1
|
Nayan NM, Husin A, Siran R. The risk of prenatal bisphenol A exposure in early life neurodevelopment: Insights from epigenetic regulation. Early Hum Dev 2024; 198:106120. [PMID: 39293157 DOI: 10.1016/j.earlhumdev.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bisphenols are mainly used as protective coatings for plastics and resin-based materials in various consumer products. Industrial producers have a high demand for bisphenol A (BPA) among all bisphenol substitutes for various consumer products. However, according to reports, prolonged exposure to BPA can cause multiple health issues, including neurodevelopmental disorders in young children. BPA exposure during pregnancy has been considered as the primary cause of increasing the risk of neurological disorders in children as their neural systems are designed to respond to any environmental changes during prenatal life. Recently, there has been an increased focus on the effects of prenatal exposure to BPA, as it has been found to alter gene expression related to epigenetic mechanisms like DNA methylation, histone modification, and microRNA expression. Based on the evidence, frequent interactions can lead to inherited changes in an individual's neural profile. In this review, we delve into the current knowledge regarding the toxicity mechanism of BPA for expecting mothers. Next, we will discuss the possible action of BPA on the epigenetic mechanism during brain development. This is especially important to portray an overview on the role of epigenetic modification caused by prenatal BPA exposure and next, give future directions for improving human health risk assessment caused by BPA exposure.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Institute of Medical Molecular and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia.
| |
Collapse
|
2
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
3
|
Andy C, Nerattini M, Jett S, Carlton C, Zarate C, Boneu C, Fauci F, Ajila T, Battista M, Pahlajani S, Christos P, Fink ME, Williams S, Brinton RD, Mosconi L. Systematic review and meta-analysis of the effects of menopause hormone therapy on cognition. Front Endocrinol (Lausanne) 2024; 15:1350318. [PMID: 38501109 PMCID: PMC10944893 DOI: 10.3389/fendo.2024.1350318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Despite evidence from preclinical studies suggesting estrogen's neuroprotective effects, the use of menopausal hormone therapy (MHT) to support cognitive function remains controversial. Methods We used random-effect meta-analysis and multi-level meta-regression to derive pooled standardized mean difference (SMD) and 95% confidence intervals (C.I.) from 34 randomized controlled trials, including 14,914 treated and 12,679 placebo participants. Results Associations between MHT and cognitive function in some domains and tests of interest varied by formulation and treatment timing. While MHT had no overall effects on cognitive domain scores, treatment for surgical menopause, mostly estrogen-only therapy, improved global cognition (SMD=1.575, 95% CI 0.228, 2.921; P=0.043) compared to placebo. When initiated specifically in midlife or close to menopause onset, estrogen therapy was associated with improved verbal memory (SMD=0.394, 95% CI 0.014, 0.774; P=0.046), while late-life initiation had no effects. Overall, estrogen-progestogen therapy for spontaneous menopause was associated with a decline in Mini Mental State Exam (MMSE) scores as compared to placebo, with most studies administering treatment in a late-life population (SMD=-1.853, 95% CI -2.974, -0.733; P = 0.030). In analysis of timing of initiation, estrogen-progestogen therapy had no significant effects in midlife but was associated with improved verbal memory in late-life (P = 0.049). Duration of treatment >1 year was associated with worsening in visual memory as compared to shorter duration. Analysis of individual cognitive tests yielded more variable results of positive and negative effects associated with MHT. Discussion These findings suggest time-dependent effects of MHT on certain aspects of cognition, with variations based on formulation and timing of initiation, underscoring the need for further research with larger samples and more homogeneous study designs.
Collapse
Affiliation(s)
- Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew E Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Mehta D, de Boer I, Sutherland HG, Pijpers JA, Bron C, Bainomugisa C, Haupt LM, van den Maagdenberg AMJM, Griffiths LR, Nyholt DR, Terwindt GM. Alterations in DNA methylation associate with reduced migraine and headache days after medication withdrawal treatment in chronic migraine patients: a longitudinal study. Clin Epigenetics 2023; 15:190. [PMID: 38087366 PMCID: PMC10717674 DOI: 10.1186/s13148-023-01604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and prevention strategies. An important factor in the chronification of migraine is the overuse of acute headache medication. However, the mechanisms behind the transformation of episodic migraine to chronic migraine and vice versa have not yet been elucidated. We performed a longitudinal epigenome-wide association study to identify DNA methylation (DNAm) changes associated with treatment response in patients with chronic migraine and medication overuse as part of the Chronification and Reversibility of Migraine clinical trial. Blood was taken from patients with chronic migraine (n = 98) at baseline and after a 12-week medication withdrawal period. Treatment responders, patients with ≥ 50% reduction in monthly headache days (MHD), were compared with non-responders to identify DNAm changes associated with treatment response. Similarly, patients with ≥ 50% versus < 50% reduction in monthly migraine days (MMD) were compared. RESULTS At the epigenome-wide significant level (p < 9.42 × 10-8), a longitudinal reduction in DNAm at an intronic CpG site (cg14377273) within the HDAC4 gene was associated with MHD response following the withdrawal of acute medication. HDAC4 is highly expressed in the brain, plays a major role in synaptic plasticity, and modulates the expression and release of several neuroinflammation markers which have been implicated in migraine pathophysiology. Investigating whether baseline DNAm associated with treatment response, we identified lower baseline DNAm at a CpG site (cg15205829) within MARK3 that was significantly associated with MMD response at 12 weeks. CONCLUSIONS Our findings of a longitudinal reduction in HDAC4 DNAm status associated with treatment response and baseline MARK3 DNAm status as an early biomarker for treatment response, provide support for a role of pathways related to chromatin structure and synaptic plasticity in headache chronification and introduce HDAC4 and MARK3 as novel therapeutic targets.
Collapse
Affiliation(s)
- Divya Mehta
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Judith A Pijpers
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Charlene Bron
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Charlotte Bainomugisa
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.
- Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
5
|
Nerattini M, Jett S, Andy C, Carlton C, Zarate C, Boneu C, Battista M, Pahlajani S, Loeb-Zeitlin S, Havryulik Y, Williams S, Christos P, Fink M, Brinton RD, Mosconi L. Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer's disease and dementia. Front Aging Neurosci 2023; 15:1260427. [PMID: 37937120 PMCID: PMC10625913 DOI: 10.3389/fnagi.2023.1260427] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Despite a large preclinical literature demonstrating neuroprotective effects of estrogen, use of menopausal hormone therapy (HT) for Alzheimer's disease (AD) risk reduction has been controversial. Herein, we conducted a systematic review and meta-analysis of HT effects on AD and dementia risk. Methods Our systematic search yielded 6 RCT reports (21,065 treated and 20,997 placebo participants) and 45 observational reports (768,866 patient cases and 5.5 million controls). We used fixed and random effect meta-analysis to derive pooled relative risk (RR) and 95% confidence intervals (C.I.) from these studies. Results Randomized controlled trials conducted in postmenopausal women ages 65 and older show an increased risk of dementia with HT use compared with placebo [RR = 1.38, 95% C.I. 1.16-1.64, p < 0.001], driven by estrogen-plus-progestogen therapy (EPT) [RR = 1.64, 95% C.I. 1.20-2.25, p = 0.002] and no significant effects of estrogen-only therapy (ET) [RR = 1.19, 95% C.I. 0.92-1.54, p = 0.18]. Conversely, observational studies indicate a reduced risk of AD [RR = 0.78, 95% C.I. 0.64-0.95, p = 0.013] and all-cause dementia [RR = .81, 95% C.I. 0.70-0.94, p = 0.007] with HT use, with protective effects noted with ET [RR = 0.86, 95% C.I. 0.77-0.95, p = 0.002] but not with EPT [RR = 0.910, 95% C.I. 0.775-1.069, p = 0.251]. Stratified analysis of pooled estimates indicates a 32% reduced risk of dementia with midlife ET [RR = 0.685, 95% C.I. 0.513-0.915, p = 0.010] and non-significant reductions with midlife EPT [RR = 0.775, 95% C.I. 0.474-1.266, p = 0.309]. Late-life HT use was associated with increased risk, albeit not significant [EPT: RR = 1.323, 95% C.I. 0.979-1.789, p = 0.069; ET: RR = 1.066, 95% C.I. 0.996-1.140, p = 0.066]. Discussion These findings support renewed research interest in evaluating midlife estrogen therapy for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryulik
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|
7
|
Erlandsdotter LM, Giammarino L, Halili A, Nikesjö J, Gréen H, Odening KE, Liin SI. Long-QT mutations in KCNE1 modulate the 17β-estradiol response of Kv7.1/KCNE1. SCIENCE ADVANCES 2023; 9:eade7109. [PMID: 36921038 PMCID: PMC10017040 DOI: 10.1126/sciadv.ade7109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Estradiol (17[Formula: see text]-E2) is implicated in higher arrhythmia risk of women with congenital or acquired long-QT syndrome (LQTS) compared to men. However, the underlying mechanisms remain poorly understood, and little is known about the impact of LQTS-associated mutations. We show that 17[Formula: see text]-E2 inhibits the human cardiac Kv7.1/KCNE1 channel expressed in Xenopus oocytes. We find that the 17[Formula: see text]-E2 effect depends on the Kv7.1 to KCNE1 stoichiometry, and we reveal a critical function of the KCNE1 carboxyl terminus for the effect. LQTS-associated mutations in the KCNE1 carboxyl terminus show a range of responses to 17[Formula: see text]-E2, from a wild-type like response to impaired or abolished response. Together, this study increases our understanding of the mechanistic basis for 17[Formula: see text]-E2 inhibition of Kv7.1/KCNE1 and demonstrates mutation-dependent responses to 17[Formula: see text]-E2. These findings suggest that the 17[Formula: see text]-E2 effect on Kv7.1/KCNE1 might contribute to the higher arrhythmia risk of women, particularly in carriers with specific LQTS-associated mutations.
Collapse
Affiliation(s)
| | - Lucilla Giammarino
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern and Department of Physiology, University of Bern, Bern, Switzerland
| | - Azemine Halili
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Gréen
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Katja E. Odening
- Translational Cardiology, Department of Cardiology, Inselspital, University Hospital Bern and Department of Physiology, University of Bern, Bern, Switzerland
| | - Sara I. Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
9
|
Kövesdi E, Udvarácz I, Kecskés A, Szőcs S, Farkas S, Faludi P, Jánosi TZ, Ábrahám IM, Kovács G. 17β-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne) 2023; 13:993552. [PMID: 36686456 PMCID: PMC9848397 DOI: 10.3389/fendo.2022.993552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The striatum is an essential component of the basal ganglia that is involved in motor control, action selection and motor learning. The pathophysiological changes of the striatum are present in several neurological and psychiatric disorder including Parkinson's and Huntington's diseases. The striatal cholinergic neurons are the main regulators of striatal microcircuitry. It has been demonstrated that estrogen exerts various effects on neuronal functions in dopaminergic and medium spiny neurons (MSN), however little is known about how the activity of cholinergic interneurons are influenced by estrogens. In this study we examined the acute effect of 17β-estradiol on the function of striatal cholinergic neurons in adult mice in vitro. We also tested the effect of estrus cycle and sex on the spontaneous activity of cholinergic interneurons in the striatum. Our RNAscope experiments showed that ERα, ERβ, and GPER1 receptor mRNAs are expressed in some striatal cholinergic neurons at a very low level. In cell-attached patch clamp experiments, we found that a high dose of 17β-estradiol (100 nM) affected the spontaneous firing rate of these neurons only in old males. Our findings did not demonstrate any acute effect of a low concentration of 17β-estradiol (100 pM) or show any association of estrus cycle or sex with the activity of striatal cholinergic neurons. Although estrogen did not induce changes in the intrinsic properties of neurons, indirect effects via modulation of the synaptic inputs of striatal cholinergic interneurons cannot be excluded.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Ildikó Udvarácz
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Angéla Kecskés
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Szőcs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Péter Faludi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Tibor Z. Jánosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - István M. Ábrahám
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Gergely Kovács
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| |
Collapse
|
10
|
Luo W, Yan Y, Cao Y, Zhang Y, Zhang Z. The effects of GPER on age-associated memory impairment induced by decreased estrogen levels. Front Mol Biosci 2023; 10:1097018. [PMID: 37021109 PMCID: PMC10069632 DOI: 10.3389/fmolb.2023.1097018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Estrogen, as a pleiotropic endocrine hormone, not only regulates the physiological functions of peripheral tissues but also exerts vital neuroregulatory effects in the central nervous system (CNS), such as the development of neurons and the formation of neural network connections, wherein rapid estrogen-mediated reactions positively stimulate spinogenesis and regulate synaptic plasticity and synaptic transmission to facilitate cognitive and memory performance. These fast non-genomic effects can be initiated by membrane-bound estrogen receptors (ERs), three best known of which are ERα, ERβ, and G protein-coupled estrogen receptor (GPER). To date, the effects of ERα and ERβ have been well studied in age-associated memory impairment, whereas there is still a lack of attention to the role of GPER in age-associated memory impairment, and there are still disputes about whether GPER indeed functions as an ER to enhance learning and memory. In this review, we provide a systematic overview of the role of GPER in age-associated memory impairment based on its expression, distribution, and signaling pathways, which might bring some inspiration for translational drugs targeting GPER for age-related diseases and update knowledge on the role of estrogen and its receptor system in the brain.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yudie Yan
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunpeng Cao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| | - Zhen Zhang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhen Zhang, ; Yunpeng Cao, ; Yanbo Zhang,
| |
Collapse
|
11
|
Malik H, Wolff MD, Teskey GC, Mychasiuk R. Electrographic seizures and brain hyperoxia may be key etiological factors for post-concussive deficits. J Neurophysiol 2022; 128:727-737. [PMID: 35976074 PMCID: PMC9484996 DOI: 10.1152/jn.00533.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Repetitive mild traumatic brain injuries (RmTBIs) are increasingly recognized to have long-term neurological sequelae in a significant proportion of patients. Individuals that have had RmTBIs exhibit a variety of sensory, cognitive, or behavioral consequences that can negatively impact quality of life. Brain tissue oxygen levels (PO2) are normally maintained through exquisite regulation of blood supply to stay within the normoxic zone (18–30 mmHg in the rat hippocampus). However, during neurological events in which brain tissue oxygen levels leave the normoxic zone, neuronal dysfunction and behavioral deficits have been observed, and are frequently related to poorer prognoses. The oxygenation response in the brain after RmTBIs/repeated concussions has been poorly characterized, with most preliminary research limited to the neocortex. Furthermore, the mechanisms by which RmTBIs impact changes to brain oxygenation and vice versa remain to be determined. In the current study, we demonstrate that upon receiving RmTBIs, rats exhibit posttraumatic, electrographic seizures in the hippocampus, without behavioral (clinical) seizures, that are accompanied by a long-lasting period of hyperoxygenation. These electrographic seizures and the ensuing hyperoxic episodes are associated with deficits in working memory and motor coordination that were reversible through attenuation of the posttraumatic and postictal (postseizure) hyperoxia, via administration of a vasoconstricting agent, the calcium channel agonist Bay K8644. We propose that the posttraumatic period characterized by brain oxygenation levels well above the normoxic zone, may be the basis for some of the common symptoms associated with RmTBIs. NEW & NOTEWORTHY We monitor oxygenation and electrographic activity in the hippocampus, immediately before and after mild traumatic brain injury. We demonstrate that as the number of injuries increases from 1 to 3, the proportion of rats that exhibit electrographic seizures and hyperoxia increases. Moreover, the presence of electrographic seizures and hyperoxia are associated with postinjury behavioral impairments, and if the hyperoxia is blocked with Bay K8644, the behavioral deficits are eliminated.
Collapse
Affiliation(s)
- Haris Malik
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Richelle Mychasiuk
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Psychology, University of Calgary, Calgary, Canada.,Department of Neuroscience, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Chlamydas S, Markouli M, Strepkos D, Piperi C. Epigenetic mechanisms regulate sex-specific bias in disease manifestations. J Mol Med (Berl) 2022; 100:1111-1123. [PMID: 35764820 PMCID: PMC9244100 DOI: 10.1007/s00109-022-02227-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022]
Abstract
Abstract Sex presents a vital determinant of a person’s physiology, anatomy, and development. Recent clinical studies indicate that sex is also involved in the differential manifestation of various diseases, affecting both clinical outcome as well as response to therapy. Genetic and epigenetic changes are implicated in sex bias and regulate disease onset, including the inactivation of the X chromosome as well as sex chromosome aneuploidy. The differential expression of X-linked genes, along with the presence of sex-specific hormones, exhibits a significant impact on immune system function. Several studies have revealed differences between the two sexes in response to infections, including respiratory diseases and COVID-19 infection, autoimmune disorders, liver fibrosis, neuropsychiatric diseases, and cancer susceptibility, which can be explained by sex-biased immune responses. In the present review, we explore the input of genetic and epigenetic interplay in the sex bias underlying disease manifestation and discuss their effects along with sex hormones on disease development and progression, aiming to reveal potential new therapeutic targets. Key messages Sex is involved in the differential manifestation of various diseases. Epigenetic modifications influence X-linked gene expression, affecting immune response to infections, including COVID-19. Epigenetic mechanisms are responsible for the sex bias observed in several respiratory and autoimmune disorders, liver fibrosis, neuropsychiatric diseases, and cancer.
Collapse
Affiliation(s)
- Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece.,Olink Proteomics, Uppsala, Sweden
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
13
|
Jett S, Malviya N, Schelbaum E, Jang G, Jahan E, Clancy K, Hristov H, Pahlajani S, Niotis K, Loeb-Zeitlin S, Havryliuk Y, Isaacson R, Brinton RD, Mosconi L. Endogenous and Exogenous Estrogen Exposures: How Women's Reproductive Health Can Drive Brain Aging and Inform Alzheimer's Prevention. Front Aging Neurosci 2022; 14:831807. [PMID: 35356299 PMCID: PMC8959926 DOI: 10.3389/fnagi.2022.831807] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 01/14/2023] Open
Abstract
After advanced age, female sex is the major risk factor for late-onset Alzheimer's disease (AD), the most common cause of dementia affecting over 24 million people worldwide. The prevalence of AD is higher in women than in men, with postmenopausal women accounting for over 60% of all those affected. While most research has focused on gender-combined risk, emerging data indicate sex and gender differences in AD pathophysiology, onset, and progression, which may help account for the higher prevalence in women. Notably, AD-related brain changes develop during a 10-20 year prodromal phase originating in midlife, thus proximate with the hormonal transitions of endocrine aging characteristic of the menopause transition in women. Preclinical evidence for neuroprotective effects of gonadal sex steroid hormones, especially 17β-estradiol, strongly argue for associations between female fertility, reproductive history, and AD risk. The level of gonadal hormones to which the female brain is exposed changes considerably across the lifespan, with relevance to AD risk. However, the neurobiological consequences of hormonal fluctuations, as well as that of hormone therapies, are yet to be fully understood. Epidemiological studies have yielded contrasting results of protective, deleterious and null effects of estrogen exposure on dementia risk. In contrast, brain imaging studies provide encouraging evidence for positive associations between greater cumulative lifetime estrogen exposure and lower AD risk in women, whereas estrogen deprivation is associated with negative consequences on brain structure, function, and biochemistry. Herein, we review the existing literature and evaluate the strength of observed associations between female-specific reproductive health factors and AD risk in women, with a focus on the role of endogenous and exogenous estrogen exposures as a key underlying mechanism. Chief among these variables are reproductive lifespan, menopause status, type of menopause (spontaneous vs. induced), number of pregnancies, and exposure to hormonal therapy, including hormonal contraceptives, hormonal therapy for menopause, and anti-estrogen treatment. As aging is the greatest risk factor for AD followed by female sex, understanding sex-specific biological pathways through which reproductive history modulates brain aging is crucial to inform preventative and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Niharika Malviya
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Jahan
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Katherine Clancy
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Kellyann Niotis
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Sheppard PAS, Puri TA, Galea LAM. Sex Differences and Estradiol Effects in MAPK and Akt Cell Signaling across Subregions of the Hippocampus. Neuroendocrinology 2022; 112:621-635. [PMID: 34407537 DOI: 10.1159/000519072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rapid effects of estrogens within the hippocampus of rodents are dependent upon cell-signaling cascades, and activation of these cascades by estrogens varies by sex. Whether these pathways are rapidly activated within the dentate gyrus (DG) and CA1 by estrogens across sex and the anatomical longitudinal axis has been overlooked. METHODS Gonadally intact female and male rats were given either vehicle or physiological systemic low (1.1 µg/kg) or high (37.3 µg/kg) doses of 17β-estradiol 30 min prior to tissue collection. To control for the effects of circulating estrogens, an additional group of female rats was ovariectomized (OVX) and administered 17β-estradiol. Brains were extracted, and tissue punches of the CA1 and DG were taken along the longitudinal hippocampal axis (dorsal and ventral) and analyzed for key mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) cascade phosphoproteins. RESULTS Intact females had higher Akt pathway phosphoproteins (pAkt, pGSK-3β, and pp70S6K) than males in the DG (dorsal and ventral) and lower pERK1/2 in the dorsal DG. Most effects of 17β-estradiol on cell signaling occurred in OVX animals. In OVX animals, 17β-estradiol increased cell signaling of MAPK and Akt phosphoproteins (pERK1/2, pJNK, pAkt, and pGSK-3β) in the CA1 and pERK1/2 and pJNK DG. DISCUSSION/CONCLUSIONS Systemic 17β-estradiol treatment rapidly alters phosphoprotein levels in the hippocampus, dependent on reproductive status, and intact females have greater expression of Akt phosphoproteins than that in intact males in the DG. These findings shed light on underlying mechanisms of sex differences in hippocampal function and response to interventions that affect MAPK or Akt signaling.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanvi A Puri
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
16
|
Datta G, Miller NM, Du W, Geiger JD, Chang S, Chen X. Endolysosome Localization of ERα Is Involved in the Protective Effect of 17α-Estradiol against HIV-1 gp120-Induced Neuronal Injury. J Neurosci 2021; 41:10365-10381. [PMID: 34764157 PMCID: PMC8672688 DOI: 10.1523/jneurosci.1475-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Wenjuan Du
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| | - Sulie Chang
- Institute of Neuroimmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, New Jersey 07079
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037
| |
Collapse
|
17
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
18
|
de Souza LO, Machado GDB, de Freitas BS, Rodrigues SLC, Severo MPA, Molz P, da Silva JAC, Bromberg E, Roesler R, Schröder N. The G protein-coupled estrogen receptor (GPER) regulates recognition and aversively-motivated memory in male rats. Neurobiol Learn Mem 2021; 184:107499. [PMID: 34352396 DOI: 10.1016/j.nlm.2021.107499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Estrogens, particularly 17β-estradiol (estradiol, E2), regulate memory formation. E2 acts through its intracellular receptors, estrogen receptors (ER) ERα and ERβ, as well as a recently identified G protein-coupled estrogen receptor (GPER). Although the effects of E2 on memory have been investigated, studies examining the effects of GPER stimulation are scarce. Selective GPER agonism improves memory in ovariectomized female rats, but little information is available regarding the effects of GPER stimulation in male rodents. The aim of the present study was to investigate the effects of the GPER agonist, G1, on consolidation and reconsolidation of inhibitory avoidance (IA) and object recognition (OR) memory in male rats. Animals received vehicle, G1 (15, 75, 150 µg/kg; i.p.), or the GPER antagonist G15 (100 µg/kg; i.p.) immediately after training, or G1 (150 µg/kg; i.p.) 3 or 6 h after training. To investigate reconsolidation, G1 was administered immediately after IA retention Test 1. Results indicated that G1 administered immediately after training at the highest dose enhanced both OR and IA memory consolidation, while GPER blockade immediately after training impaired OR. No effects of GPER stimulation were observed when G1 was given 3 or 6 h after training or after Test 1. The present findings provide evidence that GPER is involved in the early stages of memory consolidation in both neutral and emotional memory tasks in male adult rats.
Collapse
Affiliation(s)
- Lariza Oliveira de Souza
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Afonso Corrêa da Silva
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nadja Schröder
- Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
19
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
20
|
Camacho-Arroyo I, Piña-Medina AG, Bello-Alvarez C, Zamora-Sánchez CJ. Sex hormones and proteins involved in brain plasticity. VITAMINS AND HORMONES 2020; 114:145-165. [PMID: 32723542 DOI: 10.1016/bs.vh.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that peripheral sex steroid hormones cross the blood-brain barrier and control a broad spectrum of reproductive behaviors. However, their role in other essential brain functions was investigated since the 1980s, when the accumulation of pregnenolone and dehydroepiandrosterone in the brain of mammalian species was determined. Since then, numerous studies have demonstrated the participation of sex hormones in brain plasticity processes. Sex hormones through both genomic and non-genomic mechanisms of action are capable of inducing gene transcription or activating signaling cascades that result in the promotion of different physiological and pathological events of brain plasticity, such as remodeling or formation of dendritic spines, neurogenesis, synaptogenesis or myelination. In this chapter, we will present the effects of sex hormones and proteins involved in brain plasticity.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Ana Gabriela Piña-Medina
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
21
|
A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of this Field. Proteomes 2020; 8:proteomes8030014. [PMID: 32640657 PMCID: PMC7564415 DOI: 10.3390/proteomes8030014] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Proteomics is the field of study that includes the analysis of proteins, from either a basic science prospective or a clinical one. Proteins can be investigated for their abundance, variety of proteoforms due to post-translational modifications (PTMs), and their stable or transient protein–protein interactions. This can be especially beneficial in the clinical setting when studying proteins involved in different diseases and conditions. Here, we aim to describe a bottom-up proteomics workflow from sample preparation to data analysis, including all of its benefits and pitfalls. We also describe potential improvements in this type of proteomics workflow for the future.
Collapse
|
22
|
Maruska KP, Butler JM, Anselmo C, Tandukar G. Distribution of aromatase in the brain of the African cichlid fish
Astatotilapia burtoni
: Aromatase expression, but not estrogen receptors, varies with female reproductive‐state. J Comp Neurol 2020; 528:2499-2522. [DOI: 10.1002/cne.24908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Chase Anselmo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ganga Tandukar
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Biology Program University of Louisiana at Monroe Monroe Louisiana USA
| |
Collapse
|
23
|
Pompili A, Iorio C, Gasbarri A. Effects of sex steroid hormones on memory. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
17α Estradiol promotes plasticity of spared inputs in the adult amblyopic visual cortex. Sci Rep 2019; 9:19040. [PMID: 31836739 PMCID: PMC6910995 DOI: 10.1038/s41598-019-55158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
The promotion of structural and functional plasticity by estrogens is a promising approach to enhance central nervous system function in the aged. However, how the sensitivity to estrogens is regulated across brain regions, age and experience is poorly understood. To ask if estradiol treatment impacts structural and functional plasticity in sensory cortices, we examined the acute effect of 17α-Estradiol in adult Long Evans rats following chronic monocular deprivation, a manipulation that reduces the strength and selectivity of deprived eye vision. Chronic monocular deprivation decreased thalamic input from the deprived eye to the binocular visual cortex and accelerated short-term depression of the deprived eye pathway, but did not change the density of excitatory synapses in primary visual cortex. Importantly, we found that the classical estrogen receptors ERα and ERβ were robustly expressed in the adult visual cortex, and that a single dose of 17α-Estradiol reduced the expression of the calcium-binding protein parvalbumin, decreased the integrity of the extracellular matrix and increased the size of excitatory postsynaptic densities. Furthermore, 17α-Estradiol enhanced experience-dependent plasticity in the amblyopic visual cortex, by promoting response potentiation of the pathway served by the non-deprived eye. The promotion of plasticity at synapses serving the non-deprived eye may reflect selectivity for synapses with an initially low probability of neurotransmitter release, and may inform strategies to remap spared inputs around a scotoma or a cortical infarct.
Collapse
|
25
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
26
|
Baumgartner NE, Grissom EM, Pollard KJ, McQuillen SM, Daniel JM. Neuroestrogen-Dependent Transcriptional Activity in the Brains of ERE-Luciferase Reporter Mice following Short- and Long-Term Ovariectomy. eNeuro 2019; 6:ENEURO.0275-19.2019. [PMID: 31575604 PMCID: PMC6795557 DOI: 10.1523/eneuro.0275-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Previous work has demonstrated that estrogen receptors are transcriptionally active in the absence of ovarian estrogens. The current work aims to determine whether brain-derived estrogens influence estrogen receptor-dependent transcription after short- or long-term loss of ovarian function. Experiments were conducted using estrogen response element (ERE)-Luciferase reporter mice, which express the gene for luciferase driven by consensus ERE, allowing for the quantification of ERE-dependent transcription. Brain regions examined were hippocampus, cortex, and hypothalamus. In Experiment 1, short-term (10 d) ovariectomy had no impact on ERE-dependent transcription across brain regions compared with sham surgery. In Experiment 2, chronic intracerebroventricular administration of the aromatase inhibitor letrozole significantly decreased transcriptional activity in 10-d-old ovariectomized mice across brain regions, indicating that the sustained transcription in short-term ovariectomized mice is mediated at least in part via actions of neuroestrogens. Additionally, intracerebroventricular administration of estrogen receptor antagonist ICI-182,780 blocked transcription in 10-d-old ovariectomized mice across brain regions, providing evidence that sustained transcription in ovariectomized mice is estrogen receptor dependent. In Experiment 3, long-term (70 d) ovariectomy significantly decreased ERE-dependent transcription across brain regions, though some residual activity remained. In Experiment 4, chronic intracerebroventricular letrozole administration had no impact on transcription in 70 d ovariectomized mice across brain regions, indicating that the residual ERE-dependent transcription in long-term ovariectomized mice is not mediated by neuroestrogens. Overall, the results indicate that ERE-dependent transcription in the brain continues after ovariectomy and that the actions of neuroestrogens contribute to the maintenance of ERE-dependent transcription in the brain following short-term, but not long-term, loss of ovarian function.
Collapse
Affiliation(s)
| | - Elin M Grissom
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | | | | | - Jill M Daniel
- Neuroscience Program
- Tulane Brain Institute
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
27
|
Wei Y, Huang J. Role of estrogen and its receptors mediated-autophagy in cell fate and human diseases. J Steroid Biochem Mol Biol 2019; 191:105380. [PMID: 31078693 DOI: 10.1016/j.jsbmb.2019.105380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Studies have shown that morbidity of several diseases varies between males and females. This difference likely arises due to sex-related hormones. Estrogen, a primary female sex steroid hormone, plays a critical role in mediating many of the physiological functions like growth, differentiation, metabolism, and cell death. Recently, it has been demonstrated that estrogen mediates autophagy through its receptors (ERs) namely ERα, ERβ, and G-protein coupled estrogen receptor (GPER). However, the specific role of estrogen and its receptors mediated-autophagy in cell fate and human diseases such as cancers, cardiovascular disease and nervous system disease remains unclear. In this review, we comprehensively summarize the complex role of estrogen and its receptors-mediated autophagy in different cell lines and human diseases. In addition, we further discuss the key signaling molecules governing the role of ERs in autophagy. This review will serve as the basis for a proposed model of autophagy constituting a new frontier in estrogen-related human diseases. Here, we discuss the dual role of ERα in classical and non-classical autophagy through B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). Next, we review the role of ERβ in pro-survival pathways through the promotion of autophagy under stress conditions. We further discuss activation of GPER via estrogen often mediates autophagy or mitophagy suppression, respectively. In summary, we believe that understanding the relationship between estrogen and its receptors mediated-autophagy on cell fate and human diseases will provide insightful knowledge for future therapeutic implications.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
28
|
Cabrera Zapata LE, Bollo M, Cambiasso MJ. Estradiol-Mediated Axogenesis of Hypothalamic Neurons Requires ERK1/2 and Ryanodine Receptors-Dependent Intracellular Ca 2+ Rise in Male Rats. Front Cell Neurosci 2019; 13:122. [PMID: 31001087 PMCID: PMC6454002 DOI: 10.3389/fncel.2019.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos in vitro, but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor (ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC) blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB), and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging recording using primary cultured neurons. The results show that E2 rapidly induces an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This response was not observed in the absence of extracellular Ca2+ or with inhibitory ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization from extracellular space as well as from the endoplasmic reticulum is necessary for E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain estrogenic actions might contribute to develop novel estrogen-based therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas E Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
29
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
30
|
Selvaraj UM, Zuurbier KR, Whoolery CW, Plautz EJ, Chambliss KL, Kong X, Zhang S, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW, Stowe AM. Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology 2018; 159:3848-3859. [PMID: 30256928 PMCID: PMC6203892 DOI: 10.1210/en.2018-00600] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
Estrogens provide neuroprotection in animal models of stroke, but uterotrophic effects and cancer risk limit translation. Classic estrogen receptors (ERs) serve as transcription factors, whereas nonnuclear ERs govern numerous cell processes and exert beneficial cardiometabolic effects without uterine or breast cancer growth in mice. Here, we determined how nonnuclear ER stimulation with pathway-preferential estrogen (PaPE)-1 affects stroke outcome in mice. Ovariectomized female mice received vehicle, estradiol (E2), or PaPE-1 before and after transient middle cerebral artery occlusion (tMCAo). Lesion severity was assessed with MRI, and poststroke motor function was evaluated through 2 weeks after tMCAo. Circulating, spleen, and brain leukocyte subpopulations were quantified 3 days after tMCAo by flow cytometry, and neurogenesis and angiogenesis were evaluated histologically 2 weeks after tMCAo. Compared with vehicle, E2 and PaPE-1 reduced infarct volumes at 3 days after tMCAo, though only PaPE-1 reduced leukocyte infiltration into the ischemic brain. Unlike E2, PaPE-1 had no uterotrophic effect. Both interventions had negligible effect on long-term poststroke neuronal or vascular plasticity. All mice displayed a decline in motor performance at 2 days after tMCAo, and vehicle-treated mice did not improve thereafter. In contrast, E2 and PaPE-1 treatment afforded functional recovery at 6 days after tMCAo and beyond. Thus, the selective activation of nonnuclear ER by PaPE-1 decreased stroke severity and improved functional recovery in mice without undesirable uterotrophic effects. The beneficial effects of PaPE-1 are also associated with attenuated neuroinflammation in the brain. PaPE-1 and similar molecules may warrant consideration as efficacious ER modulators providing neuroprotection without detrimental effects on the uterus or cancer risk.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kielen R Zuurbier
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cody W Whoolery
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiangmei Kong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Neurology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
31
|
Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol 2018; 182:106-118. [PMID: 29704544 DOI: 10.1016/j.jsbmb.2018.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that benzophenone-3 (BP-3) can pass through the placental and blood-brain barriers and thus can likely affect infant neurodevelopment. Despite widespread exposure, data showing the effects of BP-3 on the developing nervous system are scarce. This study revealed for the first time that prenatal exposure to BP-3 led to apoptosis and neurotoxicity, altered the levels of estrogen receptors (ERs) and changed the epigenetic status of mouse neurons. In the present study, subcutaneous injections of pregnant mice with BP-3 at 50 mg/kg, which is an environmentally relevant dose, evoked activation of caspase-3 and lactate dehydrogenase (LDH) release as well as substantial loss of mitochondrial membrane potential in neocortical cells of their embryonic offspring. Apoptosis-focused microarray analysis of neocortical cells revealed up-regulation of 22 genes involved in apoptotic cell death. This effect was supported by increased BAX and CASP3 mRNA and protein levels, as evidenced by qPCR, ELISAs and western blots. BP-3-induced apoptosis and neurotoxicity were accompanied by decreases in the mRNA and protein expression levels of ESR1 and ESR2 (also known as ERα and ERβ), with a simultaneous increase in GPER1 (also known as GPR30) expression. In addition to the demonstration that treatment of pregnant mice with BP-3 induced apoptosis, caused neurotoxicity and altered ERs expression levels in neocortical cells of their embryonic offspring, we showed that prenatal administration of BP-3 inhibited global DNA methylation as well as reduced DNMTs activity. BP-3 also caused specific hypomethylation of the genes Gper1 and Bax, an effect that was accompanied by increased mRNA and protein expression levels. In addition, BP-3 caused hypermethylation of the genes Esr1, Esr2 and Bcl2, which could explain the reduced mRNA and protein levels of the estrogen receptors. This study demonstrated for the first time that prenatal exposure to BP-3 caused severe neuronal apoptosis that was accompanied by impaired ESR1/ESR2 expression, enhanced GPER1 expression, global DNA hypomethylation and altered methylation statuses of apoptosis-related and ERs genes. We suggest that the effects of BP-3 in embryonic neurons may be the fetal basis of the adult onset of nervous system disease.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Joanna Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
32
|
Smail MA, Soles JL, Karwoski TE, Rubin RT, Rhodes ME. Sexually diergic hypothalamic-pituitary-adrenal axis responses to selective and non-selective muscarinic antagonists prior to cholinergic stimulation by physostigmine in rats. Brain Res Bull 2017; 137:23-34. [PMID: 29122691 DOI: 10.1016/j.brainresbull.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/21/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023]
Abstract
Central cholinergic systems regulate the hypothalamic-pituitary-adrenal (HPA) axis differentially in males and females (sexual diergism). We previously investigated the role of muscarinic receptors in this regulation by administering physostigmine (PHYSO), an acetylcholinesterase inhibitor, to male and female rats pretreated with scopolamine (SCOP), a nonselective muscarinic antagonist. SCOP pretreatment enhanced adrenocorticotropic hormone (ACTH) and corticosterone (CORT) responses in both sexes, but males had greater ACTH responses while females had greater CORT responses. In the present study, we further explored the role of muscarinic receptor subtypes in HPA axis regulation by administering PHYSO to male and female rats following SCOP or various doses of either the M1 or the M2 selective muscarinic receptor antagonists, pirenzepine (PIREN) or methoctramine (METHO). Blood was sampled before and at multiple times after PHYSO. ACTH and CORT were determined by highly specific immunoassays. M1 antagonism by PIREN prior to PHYSO resulted in sustained, dose-dependent increases in ACTH and CORT: ACTH responses were similar in both sexes, and CORT responses were greater in females. M2 antagonism by METHO prior to PHYSO resulted in overall decreases in ACTH and CORT: ACTH and CORT responses were higher in females but lower in both sexes than the hormone responses following PIREN or SCOP pretreatment. Area under the curve analyses supported these findings. These results suggest that specific muscarinic receptor subtypes differentially influence the HPA axis in a sexually diergic manner.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Biology, Saint Vincent College, Latrobe, PA, United States
| | - Jessica L Soles
- Department of Biology, Saint Vincent College, Latrobe, PA, United States
| | - Tracy E Karwoski
- Center for Neurosciences Research, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Robert T Rubin
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael E Rhodes
- Department of Biology, Saint Vincent College, Latrobe, PA, United States.
| |
Collapse
|
33
|
Prenatal nicotine exposure induces HPA axis-hypersensitivity in offspring rats via the intrauterine programming of up-regulation of hippocampal GAD67. Arch Toxicol 2017; 91:3927-3943. [DOI: 10.1007/s00204-017-1996-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
|