1
|
Abu-Baih DH, Abd El-Mordy FM, Saber EA, Ali SFES, Hisham M, Alanazi MA, Altemani FH, Algehainy NA, Lehmann L, Abdelmohsen UR. Unlocking the potential of edible Ulva sp. seaweeds: Metabolomic profiling, neuroprotective mechanisms, and implications for Parkinson's disease management. Arch Pharm (Weinheim) 2024; 357:e2400418. [PMID: 39086040 DOI: 10.1002/ardp.202400418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Green seaweed (Ulva sp.) is frequently used as a food component and nutraceutical agent because of its high polysaccharide and natural fiber content in Asian countries. This study investigates both metabolomic profiling of Ulva sp. and the neuroprotective efficacy of its ethanol extract and its underlying mechanisms in a rotenone-induced rat model of neurodegeneration, mimicking Parkinson's disease (PD) in humans. Metabolomic profiling of Ulva sp. extract was done using liquid chromatography high resolution electrospray ionization mass spectrometry and led to the identification of 22 compounds belonging to different chemical classes.Catenin Beta Additionally, this study demonstrated the neuroprotective properties against rotenone-induced PD, which was achieved through the suppression of elevated levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 together with the inhibition of reactive oxygen species (ROS) generation, apoptosis, inflammatory mediators, and the phosphoinositide 3-kinases/serine/threonine protein kinase (PI3K/AKT) pathway. Using a protein-protein interaction network, AKT1, GAPDH, TNF-α, IL-6, caspase 3, signal transducer and activator of transcription 3, Catenin Beta 1, epidermal growth factor receptor, B-cell lymphoma -2, and HSP90AA1 were identified as the top 10 most significant genes. Finally, molecular docking results showed that compounds 1, 3, and 7 might possess a promising anti-parkinsonism effect by binding to active sites of selected hub genes. Therefore, it is hypothesized that the Ulva sp. extract has the potential to be further developed as a potential therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Dalia H Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minya, Egypt
- Deraya Center for Scientific Research, Deraya University, New Minia City, Minia, Egypt
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | | | | | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Egypt
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Leane Lehmann
- Chair of Food Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia City, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Bamisi O, Oluwalabani AO, Arogundade TT, Olajide OJ. Neuroinflammation and oxidative redox imbalance drive memory dysfunction in adolescent rats prenatally exposed to Datura Stramonium. Neurotoxicol Teratol 2024; 106:107394. [PMID: 39303770 DOI: 10.1016/j.ntt.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Although there have been reports indicating that Datura Stramonium (D. stramonium) may induce anticholinergic and neuropsychiatry effects, the compound is still being used for recreational and medicinal purposes while ingestion during pregnancy has been documented. Intriguingly, minimal studies have investigated the potential neurotoxic impact of D. stramonium exposure at various stages of gestation, including its potential implication on neurophysiological well-being later in life. The present study, therefore, examined spontaneous working memory and the expression of specific neurochemicals modulating crucial neural processes in adolescent rats exposed to high and low D. stramonium doses during different stages of gestation. Pregnant rats were orally infused with 150- or 500- mg/kg/day of D. stramonium either during mid- (second week; days 8-14) or late- (third week; days 15-21) gestation, while control rats received PBS at dosing periods. Behavioral characterization of offspring between postnatal days (PD) 40 and 41 in the Y-maze revealed that D. stramonium perturbed spatial working memory in rats, although locomotor activity was generally unaltered. In addition to SOD and nitric oxide downregulation, induction of oxidative stress in the hippocampus and prefrontal cortex (PFC) of young adult rats prenatally exposed to D. stramonium was corroborated by depletion of key antioxidant regulatory elements glutathione peroxidase, glutathione reductase and catalase, which was accompanied by lipid peroxidation shown by increased MDA levels. Whereas increased expression of acetylcholinesterase and LDH was seen in adolescent rats prenatally infused D. stramonium, acetylcholine levels were downregulated in both hippocampal and PFC lysates, suggesting cholinergic and metabolic dysfunctions. Immunohistochemical labelling of GFAP and IBA-1 revealed increased expression of reactive astrocytes and microglia respectively, while the accompanying TNFα upregulation in both the hippocampus (dentate gyrus) and PFC causally linked intrauterine D. stramonium exposure with neuroinflammatory responses postnatally. Overall, our data correlated postnatal spatial working memory dysfunction evoked by D. stramonium exposure during critical stages of embryonic development to oxidative redox impairment, cholinergic disruption and neuroinflammatory perturbations in rats.
Collapse
Affiliation(s)
- Olawande Bamisi
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, Ekiti State University, Ado-Ekiti, Nigeria
| | | | - Tolulope Timothy Arogundade
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria; Department of Human Anatomy, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria; Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
3
|
Dolrahman N, Thong-Asa W. Beta-sitosterol mitigates cognitive deficit and hippocampal neurodegeneration in mice with trimethyltin-induced toxicity. Exp Anim 2024; 73:433-445. [PMID: 38945945 PMCID: PMC11534485 DOI: 10.1538/expanim.24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024] Open
Abstract
The present study investigated the neural health benefit of beta-sitosterol (BSS) against trimethyltin (TMT)-induced neurodegeneration in mice. Forty male Institute of Cancer Research (ICR) mice were randomly divided into Sham-veh, TMT-veh, TMT-BSS50, and TMT-BSS100. A one-time intraperitoneal injection of 2.6 mg/kg of TMT was given to mice in TMT groups. Vehicle (veh), BSS 50 mg/kg or BSS 100 mg/kg were orally given for 2 weeks. Spatial learning and memory were evaluated. Brain oxidative status, hippocampal neuropathology, and reactive astrocytes were done. White matter pathology was also evaluated. The results indicated the massy effect of TMT on induced motor ability and spatial memory deficits in accordance with increased neuronal degeneration in Cornus ammonis (CA) 1, CA3, and dentate gyrus (DG) and internal capsule white matter damage. TMT also induced the reduction of reactive astrocytes in CA1 and DG. Brain's catalase activity was significantly reduced by TMT, but not in mice with BSS treatments. Both doses of BSS treatment exhibited improvement in motor ability and spatial memory deficits in accordance with the activation of reactive astrocytes in CA1, CA3, and DG. However, they successfully prevented the increase of neuronal degeneration in CA1 found only with the BSS dose of 100 mg/kg, and it was indicated as the effective dose for neuroprotection in the vulnerable brain area. This study demonstrated mitigative effects of BSS against motor ability and memory deficits with neural health benefits, including a protective effect against CA1 neurodegeneration and a nurturing effect on hippocampal reactive astrocytes.
Collapse
Affiliation(s)
- Nurinee Dolrahman
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Jatujak, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Yu YH, Im H, Park S, Song B, Park DK, Kim DS, Gil HW. AST-120 Protects Cognitive and Emotional Impairment in Chronic Kidney Disease Induced by 5/6 Nephrectomy. Brain Sci 2024; 14:1043. [PMID: 39595807 PMCID: PMC11591787 DOI: 10.3390/brainsci14111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Uremic toxins resulting from chronic kidney disease (CKD) can cause cognitive and emotional disorders, as well as cardiovascular diseases. Indoxyl sulfate (IS) and p-cresol are notable uremic toxins found in patients with CKD. However, few studies have investigated whether reducing uremic toxins can alleviate cognitive and emotional disorders associated with CKD. METHODS We studied the effects of AST-120, which lowers IS levels, through behavioral tests, local field potentials, field excitatory postsynaptic potentials, and histological experiments in a 5/6 nephrectomy CKD model. RESULTS We confirmed AST-120's effectiveness in CKD by measuring serum creatinine, blood urea nitrogen, and IS levels and performing renal tissue staining. Behavioral phenotypes indicated an alleviation of cognitive and anxiety disorders following AST-120 treatment in CKD-induced rats, which was further validated through local field potentials and field excitatory postsynaptic potential recordings. Double immunofluorescence staining for aquaporin-4 and glial fibrillary acidic protein in the hippocampus of CKD rats treated with AST-120 showed reduced coexpression. CONCLUSIONS Our findings demonstrate the potential therapeutic effects of AST-120 in lowering IS levels and improving cognitive and emotional impairments associated with CKD.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| | - Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (B.S.); (D.-K.P.); (D.-S.K.)
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si 31151, Republic of Korea;
| |
Collapse
|
5
|
Ma Y, Qiao Y, Gao X. Potential role of hippocampal neurogenesis in spinal cord injury induced post-trauma depression. Neural Regen Res 2024; 19:2144-2156. [PMID: 38488549 PMCID: PMC11034606 DOI: 10.4103/1673-5374.392855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 04/24/2024] Open
Abstract
It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a variety of secondary complications, including memory loss, cognitive decline, depression, and Alzheimer's disease. The large-scale longitudinal population-based studies indicate that post-trauma depression is highly prevalent in spinal cord injury patients. Yet, few basic studies have been conducted to address the potential molecular mechanisms. One of possible factors underlying the depression is the reduction of adult hippocampal neurogenesis which may come from less physical activity, social isolation, chronic pain, and elevated neuroinflammation after spinal cord injury. However, there is no clear consensus yet. In this review, we will first summarize the alteration of hippocampal neurogenesis post-spinal cord injury. Then, we will discuss possible mechanisms underlie this important spinal cord injury consequence. Finally, we will outline the potential therapeutic options aimed at enhancing hippocampal neurogenesis to ameliorate depression.
Collapse
Affiliation(s)
- Ying Ma
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Qiao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, Indianapolis, IN, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Tweedale M, Morys F, Pastor-Bernier A, Azizi H, Tremblay C, Dagher A. Obesity and diffusion-weighted imaging of subcortical grey matter in young and older adults. Appetite 2024; 200:107527. [PMID: 38797235 DOI: 10.1016/j.appet.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Obesity and hypothalamic inflammation are causally related. It is unclear whether this neuroinflammation precedes or results from obesity. Animal studies show that an increase in food intake can lead to hypothalamic inflammation, but hypothalamic inflammation can create a feedback loop that further increases food intake. Internal and external factors mediate patterns of food intake and how it can affect the hypothalamus. Measures of water diffusivity in magnetic resonance imaging of the brain such as fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) are associated with grey matter inflammation. Here, we investigated how those measures are associated with obesity-related variables in groups of young and older adults. We found relationships between decreased diffusivity and obesity markers in young adults. In older adults, obesity and comorbidities were also related to significant changes in diffusivity. Here, diffusivity was strongly associated with body mass index (BMI) and blood levels of C-reactive protein (CRP) in multiple subcortical regions, rather than only the hypothalamus. Our results suggest that diffusivity measures can be used to investigate obesity-associated changes in the brain that can potentially reflect neuroinflammation. The connection seen between subcortical inflammation and obesity opens the conversation on preventative interventions needed to reduce the effects of obesity at all stages in life.
Collapse
Affiliation(s)
- Max Tweedale
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Filip Morys
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | | - Houman Azizi
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Catania F, Romano MR, Crincoli E, Allegrini D, Miere A, Chehaibou I, Abdelmassih Y, Beaumont W, Chapron T, Souied EH, Caputo G. Phenomenology of spontaneous closure in degenerative and mixed type lamellar macular hole. Eye (Lond) 2024; 38:315-320. [PMID: 37524832 PMCID: PMC10810871 DOI: 10.1038/s41433-023-02681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
PURPOSE To the describe OCT imaging characteristics of a cohort of patients showing spontaneously closing degenerative or mixed type lamellar macular holes (LMH) and to compare them to the ones of a sex and age matched group showing stable lesions. METHODS Patients diagnosed with degenerative and mixed type LMHs showing OCT-documented spontaneous anatomical closure were retrospectively selected from 3 specialized retina centres. An equal number of age and sex matching subjects were randomly selected among patients with anatomically stable lesions. RESULTS Eleven (11) spontaneously closing (SC group) and 11 stable (ST group) degenerative LMH with a mean follow up of 4 years were recruited. Hyperreflective inner border (HIB) and linear hyperreflectivity in the outer plexiform layer (LHOP) at baseline were significantly more prevalent in SC group in processed images (respectively p = 0.007 and p = 0.003). A borderline significance in lamellar hole associated epiretinal proliferation (LHEP) at last follow up was detected (p = 0.085). As for mixed type LMH, 10 patients for SC group and 10 for ST group were recruited. LHOP at baseline in processed images was significantly more prevalent in SC group (p = 0.005). CONCLUSIONS Spontaneously closing LMHs show higher prevalence of HIB and LHOP at the beginning of the closing process, a difference which is enhanced by image processing. These signs might be a signal of microglial and Muller cells coordinated activation.
Collapse
Affiliation(s)
- Fiammetta Catania
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele - Milan, Italy
| | - Mario R Romano
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele - Milan, Italy
- Department of Ophthalmology, Humanitas Gavazzeni - Castelli, Via Giuseppe Mazzini 11, 24128, Bergamo, Italy
| | - Emanuele Crincoli
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, avenue de Verdun, 94100, Créteil, France.
| | - Davide Allegrini
- Department of Ophthalmology, Humanitas Gavazzeni - Castelli, Via Giuseppe Mazzini 11, 24128, Bergamo, Italy
| | - Alexandra Miere
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, avenue de Verdun, 94100, Créteil, France
| | - Ismael Chehaibou
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
| | - Youssef Abdelmassih
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
| | - William Beaumont
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
| | - Thibaut Chapron
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
| | - Eric H Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, avenue de Verdun, 94100, Créteil, France
| | - Georges Caputo
- Departement of Ophthalmology, Hopital Fondation Adolphe De Rothschild, 29 Rue Manin, 75019, Paris, France
| |
Collapse
|
8
|
Shin HJ, Choi SG, Qu F, Yi MH, Lee CH, Kim SR, Kim HG, Beom J, Yi Y, Kim DK, Joe EH, Song HJ, Kim Y, Kim DW. Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury. NANOSCALE 2024; 16:833-847. [PMID: 38093712 DOI: 10.1039/d3nr01318a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Seung Gyu Choi
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yoonyoung Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University and Sejong Hospital, Sejong 30099, Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
9
|
Cheng DW, Xu Y, Chen T, Zhen SQ, Meng W, Zhu HL, Liu L, Xie M, Zhen F. Emodin inhibits HDAC6 mediated NLRP3 signaling and relieves chronic inflammatory pain in mice. Exp Ther Med 2024; 27:44. [PMID: 38144917 PMCID: PMC10739165 DOI: 10.3892/etm.2023.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic pain reduces the quality of life and ability to function of individuals suffering from it, making it a common public health problem. Neuroinflammation which is mediated by the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the spinal cord participates and modulates chronic pain. A chronic inflammatory pain mouse model was created in the current study by intraplantar injection of complete Freund's adjuvant (CFA) into C57BL/6J left foot of mice. Following CFA injection, the mice had enhanced pain sensitivities, decreased motor function, increased spinal inflammation and activated spinal astrocytes. Emodin (10 mg/kg) was administered intraperitoneally into the mice for 3 days. As a result, there were fewer spontaneous flinches, higher mechanical threshold values and greater latency to fall. Additionally, in the spinal cord, emodin administration reduced leukocyte infiltration level, downregulated protein level of IL-1β, lowered histone deacetylase (HDAC)6 and NLRP3 inflammasome activity and suppressed astrocytic activation. Emodin also binds to HDAC6 via four electrovalent bonds. In summary, emodin treatment blocked the HDAC6/NLRP3 inflammasome signaling, suppresses spinal inflammation and alleviates chronic inflammatory pain.
Collapse
Affiliation(s)
- Ding-Wen Cheng
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yiwen Xu
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tao Chen
- Department of Pharmacy, Xianning Central Hospital, First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shu-Qing Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| | - Wei Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hai-Li Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ling Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Min Xie
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Fangshou Zhen
- Department of Pharmacy, Matang Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
10
|
Liang Y, Chen L, Huang Y, Xie L, Liu X, Zhou W, Cao W, Chen Z, Zhong X. Betaine eliminates CFA-induced depressive-like behaviour in mice may be through inhibition of microglia and astrocyte activation and polarization. Brain Res Bull 2024; 206:110863. [PMID: 38145759 DOI: 10.1016/j.brainresbull.2023.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Chronic pain can induce not only nociceptive but also depressive emotions. A previous study demonstrated that betaine, a commonly used nutrient supplement, has an anti-nociceptive effect, but whether betaine can alleviate chronic pain-induced depressive emotion is elusive. Our current study found that betaine administration significantly eliminated complete Freund's adjuvant (CFA)-induced pain-related depressive-like behaviour. Mechanistically, betaine treatment inhibited microglia and astrocyte activation. Furthermore, betaine significantly promoted the transition of microglia from the M1 to the M2 phenotype, as well as the transition of astrocytes from the A1 to the A2 phenotype. Additionally, the release of pro-inflammatory factors such as IL-18, IL-1β and IL-6 and anti-inflammatory factors such as IL-10 in the hippocampus induced by CFA were also reversed by betaine administration. Overall, betaine has therapeutic effects on pain-related depressive-like phenotypes caused by CFA, possibly through altering the polarization of microglia and astrocytes to reduce neuroinflammation.
Collapse
Affiliation(s)
- Yue Liang
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yanmei Huang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Lihua Xie
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xueqin Liu
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyan Zhou
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
11
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
12
|
Kaikai NE, Ba-M'hamed S, Ghanima A, Bennis M. Exposure to metam sodium-based pesticide impaired cognitive performances in adult mice: Involvement of oxidative damage and glial activation. Toxicol Appl Pharmacol 2023; 477:116677. [PMID: 37678439 DOI: 10.1016/j.taap.2023.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cognitive integrity is a critical aspect of neurological function, and a decline in cognitive function is a hallmark of neurotoxicity. Oxidative stress is a significant pathological feature contributing to cognitive deficits that can arise from exposure to environmental pollutants such as pesticides. Among these, Metam sodium-based pesticides (MS-BP) are an emergent type of pesticide widely used in the agriculture and public health sectors for controlling pests and diseases. Our prior research has shown that animals exposed to MS-BP during the early stages of brain development caused cognitive impairments. In the present study, we tested whether exposure to this compound in a fully matured brain would affect cognitive performance and induce oxidative damage to the central nervous system. In this context, adult mice received chronic treatment with increasing doses of MS-BP and subjected to a set of behavioral paradigms. Following behavioral assessment, oxidative stress and glial activation were evaluated. Our main findings showed that MS-BP chronic exposure impaired recognition and short- and long-term memory. These alterations were accompanied by increased superoxide dismutase activity and malondialdehyde level and a marked decrease in catalase activity in specific brain areas. Moreover, exposure to MS-BP is associated with a significant rise in the density of astrocytic and microglial markers, indicating a possible glial cell response within the prefrontal cortex and hippocampus. The present work demonstrated that MS-BP altered cognitive performance likely through oxidative damage to the brain.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco; Department of Biology, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health, Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco.
| |
Collapse
|
13
|
Yu YH, Kim SW, Im H, Lee YR, Kim GW, Ryu S, Park DK, Kim DS. Febrile Seizure Causes Deficit in Social Novelty, Gliosis, and Proinflammatory Cytokine Response in the Hippocampal CA2 Region in Rats. Cells 2023; 12:2446. [PMID: 37887290 PMCID: PMC10605585 DOI: 10.3390/cells12202446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Febrile seizure (FS), which occurs as a response to fever, is the most common seizure that occurs in infants and young children. FS is usually accompanied by diverse neuropsychiatric symptoms, including impaired social behaviors; however, research on neuropsychiatric disorders and hippocampal inflammatory changes following febrile seizure occurrences is very limited. Here, we provide evidence linking FS occurrence with ASD pathogenesis in rats. We developed an FS juvenile rats model and found ASD-like abnormal behaviors including deficits in social novelty, repetitive behaviors, and hyperlocomotion. In addition, FS model juvenile rats showed enhanced levels of gliosis and inflammation in the hippocampal CA2 region and cerebellum. Furthermore, abnormal levels of social and repetitive behaviors persisted in adults FS model rats. These findings suggest that the inflammatory response triggered by febrile seizures in young children could potentially serve as a mediator of social cognitive impairments.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Seong-Wook Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Yu Ran Lee
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Gun Woo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Seongho Ryu
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea;
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea; (Y.H.Y.); (H.I.); (Y.R.L.); (G.W.K.)
| |
Collapse
|
14
|
Leppert HG, Anderson JT, Timm KJ, Davoli C, Pratt MA, Booth CD, White KA, Rechtzigel MJ, Meyerink BL, Johnson TB, Brudvig JJ, Weimer JM. Sortilin inhibition treats multiple neurodegenerative lysosomal storage disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559064. [PMID: 37790379 PMCID: PMC10543011 DOI: 10.1101/2023.09.22.559064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models. Live-cell imaging and comparative transcriptomics demonstrates that the transcription factor EB (TFEB), an upstream regulator of lysosomal biogenesis, is activated upon treatment with AF38469. Utilizing CLN2 and CLN3 Batten disease mouse models, we performed a short-term efficacy study and show that treatment with AF38469 prevents the accumulation of lysosomal storage material and the development of neuroinflammation, key disease associated pathologies. Tremor phenotypes, an early behavioral phenotype in the CLN2 disease model, were also completely rescued. These findings reveal sortilin inhibition as a novel and highly efficacious therapeutic modality for the treatment of multiple forms of Batten disease.
Collapse
Affiliation(s)
- Hannah G. Leppert
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | - Kaylie J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Cristina Davoli
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | | | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Marquez-Ortiz RA, Tesic V, Hernandez DR, Akhter B, Aich N, Boudreaux PM, Clemons GA, Wu CYC, Lin HW, Rodgers KM. Neuroimmune Support of Neuronal Regeneration and Neuroplasticity following Cerebral Ischemia in Juvenile Mice. Brain Sci 2023; 13:1337. [PMID: 37759938 PMCID: PMC10526826 DOI: 10.3390/brainsci13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic damage to the brain and loss of neurons contribute to functional disabilities in many stroke survivors. Recovery of neuroplasticity is critical to restoration of function and improved quality of life. Stroke and neurological deficits occur in both adults and children, and yet it is well documented that the developing brain has remarkable plasticity which promotes increased post-ischemic functional recovery compared with adults. However, the mechanisms underlying post-stroke recovery in the young brain have not been fully explored. We observed opposing responses to experimental cerebral ischemia in juvenile and adult mice, with substantial neural regeneration and enhanced neuroplasticity detected in the juvenile brain that was not found in adults. We demonstrate strikingly different stroke-induced neuroimmune responses that are deleterious in adults and protective in juveniles, supporting neural regeneration and plasticity. Understanding age-related differences in neuronal repair and regeneration, restoration of neural network function, and neuroimmune signaling in the stroke-injured brain may offer new insights for the development of novel therapeutic strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Ricaurte A. Marquez-Ortiz
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Vesna Tesic
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Daniel R. Hernandez
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Bilkis Akhter
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Nibedita Aich
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Porter M. Boudreaux
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Garrett A. Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Hung Wen Lin
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Krista M. Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| |
Collapse
|
16
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Kim JH, Kang RJ, Hyeon SJ, Ryu H, Joo H, Bu Y, Kim JH, Suk K. Lipocalin-2 Is a Key Regulator of Neuroinflammation in Secondary Traumatic and Ischemic Brain Injury. Neurotherapeutics 2023; 20:803-821. [PMID: 36508119 PMCID: PMC10275845 DOI: 10.1007/s13311-022-01333-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Reactive glial cells are hallmarks of brain injury. However, whether these cells contribute to secondary inflammatory pathology and neurological deficits remains poorly understood. Lipocalin-2 (LCN2) has inflammatory and neurotoxic effects in various disease models; however, its pathogenic role in traumatic brain injury remains unknown. The aim of the present study was to investigate the expression of LCN2 and its role in neuroinflammation following brain injury. LCN2 expression was high in the mouse brain after controlled cortical impact (CCI) and photothrombotic stroke (PTS) injury. Brain levels of LCN2 mRNA and protein were also significantly higher in patients with chronic traumatic encephalopathy (CTE) than in normal subjects. RT-PCR and immunofluorescence analyses revealed that astrocytes were the major cellular source of LCN2 in the injured brain. Lcn2 deficiency or intracisternal injection of an LCN2 neutralizing antibody reduced CCI- and PTS-induced brain lesions, behavioral deficits, and neuroinflammation. Mechanistically, in cultured glial cells, recombinant LCN2 protein enhanced scratch injury-induced proinflammatory cytokine gene expression and inhibited Gdnf gene expression, whereas Lcn2 deficiency exerted opposite effects. Together, our results from CTE patients, rodent brain injury models, and cultured glial cells suggest that LCN2 mediates secondary damage response to traumatic and ischemic brain injury by promoting neuroinflammation and suppressing the expression of neurotropic factors.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ri Jin Kang
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Veterans Affairs Boston Healthcare System, Boston, MA USA
- Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA USA
| | - Hyejin Joo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Present Address: Pharmacological Research Division, Toxicological Evaluation and Research Department, Ministry of Food and Drug Safety, National Institute of Food and Drug Safety Evaluation, Chungju, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
18
|
Li B, Chang X, Liang X, Liu T, Shen Y, Zhang Q, Yang X, Lyu Y, Liu L, Guo J, Wu M, Gao Y, Yan X, Wang T, Zhang W, Qiu Y, Zheng J. The role of reactive astrocytes in neurotoxicity induced by ultrafine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161416. [PMID: 36621481 DOI: 10.1016/j.scitotenv.2023.161416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Epidemiological studies have shown that ambient fine particulate matter (PM) can cause various neurodegenerative diseases, including Alzheimer's disease. Reactive astrocytes are strongly induced by ambient fine PM, although their role is poorly understood. Herein, we show that A1 reactive astrocytes (A1s) were induced by neuroinflammatory microglia activated by PM with an aerodynamic diameter ≤ 0.2 μm (PM0.2). The activated-microglia induced A1s by secreting interleukin-1α, tumor necrosis factor-α, and complement 1q, and these cytokines acting together were necessary and sufficient to induce A1s. PM0.2-induced A1s could promote synaptic damage in neurons by secreting complement 3 (C3). SB 290157, a highly selective C3aR nonpeptide antagonist, partially ameliorated glial conditioned medium-induced synaptic injury. In vitro synaptic damage was partially prevented when A1 formation was blocked by minocycline. Finally, this study showed that N-acetyl-L-cysteine ameliorated PM0.2-induced neural damage independent of A1 differentiation. Collectively, these findings explain why central nervous system neurons suffer synaptic damage and neuroinflammation after PM0.2 exposure and suggest that this exposure induces A1s to contribute to synaptic damage of neurons. This study indicates a potential approach for developing improved treatment of these diseases induced by particulate exposure. SYNOPSIS: PM0.2-activated neuroinflammatory microglia induced A1 reactive astrocytes (A1s) by secreting IL-1α, TNF-α, and C1q. PM0.2-induced A1s could promote synaptic damage of neuron by secreting complement 3.
Collapse
Affiliation(s)
- Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiaohan Chang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaomin Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongmei Shen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qianwen Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Yang
- School of Materials Science and Engineering, Taiyuan University of Science and Technology, Shanxi, China
| | - Yi Lyu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - WenPing Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - JinPing Zheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
19
|
Fülöp B, Hunyady Á, Bencze N, Kormos V, Szentes N, Dénes Á, Lénárt N, Borbély É, Helyes Z. IL-1 Mediates Chronic Stress-Induced Hyperalgesia Accompanied by Microglia and Astroglia Morphological Changes in Pain-Related Brain Regions in Mice. Int J Mol Sci 2023; 24:ijms24065479. [PMID: 36982563 PMCID: PMC10052634 DOI: 10.3390/ijms24065479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αβ-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15–20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.
Collapse
Affiliation(s)
- Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- GSK Vaccines Institute for Global Health, I-53100 Siena, Italy
| | - Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Dénes
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Nikolett Lénárt
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre of Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
20
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
21
|
How viral infections cause neuronal dysfunction: a focus on the role of microglia and astrocytes. Biochem Soc Trans 2023; 51:259-274. [PMID: 36606670 DOI: 10.1042/bst20220771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
In recent decades, a number of infectious viruses have emerged from wildlife or reemerged that pose a serious threat to global health and economies worldwide. Although many of these viruses have a specific target tissue, neurotropic viruses have evolved mechanisms to exploit weaknesses in immune defenses that eventually allow them to reach and infect cells of the central nervous system (CNS). Once in the CNS, these viruses can cause severe neuronal damage, sometimes with long-lasting, life-threatening consequences. Remarkably, the ability to enter the CNS and cause neuronal infection does not appear to determine whether a viral strain causes neurological complications. The cellular mechanisms underlying the neurological consequences of viral infection are not fully understood, but they involve neuroimmune interactions that have so far focused mainly on microglia. As the major immune cells in the brain, reactive microglia play a central role in neuroinflammation by responding directly or indirectly to viruses. Chronic reactivity of microglia leads to functions that are distinct from their beneficial roles under physiological conditions and may result in neuronal damage that contributes to the pathogenesis of various neurological diseases. However, there is increasing evidence that reactive astrocytes also play an important role in the response to viruses. In this review article, we summarize the recent contributions of microglia and astrocytes to the neurological impairments caused by viral infections. By expanding knowledge in this area, therapeutic approaches targeting immunological pathways may reduce the incidence of neurological and neurodegenerative disorders and increase the therapeutic window for neural protection.
Collapse
|
22
|
The Inflammatory Gene PYCARD of the Entorhinal Cortex as an Early Diagnostic Target for Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11010194. [PMID: 36672701 PMCID: PMC9856101 DOI: 10.3390/biomedicines11010194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) is increasing year by year, which brings great challenges to human health. However, the pathogenesis of AD is still unclear, and it lacks early diagnostic targets. The entorhinal cortex (EC) is a key brain region for the occurrence of AD neurodegeneration, and neuroinflammation plays a significant role in EC degeneration in AD. This study aimed to reveal the close relationship between inflammation-related genes in the EC and AD by detecting key differentially expressed genes (DEGs) via gene function enrichment pathway analysis. GSE4757 and GSE21779 gene expression profiles of AD were downloaded from the Gene Expression Omnibus (GEO) database. R language was used for the standardization and differential analysis of DEGs. Then, significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to predict the potential biological functions of the DEGs. Finally, the significant expressions of identified DEGs were verified, and the therapeutic values were detected by a receiver operating characteristic (ROC) curve. The results showed that eight up-regulated genes (SLC22A2, ITGB2-AS1, NIT1, FGF14-AS2, SEMA3E, PYCARD, PRORY, ADIRF) and two down-regulated genes (AKAIN1, TRMT2B) may have a potential diagnostic value for AD, and participate in inflammatory pathways. The area under curve (AUC) results of the ten genes showed that they had potential diagnostic value for AD. The AUC of PYCARD was 0.95, which had the most significant diagnostic value, and it is involved in inflammatory processes such as the inflammasome complex adaptor protein. The DEGs screened, and subsequent pathway analysis revealed a close relationship between inflammation-related PYCARD and AD, thus providing a new basis for an early diagnostic target for AD.
Collapse
|
23
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
24
|
Navaei F, Fathabadi FF, Moghaddam MH, Fathi M, Vakili K, Abdollahifar MA, Boroujeni ME, Zamani N, Zamani N, Norouzian M, Aliaghaei A. Chronic exposure to methadone impairs memory, induces microgliosis, astrogliosis and neuroinflammation in the hippocampus of adult male rats. J Chem Neuroanat 2022; 125:102139. [PMID: 35872237 DOI: 10.1016/j.jchemneu.2022.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/15/2023]
Abstract
Methadone is a centrally-acting synthetic opioid analgesic widely used in methadone maintenance therapy (MMT) programs throughout the world. Given its neurotoxic effects, particularly on the hippocampus, this study aims to address the behavioral and histological alterations in the hippocampus associated with methadone administration. To do so, twenty-four adult male albino rats were randomized into two groups, methadone treatment and control. Methadone was administered subcutaneously (2.5-10 mg/kg) once a day for two consecutive weeks. A comparison was drawn with behavioral and structural changes recorded in the control group. The results showed that methadone administration interrupted spatial learning and memory function. Accordingly, treating rats with methadone not only induced cell death but also prompted the actuation of microgliosis, astrogliosis, and apoptotic biomarkers. Furthermore, the results demonstrated that treating rats with methadone decreased the complexity of astrocyte processes and the complexity of microglia processes. These findings suggest that methadone altered the special distribution of neurons. Also, a substantial increase was observed in the expression of TNF-α due to methadone. According to the findings, methadone administration exerts a neurodegenerative effect on the hippocampus via dysregulation of microgliosis, astrogliosis, apoptosis, and neuro-inflammation.
Collapse
Affiliation(s)
- Fatemeh Navaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Naghmeh Zamani
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, the Islamic Republic of Iran
| | - Nasim Zamani
- Department of Clinical Toxicology, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
25
|
Generoso JS, Thorsdottir S, Collodel A, Dominguini D, Santo RRE, Petronilho F, Barichello T, Iovino F. Dysfunctional Glymphatic System with Disrupted Aquaporin 4 Expression Pattern on Astrocytes Causes Bacterial Product Accumulation in the CSF during Pneumococcal Meningitis. mBio 2022; 13:e0188622. [PMID: 36036510 PMCID: PMC9600563 DOI: 10.1128/mbio.01886-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
Pneumococcal meningitis, inflammation of the meninges due to an infection of the Central Nervous System caused by Streptococcus pneumoniae (the pneumococcus), is the most common form of community-acquired bacterial meningitis globally. Aquaporin 4 (AQP4) water channels on astrocytic end feet regulate the solute transport of the glymphatic system, facilitating the exchange of compounds between the brain parenchyma and the cerebrospinal fluid (CSF), which is important for the clearance of waste away from the brain. Wistar rats, subjected to either pneumococcal meningitis or artificial CSF (sham control), received Evans blue-albumin (EBA) intracisternally. Overall, the meningitis group presented a significant impairment of the glymphatic system by retaining the EBA in the CSF compartments compared to the uninfected sham group. Our results clearly showed that during pneumococcal meningitis, the glymphatic system does not function because of a detachment of the astrocytic end feet from the blood-brain barrier (BBB) vascular endothelium, which leads to misplacement of AQP4 with the consequent loss of the AQP4 water channel's functionality. IMPORTANCE The lack of solute drainage due to a dysfunctional glymphatic system leads to an increase of the neurotoxic bacterial material in the CSF compartments of the brain, ultimately leading to brain-wide neuroinflammation and neuronal damage with consequent impairment of neurological functions. The loss of function of the glymphatic system can therefore be a leading cause of the neurological sequelae developing post-bacterial meningitis.
Collapse
Affiliation(s)
- Jaqueline S. Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Sigrun Thorsdottir
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roberta R. E. Santo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
26
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
27
|
Zha Z, Liu S, Liu Y, Li C, Wang L. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants (Basel) 2022; 11:antiox11081495. [PMID: 36009214 PMCID: PMC9404913 DOI: 10.3390/antiox11081495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated degenerative disease of the central nervous system (CNS) characterized by immune cell infiltration, demyelination and axonal injury. Oxidative stress-induced inflammatory response, especially the destructive effect of immune cell-derived free radicals on neurons and oligodendrocytes, is crucial in the onset and progression of MS. Therefore, targeting oxidative stress-related processes may be a promising preventive and therapeutic strategy for MS. Animal models, especially rodent models, can be used to explore the in vivo molecular mechanisms of MS considering their similarity to the pathological processes and clinical signs of MS in humans and the significant oxidative damage observed within their CNS. Consequently, these models have been used widely in pre-clinical studies of oxidative stress in MS. To date, many natural products have been shown to exert antioxidant effects to attenuate the CNS damage in animal models of MS. This review summarized several common rodent models of MS and their association with oxidative stress. In addition, this review provides a comprehensive and concise overview of previously reported natural antioxidant products in inhibiting the progression of MS.
Collapse
|
28
|
Mahmoudi A, Heydari S, Markina YV, Barreto GE, Sahebkar A. Role of statins in regulating molecular pathways following traumatic brain injury: A system pharmacology study. Biomed Pharmacother 2022; 153:113304. [PMID: 35724514 DOI: 10.1016/j.biopha.2022.113304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disorder with debilitating physical and psychological complications. Previous studies have indicated that genetic factors have a critical role in modulating the secondary phase of injury in TBI. Statins have interesting pleiotropic properties such as antiapoptotic, antioxidative, and anti-inflammatory effects, which make them a suitable class of drugs for repurposing in TBI. In this study, we aimed to explore how statins modulate proteins and pathways involved in TBI using system pharmacology. We first explored the target associations with statins in two databases to discover critical clustering groups, candidate hub and critical hub genes in the network of TBI, and the possible connections of statins with TBI-related genes. Our results showed 1763 genes associated with TBI. Subsequently, the analysis of centralities in the PPI network displayed 55 candidate hub genes and 15 hub genes. Besides, MCODE analysis based on threshold score:10 determined four modular clusters. Intersection analysis of genes related to TBI and statins demonstrated 204 shared proteins, which suggested that statins influence 31 candidate hub and 9 hub genes. Moreover, statins had the highest interaction with MCODE1. The biological processes of the 31 shared proteins are related to gene expression, inflammation, antioxidant activity, and cell proliferation. Biological enriched pathways showed Programmed Cell Death proteins, AGE-RAGE signaling pathway, C-type lectin receptor signalling pathway, and MAPK signaling pathway as top clusters. In conclusion, statins could target several critical post-TBI genes mainly involved in inflammation and apoptosis, supporting the previous research results as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, the Islamic Republic of Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, the Russian Federation
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
29
|
Wang T, Weng H, Zhou H, Yang Z, Tian Z, Xi B, Li Y. Esketamine alleviates postoperative depression-like behavior through anti-inflammatory actions in mouse prefrontal cortex. J Affect Disord 2022; 307:97-107. [PMID: 35378150 DOI: 10.1016/j.jad.2022.03.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
The rising incidence of postoperative depression (POD) in recent years has placed a heavy burden on patients' physical and mental health. At this point in time, however, POD pathogenesis remains poorly understood and novel therapeutic strategies are being sought. The present study aimed to clarify esketamine's protective effects and possible mechanisms of action in POD. To this avail, we used an animal model of postoperative depression to analyze behavioral, parameters, plus the inflammatory response in serum and in the medial prefrontal cortex (mPFC). Using immunofluorescence staining, we detected the number of microglia and parvalbumin (PV) in mPFC, and determined changes in neuronal dendritic spine density via Golgi staining. Expression of Iba1, PSD95 and NF-κB was examined by Western blot analysis. Our results show that esketamine can significantly improve depression-like symptoms caused by anesthesia and surgery. In addition, esketamine administration reversed the decrease in the density of PV neurons and restored synaptogenesis in mPFC which had been perturbed by inflammation. The evidence obtained suggests esketamine's anti-inflammatory effects may be mediated by the BDNF/TrkB signaling pathway and possibly by attenuation of the nuclear factor κB (NF-κB) pathway. These data warrant further investigations into the interplay of esketamine, and microglia in the modulation of POD symptomatology.
Collapse
Affiliation(s)
- Tianyuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Huandi Weng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongji Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Zecheng Yang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhongyou Tian
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Biao Xi
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233003, Anhui, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
30
|
Yu S, Chen X, Li X, Yan J, Jiang Y. Neuroprotective effects of CysLTR antagonist on Streptococcus pneumoniae‑induced meningitis in rats. Exp Ther Med 2022; 24:443. [PMID: 35720636 PMCID: PMC9185808 DOI: 10.3892/etm.2022.11370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) modulate central nervous system inflammatory responses via their receptors, CysLT1R and CysLT2R. It has been demonstrated that CysLTR participates in the infection process of Streptococcus pneumoniae (SP)-induced meningitis. In the present study, the effects and possible underlying mechanisms of CysLTR antagonists (pranlukast and HAMI 3379) on SP meningitis were further determined. SP meningitis was induced by intracerebroventricular injection of serotype III SP in Sprague-Dawley rats which were administrated intraperitoneally with 0.1 mg/kg antagonists. The clinical disease status of rats was evaluated by body weight and behavioral changes with neurological scoring. Survival neuron density, activated microglial and astrocytes were assessed by Nissl staining and immunohistochemical staining. The expression levels of inflammatory cytokines and NLRP3 inflammasome were detected by reverse transcription-quantitative PCR and western blotting, respectively. Pranlukast and HAMI 3379 treatment markedly alleviated the clinical disease status, which was manifested by improving body weight loss and neurological deficit. Furthermore, pranlukast and HAMI 3379 treatment ameliorated neuronal injury and inhibited microgliosis and astrogliosis. In addition, significant downregulation of inflammatory cytokines and NLRP3 expression was observed in pranlukast and HAMI 3379-treated rats. These in vivo findings indicated the neuroprotective effects of CysLTR antagonists against experimental SP-induced meningitis, and the mechanism of anti-inflammatory effects may partly be by inhibiting NLRP3 inflammasome overactivation.
Collapse
Affiliation(s)
- Shuying Yu
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaojin Chen
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaoyu Li
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jun Yan
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yingying Jiang
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
31
|
Zhang Y, Chu JMT, Wong GTC. Cerebral Glutamate Regulation and Receptor Changes in Perioperative Neuroinflammation and Cognitive Dysfunction. Biomolecules 2022; 12:biom12040597. [PMID: 35454185 PMCID: PMC9029551 DOI: 10.3390/biom12040597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is intricately linked to learning and memory. Its activity depends on the expression of AMPA and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical trauma and contributes to the development of perioperative neurocognitive disorders, which are characterized by impairment in multiple cognitive domains. In this review, we aim to examine how glutamate handling and glutamatergic function are affected by neuroinflammation and their contribution to cognitive impairment. We will first summarize the current data regarding glutamate in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative neuroinflammation and the implications they have for perioperative neurocognitive disorders.
Collapse
|
32
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
33
|
Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep 2022; 12:3572. [PMID: 35246564 PMCID: PMC8897489 DOI: 10.1038/s41598-022-07367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite a great amount of effort, there is still a need for reliable treatments of traumatic brain injury (TBI). Recently, stem cell therapy has emerged as a new avenue to address neuronal regeneration after TBI. However, the environment of TBI lesions exerts negative effects on the stem cells efficacy. Therefore, to maximize the beneficial effects of stem cells in the course of TBI, we evaluated the effect of human neural stem/progenitor cells (hNS/PCs) and curcumin-loaded niosome nanoparticles (CM-NPs) on behavioral changes, brain edema, gliosis, and inflammatory responses in a rat model of TBI. After TBI, hNS/PCs were transplanted within the injury site and CM-NPs were orally administered for 10 days. Finally, the effect of combination therapy was compared to several control groups. Our results indicated a significant improvement of general locomotor activity in the hNS/PCs + CM-NPs treatment group compared to the control groups. We also observed a significant improvement in brain edema in the hNS/PCs + CM-NPs treatment group compared to the other groups. Furthermore, a significant decrease in astrogliosis was seen in the combined treatment group. Moreover, TLR4-, NF-κB-, and TNF-α- positive cells were significantly decreased in hNS/PCs + CM-NPs group compared to the control groups. Taken together, this study indicated that combination therapy of stem cells with CM-NPs can be an effective therapy for TBI.
Collapse
|
34
|
Gao X, Li W, Syed F, Yuan F, Li P, Yu Q. PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J Neuroinflammation 2022; 19:43. [PMID: 35135580 PMCID: PMC8822654 DOI: 10.1186/s12974-022-02398-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tissue damage and cellular destruction are the major events in traumatic brain injury (TBI), which trigger sterile neuroimmune and neuroinflammatory responses in the brain. While appropriate acute and transient neuroimmune and neuroinflammatory responses facilitate the repair and adaptation of injured brain tissues, prolonged and excessive neuroimmune and neuroinflammatory responses exacerbate brain damage. The mechanisms that control the intensity and duration of neuroimmune and neuroinflammatory responses in TBI largely remain elusive. METHODS We used the controlled cortical impact (CCI) model of TBI to study the role of immune checkpoints (ICPs), key regulators of immune homeostasis, in the regulation of neuroimmune and neuroinflammatory responses in the brain in vivo. RESULTS We found that de novo expression of PD-L1, a potent inhibitory ICP, was robustly and transiently induced in reactive astrocytes, but not in microglia, neurons, or oligodendrocyte progenitor cells (OPCs). These PD-L1+ reactive astrocytes were highly enriched to form a dense zone around the TBI lesion. Blockade of PD-L1 signaling enlarged brain tissue cavity size, increased infiltration of inflammatory Ly-6CHigh monocytes/macrophages (M/Mɸ) but not tissue-repairing Ly-6CLowF4/80+ M/Mɸ, and worsened TBI outcomes in mice. PD-L1 gene knockout enhanced production of CCL2 that is best known for its ability to interact with its cognate receptor CCR2 on Ly-6CHigh M/Mϕ to chemotactically recruit these cells into inflammatory sites. Mechanically, PD-L1 signaling in astrocytes likely exhibits dual inhibitory activities for the prevention of excessive neuroimmune and neuroinflammatory responses to TBI through (1) the PD-1/PD-L1 axis to suppress the activity of brain-infiltrating PD-1+ immune cells, such as PD-1+ T cells, and (2) PD-L1 intrinsic signaling to regulate the timing and intensity of astrocyte reactions to TBI. CONCLUSIONS PD-L1+ astrocytes act as a gatekeeper to the brain to control TBI-related neuroimmune and neuroinflammatory responses, thereby opening a novel avenue to study the role of ICP-neuroimmune axes in the pathophysiology of TBI and other neurological disorders.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA.
| | - Wei Li
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fahim Syed
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Fang Yuan
- Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Medical Science Building, MS267, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA.
| |
Collapse
|
35
|
Zhao Z, Hu X, Wang J, Wang J, Hou Y, Chen S. Zinc finger E-Box binding homeobox 2 (ZEB2)-induced astrogliosis protected neuron from pyroptosis in cerebral ischemia and reperfusion injury. Bioengineered 2021; 12:12917-12930. [PMID: 34852714 PMCID: PMC8809936 DOI: 10.1080/21655979.2021.2012551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022] Open
Abstract
Ischemia injury can cause cell death or impairment of neuron and astrocytes, and thus induce loss of nerve function. central nervous systems injury induces an aberrant activation of astrocytes called astrogliosis. Pyroptosis, which is a kind of programmed cell death, was proved play an important role in ischemia injury. Zinc Finger E-Box Binding Homeobox 2 (ZEB2) promoted neuron astrogliosis, which play a protected role in neuron regeneration. However, its precise mechanism remains unclear. This study investigated the mechanism of ZEB2 on astrogliosis and neuron regeneration after cerebral ischemia reperfusion condition. To confirm our hypothesis, Neurons and astrocytes were isolated from fetal Sprague Dawley rats, in vivo Middle Cerebral Artery Occlusion/reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated astrocytes and neurocytes model were constructed. Our results showed that ZEB2 was expressed in nucleus of astrocyte and upregulated after OGD/R induction, ZEB2 promoted astrogliosis. Further upregulation of ZEB2 promoted the astrogliosis, which promoted neuron proliferation and regeneration by decreased pyroptosis. Moreover, this finding was further confirmed in vivo MCAO/R rat model. Overexpression of ZEB2 promoted astrogliosis, which decreased infarct volume and accumulated recovery of neurological function by alleviated pyroptosis. This finding revealed that ZEB2 was a regulator of the astrogliosis after ischemia/reperfusion injury, and then astrogliosis promoted neuron regeneration via decreased neuron pyroptosis. Therefore, ZEB2 may be a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhixin Zhao
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jie Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Yong Hou
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| | - Suyun Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Zhejiang Province, China
| |
Collapse
|
36
|
Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, Papadopoulos V, Tournier BB. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging 2021; 49:146-163. [PMID: 33433698 PMCID: PMC8712293 DOI: 10.1007/s00259-020-05166-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Division of Nuclear medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - David R Owen
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
37
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
38
|
Necula D, Cho FS, He A, Paz JT. Secondary thalamic neuroinflammation after focal cortical stroke and traumatic injury mirrors corticothalamic functional connectivity. J Comp Neurol 2021; 530:998-1019. [PMID: 34633669 PMCID: PMC8957545 DOI: 10.1002/cne.25259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
While cortical injuries, such as traumatic brain injury (TBI) and neocortical stroke, acutely disrupt the neocortex, most of their consequent disabilities reflect secondary injuries that develop over time. Thalamic neuroinflammation has been proposed to be a biomarker of cortical injury and of the long-term cognitive and neurological deficits that follow. However, the extent to which thalamic neuroinflammation depends on the type of cortical injury or its location remains unknown. Using two mouse models of focal neocortical injury that do not directly damage subcortical structures-controlled cortical impact and photothrombotic ischemic stroke-we found that chronic neuroinflammation in the thalamic region mirrors the functional connections with the injured cortex, and that sensory corticothalamic regions may be more likely to sustain long-term damage than nonsensory circuits. Currently, heterogeneous clinical outcomes complicate treatment. Understanding how thalamic inflammation depends on the injury site can aid in predicting features of subsequent deficits and lead to more effective, customized therapies.
Collapse
Affiliation(s)
- Deanna Necula
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Neuroscience Graduate Program, University of California, San Francisco, California, USA.,Department of Neurology and the Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Frances S Cho
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Neuroscience Graduate Program, University of California, San Francisco, California, USA.,Department of Neurology and the Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Andrea He
- Gladstone Institute of Neurological Disease, San Francisco, California, USA
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, California, USA.,Neuroscience Graduate Program, University of California, San Francisco, California, USA.,Department of Neurology and the Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
39
|
Traetta ME, Uccelli NA, Zárate SC, Gómez Cuautle D, Ramos AJ, Reinés A. Long-Lasting Changes in Glial Cells Isolated From Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder. Front Pharmacol 2021; 12:707859. [PMID: 34421599 PMCID: PMC8374432 DOI: 10.3389/fphar.2021.707859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Cristina Zárate
- Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Gómez Cuautle
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Sharma A, Bazylianska V, Moszczynska A. Parkin-deficient rats are resistant to neurotoxicity of chronic high-dose methamphetamine. Exp Neurol 2021; 345:113811. [PMID: 34298012 DOI: 10.1016/j.expneurol.2021.113811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/18/2021] [Accepted: 07/12/2021] [Indexed: 01/13/2023]
Abstract
Methamphetamine (METH) is a highly addictive and powerful central nervous system psychostimulant with no FDA-approved pharmacotherapy. Parkin is a neuroprotective protein and its loss of function contributes to Parkinson's disease. This study used 3-month-old homozygous parkin knockout (PKO) rats to determine whether loss of parkin protein potentiates neurotoxicity of chronic METH to the nigrostriatal dopamine pathway. PKO rats were chronically treated with 10 mg/kg METH for 10 consecutive days and assessed for neurotoxicity markers in the striatum on the 5th and 10th day of withdrawal from METH. The PKO rats showed higher METH-induced hyperthermia; however, they did not display augmented deficits in dopaminergic and serotonergic neurotoxicity markers, astrocyte activation or decreased mitochondrial enzyme levels as compared to wild-type (WT) rats. Interestingly, saline-treated PKO rats had lower levels of dopamine (DA) as well as mitochondrial complex I and II levels while having increased basal levels of glial fibrillary acidic protein (GFAP), a marker of gliosis. These results indicate PKO display a certain resistance to METH neurotoxicity, possibly mediated by lowered DA levels and downregulated mitochondria.
Collapse
Affiliation(s)
- Akhil Sharma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA.
| |
Collapse
|
41
|
Lycopene abrogates obesity-provoked hyperactivity of neurosignalling enzymes, oxidative stress and hypothalamic inflammation in female Wistar rats. Neurochem Int 2021; 149:105125. [PMID: 34245807 DOI: 10.1016/j.neuint.2021.105125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Obesity, a global epidemic, has been strongly associated with impairment of brain function. Lycopene has several therapeutic properties and can cross the blood-brain barrier. However, its effects on obesity-provoked brain dysfunction remain unexplored. This study evaluated the potential remediating effects of lycopene on obesity-induced neurological derangements. Thirty-six female Wistar rats (150-200g) were distributed in six groups (n = 6); normal control, obese control, obese + lycopene (20 mg/kg), obese + lycopene (40 mg/kg), normal + lycopene (20 mg/kg), and normal + lycopene (40 mg/kg). Obesity was induced by feeding rats with the Western diet for eight weeks, while normal rats received the control diet. Afterwards, the brain was excised and processed for biochemical, gene expression analyses, and histological evaluations. Obesity-induced brain dysfunction was hallmarked by reduced brain organosomatic index, accumulation of lipids in the cerebrum, and hyperactivity of neurotransmitters-metabolizing enzymes (AChE, ADA, MAO-A, 5'-nucleotidase, and NTPdase). Also, obese rats had decreased antioxidant capacity, with increased oxidative damage, while the expressions of NF-κβ p65 and pro-inflammatory cytokines (IL-1β and IL-6) were elevated in the hypothalamus. These observations were validated by histomorphological evaluations, which showed vacuolation in the brain of obese rats. Treatment with lycopene significantly (p < 0.05) reduced the elevated lipid contents and activities of neuronal enzymes, alleviated oxidative stress and inflammation, while improving the histology of the brain, in a dose-dependent manner. Thus, lycopene abrogates obesity-provoked brain dysfunction and may present a safe and viable therapeutic option for the management of neurological perturbations associated with obesity.
Collapse
|
42
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
43
|
Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain. Pain 2021; 162:1500-1510. [PMID: 33259457 DOI: 10.1097/j.pain.0000000000002154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023]
Abstract
ABSTRACT Neuropathic pain remains an undertreated condition and there is a medical need to develop effective treatments. Accumulating evidence indicates that posttranscriptional regulation of gene expression is involved in neuropathic pain; however, RNA processing is not clearly investigated. Our study investigated the role of HuR, an RNA binding protein, in promoting neuropathic pain and trauma-induced microglia activation in the spared nerve injury mouse model. To this aim, an antisense oligonucleotide (ASO) knockdown of HuR gene expression was used. Antisense oligonucleotides poorly cross the blood-brain barrier and an intranasal (i.n.) administration was used to achieve central nervous system penetration through a noninvasive delivery. The efficacy of i.n. ASO administration was compared to an intrathecal (i.t.) delivery. I.n. administered ASO reduced spinal HuR protein and relieved pain hypersensitivity with a similar efficacy to i.t. administration. Immunofluorescence studies showed that HuR was expressed in activated microglia, colocalized with p38 and, partially, with extracellular signal-regulated kinase (ERK)1/2 within the spinal cord dorsal horn. An anti-HuR ASO inhibited the activation of spinal microglia by reducing the levels of proinflammatory cytokines, inducible nitric oxide synthase, the activation of nuclear factor-κB (NF-κB), and suppressed the spared nerve injury-induced overphosphorylation of spinal p38, ERK1/2 and c-Jun-N-terminal kinase (JNK)-1. In addition, HuR silencing increased the expression of the anti-inflammatory cytokine IL-10, promoting the shift of microglial M1 to M2 phenotype. Targeting HuR by i.n. anti-HuR ASO might represent a noninvasive promising perspective for neuropathic pain management by its powerful inhibition of microglia-mediated spinal neuroinflammation and promotion of an anti-inflammatory and neuroprotectant response.
Collapse
|
44
|
Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, Ying Y, Wu Q, Lennon VA, Wu LJ. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 2021; 69:1155-1169. [PMID: 33314324 PMCID: PMC7936954 DOI: 10.1002/glia.23955] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yanlu Ying
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vanda A. Lennon
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
45
|
Cui Y, Yang M, Wang Y, Ren J, Lin P, Cui C, Song J, He Q, Hu H, Wang K, Sun Y. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 2021; 35:e21485. [PMID: 33709562 DOI: 10.1096/fj.202002247rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Yilin Wang
- Department of Traumatic Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianmin Ren
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Peng Lin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
46
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
47
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
48
|
Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Inflammatory Foreign Body Response Induced by Neuro-Implants in Rat Cortices Depleted of Resident Microglia by a CSF1R Inhibitor and Its Implications. Front Neurosci 2021; 15:646914. [PMID: 33841088 PMCID: PMC8032961 DOI: 10.3389/fnins.2021.646914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammatory encapsulation of implanted cortical-neuro-probes [the foreign body response (FBR)] severely limits their use in basic brain research and in clinical applications. A better understanding of the inflammatory FBR is needed to effectively mitigate these critical limitations. Combining the use of the brain permeant colony stimulating factor 1 receptor inhibitor PLX5622 and a perforated polyimide-based multielectrode array platform (PPMP) that can be sectioned along with the surrounding tissue, we examined the contribution of microglia to the formation of inflammatory FBR. To that end, we imaged the inflammatory processes induced by PPMP implantations after eliminating 89-94% of the cortical microglia by PLX5622 treatment. The observations showed that: (I) inflammatory encapsulation of implanted PPMPs proceeds by astrocytes in microglia-free cortices. The activated astrocytes adhered to the PPMP's surfaces. This suggests that the roles of microglia in the FBR might be redundant. (II) PPMP implantation into control or continuously PLX5622-treated rats triggered a localized surge of microglia mitosis. The daughter cells that formed a "cloud" of short-lived (T 1 / 2 ≤ 14 days) microglia around and in contact with the implant surfaces were PLX5622 insensitive. (III) Neuron degeneration by PPMP implantation and the ensuing recovery in time, space, and density progressed in a similar manner in the cortices following 89-94% depletion of microglia. This implies that microglia do not serve a protective role with respect to the neurons. (IV) Although the overall cell composition and dimensions of the encapsulating scar in PLX5622-treated rats differed from the controls, the recorded field potential (FP) qualities and yield were undistinguishable. This is accounted for by assuming that the FP amplitudes in the control and PLX5622-treated rats were related to the seal resistance formed at the interface between the adhering microglia and/or astrocytes and the PPMP platform rather than across the scar tissue. These observations suggest that the prevention of both astrocytes and microglia adhesion to the electrodes is required to improve FP recording quality and yield.
Collapse
Affiliation(s)
- Aviv Sharon
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M. Jankowski
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Micha E. Spira
- Department of Neurobiology, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Kruger Family Center for Nanoscience, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
49
|
Navarro A, García M, Rodrigues AS, Garcia PV, Camarinho R, Segovia Y. Reactive astrogliosis in the dentate gyrus of mice exposed to active volcanic environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:213-226. [PMID: 33283687 DOI: 10.1080/15287394.2020.1850381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air pollution has been associated with neuroinflammatory processes and is considered a risk factor for the development of neurodegenerative diseases. Volcanic environments are considered a natural source of air pollution. However, the effects of natural source air pollution on the central nervous system (CNS) have not been reported, despite the fact that up to 10% of the world's population lives near a historically active volcano. In order to assess the response of the CNS to such exposure, our study was conducted in the island of Sao Miguel (Azores, Portugal) in two different areas: Furnas, which is volcanically active one, and compared to Rabo de Peixe, a reference site without manifestations of active volcanism using Mus musculus as a bioindicator species. To evaluate the state of the astroglial population in the dentate gyrus in both samples, the number of astrocytes was determined using immunofluorescence methods (anti-GFAP and anti-GS). In addition, the astrocytic branches in that hippocampal area were examined. Our results showed an increase in GFAP+ astrocytes and a reduction in GS+ astrocytes in Furnas-exposed mice compared to animals from Rabo de Peixe. In addition, astrocytes in the dentate gyrus of chronically exposed animals exhibited longer branches compared to those residing at the reference site. Thus, reactive astrogliosis and astrocyte dysfunction are found in mice living in an active volcanic environment.
Collapse
Affiliation(s)
- A Navarro
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - M García
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - A S Rodrigues
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - P V Garcia
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores , Ponta Delgada, Portugal
| | - R Camarinho
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - Y Segovia
- Department of Biotechnology, University of Alicante , Alicante, Spain
| |
Collapse
|
50
|
Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.
Collapse
Affiliation(s)
- Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|