, Liaoyang, Liaoning, 111000, China
| | - Ning Li
- General Surgery, Wafangdian Central Hospital, Wafangdian, Liaoning, 116300, China
| | - Wenting Gao
- Institute of Gene Engineered Animal Models for Human Diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Xiaohan Yang
- Liaoning provincial key laboratory of brain diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|