1
|
Uysal OK, Ozdogru D, Yildirim A, Ozturk I, Tras G, Arlier Z. The Prognostic Value of a Naples Score in Determining in-Hospital Mortality in Patients with Acute Ischemic Stroke Undergoing Endovascular Treatment. J Clin Med 2024; 13:6434. [PMID: 39518572 PMCID: PMC11546944 DOI: 10.3390/jcm13216434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The Naples prognostic score (NPS), reflecting inflammation and nutritional status, has prognostic value, especially in cancer. This study evaluated its ability to predict in-hospital mortality in acute ischemic stroke (AIS) patients undergoing endovascular treatment (EVT). Methods: We retrospectively studied 244 patients with AIS who were admitted between April 2020 and December 2023. Patients were included if they presented within 6 h of symptom onset with evidence of intracranial proximal arterial occlusion. The EVT was performed using aspiration catheters, stent retrievers, or both. The NPS was calculated based on the neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, and albumin and total cholesterol levels. Results: We found a significant association between higher NPS scores and in-hospital mortality. Patients with a high NPS (3 or 4) had a mortality rate of 41.6% compared to 21.0% in the low-NPS group (0, 1, or 2). The full model incorporating NPS showed superior predictive ability for in-hospital mortality compared with the baseline model (areas under the curve 0.881 vs. 0.808). A receiver-operating characteristic analysis at a cutoff of >2.5 for the NPS showed a sensitivity of 86.6% and specificity of 41.9%. This study demonstrated that incorporating the NPS into the predictive model improved the accuracy and calibration for predicting in-hospital mortality. A decision curve analysis showed the net benefit of using the full model incorporating NPS over the baseline model, emphasizing its potential clinical application in prognostication. Conclusions: NPS is a reliable predictor of in-hospital mortality in AIS patients undergoing EVT. Incorporating NPS into clinical practice could help to identify high-risk patients and improve outcomes through tailored interventions.
Collapse
Affiliation(s)
- Onur Kadir Uysal
- Department of Cardiology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (A.Y.); (G.T.)
| | - Derya Ozdogru
- Department of Neurology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (D.O.); (I.O.); (Z.A.)
| | - Abdullah Yildirim
- Department of Cardiology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (A.Y.); (G.T.)
| | - Ilker Ozturk
- Department of Neurology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (D.O.); (I.O.); (Z.A.)
| | - Guluzar Tras
- Department of Cardiology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (A.Y.); (G.T.)
| | - Zulfikar Arlier
- Department of Neurology, Adana City Training & Research Hospital, University of Health Sciences, 01230 Adana, Turkey; (D.O.); (I.O.); (Z.A.)
| |
Collapse
|
2
|
Zhang KJ, Qu Y, Abuduxukuer R, Zhang P, Zhang Y, Gao JH, Zhang XK, Liu XD, Li CY, Li GC, Wang JM, Jin HM, He Y, Jiang LG, Liu L, Jiang Y, Teng RH, Jia Y, Zhang BJ, Chen ZB, Qi Y, Liu XP, Li S, Nguyen TN, Yang Y, Guo ZN. Increased peripheral leukocyte aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis: A study based on clinical evidence. J Cereb Blood Flow Metab 2024:271678X241281020. [PMID: 39235536 PMCID: PMC11574925 DOI: 10.1177/0271678x241281020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Whether the dynamic development of peripheral inflammation aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis (IVT), remains unclear and warrants further study. In this study, total of 1034 patients with acute ischemic stroke who underwent IVT were enrolled. Serum leukocyte variation (whether increase from baseline to 24 h after IVT), National Institutes of Health Stroke Scale (NIHSS), infarct volume, early neurologic deterioration (END), the unfavorable outcome at 3-month (modified Rankin Scale [mRS] score ≥3) and mortality were recorded. Serum brain injury biomarkers, including Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), S100β, neuron-specific enolase (NSE), were measured to reflect the extent of brain injury. We found that patients with increased serum leukocytes had elevated brain injury biomarkers (GFAP, UCH-L1, and S100β), larger infarct volume, higher 24 h NIHSS, higher proportion of END, unfavorable outcome and mortality. Furthermore, an increase in serum leukocytes was independently associated with infarct volume, 24 h NIHSS, END, and unfavorable outcome at 3 months, and serum UCH-L1, S100β, and NSE levels. These results suggest that an increase in serum leukocytes indicates severe brain injury and may be used to predict the outcome of patients with ischemic stroke who undergo IVT.
Collapse
Affiliation(s)
- Ke-Jia Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Yu Zhang
- Department of Neurology, Songyuan Central Hospital, Songyuan, China
| | - Jian-Hua Gao
- Department of Neurology, Jilin Neuropsychiatric Hospital, Siping, China
| | - Xian-Kun Zhang
- Stroke Center, Department of Neurology, Siping Central People's Hospital, Siping, China
| | - Xiao-Dong Liu
- Department of Neurosurgery, Tonghua City Vascular Disease Hospital and Dongchang District People's Hospital, Tonghua, China
| | - Chun-Ying Li
- Department of Neurology, Songyuan Jilin Oilfield Hospital, Songyuan, China
| | - Guang-Cai Li
- Stroke Center, Department of Neurology, Dehuishi People's Hospital, Changchun, China
| | - Jun-Min Wang
- Department of Neurology, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Hui-Min Jin
- Department of Neurology, Songyuan Hospital of Integrated Traditional Chinese and Western Medicine, Songyuan, China
| | - Ying He
- Stroke Center, Department of Neurology, Qianguoerros Mongolian Autonomous County Hospital, Songyuan, China
| | - Li-Gang Jiang
- Department of Neurology, Affiliated Hospital of Jilin Medical College, Jilin, China
| | - Liang Liu
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin, China
| | - Yongfei Jiang
- Department of Neurology, Changchun People's Hospital, Changchun, China
- Department of Neurology, Changchun Second Hospital, Changchun, China
| | - Rui-Hong Teng
- Department of Neurology, Dongliao First People's Hospital, Liaoyuan, China
| | - Yan Jia
- Department of Neurology, Jilin People's Hospital, Jilin, China
| | - Bai-Jing Zhang
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin, China
| | - Zhi-Bo Chen
- Department of Neurology, Jilin City Hospital of Chemical Industry, Jilin, China
| | - Yingbin Qi
- Department of Neurology, Jilin Province People's Hospital, Changchun, China
| | - Xiu-Ping Liu
- Stroke Center, Department of Neurology, Jilin Central General Hospital, Jilin, China
| | - Song Li
- Department of Neurology, Jilin Province People's Hospital, Changchun, China
| | - Thanh N Nguyen
- Neurology, Radiology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Gong H, Li Z, Huang G, Mo X. Effects of peripheral blood cells on ischemic stroke: Greater immune response or systemic inflammation? Heliyon 2024; 10:e32171. [PMID: 38868036 PMCID: PMC11168442 DOI: 10.1016/j.heliyon.2024.e32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Ischemic stroke is still one of the most serious medical conditions endangering human health worldwide. Current research on the mechanism of ischemic stroke focuses on the primary etiology as well as the subsequent inflammatory response and immune modulation. Recent research has revealed that peripheral blood cells and their components are crucial to the ensuing progression of ischemic stroke. However, it remains unclear whether blood cell elements are principally in charge of systemic inflammation or immunological regulation, or if their participation is beneficial or harmful to the development of ischemic stroke. In this review, we aim to describe the changes in peripheral blood cells and their corresponding parameters in ischemic stroke. Specifically, we elaborate on the role of each peripheral component in the inflammatory response or immunological modulation as well as their interactions. It has been suggested that more specific therapies aimed at targeting peripheral blood cell components and their role in inflammation or immunity are more favorable to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huanhuan Gong
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
4
|
Cheng Y, Zhu H, Liu C, Li L, Lin F, Guo Y, Gu C, Sun D, Gao Y, He G, Sun S, Xue S. Systemic immune-inflammation index upon admission correlates to post-stroke cognitive impairment in patients with acute ischemic stroke. Aging (Albany NY) 2024; 16:8810-8821. [PMID: 38771141 PMCID: PMC11164514 DOI: 10.18632/aging.205839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The purpose of this prospective study was to evaluate the association of systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI), with PSCI in patients with acute ischemic stroke (AIS). METHODS First-onset AIS patients were consecutively included from January 1, 2022 to March 1, 2023. The baseline information was collected at admission. Fasting blood was drawn the next morning. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCA) 3 months after onset. Logistic regression analysis was performed to explore the correlation between SII, SIRI, and PSCI. Receiver operating characteristic (ROC) was conducted to evaluate the predictive ability of SII. RESULTS 332 participants were recruited, and 193 developed PSCI. Compared with patients without PSCI, the patients with PSCI had higher SII (587.75 (337.42, 988.95) vs. 345.66 (248.44, 572.89), P<0.001) and SIRI (1.59 (0.95, 2.84) vs. 1.02 (0.63, 1.55), P=0.007). SII and SIRI negatively correlated with MoCA scores (both P<0.05). The multivariable logistic regression analysis indicated that SII was independently associated with PSCI (P<0.001), while SIRI was not. The optimal cutoff for SII to predict PSCI was 676.83×109/L. CONCLUSIONS A higher level of SII upon admission was independently correlated to PSCI three months later in AIS patients.
Collapse
Affiliation(s)
- Yongqing Cheng
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Honghong Zhu
- Department of Rheumatology and Immunology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Changxia Liu
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Lei Li
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Fangjia Lin
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Yan Guo
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Cong Gu
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Dingming Sun
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Yang Gao
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Guojun He
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Shifu Sun
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
5
|
Deng X, Hou S, Wang Y, Yang H, Wang C. Genetic insights into the relationship between immune cell characteristics and ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol 2024; 31:e16226. [PMID: 38323746 PMCID: PMC11236043 DOI: 10.1111/ene.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke, a major contributor to global disability and mortality, is underpinned by intricate pathophysiological mechanisms, notably neuroinflammation and immune cell dynamics. Prior research has identified a nuanced and often paradoxical link between immune cell phenotypes and ischemic stroke susceptibility. The aim of this study was to elucidate the potential causal links between the median fluorescence intensity (MFI) and morphological parameters (MP) of 731 immune cell types and ischemic stroke risk. METHODS By analyzing extensive genetic datasets, we conducted comprehensive Mendelian randomization (MR) analyses to discern the genetic correlations between diverse immune cell attributes (MFI and MP) and ischemic stroke risk. RESULTS Our study identified key immune cell signatures linked to ischemic stroke risk. Both B cells and T cells, among other immune cell types, have a bidirectional influence on stroke risk. Notably, the regulatory T-cell phenotype demonstrates significant neuroprotective properties, with all odds ratio (OR) values and confidence intervals (CIs) being less than 1. Furthermore, CD39 phenotype immune cells, particularly CD39+ CD8+ T cells (inverse variance weighting [IVW] OR 0.92, 95% CI 0.87-0.97; p = 0.002) and CD39+ activated CD4 regulatory T cells (IVW OR 0.93, 95% CI 0.90-0.97; p < 0.001), show notable neuroprotection against ischemic stroke. CONCLUSION This investigation provides new genetic insights into the interplay between various immune cells and ischemic stroke, underscoring the complex role of immune processes in stroke pathogenesis. These findings lay a foundation for future research, which may confirm and expand upon these links, potentially leading to innovative immune-targeted therapies for stroke prevention and management.
Collapse
Affiliation(s)
- Xia Deng
- Shandong Second Medical UniversityWeifangChina
| | - Shuai Hou
- Shandong Second Medical UniversityWeifangChina
| | - Yanqiang Wang
- Department II of NeurologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan hospitalYantaiChina
| | | |
Collapse
|
6
|
Wang D, Wang Y, Shi J, Jiang W, Huang W, Chen K, Wang X, Zhang G, Li Y, Cao C, Lee KY, Lin L. Edaravone dexborneol alleviates ischemic injury and neuroinflammation by modulating microglial and astrocyte polarization while inhibiting leukocyte infiltration. Int Immunopharmacol 2024; 130:111700. [PMID: 38382262 DOI: 10.1016/j.intimp.2024.111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Poststroke inflammation is essential in the mechanism of secondary injury, and it is orchestrated by resident microglia, astrocytes, and circulating immune cells. Edaravone dexborneol (EDB) is a combination of edaravone and borneol that has been identified as a clinical protectant for stroke management. In this study, we verified the anti-inflammatory effect of EDB in the mouse model of ischemia and investigated its modulatory action on inflammation-related cells. C57BL/6 male mice, which had the transient middle cerebral artery occlusion (tMCAO), were treated (i.p.) with EDB (15 mg/kg). EDB administration significantly reduced the brain infarction and improved the sensorimotor function after stroke. And EDB alleviated the neuroinflammation by restraining the polarization of microglia/macrophages and astrocyte toward proinflammatory phenotype and inhibiting the production of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6) and chemokines (including MCP-1 and CXCL1). Furthermore, EDB ameliorated the MCAO-induced impairment of Blood-brain barrier (BBB) by suppressing the degradation of tight junction protein and attenuated the accumulation of peripheral leukocytes in the ischemic brain. Additionally, systemic EDB administration inhibited the macrophage phenotypic shift toward the M1 phenotype and the macrophage-dependent inflammatory response in the spleen and blood. Collectively, EDB protects against ischemic stroke injury by inhibiting the proinflammatory activation of microglia/macrophages and astrocytes and through reduction by invasion of circulating immune cells, which reduces central and peripheral inflammation following stroke.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yutao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junfeng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenyi Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gongchun Zhang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuankuan Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chengkun Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Zhang SS, Li RQ, Chen Z, Wang XY, Dumont AS, Fan X. Immune cells: potential carriers or agents for drug delivery to the central nervous system. Mil Med Res 2024; 11:19. [PMID: 38549161 PMCID: PMC10979586 DOI: 10.1186/s40779-024-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Drug delivery systems (DDS) have recently emerged as a promising approach for the unique advantages of drug protection and targeted delivery. However, the access of nanoparticles/drugs to the central nervous system (CNS) remains a challenge mainly due to the obstruction from brain barriers. Immune cells infiltrating the CNS in the pathological state have inspired the development of strategies for CNS foundation drug delivery. Herein, we outline the three major brain barriers in the CNS and the mechanisms by which immune cells migrate across the blood-brain barrier. We subsequently review biomimetic strategies utilizing immune cell-based nanoparticles for the delivery of nanoparticles/drugs to the CNS, as well as recent progress in rationally engineering immune cell-based DDS for CNS diseases. Finally, we discuss the challenges and opportunities of immune cell-based DDS in CNS diseases to promote their clinical development.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Ruo-Qi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Zhong Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiao-Ying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
8
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Yan H, Kawano T, Kanki H, Nishiyama K, Shimamura M, Mochizuki H, Sasaki T. Role of Polymorphonuclear Myeloid-Derived Suppressor Cells and Neutrophils in Ischemic Stroke. J Am Heart Assoc 2023; 12:e028125. [PMID: 36892072 PMCID: PMC10111556 DOI: 10.1161/jaha.122.028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Immune cells play a vital role in the pathology of ischemic stroke. Neutrophils and polymorphonuclear myeloid-derived suppressor cells share a similar phenotype and have attracted increasing attention in immune regulation research, yet their dynamics in ischemic stroke remain elusive. Methods and Results Mice were randomly divided into 2 groups and intraperitoneally treated with anti-Ly6G (lymphocyte antigen 6 complex locus G) monoclonal antibody or saline. Distal middle cerebral artery occlusion and transient middle cerebral artery occlusion were applied to induce experimental stroke, and mice mortality was recorded until 28 days after stroke. Green fluorescent nissl staining was used to measure infarct volume. Cylinder and foot fault tests were used to evaluate neurological deficits. Immunofluorescence staining was conducted to confirm Ly6G neutralization and detect activated neutrophils and CD11b+Ly6G+ cells. Fluorescence-activated cell sorting was performed to evaluate polymorphonuclear myeloid-derived suppressor cell accumulation in brains and spleens after stroke. Anti-Ly6G antibody successfully depleted Ly6G expression in mice cortex but did not alter cortical physiological vasculature. Prophylactic anti-Ly6G antibody treatment ameliorated ischemic stroke outcomes in the subacute phase. Moreover, using immunofluorescence staining, we found that anti-Ly6G antibody suppressed activated neutrophil infiltration into parenchyma and decreased neutrophil extracellular trap formation in penumbra after stroke. Additionally, prophylactic anti-Ly6G antibody treatment reduced polymorphonuclear myeloid-derived suppressor cell accumulation in the ischemic hemisphere. Conclusions Our study suggested a protective effect of prophylactic anti-Ly6G antibody administration against ischemic stroke by reducing activated neutrophil infiltration and neutrophil extracellular trap formation in parenchyma and suppressing polymorphonuclear myeloid-derived suppressor cell accumulation in the brain. This study may provide a novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tomohiro Kawano
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Munehisa Shimamura
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Health Development and Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine Osaka University Osaka Japan
- Department of Neurotherapeutics, Graduate School of Medicine Osaka University Osaka Japan
| |
Collapse
|
10
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
11
|
Liu Y, Li G, Jia J, Liu X, Guo J, Zhao X. Clinical significance of neutrophil to lymphocyte ratio in ischemic stroke and transient ischemic attack in young adults. BMC Neurol 2022; 22:481. [DOI: 10.1186/s12883-022-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Objective
Few studies evaluated the association between neutrophil to lymphocyte ratio (NLR) and clinical outcomes in ischemic stroke or transient ischemia attack (TIA) in young adults. We aimed to investigate the relationship of NLR with 90-day functional independence in ischemic stroke or TIA in young adults.
Methods
We retrospectively included patients aged 18–45 and diagnosed with ischemic stroke or TIA. Information including demographics, clinical and imaging characteristics, and the 90-day clinical outcome was collected. The primary outcome was excellent clinical outcome at 90 days, defined as mRS 0–1. Logistic regression analyses and a receiver operator characteristic (ROC) curve were used to investigate the association between NLR and 90-day clinical outcome.
Results
A total of 691 young patients with ischemic stroke or TIA were included in the final study. A higher level of NLR indicated poorer clinical outcome at 90 days (p for trend <0.001). The multivariable logistics regression suggested that NLR was an independent predictor of mRS 0–1 at 90 days (crude OR: 0.88, 95% CI 0.83–0.94, p < 0.001; adjusted OR of model 2: 0.87, 95% CI 0.84–0.94, p < 0.001; adjusted OR of model 3: 0.92, 95% CI 0.84–0.99, p = 0.04).
Conclusion
In our study, a higher level of NLR was correlated with poorer functional outcomes at 90 days in ischemic stroke or TIA in young adults.
Collapse
|
12
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Advancements in Hydrogel Application for Ischemic Stroke Therapy. Gels 2022; 8:gels8120777. [PMID: 36547301 PMCID: PMC9778209 DOI: 10.3390/gels8120777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide. There is almost no effective treatment for this disease. Therefore, developing effective treatment for ischemic stroke is urgently needed. Efficient delivery of therapeutic drugs to ischemic sites remained a great challenge for improved treatment of strokes. In recent years, hydrogel-based strategies have been widely investigated for new and improved therapies. They have the advantage of delivering therapeutics in a controlled manner to the poststroke sites, aiming to enhance the intrinsic repair and regeneration. In this review, we discuss the pathophysiology of stroke and the development of injectable hydrogels in the application of both stroke treatment and neural tissue engineering. We also discuss the prospect and the challenges of hydrogels in the treatment of ischemic strokes.
Collapse
|
14
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
15
|
Li G, Hao Y, Wang C, Wang S, Xiong Y, Zhao X. Association Between Neutrophil-to-Lymphocyte Ratio/Lymphocyte-to-Monocyte Ratio and In-Hospital Clinical Outcomes in Ischemic Stroke Treated with Intravenous Thrombolysis. J Inflamm Res 2022; 15:5567-5578. [PMID: 36185640 PMCID: PMC9518842 DOI: 10.2147/jir.s382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Investigations on neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with ischemic stroke are insufficient. We aimed to investigate the relationship of NLR and LMR with in-hospital clinical outcomes at different time points in ischemic stroke patients treated with intravenous tissues plasminogen activator (IV tPA). Methods We retrospectively enrolled patients who received IV tPA therapy within 4.5 hours from symptoms onset. Demographics, clinical characteristics, imaging measures, and the in-hospital clinical outcomes including early neurological improvement (ENI, defined as NIHSS score reduction within 24 hours ≥4 points or decreased to the baseline) and favorable functional outcome (defined as modified Rankin scale 0–1) were collected. Multivariable logistic regression analyses were performed to test whether NLR or LMR was an independent predictor for the in-hospital clinical outcomes. Results One hundred and two patients treated with IV tPA were included. NLR at 24 hours proved to be an independent predictor of ENI (adjusted OR=0.85, 95% CI=0.75–0.95, P=0.04). NLR at 48 hours and LMR at 48 hours proved to be independent predictors of mRS 0–1 at discharge (NLR at 48 hours: adjusted OR=0.64, 95% CI=0.49–0.83, P=0.01; LMR at 48 hours: adjusted OR=1.50, 95% CI=1.08–2.09, P=0.02). The AUC of NLR at 48 hours to predict favorable functional outcome at discharge was 0.79 (95% CI=0.70–0.88, P<0.001) and the optimal cut-off was 5.69 (sensitivity=0.52, specificity=0.63). Conclusion In our study, NLR at 24 hours was correlated with ENI. Both NLR and LMR at 48 hours were closely associated with favorable functional outcomes at discharge.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yahui Hao
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Chinese Institute of Brain Research, Beijing, People’s Republic of China
- Correspondence: Yunyun Xiong, China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China, Email
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Xingquan Zhao, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, Beijing, 100070, People’s Republic of China, Email
| |
Collapse
|
16
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
17
|
Nie Y, Wen L, Li H, Song J, Wang N, Huang L, Gao L, Qu M. Tanhuo Formula Inhibits Astrocyte Activation and Apoptosis in Acute Ischemic Stroke. Front Pharmacol 2022; 13:859244. [PMID: 35559267 PMCID: PMC9087855 DOI: 10.3389/fphar.2022.859244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tanhuo formula (THF), a traditional Chinese medicinal formula, has been demonstrated to be effective in the clinical treatment of acute ischemic stroke (AIS). However, its active ingredients, potential targets, and molecular mechanisms remain unknown. Based on the validation of active ingredient concentrations, our study attempted to elucidate the possible mechanisms of THF based on network pharmacological analysis and experimental validation. Components of THF were screened using network pharmacological analysis, and a compound–target network and protein–protein interaction (PPI) network were constructed. In total, 42 bioactive compounds and 159 THF targets related to AIS were identified. The PPI network identified AKT1, TNF, IL6, IL1B, and CASP3 as key targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that the inflammation and apoptotic pathways were enriched by multiple targets. The main components of THF were identified via high-performance liquid chromatography. Subsequently, a validation experiment was conducted, and the expressions of GFAP, C3, TNF-α, and IL-6 were detected via immunofluorescence staining, confirming the inflammatory response at 30 min and 3 days post injury. Immunohistochemical staining for caspase-3 and TUNEL was also performed to assess apoptosis at the same time points. These results indicate that THF can effectively decrease neural cell apoptosis through the caspase-3 pathway and restrain excessive abnormal activation of astrocytes and the release of TNF-α and IL-6, which might be accompanied by the recovery of motor function. Thus, THF may serve as a promising therapeutic strategy for AIS through multiple targets, components, and pathways.
Collapse
Affiliation(s)
- Yuting Nie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
19
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
20
|
Wang X, Li J, Zhao D, Li J. |Therapeutic and preventive effects of apigenin in cerebral ischemia: a review. Food Funct 2022; 13:11425-11437. [DOI: 10.1039/d2fo02599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
APG can exert various protective effects against cerebral ischemia. Moreover, APG has shown a highly promising ability to prevent cerebral ischemia in terms of regulating blood glucose, blood pressure, lipids and gut microbes.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
21
|
Sharma D, Spring KJ, Bhaskar SMM. Neutrophil-lymphocyte ratio in acute ischemic stroke: Immunopathology, management, and prognosis. Acta Neurol Scand 2021; 144:486-499. [PMID: 34190348 DOI: 10.1111/ane.13493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
There is an ongoing need for accurate prognostic biomarkers in the milieu of acute ischemic stroke (AIS) receiving reperfusion therapy. Neutrophil-lymphocyte ratio (NLR) has been implicated in emergency medicine and acute stroke setting as an important biomarker in the prognosis of patients. However, there are ongoing questions around its accuracy and translation into clinical practice given suboptimal sensitivity and specificity results, as well as varying thresholds and lack of clarity around which NLR time points are most clinically indicative. This article provides a comprehensive overview of the role of NLR in AIS patients receiving reperfusion therapy and perspectives on areas of future research. NLR may be an important biomarker in risk stratifying patients in AIS to identify and select those who are more likely to benefit from reperfusion therapy. Appropriate clinical decision-making tools and models are required to harness the predictive value of NLR, which could be useful in identifying and monitoring high-risk patients to guide early treatment and achieve improved outcomes. Our understanding of the role of NLR in the immunopathogenesis of AIS is also suboptimal, which hinders the ability to translate this into clinical practice.
Collapse
Affiliation(s)
- Divyansh Sharma
- Neurovascular Imaging Laboratory Clinical Sciences Stream Ingham Institute for Applied Medical Research Sydney NSW Australia
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
| | - Kevin J. Spring
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- NSW Health Pathology NSW Brain Clot Bank Sydney NSW Australia
- Medical Oncology Group Liverpool Clinical School Western Sydney University & Ingham Institute of Applied Medical Research Sydney NSW Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory Clinical Sciences Stream Ingham Institute for Applied Medical Research Sydney NSW Australia
- NSW Health Pathology NSW Brain Clot Bank Sydney NSW Australia
- Department of Neurology & Neurophysiology Liverpool Hospital and South Western Sydney Local Health District (SWSLHD) Sydney NSW Australia
| |
Collapse
|
22
|
Abcouwer SF, Shanmugam S, Muthusamy A, Lin CM, Kong D, Hager H, Liu X, Antonetti DA. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. J Neuroinflammation 2021; 18:186. [PMID: 34446062 PMCID: PMC8394696 DOI: 10.1186/s12974-021-02237-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Several retinal pathologies exhibit both inflammation and breakdown of the inner blood-retinal barrier (iBRB) resulting in vascular permeability, suggesting that treatments that trigger resolution of inflammation may also promote iBRB restoration. Methods Using the mouse retinal ischemia-reperfusion (IR) injury model, we followed the time course of neurodegeneration, inflammation, and iBRB disruption and repair to examine the relationship between resolution of inflammation and iBRB restoration and to determine if minocycline, a tetracycline derivative shown to reverse microglial activation, can hasten these processes. Results A 90-min ischemic insult followed by reperfusion in the retina induced cell apoptosis and inner retina thinning that progressed for approximately 2 weeks. IR increased vascular permeability within hours, which resolved between 3 and 4 weeks after injury. Increased vascular permeability coincided with alteration and loss of endothelial cell tight junction (TJ) protein content and disorganization of TJ protein complexes. Shunting of blood flow away from leaky vessels and dropout of leaky capillaries were eliminated as possible mechanisms for restoring the iBRB. Repletion of TJ protein contents occurred within 2 days after injury, long before restoration of the iBRB. In contrast, the eventual re-organization of TJ complexes at the cell border coincided with restoration of the barrier. A robust inflammatory response was evident a 1 day after IR and progressed to resolution over the 4-week time course. The inflammatory response included a rapid and transient infiltration of granulocytes and Ly6C+ classical inflammatory monocytes, a slow accumulation of Ly6Cneg monocyte/macrophages, and activation, proliferation, and mobilization of resident microglia. Extravasation of the majority of CD45+ leukocytes occurred from the superficial plexus. The presence of monocyte/macrophages and increased numbers of microglia were sustained until the iBRB was eventually restored. Intervention with minocycline to reverse microglial activation at 1 week after injury promoted early restoration of the iBRB coinciding with decreased expression of mRNAs for the microglial M1 markers TNF-α, IL-1β, and Ptgs2 (Cox-2) and increased expression of secreted serine protease inhibitor Serpina3n mRNA. Conclusions These results suggest that iBRB restoration occurs as TJ complexes are reorganized and that resolution of inflammation and restoration of the iBRB following retinal IR injury are functionally linked. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02237-5.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.,Department of Molecular and Integrative Physiology, Ann Arbor, MI, 48109, USA
| |
Collapse
|
23
|
Cross-Talk of Atherosclerosis and Ischemic Stroke: Dramatic Role of Neutrophils. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inappropriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Understanding AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke. Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were enrolled. Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigorous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade. The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi proteins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages) are beneficial in the induction of inflammatory microenvironment. Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the prevention of AS and IS.
Collapse
|
24
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R. IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 2021; 146:155626. [PMID: 34157522 DOI: 10.1016/j.cyto.2021.155626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ischemic stroke is caused by a sudden neurological defect following a vascular occlusion and elicits a local and systemic inflammation in brain tissue. Interleukin-38 is an anti-inflammatory cytokine associated with ischemic and inflammatory diseases. This study was designed to analyze the effect of tPA therapy on interleukin-38 serum level changes and the serum level of IL-38 in the prognosis of ischemic stroke patients in the next three months. METHODS We enrolled 29 ischemic stroke patients confirmed by a neurologist based on radiologic and clinical manifestation between 2019 September to 2020 February. The patients who had NIHSS more than 6 with no underlying inflammatory diseases were selected for tPA therapy. On admission and 24 h after tPA therapy, the IL-38 serum level was measured by ELISA kit. RESULTS The results showed that serum levels of IL-38 were significantly increased after tPA therapy (P < 0.001). A remarkable relationship was observed between the modified Rankin Score (mRS) and IL-38 serum changes in response to tPA therapy (P < 0.001). Besides, IL-38 serum changes following tPA were dramatically related to NIHSS at hospitalization (P = 0.007). Also, our analysis posed a positive relation between NIHSS at hospitalization and mRs criteria (P = 0.023). No notable relation has been observed between IL-38 serum levels before and after tPA and mRs (P = 0.601 and P = 0.074, respectively). Furthermore, there was no evidence for the relation between NIHSS at hospitalization and IL-38 levels before and after tPA (P = 0.457 and P = 0.105, respectively). CONCLUSION The results indicate that tPA could meaningfully increase the IL-38 serum level. Also, a negative correlation has been found between IL-38 serum changes in response to tPA and mRS. Since the lower changes in IL-38 serum level result in a poorer prognosis, we conclude that IL-38 serum changes might be a novel early predictor factor for ischemic stroke prognosis.
Collapse
Affiliation(s)
- Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Abdolreza Ghoreishi
- Stroke Research Group, Head of Stroke Care Unit, Department of Neurology, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Faghihzadeh
- Department of Biostatistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
26
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
28
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
29
|
Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 2021; 27:36-47. [PMID: 33381913 PMCID: PMC7804893 DOI: 10.1111/cns.13569] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
The blood-brain barrier (BBB) is an important physiological barrier that separates the central nervous system (CNS) from the peripheral circulation, which contains inflammatory mediators and immune cells. The BBB regulates cellular and molecular exchange between the blood vessels and brain parenchyma. Normal functioning of the BBB is crucial for the homeostasis and proper function of the brain. It has been demonstrated that peripheral inflammation can disrupt the BBB by various pathways, resulting in different CNS diseases. Recently, clinical research also showed CNS complications following SARS-CoV-2 infection and chimeric antigen receptor (CAR)-T cell therapy, which both lead to a cytokine storm in the circulation. Therefore, elucidation of the mechanisms underlying the BBB disruption induced by peripheral inflammation will provide an important basis for protecting the CNS in the context of exacerbated peripheral inflammatory diseases. In the present review, we first summarize the physiological properties of the BBB that makes the CNS an immune-privileged organ. We then discuss the relevance of peripheral inflammation-induced BBB disruption to various CNS diseases. Finally, we elaborate various factors and mechanisms of peripheral inflammation that disrupt the BBB.
Collapse
Affiliation(s)
- Xiaowen Huang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular ImmunomodulationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
30
|
Kannan A, Delgardo M, Pennington-FitzGerald W, Jiang EX, Christophe BR, Connolly ES. Pharmacological management of cerebral ischemia in the elderly. Expert Opin Pharmacother 2020; 22:897-906. [PMID: 33382005 DOI: 10.1080/14656566.2020.1856815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: For elderly adults in the United States, stroke is the fifth leading cause of death of which ischemic strokes comprise a vast majority. Optimal pharmacological management of elderly ischemic stroke patients involves both reperfusion and supportive care. Recent research into pharmacological management has focused on vascular, immunomodulatory, cytoprotective, and alternative agents, some of which have shown limited success in clinical trials. However, no treatments have been established as a reliable mode for management of cerebral ischemia for elderly adults beyond acute thrombolysis.Areas covered: The authors conducted a literature search for ischemic stroke management in the elderly and a search for human drug studies for managing ischemic stroke on clinicaltrials.gov. Here, they describe recent progress in the pharmacological management of cerebral ischemia in the elderly.Expert opinion: Many drug classes (antihypertensive, cytoprotective and immunomodulatory, and alternative agents) have been explored with limited success in managing ischemic stroke, though some have shown preventative benefits. We generally observed a broad gap in evidence on elderly patients from studies across all drug classes, necessitating further studies to gain an understanding of effective management of ischemic stroke in this large demographic of patients.
Collapse
Affiliation(s)
- Adithya Kannan
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Mychael Delgardo
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | | | - Enoch X Jiang
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Brandon R Christophe
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
31
|
Atif F, Yousuf S, Espinosa-Garcia C, Harris WAC, Stein DG. Post-ischemic stroke systemic inflammation: Immunomodulation by progesterone and vitamin D hormone. Neuropharmacology 2020; 181:108327. [PMID: 32950558 DOI: 10.1016/j.neuropharm.2020.108327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Post-stroke systemic inflammation, due to the injury itself and exacerbated by in-hospital infections, can increase morbidity and mortality in stroke patients. In this study, we examined the immunomodulatory effects of progesterone (P4) alone and in combination with vitamin D hormone (VDH) on acute phase post-stroke peripheral immune dysfunction and functional/behavioral deficits. Adult rats underwent transient middle cerebral artery occlusion/reperfusion (tMCAO) and delayed systemic inflammation was induced by injections of lipopolysaccharide (LPS) beginning 24 h post-stroke. Animals were tested for behavioral outcomes and immune function at day 4 post-stroke. We also measured infarction volume and markers of neuronal inflammation (GFAP, IL-6) and apoptosis (cleaved caspase-3) in brain post-stroke. We observed the worst stroke outcomes in the stroke + systemic inflammation group compared to the stroke-alone group. Flow cytometric analysis of different subsets of immune cells in blood, spleen and thymus revealed peripheral immune dysfunction which was restored by both P4 and VDH monotherapy. P4 monotherapy reduced infarction volume, behavioral/functional deficits, peripheral immune dysfunction, neuronal inflammation, and apoptosis induced by post-stroke systemic inflammation. Combination treatment with P4+VDH improved outcomes better than monotherapy. Our findings can be taken to suggest that the current standard of care for stroke and post-stroke infection can be substantially improved by P4 and VDH combination therapy.
Collapse
Affiliation(s)
- Fahim Atif
- Brain Research Laboratory, Department of Emergency Medicine, USA.
| | - Seema Yousuf
- Brain Research Laboratory, Department of Emergency Medicine, USA
| | | | - Wayne A C Harris
- Emory Integrated Computing Core, School of Medicine, Emory University, Atlanta, GA, 30322,, USA
| | - Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, USA
| |
Collapse
|
32
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
33
|
A20-Binding Inhibitor of NF- κB 1 Ameliorates Neuroinflammation and Mediates Antineuroinflammatory Effect of Electroacupuncture in Cerebral Ischemia/Reperfusion Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6980398. [PMID: 33110436 PMCID: PMC7582058 DOI: 10.1155/2020/6980398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.
Collapse
|
34
|
Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak B, Persidsky Y, Rom S. miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab 2020; 40:1953-1965. [PMID: 31601141 PMCID: PMC7786850 DOI: 10.1177/0271678x19882264] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most neurological diseases, including stroke, lead to some degree of blood-brain barrier (BBB) dysfunction. A significant portion of BBB injury is caused by inflammation, due to pro-inflammatory factors produced in the brain, and by leukocyte engagement of the brain endothelium. Recently, microRNAs (miRNAs) have appeared as major regulators of inflammation-induced changes to gene expression in the microvascular endothelial cells (BMVEC) that comprise the BBB. However, miRNAs' role during cerebral ischemia/reperfusion is still underexplored. Endothelial levels of miR-98 were significantly altered following ischemia/reperfusion insults, both in vivo and in vitro, transient middle cerebral artery occlusion (tMCAO), and oxygen-glucose deprivation (OGD), respectively. Overexpression of miR-98 reduced the mouse's infarct size after tMCAO. Further, miR-98 lessened infiltration of proinflammatory Ly6CHI leukocytes into the brain following stroke and diminished the prevalence of M1 (activated) microglia within the impacted area. miR-98 attenuated BBB permeability, as demonstrated by changes to fluorescently-labeled dextran penetration in vivo and improved transendothelial electrical resistance (TEER) in vitro. Treatment with miR-98 improved significantly the locomotor impairment. Our study provides identification and functional assessment of miRNAs in brain endothelium and lays the groundwork for improving therapeutic approaches for patients suffering from ischemic attacks.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | | | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
35
|
Zhao S, Liu Z, Yu Z, Wu X, Li R, Tang X. BIO alleviates inflammation through inhibition of GSK-3β in a rat model of intracerebral hemorrhage. J Neurosurg 2020; 133:383-391. [PMID: 31226691 DOI: 10.3171/2019.4.jns183501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/08/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Inflammation plays a key role in secondary brain damage following intracerebral hemorrhage (ICH). Glycogen synthase kinase-3β (GSK-3β) plays a strong proinflammatory role in many CNS diseases, including stroke. The present study was undertaken to examine the effects of 6-bromoindirubin-3'-oxime (BIO), a specific inhibitor of GSK-3β, on inflammation in ICH rats. METHODS An ICH rat model was induced by autologous whole-blood injection into the striatum. First, 10, 20, 40, 60, 80, or 100 μg/kg BIO was applied to ICH animals to determine an optimal dosage for producing sufficient GSK-3β inhibition in rat ipsilateral hippocampus by Western blotting. Second, 40 μg/kg BIO was applied to ICH rats for 1, 3, 7, or 14 days, respectively, to determine a suitable intervention time course of BIO by Western blotting analysis on GSK-3β. Third, Western blotting and enzyme-linked immunosorbent assay were used for quantification of inflammation-related factors upstream or downstream of GSK-3β in rat ipsilateral hippocampus. Then, immunohistochemical staining was applied to detect activated microglia and apoptotic cells in rat ipsilateral hippocampus. Last, neurobehavioral tests were performed to assess the sensorimotor impairments in the ICH rats. RESULTS The results show that BIO 1) blocked GSK-3βTyr216 phosphorylation/activation, thus stabilizing β-catenin, increasing upstream brain-derived neurotrophic factor and downstream heat shock protein 70 levels, and decreasing the levels of nuclear factor-κB p65 and cyclooxygenase 2; 2) decreased the levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-1β and IL-6 and elevated the level of antiinflammatory cytokine IL-10; 3) inhibited microglia activation and cell apoptosis; and 4) improved the sensorimotor deficits of ICH rats. CONCLUSIONS BIO posttreatment inhibited microglia activation, prevented inflammation and hippocampal cell death, and ameliorated functional and morphological outcomes in a rat ICH model through inactivation of GSK-3β.
Collapse
|
36
|
Bernstein DL, Gajghate S, Reichenbach NL, Winfield M, Persidsky Y, Heldt NA, Rom S. let-7g counteracts endothelial dysfunction and ameliorating neurological functions in mouse ischemia/reperfusion stroke model. Brain Behav Immun 2020; 87:543-555. [PMID: 32017988 PMCID: PMC7316629 DOI: 10.1016/j.bbi.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke is a debilitating disease, accounting for almost 20% of all hospital visits, and 8% of all fatalities in the United States in 2017. Following an ischemic attack, inflammatory processes originating from endothelial cells within the brain microvasculature can induce many toxic effects into the impacted area, from both sides of the blood brain barrier (BBB). In addition to increased BBB permeability, impacted brain microvascular endothelial cells can recruit macrophages and other immune cells from the periphery and can also trigger the activation of microglia and astrocytes within the brain. We have identified a key microRNA, let-7g, which levels were drastically diminished as consequence of transient middle cerebral artery occlusion (tMCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro ischemia/reperfusion conditions, respectively. We have observed that let-7g* liposome-based delivery is capable of attenuating inflammation after stroke, reducing BBB permeability, limiting brain infiltration by CD3+CD4+ T-cells and Ly6G+ neutrophils, lessening microglia activation and neuronal death. These effects consequently improved clinical outcomes, shown by mitigating post-stroke gait asymmetry and extremity motor function. Due to the role of the endothelium in propagating the effects of stroke and other inflammation, treatments which can reduce endothelial inflammation and limit ischemic damage and improving recovery after a stroke are required. Our findings demonstrate a critical link between the CNS inflammation and the immune system reaction and lay important groundwork for future stroke pharmacotherapies.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
37
|
Abstract
Stroke is the leading cause of long-term disability with no current treatment addressing post-stroke disability. The complex pathophysiology of stroke and the brain's limited potential for regeneration prevents sufficient endogenous repair for complete recovery. While engineered materials provide an exciting opportunity to augment endogenous repair in conjunction with other therapies that address post-stroke disability, much of the preclinical work in this arena is still in its infancy. Biomaterials can be used to enhance drug- or stem cell-sustained and targeted delivery. Moreover, materials can act as extracellular matrix-mimics and augment a pro-repair environment by addressing astrogliosis, inflammation, neurogenesis, axonal sprouting, and angiogenesis. Lastly, there is a growing need to elucidate stroke repair mechanisms to identify novel targets to inform material design for brain repair after stroke.
Collapse
Affiliation(s)
- Kevin Erning
- Duke University Biomedical Engineering Department, 101 Science Drive, CIEMAS, NC 27707
| | - Tatiana Segura
- Duke University Biomedical Engineering Department, 101 Science Drive, CIEMAS, NC 27707
| |
Collapse
|
38
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
39
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
40
|
Ma F, Sun P, Zhang X, Hamblin MH, Yin KJ. Endothelium-targeted deletion of the miR-15a/16-1 cluster ameliorates blood-brain barrier dysfunction in ischemic stroke. Sci Signal 2020; 13:13/626/eaay5686. [PMID: 32265338 DOI: 10.1126/scisignal.aay5686] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) maintains a stable brain microenvironment. Breakdown of BBB integrity during cerebral ischemia initiates a devastating cascade of events that eventually leads to neuronal loss. MicroRNAs are small noncoding RNAs that suppress protein expression, and we previously showed that the miR-15a/16-1 cluster is involved in the pathogenesis of ischemic brain injury. Here, we demonstrated that when subjected to experimentally induced stroke, mice with an endothelial cell (EC)-selective deletion of miR-15a/16-1 had smaller brain infarcts, reduced BBB leakage, and decreased infiltration of peripheral immune cells. These mice also showed reduced infiltration of proinflammatory M1-type microglia/macrophage in the peri-infarct area without changes in the number of resolving M2-type cells. Stroke decreases claudin-5 abundance, and we found that EC-selective miR-15a/16-1 deletion enhanced claudin-5 mRNA and protein abundance in ischemic mouse brains. In cultured mouse brain microvascular ECs (mBMECs), the miR-15a/16-1 cluster directly bound to the 3' untranslated region (3'UTR) of Claudin-5, and lentivirus-mediated ablation of miR-15a/16-1 diminished oxygen-glucose deprivation (OGD)-induced down-regulation of claudin-5 mRNA and protein abundance and endothelial barrier dysfunction. These findings suggest that genetic deletion of endothelial miR-15a/16-1 suppresses BBB pathologies after ischemic stroke. Elucidating the molecular mechanisms of miR-15a/16-1-mediated BBB dysfunction may enable the discovery of new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Feifei Ma
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ping Sun
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA
| |
Collapse
|
41
|
Karaszewski B, Jabłoński B, Żukowicz W. The salvageable brain in acute ischemic stroke. The concept of a reverse mismatch: a mini-review. Metab Brain Dis 2020; 35:237-240. [PMID: 31858389 DOI: 10.1007/s11011-019-00517-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Recent studies have opened a new era in treatment of acute ischemic stroke, enabling thrombolysis or thrombectomy far beyond the standard therapeutic "time windows". These therapeutic protocols are built on various combinations of perfusion parameters, lesion volume, and neurological assessment. However, on top of the brain perfusion, there are other multiple factors that might modify the probability of neuronal apoptosis and necrosis following focal cerebral ischemia. We hypothesize that a diagnostic approach with measurements of selected biochemical parameters in the brain, in addition to those based solely on perfusion or MR diffusion, might allow for more personalized management protocols. Moreover, some local processes in the brain, triggered by acute ischemia or its consequences other than hypoperfusion directly, like, for example, excitotoxicity, might lead to apoptosis of the cells in the brain localized also beyond the area of hypoperfusion. This phenomenon might be responsible for the expansion of the brain damage much beyond the initial perfusion deficit or beyond the initial diffusion (DWI) restriction area, reported for example in T2W or FLAIR MRI in some stroke patients who have no other reasons to deteriorate (a reverse DWI - T2W / FLAIR, a reverse perfusion - DWI, or a reverse DWI - DWI mismatch).
Collapse
Affiliation(s)
- Bartosz Karaszewski
- Department (Chair) of Neurology, Medical University of Gdansk, Gdansk, Poland.
- Department of Adult Neurology, Medical University of Gdansk and University Clinical Center in Gdansk, ul. Dębinki 7, 80-952, Gdańsk, Poland.
- The Main Expert in Stroke Medicine for the Polish Ministry of Health, Warsaw, Poland.
| | - Bartosz Jabłoński
- Department (Chair) of Neurology, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk and University Clinical Center in Gdansk, ul. Dębinki 7, 80-952, Gdańsk, Poland
| | - Wioletta Żukowicz
- Department (Chair) of Neurology, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk and University Clinical Center in Gdansk, ul. Dębinki 7, 80-952, Gdańsk, Poland
| |
Collapse
|
42
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|
43
|
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler Thromb Vasc Biol 2019; 39:2240-2247. [PMID: 31510792 DOI: 10.1161/atvbaha.119.312816] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.
Collapse
Affiliation(s)
- Anuska V Andjelkovic
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Jianming Xiang
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Svetlana M Stamatovic
- Pathology (A.V.A., S.M.S.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Ya Hua
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Guohua Xi
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Michael M Wang
- Neurology (M.M.W.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| | - Richard F Keep
- From the Departments of Neurosurgery (A.V.A., J.X., Y.H., G.X., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI.,Molecular and Integrative Physiology (M.M.W., R.F.K.), University of Michigan, Ann Arbor and Department of Veterans Affairs, Neurology Service, VA Ann Arbor Healthcare System, MI
| |
Collapse
|
44
|
Colpo GD, Venna VR, McCullough LD, Teixeira AL. Systematic Review on the Involvement of the Kynurenine Pathway in Stroke: Pre-clinical and Clinical Evidence. Front Neurol 2019; 10:778. [PMID: 31379727 PMCID: PMC6659442 DOI: 10.3389/fneur.2019.00778] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Stroke is the second leading cause of death after ischemic heart disease and the third leading cause of disability-adjusted life-years lost worldwide. There is a great need for developing more effective strategies to treat stroke and its resulting impairments. Among several neuroprotective strategies tested so far, the kynurenine pathway (KP) seems to be promising, but the evidence is still sparse. Methods: Here, we performed a systematic review of preclinical and clinical studies evaluating the involvement of KP in stroke. We searched for the keywords: (“kynurenine” or “kynurenic acid” or “quinolinic acid”) AND (“ischemia” or “stroke” or “occlusion) in the electronic databases PubMed, Scopus, and Embase. A total of 1,130 papers was initially retrieved. Results: After careful screening, forty-five studies were included in this systematic review, being 39 pre-clinical and six clinical studies. Despite different experimental models of cerebral ischemia, the results are concordant in implicating the KP in the pathophysiology of stroke. Preclinical evidence also suggests that treatment with kynurenine and KMO inhibitors decrease infarct size and improve behavioral and cognitive outcomes. Few studies have investigated the KP in human stroke, and results are consistent with the experimental findings that the KP is activated after stroke. Conclusion: Well-designed preclinical studies addressing the expression of KP enzymes and metabolites in specific cell types and their potential effects at cellular levels alongside more clinical studies are warranted to confirm the translational potential of this pathway as a pharmacological target for stroke and related complications.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Venugopal R Venna
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D McCullough
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
45
|
Zhang YY, Huang NN, Zhao YX, Li YS, Wang D, Fan YC, Li XH. Elevated Tumor Necrosis Factor-a-induced Protein 8-like 2 mRNA from Peripheral Blood Mononuclear Cells in Patients with Acute Ischemic Stroke. Int J Med Sci 2018; 15:1713-1722. [PMID: 30588195 PMCID: PMC6299423 DOI: 10.7150/ijms.27817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Tumor necrosis factor-a-induced protein 8-like 2 (TIPE2) is a novel regulator of immunity and protects against experimental stroke. However, the expression and function of TIPE2 in patients with acute ischemic stroke has not been well demonstrated. Methods: A total of 182 consecutive patients with acute ischemic stroke and 40 healthy controls were included during November 2015 to June 2016. The mRNA levels of TIPE2, interleukin(IL)-1β, IL-10, IL-6, nuclear factor(NF)-κβ, activator protein(AP)-1, interferon(IFN)-γ and tumor necrosis factor(TNF)-α from peripheral blood mononuclear cells were determined using real time quantitative reverse transcriptase polymerase chain reaction. The severity of stroke was assessed using the National Institutes of Health Stroke Scale (NIHSS) score. Results: The median mRNA levels of TIPE2, TNF-α, AP-1, IFN-γ and NF-κβ in patients with acute ischemic stroke were significantly higher than healthy controls (all P<0.001, respectively). Of note, TIPE2 mRNA showed an increasing trend on a time-dependent manner after the onset of stroke. Furthermore, TIPE2 mRNA was negatively associated with lesion volumes (r=-0.23, P<0.01), NIHSS(r=-0.15, P<0.05), TNF-α(r=-0.33,P<0.001), AP-1(r=-0.28,P<0.001), IFN-γ (r=-0.16, P<0.05) and NF-κβ (r=-0.13, P<0.05), but positively associated with IL-6(r=0.14, P<0.05) and IL-10(r=-0.31, P<0.001). Hierarchy cluster analysis showed that TIPE2 mRNA has nearest membership with TNF-α, followed by IL-6, NF-κβ, AP-1, IL-10, IL-1β and IFN-γ. In addition, TIPE2 mRNA in survivals (n=149) was significantly higher than nonsurvivals (n=33) (P<0.001), and showed a great odd ratio (0.52, 95% confidence interval: 0.349-0.760, P<0.001) on 3-month mortality. Conclusions: TIPE2 mRNA contributed to the immune response of stroke and might be a potential biomarker for the mortality of acute ischemic stroke.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Na-Na Huang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yan-Xin Zhao
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yan-Shuang Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Dong Wang
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Hong Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan 250013, China
| |
Collapse
|