1
|
Santoni M, Pistis M. Maternal Immune Activation and the Endocannabinoid System: Focus on Two-Hit Models of Schizophrenia. Biol Psychiatry 2024:S0006-3223(24)01783-9. [PMID: 39617194 DOI: 10.1016/j.biopsych.2024.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 02/05/2025]
Abstract
The devastating effects of the COVID-19 pandemic have underscored the significant threat that infectious diseases pose to our society. Pregnancy represents a period of heightened vulnerability to infections, which can compromise maternal health and increase the risk of neurodevelopmental disorders in offspring. Preclinical and clinical investigations suggest a potential association between maternal immune activation (MIA), which is triggered by viral or bacterial infections, and increased risk for neurodevelopmental disorders such as autism and schizophrenia. Genetic and environmental factors may contribute to the overall risk. Therefore, the two-hit hypothesis of schizophrenia suggests that MIA could act as a first trigger, with subsequent factors, such as stress or drug abuse, exacerbating latent abnormalities. A growing body of research is focused on the interaction between MIA and cannabis use during adolescence, considering the role of the endocannabinoid (eCB) system in neurodevelopment and in neurodevelopmental disorders. The eCB system, crucial for fetal brain development, may be disrupted by MIA, leading to adverse outcomes in adulthood. Recent research indicates the eCB system's significant role in the pathophysiology of neurodevelopmental disorders in preclinical models. However, findings on adolescent cannabinoid exposure in MIA-exposed animals have revealed unexpected complexities, with several studies failing to support the exacerbation of MIA-related abnormalities. In this review, we delve into the functional implications of the eCB system in MIA models, emphasizing the role of 2-AG (2-arachidonoylglycerol) signaling in synaptic plasticity and neuroinflammation and its relevance to the two-hit model of schizophrenia.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy, Cagliari, Italy.
| |
Collapse
|
2
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Maddock RJ, Vlasova RM, Chen S, Iosif AM, Bennett J, Tanase C, Ryan AM, Murai T, Hogrefe CE, Schumann CD, Geschwind DH, Van de Water J, Amaral DG, Lesh TA, Styner MA, Kimberley McAllister A, Carter CS, Bauman MD. Altered brain metabolites in male nonhuman primate offspring exposed to maternal immune activation. Brain Behav Immun 2024; 121:280-290. [PMID: 39032543 PMCID: PMC11809764 DOI: 10.1016/j.bbi.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.
Collapse
Affiliation(s)
- Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Takeshi Murai
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Cynthia D Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Judy Van de Water
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California Davis, Sacramento, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - David G Amaral
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Melissa D Bauman
- California National Primate Research Center, University of California Davis, Davis, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA; Physiology and Membrane Biology, School of Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
4
|
Xu J, Zhao R, Yan M, Zhou M, Liu H, Wang X, Lu C, Li Q, Mo Y, Zhang P, Ju X, Zeng X. Sex-Specific Behavioral and Molecular Responses to Maternal Lipopolysaccharide-Induced Immune Activation in a Murine Model: Implications for Neurodevelopmental Disorders. Int J Mol Sci 2024; 25:9885. [PMID: 39337372 PMCID: PMC11432365 DOI: 10.3390/ijms25189885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Maternal immune activation (MIA) during pregnancy has been increasingly recognized as a critical factor in the development of neurodevelopmental disorders, with potential sex-specific impacts that are not yet fully understood. In this study, we utilized a murine model to explore the behavioral and molecular consequences of MIA induced by lipopolysaccharide (LPS) administration on embryonic day 12.5. Our findings indicate that male offspring exposed to LPS exhibited significant increases in anxiety-like and depression-like behaviors, while female offspring did not show comparable changes. Molecular analyses revealed alterations in pro-inflammatory cytokine levels and synaptic gene expression in male offspring, suggesting that these molecular disruptions may underlie the observed behavioral differences. These results emphasize the importance of considering sex as a biological variable in studies of neurodevelopmental disorders and highlight the need for further molecular investigations to understand the mechanisms driving these sex-specific outcomes. Our study contributes to the growing evidence that prenatal immune challenges play a pivotal role in the etiology of neurodevelopmental disorders and underscores the potential for sex-specific preventative approaches of MIA.
Collapse
Affiliation(s)
- Jing Xu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Rujuan Zhao
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Mingyang Yan
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Meng Zhou
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Huanhuan Liu
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xueying Wang
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Chang Lu
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Qiang Li
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Yan Mo
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Paihao Zhang
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xingda Ju
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, School of Psychology, Northeast Normal University, Changchun 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Gillespie B, Dunn A, Sundram S, Hill RA. Investigating 7,8-Dihydroxyflavone to combat maternal immune activation effects on offspring gene expression and behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111078. [PMID: 38950841 DOI: 10.1016/j.pnpbp.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
6
|
Moreno-Fernández M, Ucha M, Reis-de-Paiva R, Marcos A, Ambrosio E, Higuera-Matas A. Lack of interactions between prenatal immune activation and Δ 9-tetrahydrocannabinol exposure during adolescence in behaviours relevant to symptom dimensions of schizophrenia in rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110889. [PMID: 37918558 DOI: 10.1016/j.pnpbp.2023.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The causality in the association between cannabis use and the risk of developing schizophrenia has been the subject of intense debate in the last few years. The development of animal models recapitulating several aspects of the disease is crucial for shedding light on this issue. Given that maternal infections are a known risk for schizophrenia, here, we used the maternal immune activation (MIA) model combined with THC exposure during adolescence to examine several behaviours in rats (working memory in the Y maze, sociability in the three-chamber test, sucrose preference as a measure, prepulse inhibition and formation of incidental associations) that are similar to the different symptom clusters of the disease. To this end, we administered LPS to pregnant dams and when the offspring reached adolescence, we exposed them to a mild dose of THC to examine their behaviour in adulthood. We also studied several parameters in the dams, including locomotor activity in the open field, elevated plus maze performance and their response to LPS, that could predict symptom severity of the offspring, but found no evidence of any predictive value of these variables. In the adult offspring, MIA was associated with impaired working memory and sensorimotor gating, but surprisingly, it increased sociability, social novelty and sucrose preference. THC, on its own, impaired sociability and social memory, but there were no interactions between MIA and THC exposure. These results suggest that, in this model, THC during adolescence does not trigger or aggravate symptoms related to schizophrenia in rats.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain; UNED International Graduate School (EIDUNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| | - Raquel Reis-de-Paiva
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alberto Marcos
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Learning (UNED), Madrid, Spain.
| |
Collapse
|
7
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
8
|
de Oliveira EG, de Lima DA, da Silva Júnior JC, de Souza Barbosa MV, de Andrade Silva SC, de Santana JH, Dos Santos Junior OH, Lira EC, Lagranha CJ, Duarte FS, Gomes DA. (R)-ketamine attenuates neurodevelopmental disease-related phenotypes in a mouse model of maternal immune activation. Eur Arch Psychiatry Clin Neurosci 2023; 273:1501-1512. [PMID: 37249625 DOI: 10.1007/s00406-023-01629-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1β, IL-6, and TGF-β1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.
Collapse
Affiliation(s)
- Elifrances Galdino de Oliveira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Diógenes Afonso de Lima
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - José Carlos da Silva Júnior
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Mayara Victória de Souza Barbosa
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Severina Cassia de Andrade Silva
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jonata Henrique de Santana
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Eduardo Carvalho Lira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Filipe Silveira Duarte
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Dayane Aparecida Gomes
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
9
|
Yildiz Taskiran S, Taskiran M, Unal G, Bozkurt NM, Golgeli A. The long-lasting effects of aceclofenac, a COX-2 inhibitor, in a Poly I:C-Induced maternal immune activation model of schizophrenia in rats. Behav Brain Res 2023; 452:114565. [PMID: 37414224 DOI: 10.1016/j.bbr.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
It is well established that rats exposed to inflammation during pregnancy or the perinatal period have an increased chance of developing schizophrenia-like symptoms and behaviors, and people with schizophrenia also have raised levels of inflammatory markers. Therefore, there is evidence supporting the idea that anti-inflammatory drugs may have therapeutic benefits. Aceclofenac is a nonsteroidal anti-inflammatory drug that has anti-inflammatory properties and is used clinically to treat inflammatory and painful processes such as osteoarthritis and rheumatoid arthritis, making it a potential candidate for preventive or adjunctive therapy in schizophrenia. This study therefore examined the effect of aceclofenac in a maternal immune activation model of schizophrenia, in which polyinosinic-polycytidylic acid (Poly I:C) (8 mg/kg, i.p.) was administered to pregnant rat dams. Young female rat pups received daily aceclofenac (5, 10, and 20 mg/kg, i.p., n = 10) between postnatal day 56 and 76. The effects of aceclofenac were compared with assessment of behavioral tests and ELISA results. During the postnatal days (PNDs) 73-76, behavioral tests were conducted in rats, and on PND 76, ELISA tests were performed to examine the changes in Tumor necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β), Brain-derived neurotrophic factor (BDNF), and nestin levels. Aceclofenac treatment reversed deficits in prepulse inhibition, novel object recognition, social interaction, and locomotor activity tests. In addition, aceclofenac administration decreased TNF-α and IL-1β expression in the prefrontal cortex and hippocampus. In contrast, BDNF and nestin levels did not change significantly during treatment with aceclofenac. Taken together, these results suggest that aceclofenac may be an alternative therapeutic adjunctive strategy to improve the clinical expression of schizophrenia in the further studies.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Nuh Mehmet Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
10
|
Monet MC, Quan N. Complex Neuroimmune Involvement in Neurodevelopment: A Mini-Review. J Inflamm Res 2023; 16:2979-2991. [PMID: 37489149 PMCID: PMC10363380 DOI: 10.2147/jir.s410562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
It is increasingly evident that cells and molecules of the immune system play significant roles in neurodevelopment. As perinatal infection is associated with the development of neurodevelopmental disorders, previous research has focused on demonstrating that the induction of neuroinflammation in the developing brain is capable of causing neuropathology and behavioral changes. Recent studies, however, have revealed that immune cells and molecules in the brain can influence neurodevelopment without the induction of overt inflammation, identifying neuroimmune activities as integral parts of normal neurodevelopment. This mini-review describes the shift in literature that has moved from emphasizing the intrusion of inflammatory events as a main culprit of neurodevelopmental disorders to evaluating the deviation of the normal neuroimmune activities in neurodevelopment as a potential pathogenic mechanism.
Collapse
Affiliation(s)
- Marianne C Monet
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
| |
Collapse
|
11
|
Taskiran SY, Taskiran M, Unal G, Golgeli A. Group I mGluRs positive allosteric modulators improved schizophrenia-related behavioral and molecular deficits in the Poly I:C rat model. Pharmacol Biochem Behav 2023:173593. [PMID: 37390974 DOI: 10.1016/j.pbb.2023.173593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
RATIONALE Maternal polyinosinic-polycytidylic acid (Poly I:C) exposure leads to an increase in various proinflammatory cytokines and causes schizophrenia-like symptoms in offspring. In recent years, group I metabotropic glutamate receptors (mGluRs) have emerged as a potential target in the pathophysiology of schizophrenia. OBJECTIVES The aim of our study was to investigate the behavioral and molecular changes by using the mGlu1 receptor positive allosteric modulator (PAM) agent RO 67-7476, and the negative allosteric modulator (NAM) agent JNJ 16259685 and the mGlu5 receptor PAM agent VU-29, and NAM agent fenobam in the Poly I:C-induced schizophrenia model in rats. METHODS Female Wistar albino rats were treated with Poly I:C on day 14 of gestation after mating. On the postnatal day (PND) 35, 56 and 84, behavioral tests were performed in the male offspring. On the PND84, brain tissue was collected and the level of proinflammatory cytokines was determined by ELISA method. RESULTS Poly I:C caused impairments in all behavioral tests and increased the levels of proinflammatory cytokines. While PAM agents caused significant improvements in prepulse inhibition (PPI), novel object recognition (NOR), spontaneous alternation and reference memory tests, they brought the levels of proinflammatory cytokines closer to the control group. NAM agents were ineffective on behavioral tests. It was observed that PAM agents significantly improved Poly I:C-induced disruption in behavioral and molecular analyses. CONCLUSIONS These results suggest that PAM agents, particularly the mGlu5 receptor VU-29, are also promising and could be a potential target in schizophrenia.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
12
|
Mullapudi T, Debnath M, Govindaraj R, Raj P, Banerjee M, Varambally S. Effects of a six-month yoga intervention on the immune-inflammatory pathway in antipsychotic-stabilized schizophrenia patients: A randomized controlled trial. Asian J Psychiatr 2023; 86:103636. [PMID: 37290243 DOI: 10.1016/j.ajp.2023.103636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Schizophrenia is a complex neuropsychiatric disorder for which several etiopathological theories have been proposed, one of the prominent ones being immune dysfunction. Recent studies on yoga as an add-on therapy have shown improvement in negative symptoms, cognition, and quality of life in schizophrenia patients. However, the biological mechanism/s of action of yoga in schizophrenia are not clear. The current study was aimed at exploring the effects of long-term (6 months) add-on yoga therapy on the immune inflammatory pathway in schizophrenia patients. METHODS Sixty schizophrenia patients were randomized to add-on yoga therapy (YT=30) and treatment-as-usual (TAU=30) groups of which 21 patients in YT and 20 in TAU group completed the study. Blood samples and clinical assessments were obtained at baseline and at the end of 6 months. The plasma levels of nine cytokines (IL-2, IL-4, IL-5, IL-10, IL-12(p70), IL-13, GM-CSF, IFN-γ, and TNF-α) were quantified using multiplex suspension array. The clinical assessments included SAPS, SANS, BPRS, PSS, CGI, SOFS and WHOQUOL-BREF. RESULTS Patients in the yoga group showed significant reductions in plasma TNF-α (Z = 2.99, p = 0.003) and IL-5 levels (Z = 2.20, p = 0.03) and greater clinical improvements in SAPS, SANS, PSS, and SOFS scores as compared to TAU group. Further, plasma TNF-α levels exhibited a positive correlation with negative symptoms (rs =0.45, p = 0.02) and socio-occupational functioning (rs =0.61, p = 0.002) in the YT group. CONCLUSIONS The findings of the study suggest that improvements in schizophrenia psychopathology with yoga interventions are associated with immuno-modulatory effects.
Collapse
Affiliation(s)
- Thrinath Mullapudi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Ramajayam Govindaraj
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Praveen Raj
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Moinak Banerjee
- Human Molecular Genetics Lab, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
13
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
14
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
15
|
Romero-Miguel D, Casquero-Veiga M, Fernández J, Lamanna-Rama N, Gómez-Rangel V, Gálvez-Robleño C, Santa-Marta C, Villar CJ, Lombó F, Abalo R, Desco M, Soto-Montenegro ML. Maternal Supplementation with N-Acetylcysteine Modulates the Microbiota-Gut-Brain Axis in Offspring of the Poly I:C Rat Model of Schizophrenia. Antioxidants (Basel) 2023; 12:970. [PMID: 37107344 PMCID: PMC10136134 DOI: 10.3390/antiox12040970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia. Pregnant Wistar rats were treated with PolyI:C/Saline. Six groups of animals were studied according to the study factors: phenotype (Saline, MIS) and treatment (no NAC, NAC 7 days, NAC 21 days). Offspring were subjected to the novel object recognition test and were scanned using MRI. Caecum contents were used for metagenomics 16S rRNA sequencing. NAC treatment prevented hippocampal volume reduction and long-term memory deficits in MIS-offspring. In addition, MIS-animals showed lower bacterial richness, which was prevented by NAC. Moreover, NAC7/NAC21 treatments resulted in a reduction of proinflammatory taxons in MIS-animals and an increase in taxa known to produce anti-inflammatory metabolites. Early approaches, like this one, with anti-inflammatory/anti-oxidative compounds, especially in neurodevelopmental disorders with an inflammatory/oxidative basis, may be useful in modulating bacterial microbiota, hippocampal size, as well as hippocampal-based memory impairments.
Collapse
Grants
- project number PI17/01766, and grant number BA21/00030 Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, co-financed by the European Regional Development Fund (ERDF), "A way to make Europe"
- project PID2021-128862OB-I00 MCIN /AEI /10.13039/501100011033 / FEDER, UE
- project number CB07/09/0031 CIBER de Salud Mental - Instituto de Salud Carlos III
- project numbers 2017/085, 2022/008917 Delegación del Gobierno para el Plan Nacional sobre Drogas
- 2016/01 Fundación Alicia Koplowitz
- grant, PEJD-2018-PRE/BMD-7899 Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund "Investing in your future"
- "Programa Intramural de Impulso a la I+D+I 2019" Instituto de investigación Sanitaria Gregorio Marañón
- PT20/00044 Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III
- x The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505)
- Contrato Intramural Postdoctoral FINBA
- SV-PA-21-AYUD/2021/51347 Ayudas para grupos de investigación de organismos del Principado de Asturias
Collapse
Affiliation(s)
| | | | - Javier Fernández
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | | | - Carlos Gálvez-Robleño
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Cristina Santa-Marta
- Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Claudio J. Villar
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Felipe Lombó
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Raquel Abalo
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia, Sociedad Española del Dolor (SED), 28046 Madrid, Spain
- Grupo de Trabajo de Cannabinoides, Sociedad Española del Dolor (SED), 28046 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Medica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| |
Collapse
|
16
|
Adolescent raloxifene treatment in females prevents cognitive deficits in a neurodevelopmental rodent model of schizophrenia. Behav Brain Res 2023; 441:114276. [PMID: 36574844 DOI: 10.1016/j.bbr.2022.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The existence of sex differences in schizophrenia is a well documented phenomenon which led to the hypothesis that female sex hormones are neuroprotective and hence responsible for the more favorable disease characteristics seen in women. The current study sought to investigate the effects of estrogen-like agents administered during early adolescence on behavioral outcomes in adulthood using the neurodevelopmental maternal immune activation (MIA) rodent model of schizophrenia. Female MIA offspring were administered during the asymptomatic period of adolescence with either 17β-estradiol, raloxifene or saline and were tested in late adolescence and adulthood for schizophrenia-related behavioral performance. We report here that whereas adult female MIA offspring exhibited cognitive deficits in the form of retarded spatial learning, the administration of raloxifene during adolescence was sufficient in preventing these deficits and resulted in intact performance in the MIA group.
Collapse
|
17
|
Ibrahim A, Warton FL, Fry S, Cotton MF, Jacobson SW, Jacobson JL, Molteno CD, Little F, van der Kouwe AJW, Laughton B, Meintjes EM, Holmes MJ. Maternal ART throughout gestation prevents caudate volume reductions in neonates who are HIV exposed but uninfected. Front Neurosci 2023; 17:1085589. [PMID: 36968507 PMCID: PMC10035579 DOI: 10.3389/fnins.2023.1085589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionSuccessful programmes for prevention of vertical HIV transmission have reduced the risk of infant HIV infection in South Africa from 8% in 2008 to below 1% in 2018/2019, resulting in an increasing population of children exposed to HIV perinatally but who are uninfected (HEU). However, the long-term effects of HIV and antiretroviral treatment (ART) exposure on the developing brain are not well understood. Whereas children who are HEU perform better than their HIV-infected counterparts, they demonstrate greater neurodevelopmental delay than children who are HIV unexposed and uninfected (HUU), especially in resource-poor settings. Here we investigate subcortical volumetric differences related to HIV and ART exposure in neonates.MethodsWe included 120 infants (59 girls; 79 HEU) born to healthy women with and without HIV infection in Cape Town, South Africa, where HIV sero-prevalence approaches 30%. Of the 79 HEU infants, 40 were exposed to ART throughout gestation (i.e., mothers initiated ART pre conception; HEU-pre), and 39 were exposed to ART for part of gestation (i.e., mothers initiated ART post conception; HEU-post). Post-conception mothers had a mean (± SD) gestational age (GA) of 15.4 (± 5.7) weeks at ART initiation. Mothers with HIV received standard care fixed drug combination ART (Tenofovir/Efavirenz/Emtricitabine). Infants were imaged unsedated on a 3T Skyra (Siemens, Erlangen, Germany) at mean GA equivalent of 41.5 (± 1.0) weeks. Selected regions (caudate, putamen, pallidum, thalamus, cerebellar hemispheres and vermis, and corpus callosum) were manually traced on T1-weighted images using Freeview.ResultsHEU neonates had smaller left putamen volumes than HUU [β (SE) = −90.3 (45.3), p = 0.05] and caudate volume reductions that depended on ART exposure duration in utero. While the HEU-pre group demonstrated no caudate volume reductions compared to HUU, the HEU-post group had smaller caudate volumes bilaterally [β (SE) = −145.5 (45.1), p = 0.002, and −135.7 (49.7), p = 0.008 for left and right caudate, respectively].DiscussionThese findings from the first postnatal month suggest that maternal ART throughout gestation is protective to the caudate nuclei. In contrast, left putamens were smaller across all HEU newborns, despite maternal ART.
Collapse
Affiliation(s)
- Abdulmumin Ibrahim
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Fleur L. Warton
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- *Correspondence: Fleur L. Warton,
| | - Samantha Fry
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Sandra W. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Joseph L. Jacobson
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher D. Molteno
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Barbara Laughton
- Department of Paediatrics and Child Health and Tygerberg Children’s Hospital, Faculty of Medicine and Health Sciences, Family Centre for Research with Ubuntu, Stellenbosch University, Stellenbosch, South Africa
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, University of Cape Town, Cape Town, South Africa
- Ernesta M. Meintjes,
| | - Martha J. Holmes
- Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, Biomedical Engineering Research Centre, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Debnath M, Berk M. Is paternal immune activation just as important as maternal immune activation? Time to rethink the bi-parental immune priming of neurodevelopmental model of schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Santoni M, Sagheddu C, Serra V, Mostallino R, Castelli MP, Pisano F, Scherma M, Fadda P, Muntoni AL, Zamberletti E, Rubino T, Melis M, Pistis M. Maternal immune activation impairs endocannabinoid signaling in the mesolimbic system of adolescent male offspring. Brain Behav Immun 2023; 109:271-284. [PMID: 36746342 DOI: 10.1016/j.bbi.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Prenatal infections can increase the risk of developing psychiatric disorders such as schizophrenia in the offspring, especially when combined with other postnatal insults. Here, we tested, in a rat model of prenatal immune challenge by the viral mimic polyriboinosinic-polyribocytidilic acid, whether maternal immune activation (MIA) affects the endocannabinoid system and endocannabinoid-mediated modulation of dopamine functions. Experiments were performed during adolescence to assess i) the behavioral endophenotype (locomotor activity, plus maze, prepulse inhibition of startle reflex); ii) the locomotor activity in response to Δ9-Tetrahydrocannabinol (THC) and iii) the properties of ventral tegmental area (VTA) dopamine neurons in vivo and their response to THC; iv) endocannabinoid-mediated synaptic plasticity in VTA dopamine neurons; v) the expression of cannabinoid receptors and enzymes involved in endocannabinoid synthesis and catabolism in mesolimbic structures and vi) MIA-induced neuroinflammatory scenario evaluated by measurements of levels of cytokine and neuroinflammation markers. We revealed that MIA offspring displayed an altered locomotor activity in response to THC, a higher bursting activity of VTA dopamine neurons and a lack of response to cumulative doses of THC. Consistently, MIA adolescence offspring showed an enhanced 2-arachidonoylglycerol-mediated synaptic plasticity and decreased monoacylglycerol lipase activity in mesolimbic structures. Moreover, they displayed a higher expression of cyclooxygenase 2 (COX-2) and ionized calcium-binding adaptor molecule 1 (IBA-1), associated with latent inflammation and persistent microglia activity. In conclusion, we unveiled neurobiological mechanisms whereby inflammation caused by MIA influences the proper development of endocannabinoid signaling that negatively impacts the dopamine system, eventually leading to psychotic-like symptoms in adulthood.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valeria Serra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Francesco Pisano
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy.
| |
Collapse
|
20
|
Li X, Wu X, Li W, Yan Q, Zhou P, Xia Y, Yao W, Zhu F. HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via linc01930/cGAS Axis in Recent-Onset Schizophrenia. Int J Mol Sci 2023; 24:ijms24033000. [PMID: 36769337 PMCID: PMC9917391 DOI: 10.3390/ijms24033000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting about 1% of individuals worldwide. Increased innate immune activation and neuronal apoptosis are common findings in schizophrenia. Interferon beta (IFN-β), an essential cytokine in promoting and regulating innate immune responses, causes neuronal apoptosis in vitro. However, the precise pathogenesis of schizophrenia is unknown. Recent studies indicate that a domesticated endogenous retroviral envelope glycoprotein of the W family (HERV-W ENV, also called ERVWE1 or syncytin 1), derived from the endogenous retrovirus group W member 1 (ERVWE1) locus on chromosome 7q21.2, has a high level in schizophrenia. Here, we found an increased serum IFN-β level in schizophrenia and showed a positive correlation with HERV-W ENV. In addition, serum long intergenic non-protein coding RNA 1930 (linc01930), decreased in schizophrenia, was negatively correlated with HERV-W ENV and IFN-β. In vitro experiments showed that linc01930, mainly in the nucleus and with noncoding functions, was repressed by HERV-W ENV through promoter activity suppression. Further studies indicated that HERV-W ENV increased IFN-β expression and neuronal apoptosis by restraining the expression of linc01930. Furthermore, HERV-W ENV enhanced cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes protein (STING) expression and interferon regulatory factor 3 (IRF3) phosphorylation in neuronal cells. Notably, cGAS interacted with HERV-W ENV and triggered IFN-β expression and neuronal apoptosis caused by HERV-W ENV. Moreover, Linc01930 participated in the increased neuronal apoptosis and expression level of cGAS and IFN-β induced by HERV-W ENV. To summarize, our results suggested that linc01930 and IFN-β might be novel potential blood-based biomarkers in schizophrenia. The totality of these results also showed that HERV-W ENV facilitated antiviral innate immune response, resulting in neuronal apoptosis through the linc01930/cGAS/STING pathway in schizophrenia. Due to its monoclonal antibody GNbAC1 application in clinical trials, we considered HERV-W ENV might be a reliable therapeutic choice for schizophrenia.
Collapse
Affiliation(s)
- Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
21
|
Gzieło K, Piotrowska D, Litwa E, Popik P, Nikiforuk A. Maternal immune activation affects socio-communicative behavior in adult rats. Sci Rep 2023; 13:1918. [PMID: 36732579 PMCID: PMC9894913 DOI: 10.1038/s41598-023-28919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A wide body of evidence suggests a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD). Since social and communicative deficits are included in the first diagnostic criterion of ASD, we aimed to characterize socio-communicative behaviors in the MIA model based on prenatal exposure to poly(I:C). Our previous studies demonstrated impaired socio-communicative functioning in poly(I:C)-exposed adolescent rats. Therefore, the current study sought to clarify whether these changes would persist beyond adolescence. For this purpose, we analyzed behavior during the social interaction test and recorded ultrasonic vocalizations (USVs) accompanying interactions between adult poly(I:C) rats. The results demonstrated that the altered pattern of social behavior in poly(I:C) males was accompanied by the changes in acoustic parameters of emitted USVs. Poly(I:C) males also demonstrated an impaired olfactory preference for social stimuli. While poly(I:C) females did not differ from controls in socio-positive behaviors, they displayed aggression during the social encounter and were more reactive to somatosensory stimulation. Furthermore, the locomotor pattern of poly(I:C) animals were characterized by repetitive behaviors. Finally, poly(I:C) reduced parvalbumin and GAD67 expression in the cerebellum. The results showed that prenatal poly(I:C) exposure altered the pattern of socio-communicative behaviors of adult rats in a sex-specific manner.
Collapse
Affiliation(s)
- Kinga Gzieło
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Diana Piotrowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Ewa Litwa
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
22
|
Dutra ML, Dias P, Freiberger V, Ventura L, Comim CM, Martins DF, Bobinski F. Maternal immune activation induces autism-like behavior and reduces brain-derived neurotrophic factor levels in the hippocampus and offspring cortex of C57BL/6 mice. Neurosci Lett 2023; 793:136974. [PMID: 36414133 DOI: 10.1016/j.neulet.2022.136974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Prenatal factors such as viral or bacterial infections occurring mainly during the first trimesters of pregnancy can increase the incidence of autism spectrum disorder (ASD) in children. In an animal model, it is already known that maternal immune activation (MIA) induces autistic-like behavior. However, it is unclear whether this behavior presents itself in young animals. In this preclinical experimental study, we investigated in the offspring of C57BL/6 female mice submitted to MIA with lipopolysaccharide (LPS), typically altered behaviors in ASD, such as social interaction and stereotyped self-grooming movement, as well as the levels of the brain-derived neurotrophic factor (BDNF) and interleukin 17A (IL-17A) in the hippocampus and cortex, at 28 and 60 days. Adult animals aged 60 days, offspring of females submitted to MIA, showed a decrease in the time of social interaction and an increase in the number of self-cleaning movements. In the hippocampus of the offspring of females submitted to MIA, a decrease in BDNF levels was found at 28 days and 60 days of life, and a decrease in IL-17A levels only at 60 days. The levels of BDNF and IL-17A did not change in the cortex of the offspring of mice submitted to MIA at the evaluated times. Young animals aged 28 days still showed typical behavior, without social deficits and stereotyped movements that characterize ASD, which suggests that at this age it is still not possible to observe the repercussions of MIA in this model. In the neurochemical issues of the hippocampal region, impairment of BDNF levels has already been demonstrated, which may be an important factor for the observation of ASD-like behaviors in adult mice at 60 days.
Collapse
Affiliation(s)
- Matheus Luchini Dutra
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Paula Dias
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Viviane Freiberger
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Leticia Ventura
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil; Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, UNISUL, Palhoça, 88137-270 Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Palhoça, 88137-270 Santa Catarina, Brazil.
| |
Collapse
|
23
|
Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 2023; 28:44-58. [PMID: 36280752 DOI: 10.1038/s41380-022-01832-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.
Collapse
|
24
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
25
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
26
|
Xu K, Li H, Zhang B, Le M, Huang Q, Fu R, Croppi G, Qian G, Zhang J, Zhang G, Lu Y. Integrated transcriptomics and metabolomics analysis of the hippocampus reveals altered neuroinflammation, downregulated metabolism and synapse in sepsis-associated encephalopathy. Front Pharmacol 2022; 13:1004745. [PMID: 36147346 PMCID: PMC9486403 DOI: 10.3389/fphar.2022.1004745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an intricated complication of sepsis that brings abnormal emotional and memory dysfunction and increases patients’ mortality. Patients’ alterations and abnormal function seen in SAE occur in the hippocampus, the primary brain region responsible for memory and emotional control, but the underlying pathophysiological mechanisms remain unclear. In the current study, we employed an integrative analysis combining the RNA-seq-based transcriptomics and liquid chromatography/mass spectrometry (LC-MS)-based metabolomics to comprehensively obtain the enriched genes and metabolites and their core network pathways in the endotoxin (LPS)-injected SAE mice model. As a result, SAE mice exhibited behavioral changes, and their hippocampus showed upregulated inflammatory cytokines and morphological alterations. The omics analysis identified 81 differentially expressed metabolites (variable importance in projection [VIP] > 1 and p < 0.05) and 1747 differentially expressed genes (Foldchange >2 and p < 0.05) were detected in SAE-grouped hippocampus. Moreover, 31 compounds and 100 potential target genes were employed for the Kyoto Encyclopedia of Genes and Genomes (KEGG) Markup Language (KGML) network analysis to explore the core signaling pathways for the progression of SAE. The integrative pathway analysis showed that various dysregulated metabolism pathways, including lipids metabolism, amino acids, glucose and nucleotides, inflammation-related pathways, and deregulated synapses, were tightly associated with hippocampus dysfunction at early SAE. These findings provide a landscape for understanding the pathophysiological mechanisms of the hippocampus in the progression of SAE and pave the way to identify therapeutic targets in future studies.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meini Le
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guangming Zhang, ; Yinzhong Lu,
| |
Collapse
|
27
|
Du Y, Gao Y, Wu G, Li Z, Du X, Li J, Li X, Liu Z, Xu Y, Liu S. Exploration of the relationship between hippocampus and immune system in schizophrenia based on immune infiltration analysis. Front Immunol 2022; 13:878997. [PMID: 35983039 PMCID: PMC9380889 DOI: 10.3389/fimmu.2022.878997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Immune dysfunction has been implicated in the pathogenesis of schizophrenia (SZ). Despite previous studies showing a broad link between immune dysregulation and the central nervous system of SZ, the exact relationship has not been completely elucidated. With immune infiltration analysis as an entry point, this study aimed to explore the relationship between schizophrenia and the immune system in more detail from brain regions, immune cells, genes, and pathways. Here, we comprehensively analyzed the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) between SZ and control groups. Differentially expressed genes (DEGs) and functional enrichment analysis showed that three brain regions were closely related to the immune system. Compared with PFC and STR, there were 20 immune-related genes (IRGs) and 42 immune pathways in HPC. The results of immune infiltration analysis showed that the differential immune cells in HPC were effector memory T (Tem) cells. The correlation of immune-related DEGs (IDEGs) and immune cells further analysis showed that NPY, BLNK, OXTR, and FGF12, were moderately correlated with Tem cells. Functional pathway analysis indicated that these four genes might affect Tem by regulating the PI3K-AKT pathway and the neuroactive ligand-receptor interaction pathway. The receiver operating characteristic curve (ROC) analysis results indicated that these four genes had a high diagnostic ability (AUC=95.19%). Finally, the disease animal model was successfully replicated, and further validation was conducted using the real-time PCR and the western blot. These results showed that these gene expression changes were consistent with our previous expression profiling. In conclusion, our findings suggested that HPC in SZ may be more closely related to immune disorders and modulate immune function through Tem, PI3K-Akt pathway, and neuroactive ligand-binding receptor interactions. To the best of our knowledge, the Immucell AI tool has been applied for the first time to analyze immune infiltration in SZ, contributing to a better understanding of the role of immune dysfunction in SZ from a new perspective.
Collapse
Affiliation(s)
- Yanhong Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Guangxian Wu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junxia Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Sha Liu, ; Yong Xu,
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Sha Liu, ; Yong Xu,
| |
Collapse
|
28
|
Subbanna M, Shivakumar V, Bhalerao G, Varambally S, Venkatasubramanian G, Debnath M. Variants of Th17 pathway-related genes influence brain morphometric changes and the risk of schizophrenia through epistatic interactions. Psychiatr Genet 2022; 32:146-155. [PMID: 35353801 DOI: 10.1097/ypg.0000000000000315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE T helper 17 (Th17) pathway has been reported to be abnormal in schizophrenia; however, it is not known whether variation within genes of this pathway has any impact on schizophrenia. Herein, the impact of genetic variations and gene-gene interactions of Th17 pathway-related genes on the risk, psychopathology, and brain volume was examined in schizophrenia patients. METHODS Functional polymorphisms within interleukin 6 ( IL6 )(rs1800795 and rs1800797), IL10 (rs1800872 and rs1800896), IL17A (rs2275913 and rs8193036), IL22 (rs2227484 and rs2227485), IL23R (rs1884444), and IL27 (rs153109 and rs181206) genes were studied in 224 schizophrenia patients and 226 healthy controls. These variants were correlated with the brain morphometry, analyzed using MRI in a subset of patients ( n = 117) and controls ( n = 137). RESULTS Patients carrying CC genotype of rs2227484 of IL22 gene had significantly higher apathy total score [ F (1,183) = 5.60; P = 0.019; partial ɳ 2 = 0.030]. Significant epistatic interactions between IL6 (rs1800797) and IL17A (rs2275913) genes were observed in schizophrenia patients. GG genotype of rs2275913 of IL17A gene was associated with reduced right middle occipital gyrus volume in schizophrenia patients ( T = 4.56; P < 0.001). CONCLUSION Interactions between genes of Th17 pathway impact the risk for schizophrenia. The variants of Th17 pathway-related genes seem to have a determining effect on psychopathology and brain morphometric changes in schizophrenia.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
- Integrative Medicine
| | - Gaurav Bhalerao
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
| | - Shivarama Varambally
- Integrative Medicine
- Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, and Departments of
- Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences
| |
Collapse
|
29
|
Garcia-Partida JA, Torres-Sanchez S, MacDowell K, Fernández-Ponce MT, Casas L, Mantell C, Soto-Montenegro ML, Romero-Miguel D, Lamanna-Rama N, Leza JC, Desco M, Berrocoso E. The effects of mango leaf extract during adolescence and adulthood in a rat model of schizophrenia. Front Pharmacol 2022; 13:886514. [PMID: 35959428 PMCID: PMC9360613 DOI: 10.3389/fphar.2022.886514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.
Collapse
Affiliation(s)
- Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| | - Karina MacDowell
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | | | - Lourdes Casas
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - Casimiro Mantell
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cádiz, Cádiz, Spain
| | - María Luisa Soto-Montenegro
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), Universidad Rey Juan Carlos, Madrid, Spain
| | - Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan Carlos Leza
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Health Research Institute Hospital 12 de Octubre (imas12), Institute of Research in Neurochemistry IUIN-UCM, Madrid, Spain
| | - Manuel Desco
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, Cádiz, Spain
- Ciber of Mental Health (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
30
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
31
|
Exposure to chronic stressor upsurges the excitability of serotoninergic neurons and diminishes concentrations of circulating corticosteroids in rats two weeks thereafter. Pharmacol Rep 2022; 74:451-460. [DOI: 10.1007/s43440-022-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
|
32
|
Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1571705. [PMID: 35437456 PMCID: PMC9013311 DOI: 10.1155/2022/1571705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.
Collapse
|
33
|
Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet 2022; 38:662-675. [PMID: 35410793 PMCID: PMC8992946 DOI: 10.1016/j.tig.2022.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Maternal immune activation (MIA) and infection during pregnancy are known to reprogramme offspring phenotypes. However, the epigenetic effects of preconceptual paternal infection and paternal immune activation (PIA) are not currently well understood. Recent reports show that paternal infection and immune activation can affect offspring phenotypes, particularly brain function, behaviour, and immune system functioning, across multiple generations without re-exposure to infection. Evidence from other environmental exposures indicates that epigenetic inheritance also occurs in humans. Given the growing impact of the coronavirus disease 2019 (COVID-19) pandemic, it is imperative that we investigate all of the potential epigenetic mechanisms and multigenerational phenotypes that may arise from both maternal and paternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as associated MIA, PIA, and inflammation. This will allow us to understand and, if necessary, mitigate any potential changes in disease susceptibility in the children, and grandchildren, of affected parents.
Collapse
|
34
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
35
|
Velloso FJ, Wadhwa A, Kumari E, Carcea I, Gunal O, Levison SW. Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits. Brain Behav Immun 2022; 101:23-36. [PMID: 34954074 PMCID: PMC8885860 DOI: 10.1016/j.bbi.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Epidemiologic studies have demonstrated that infections during pregnancy increase the risk of offspring developing Schizophrenia, Autism, Depression and Bipolar Disorder and have implicated interleukin-6 (IL-6) as a causal agent. However, other cytokines have been associated with the developmental origins of psychiatric disorders; therefore, it remains to be established whether elevating IL-6 is sufficient to alter the trajectory of neural development. Furthermore, most rodent studies have manipulated the maternal immune system at mid-gestation, which affects the stem cells and progenitors in both the primary and secondary germinal matrices. Therefore, a question that remains to be addressed is whether elevating IL-6 when the secondary germinal matrices are most active will affect brain development. Here, we have increased IL-6 from postnatal days 3-6 when the secondary germinal matrices are rapidly expanding. Using Nestin-CreERT2 fate mapping we show that this transient increase in IL-6 decreased neurogenesis in the dentate gyrus of the dorsal hippocampus, reduced astrogliogenesis in the amygdala and decreased oligodendrogenesis in the body and splenium of the corpus callosum all by ∼ 50%. Moreover, the IL-6 treatment elicited behavioral changes classically associated with neurodevelopmental disorders. As adults, IL-6 injected male mice lost social preference in the social approach test, spent ∼ 30% less time socially engaging with sexually receptive females and produced ∼ 50% fewer ultrasonic vocalizations during mating. They also engaged ∼ 50% more time in self-grooming behavior and had an increase in inhibitory avoidance. Altogether, these data provide new insights into the biological mechanisms linking perinatal immune activation to complex neurodevelopmental brain disorders.
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Anna Wadhwa
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ekta Kumari
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ioana Carcea
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ozlem Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103,Correspondence should be addressed to: Steven W. Levison, PhD, Department Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 205 S. Orange Ave, Newark, NJ 07103, Phone: 973-972-5162;
| |
Collapse
|
36
|
Santoni M, Frau R, Pistis M. Transgenerational Sex-dependent Disruption of Dopamine Function Induced by Maternal Immune Activation. Front Pharmacol 2022; 13:821498. [PMID: 35211019 PMCID: PMC8861303 DOI: 10.3389/fphar.2022.821498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Several epidemiological studies suggest an association between maternal infections during pregnancy and the emergence of neurodevelopmental disorders in the offspring, such as autism and schizophrenia. Animal models broadened the knowledge about the pathophysiological mechanisms that develop from prenatal infection to the onset of psychopathological phenotype. Mounting evidence supports the hypothesis that detrimental effects of maternal immune activation might be transmitted across generations. Here, we explored the transgenerational effects on the dopamine system of a maternal immune activation model based on the viral mimetic polyriboinosinic-polyribocytidilic acid. We assessed dopamine neurons activity in the ventral tegmental area by in vivo electrophysiology. Furthermore, we studied two behavioral tests strictly modulated by the mesolimbic dopamine system, i.e., the open field in response to amphetamine and the prepulse inhibition of the startle reflex in response to the D2 agonist apomorphine. Second-generation adult male rats did not display any deficit in sensorimotor gating; however, they displayed an altered activity of ventral tegmental area dopamine neurons, indexed by a reduced spontaneous firing rate and a heightened motor activation in response to amphetamine administration in the open field. On the other hand, second-generation female rats were protected from ancestors' polyriboinosinic-polyribocytidilic acid treatment, as they did not show any alteration in dopamine cell activity or in behavioral tests. These results confirm that maternal immune activation negatively influences, in a sex-dependent manner, neurodevelopmental trajectories of the dopamine system across generations.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- “Guy Everett” Laboratory, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
37
|
Manzoor S, Khan A, Hasan B, Mushtaq S, Ahmed N. Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210121151004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may
lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to
oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and
activities of enzymatic and antioxidant systems in schizophrenia.
Objectives:
Present study focuses on identification of HNE-protein adducts and its related molecular consequences in
schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.
Material and Methods:
Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus
region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances
(TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also
estimated.
Results:
Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy
control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of
schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ±
1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated
TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects
an increased lipid peroxidation (LPO).
Conclusion:
Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of
schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production.
Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative
stress in schizophrenia pathology.
Collapse
Affiliation(s)
- Sobia Manzoor
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
38
|
Effect of dimethyl fumarate on the changes in the medial prefrontal cortex structure and behavior in the poly(I:C)-induced maternal immune activation model of schizophrenia in the male mice. Behav Brain Res 2022; 417:113581. [PMID: 34530042 DOI: 10.1016/j.bbr.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The link between maternal immune activation (MIA) and the risk of developing schizophrenia (SCZ) later in life has been of major focus in recent years. This link could be bridged by activated inflammatory pathways and excessive cytokine release resulting in adverse effects on behavior, histology, and cytoarchitecture. The down-regulatory effects of immunomodulatory agents on the activated glial cells and their therapeutic effects on schizophrenic patients are consistent with this hypothesis. OBJECTIVE We investigated whether treatment with the anti-inflammatory drug dimethyl fumarate (DMF) could rescue impacts of prenatal exposure to polyinosinic:polycytidylic acid [poly (I:C)]. METHODS Pregnant dams were administered poly(I:C) at gestational day 9.5. Offspring born from these mothers were treated with DMF for fourteen consecutive days from postnatal day 80 and were assessed behaviorally before and after treatment. The brains were then stained with Cresyl Violet or Golgi-Cox. In addition to the estimation of stereological parameters, cytoarchitectural changes were also evaluated in the medial prefrontal cortex. RESULTS MIA caused some abnormalities in behavior, as well as changes in the number of neurons and non-neurons. These alterations were also extended to pyramidal layer III neurons with a significant decrease in dendritic complexity and spine density which DMF treatment could prevent these changes. Furthermore, DMF treatment was also effective against abnormal exploratory and depression-related behavior, but not the changes in the number of cells. CONCLUSION These findings support the idea of using anti-inflammatory agents as adjunctive therapy in patients with SCZ.
Collapse
|
39
|
He Y, Bo Q, Mao Z, Yang J, Liu M, Wang H, Kastin AJ, Pan W, Wang C, Sun Z. Reduced Serum Levels of Soluble Interleukin-15 Receptor α in Schizophrenia and Its Relationship to the Excited Phenotype. Front Psychiatry 2022; 13:842003. [PMID: 35356722 PMCID: PMC8959406 DOI: 10.3389/fpsyt.2022.842003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Our previous studies documented that interleukin-15 receptor α (IL-15Rα) knockout (KO) mice exhibited hyperactivity, memory impairment, and desperate behavior, which are core features of schizophrenia and depression. Due to the overlapping symptomology and pathogenesis observed for schizophrenia and depression, the present study attempted to determine whether IL-15Rα was associated with the risk of schizophrenia or depression. One hundred fifty-six participants, including 63 schizophrenia patients, 29 depressive patients, and 64 age-matched healthy controls, were enrolled in the study. We investigated the circulating levels of soluble IL-15Rα and analyzed potential links between the IL-15Rα levels and clinical symptoms present in schizophrenia or depressive patients. We observed reduced serum IL-15Rα levels in schizophrenia patients, but not depressive patients compared with controls. Moreover, a significant negative association was observed between the circulating IL-15Rα levels and excited phenotypes in the schizophrenia patients. The IL-15Rα KO mice displayed pronounced pre-pulse inhibition impairment, which was a typical symptom of schizophrenia. Interestingly, the IL-15Rα KO mice exhibited a remarkable elevation in the startle amplitude in the startle reflex test compared to wild type mice. These results demonstrated that serum levels of soluble IL-15Rα were reduced in schizophrenia and highlighted the relationship of IL-15Rα and the excited phenotype in schizophrenia patients and mice.
Collapse
Affiliation(s)
- Yi He
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Haixia Wang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Abba J Kastin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Weihong Pan
- BioPotentials Consult, Sedona, AZ, United States
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Chen S, Gou M, Chen W, Xiu M, Fan H, Tan Y, Tian L. Alterations in innate immune defense distinguish first-episode schizophrenia patients from healthy controls. Front Psychiatry 2022; 13:1024299. [PMID: 36311523 PMCID: PMC9606407 DOI: 10.3389/fpsyt.2022.1024299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Innate immune components involved in host defense have been implicated in schizophrenia (SCZ). However, studies exploring their clinical utility in SCZ diagnosis are limited. The main purpose of this study was to evaluate whether circulating endotoxin, high mobility group box 1 protein (HMGB1) and complement component 4 (C4) could act as peripheral biomarkers to distinguish first-episode schizophrenia (FES, n = 42) patients from healthy controls (HCs, n = 35) in associations with psychopathological symptoms and cognitive dysfunctions. Also, their changes after 8-week antipsychotic treatment were investigated. The Positive and Negative Syndrome Scale (PANSS), Psychotic Symptom Rating Scale (PSYRATS), and MATRICS Consensus Cognitive Battery (MCCB) were administered. Receiver operating characteristic (ROC) curves were conducted to evaluate the diagnostic effectiveness of the three biological indicators. Compared to HCs, levels of endotoxin, HMGB1, and C4 were remarkably increased in FES patients after controlling for age, gender, body mass index (BMI) and education years, and the combination of the three biomarkers demonstrated desirable diagnostic performance (AUC = 0.933). Moreover, the endotoxin level was positively correlated with the severity of auditory hallucinations. After 8 weeks of treatment, HMGB1 was decreased significantly in patients but still higher than that in HCs, whereas endotoxin and C4 did not change statistically. The baseline levels of endotoxin, HMGB1, and C4, as well as their changes were not associated with changes in any PANSS subscale score and total score. Our preliminary results suggest that a composite peripheral biomarker of endotoxin, HMGB1, and C4 may have accessory diagnostic value to distinguish SCZ patients from HCs. Additionally, endotoxin might be implicated in the pathogenesis of auditory hallucinations.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Hongzhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
41
|
Bao M, Hofsink N, Plösch T. LPS vs. Poly I:C Model: Comparison of Long-Term Effects of Bacterial and Viral Maternal Immune Activation (MIA) on the Offspring. Am J Physiol Regul Integr Comp Physiol 2021; 322:R99-R111. [PMID: 34874190 PMCID: PMC8782664 DOI: 10.1152/ajpregu.00087.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.
Collapse
Affiliation(s)
- Mian Bao
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
42
|
Talukdar PM, Abdul F, Maes M, Berk M, Venkatasubramanian G, Kutty BM, Debnath M. A proof-of-concept study of maternal immune activation mediated induction of Toll-like receptor (TLR) and inflammasome pathways leading to neuroprogressive changes and schizophrenia-like behaviours in offspring. Eur Neuropsychopharmacol 2021; 52:48-61. [PMID: 34261013 DOI: 10.1016/j.euroneuro.2021.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
Infection, particularly prenatal infection, leads to an enhanced risk of schizophrenia in the offspring. Interestingly, few data exist on the pathway(s) such as TLR and inflammasome, primarily involved in sensing the microorganisms and inducing downstream inflammatory responses, apoptosis and neuroprogressive changes that drive prenatal infection-induced risk of schizophrenia. Herein, we aimed to discern whether prenatal infection-induced maternal immune activation (MIA) causes schizophrenia-like behaviours through activation of TLR and inflammasome pathways in the brain of offspring. Sprague Dawley rats (n=15/group) were injected either with poly (I:C) or LPS or saline at gestational day (GD)-12. Significantly elevated plasma levels of IL-6, TNF-α and IL-17A assessed after 24 hours were observed in both the poly (I:C) and LPS-treated rats, while IL-1β was only elevated in LPS-treated rats, indicating MIA. The offspring of poly (I:C)-and LPS-treated dams displayed increased anxiety-like behaviours, deficits in social behaviours and prepulse inhibition. The hippocampus of offspring rats showed increased expression of Tlr3, Tlr4, Nlrp3, Il1b, and Il18 of poly (I:C) and Tlr4, Nlrp3, Cas1, Il1b, and Il18 of LPS-treated dams. Furthermore, Tlr and inflammasome genes were associated with social deficits and impaired prepulse inhibition in offspring rats. The results suggest that MIA due to prenatal infection can trigger TLR and inflammasome pathways and enhances the risk of schizophrenia-like behaviours in the later stages of life of the offspring.
Collapse
Affiliation(s)
- Pinku Mani Talukdar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.
| |
Collapse
|
43
|
Maes M, Plaimas K, Suratanee A, Noto C, Kanchanatawan B. First Episode Psychosis and Schizophrenia Are Systemic Neuro-Immune Disorders Triggered by a Biotic Stimulus in Individuals with Reduced Immune Regulation and Neuroprotection. Cells 2021; 10:cells10112929. [PMID: 34831151 PMCID: PMC8616258 DOI: 10.3390/cells10112929] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
There is evidence that schizophrenia is characterized by activation of the immune-inflammatory response (IRS) and compensatory immune-regulatory systems (CIRS) and lowered neuroprotection. Studies performed on antipsychotic-naïve first episode psychosis (AN-FEP) and schizophrenia (FES) patients are important as they may disclose the pathogenesis of FES. However, the protein–protein interaction (PPI) network of FEP/FES is not established. The aim of the current study was to delineate a) the characteristics of the PPI network of AN-FEP and its transition to FES; and b) the biological functions, pathways, and molecular patterns, which are over-represented in FEP/FES. Toward this end, we used PPI network, enrichment, and annotation analyses. FEP and FEP/FES are strongly associated with a response to a bacterium, alterations in Toll-Like Receptor-4 and nuclear factor-κB signaling, and the Janus kinases/signal transducer and activator of the transcription proteins pathway. Specific molecular complexes of the peripheral immune response are associated with microglial activation, neuroinflammation, and gliogenesis. FEP/FES is accompanied by lowered protection against inflammation, in part attributable to dysfunctional miRNA maturation, deficits in neurotrophin and Wnt/catenin signaling, and adherens junction organization. Multiple interactions between reduced brain derived neurotrophic factor, E-cadherin, and β-catenin and disrupted schizophrenia-1 (DISC1) expression increase the vulnerability to the neurotoxic effects of immune molecules, including cytokines and complement factors. In summary: FEP and FES are systemic neuro-immune disorders that are probably triggered by a bacterial stimulus which induces neuro-immune toxicity cascades that are overexpressed in people with reduced anti-inflammatory and miRNA protections, cell–cell junction organization, and neurotrophin and Wnt/catenin signaling.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT Strategic Research Center, Deakin University, Geelong 3220, Australia
- Correspondence:
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil;
- Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
44
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
45
|
Zhu M, Liu Z, Guo Y, Sultana MS, Wu K, Lang X, Lv Q, Huang X, Yi Z, Li Z. Sex difference in the interrelationship between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. J Neuroinflammation 2021; 18:202. [PMID: 34526062 PMCID: PMC8444364 DOI: 10.1186/s12974-021-02261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence indicates that dysregulated TNF-α and oxidative stress (OxS) contribute to the pathophysiology of schizophrenia. Additionally, previous evidence has demonstrated sex differences in many aspects of schizophrenia including clinical characteristics, cytokines, and OxS markers. However, to the best of our knowledge, there is no study investigating sex differences in the association between TNF-α, the OxS system, and their interaction with clinical symptoms in schizophrenia patients, especially in first-episode drug-naïve (FEDN) patients. Methods A total of 119 FEDN schizophrenia patients and 135 healthy controls were recruited for this study. Serum TNF-α, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms. Two-way ANOVA, partial correlation analysis, and multivariate regression analysis were performed. Results A sex difference in MDA levels was demonstrated only in healthy controls (F = 7.06, pBonferroni = 0.045) and not seen in patients. Furthermore, only male patients had higher MDA levels than male controls (F = 8.19, pBonferroni = 0.03). Additionally, sex differences were observed in the association of TNF-α and MDA levels with psychotic symptoms (all pBonferroni < 0.05). The interaction of TNF-α and MDA was only associated with general psychopathology symptom in male patients (B = − 0.07, p = 0.02). Conclusion Our results demonstrate the sex difference in the relationship between TNF-α, MDA, and their interaction with psychopathological symptoms of patients with schizophrenia.
Collapse
Affiliation(s)
- Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.,Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhenjing Liu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Mst Sadia Sultana
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kang Wu
- Department of Laboratory Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
| |
Collapse
|
46
|
Woods RM, Lorusso JM, Potter HG, Neill JC, Glazier JD, Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci Biobehav Rev 2021; 129:389-421. [PMID: 34280428 DOI: 10.1016/j.neubiorev.2021.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2023]
Abstract
Maternal immune activation (mIA) during pregnancy is hypothesised to disrupt offspring neurodevelopment and predispose offspring to neurodevelopmental disorders such as schizophrenia. Rodent models of mIA have explored possible mechanisms underlying this paradigm and provide a vital tool for preclinical research. However, a comprehensive analysis of the molecular changes that occur in mIA-models is lacking, hindering identification of robust clinical targets. This systematic review assesses mIA-driven transcriptomic and epigenomic alterations in specific offspring brain regions. Across 118 studies, we focus on 88 candidate genes and show replicated changes in expression in critical functional areas, including elevated inflammatory markers, and reduced myelin and GABAergic signalling proteins. Further, disturbed epigenetic markers at nine of these genes support mIA-driven epigenetic modulation of transcription. Overall, our results demonstrate that current outcome measures have direct relevance for the hypothesised pathology of schizophrenia and emphasise the importance of mIA-models in contributing to the understanding of biological pathways impacted by mIA and the discovery of new drug targets.
Collapse
Affiliation(s)
- Rebecca M Woods
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | - Jarred M Lorusso
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Harry G Potter
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy & Optometry, School of Health Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
47
|
Romero-Miguel D, Casquero-Veiga M, MacDowell KS, Torres-Sanchez S, Garcia-Partida JA, Lamanna-Rama N, Romero-Miranda A, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. A Characterization of the Effects of Minocycline Treatment During Adolescence on Structural, Metabolic, and Oxidative Stress Parameters in a Maternal Immune Stimulation Model of Neurodevelopmental Brain Disorders. Int J Neuropsychopharmacol 2021; 24:734-748. [PMID: 34165516 PMCID: PMC8453277 DOI: 10.1093/ijnp/pyab036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.
Collapse
Affiliation(s)
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Sonia Torres-Sanchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - José Antonio Garcia-Partida
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain,Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain,Correspondence: Manuel Desco, PhD, Laboratorio de Imagen Médica, Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46. E-28007 Madrid, Spain ()
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| |
Collapse
|
48
|
Maes M, Anderson G. False Dogmas in Schizophrenia Research: Toward the Reification of Pathway Phenotypes and Pathway Classes. Front Psychiatry 2021; 12:663985. [PMID: 34220578 PMCID: PMC8245788 DOI: 10.3389/fpsyt.2021.663985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- The Institute for Mental and Physical Health and Clinical Translation Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - George Anderson
- Clinical Research Communications Centre, London and Scotland, London, United Kingdom
| |
Collapse
|
49
|
Barcik W, Chiacchierini G, Bimpisidis Z, Papaleo F. Immunology and microbiology: how do they affect social cognition and emotion recognition? Curr Opin Immunol 2021; 71:46-54. [PMID: 34058687 DOI: 10.1016/j.coi.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/01/2021] [Indexed: 12/25/2022]
Abstract
Social interactions profoundly influence animals' life. The quality of social interactions and many everyday life decisions are determined by a proper perception, processing and reaction to others' emotions. Notably, alterations in these social processes characterize a number of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Increasing evidences support an implication of immune system vulnerability and inflammatory processes in disparate behavioral functions and the aforementioned neurodevelopmental disorders. In this review, we show a possible unifying view on how immune responses, within and outside the brain, and the communication between the immune system and brain responses might influence emotion recognition and related social responses. In particular, we highlight the importance of combining genetics, immunology and microbiology factors in understanding social behaviors. We underline the importance of better disentangling the whole machinery between brain-immune system interactions to better address the complexity of social processes.
Collapse
Affiliation(s)
- Weronika Barcik
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Chiacchierini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Zisis Bimpisidis
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy; Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
50
|
Interaction of maternal immune activation and genetic interneuronal inhibition. Brain Res 2021; 1759:147370. [PMID: 33600830 DOI: 10.1016/j.brainres.2021.147370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Genes and environment interact during intrauterine life, and potentially alter the developmental trajectory of the brain. This can result in life-long consequences on brain function. We have previously developed two transgenic mouse lines that suppress Gad1 expression in parvalbumin (PVALB) and neuropeptide Y (NPY) expressing interneuron populations using a bacterial artificial chromosome (BAC)-driven miRNA-based silencing technology. We were interested to assess if maternal immune activation (MIA), genetic interneuronal inhibition, and the combination of these two factors disrupt and result in long-term changes in neuroinflammatory gene expression, sterol biosynthesis, and acylcarnitine levels in the brain of maternally exposed offspring. Pregnant female WT mice were given a single intraperitoneal injection of saline or polyinosinic-polycytidilic acid [poly(I:C)] at E12.5. Brains of offspring were analyzed at postnatal day 90. We identified complex and persistent neuroinflammatory gene expression changes in the hippocampi of MIA-exposed offspring, as well in the hippocampi of Npy/Gad1 and Pvalb/Gad1 mice. In addition, both MIA and genetic inhibition altered the post-lanosterol sterol biosynthesis in the neocortex and disrupted the typical acylcarnitine profile. In conclusion, our findings suggest that both MIA and inhibition of interneuronal function have long-term consequences on critical homeostatic mechanisms of the brain, including immune function, sterol levels, and energy metabolism.
Collapse
|