1
|
Yi Y, Zhao W, Lv S, Zhang G, Rong Y, Wang X, Yang J, Li M. Effectiveness of non-pharmacological therapies for treating post-stroke depression: A systematic review and network meta-analysis. Gen Hosp Psychiatry 2024; 90:99-107. [PMID: 39084147 DOI: 10.1016/j.genhosppsych.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE Post-stroke depression (PSD) is a common neurological and psychiatric sequelae following a stroke, often surpassing the primary effects of the stroke due to its strong correlation with high mortality rates. In recent years, non-pharmacological therapy has garnered significant attention as a supplementary treatment for PSD, becoming widely adopted in clinical practice. However, the efficacy of specific intervention strategies remains unclear. This study aimed to conduct a network meta-analysis (NMA) of published studies to compare the efficacy of different non-pharmacological therapies for treating PSD. METHOD We systematically searched five databases from inception through March 2024 to identify randomized controlled trials (RCTs) evaluating non-pharmacological therapies for the treatment of PSD. We considered individual intervention and intervention class. Intervention classes included traditional Chinese medicine (TCM), non-invasive electrotherapy stimulation (NIES), psychotherapy (PT), exercise therapy, hyperbaric oxygen, and combined interventions. The NMA was conducted using R and Stata software, following a frequency-based methodology. Assessment of methodological quality and risk of bias was conducted using the Risk of Bias assessment tool 2.0. Therapies were ranked using the P-score, and box-plots visualization, meta-regression, and sensitivity analysis, were performed to assess transitivity, heterogeneity, and consistency, respectively. RESULTS The NMA included 43 studies with a total of 3138 participants. Random-effects models revealed significant efficacy for acupuncture (ACUP) (P-score = 0.92; pooled standardized mean difference (95% CI): -3.12 (-4.63 to -1.60)) and transcranial direct current stimulation (P-score = 0.85; -2.78 (-5.06 to -0.49)) compared to the treatment as usual (TAU) group. In categorical comparisons, TCM_PT (P-score = 0.82; -1.91 (-3.54 to -0.28)), TCM (P-score = 0.79; -1.65 (-2.33 to -0.97)), and NIES (P-score = 0.74; -1.54 (-2.62 to -0.46)) showed significant differences compared to TAU group. Furthermore, our results indicated no significant difference between PT and the control groups. However, Confidence in Network Meta-Analysis results indicated very low overall evidence grade. CONCLUSION Limited evidence suggests that ACUP may be the most effective non-pharmacological therapy for improving PSD, and TCM_PT is the best intervention class. However, the evidence quality is very low, underscoring the need for additional high-quality RCTs to validate these findings, particularly given the limited number of RCTs available for each therapy.
Collapse
Affiliation(s)
- Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Weijie Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuanhang Rong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xin Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jingrong Yang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Weller AE, Ferraro TN, Doyle GA, Reiner BC, Berrettini WH, Crist RC. Analysis of single-cell transcriptome data from a mouse model implicates protein synthesis dysfunction in schizophrenia. Genes Genomics 2024; 46:1071-1084. [PMID: 39083157 DOI: 10.1007/s13258-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Schizophrenia is a mental disorder that causes considerable morbidity, whose risk largely results from genetic factors. Setd1a is a gene implicated in schizophrenia. OBJECTIVE To study the gene expression changes found in heterozygous Setd1a± knockout mice in order to gain useful insight into schizophrenia pathogenesis. METHODS We mined a single-cell RNA sequencing (scRNAseq) dataset from the prefrontal cortex (PFC) and striatum of Setd1a± mice and identified cell type-specific differentially expressed genes (DEGs) and differential transcript usage (DTU). DEGs and genes containing DTU found in each cell type were used to identify affected biological pathways using Ingenuity Pathway Analysis (IPA). RESULTS We identified 273 unique DEGs across all cell types in PFC and 675 unique gene peaks containing DTU. In striatum, we identified 327 unique DEGs across all cell types and 8 unique gene peaks containing DTU. Key IPA findings from the analysis of DEGs found in PFC and striatum implicate processes involved in protein synthesis, mitochondrial function, cell metabolism, and inflammation. IPA analysis of genes containing DTU in PFC points to protein synthesis, as well as cellular activities involving intracellular signaling and neurotransmission. One canonical pathway, 'EIF2 Signaling', which is involved in the regulation of protein synthesis, was detected in PFC DEGs, striatum DEGs, and PFC genes containing DTU, drawing attention to its importance in schizophrenia pathophysiology. CONCLUSION Processes involving protein synthesis in general and the 'EIF2 Signaling' pathway in particular could be targets for the development of new research strategies and biomarkers in schizophrenia.
Collapse
Affiliation(s)
- Andrew E Weller
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US.
| | - Thomas N Ferraro
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, US
| | - Glenn A Doyle
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, US
| | - Benjamin C Reiner
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Wade H Berrettini
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| | - Richard C Crist
- Molecular and Neural Basis of Psychiatric Disease Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 S. 31 St., Suite 2200, Philadelphia, PA, 19104, US
| |
Collapse
|
3
|
Tanaka M, Battaglia S, Giménez-Llort L, Chen C, Hepsomali P, Avenanti A, Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024; 13:790. [PMID: 38786014 PMCID: PMC11120114 DOI: 10.3390/cells13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan;
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ET, UK;
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Ning B, Ge T, Wu Y, Wang Y, Zhao M. Role of Brain-Derived Neurotrophic Factor in Anxiety or Depression After Percutaneous Coronary Intervention. Mol Neurobiol 2024; 61:2921-2937. [PMID: 37946008 DOI: 10.1007/s12035-023-03758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Anxiety or depression after percutaneous coronary intervention (PCI) is one of the key clinical problems in cardiology that need to be solved urgently. Brain-derived neurotrophic factor (BDNF) may be a potential biomarker for the pathogenesis and treatment of anxiety or depression after PCI. This article reviews the correlation between BDNF and cardiovascular system and nervous system from the aspects of synthesis, release and action site of BDNF, and focuses on the latest research progress of the mechanism of BDNF in anxiety or depression after PCI. It includes the specific mechanisms by which BDNF regulates the levels of inflammatory factors, reduces oxidative stress damage, and mediates multiple signaling pathways. In addition, this review summarizes the therapeutic potential of BDNF as a potential biomarker for anxiety or depression after PCI.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yongqing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mingjun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China.
| |
Collapse
|
5
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
8
|
Wang Q, Wang H, Meng W, Liu C, Li R, Zhang M, Liang K, Gao Y, Du T, Zhang J, Han C, Shi L, Meng F. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis affects levodopa-induced dyskinesia in a rat model of Parkinson's disease. Cell Death Discov 2023; 9:342. [PMID: 37714835 PMCID: PMC10504256 DOI: 10.1038/s41420-023-01644-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Levodopa-induced dyskinesia (LID) is a common motor complication in Parkinson's disease. However, few studies have focused on the pathogenesis of LID at the transcriptional level. NONRATT023402.2, a long non-coding RNA (lncRNA) that may be related to LID was discovered in our previous study and characterized in rat models of LID. In the present study, NONRATT023402.2 was overexpressed by injection of adeno-associated virus (AAV) in striatum of LID rats, and 48 potential target genes, including nerve growth factor receptor (NGFR) were screened using next-generation sequencing and target gene predictions. The NONRATT023402.2/rno-miR-3065-5p/NGFR axis was verified using a dual luciferase reporter gene. Overexpression of NONRATT023402.2 significantly increased the abnormal involuntary movements (AIM) score of LID rats, activated the PI3K/Akt signaling pathway, and up-regulated c-Fos in the striatum. NGFR knockdown by injection of ShNGFR-AAV into the striatum of LID rats resulted in a significant decrease in the PI3K/Akt signaling pathway and c-Fos expression. The AIM score of LID rats was positively correlated with the expressions of NONRATT023402.2 and NGFR. A dual luciferase reporter assay showed that c-Fos, as a transcription factor, bound to the NONRATT023402.2 promoter and activated its expression. Together, the results showed that NONRATT023402.2 regulated NGFR expression via a competing endogenous RNA mechanism, which then activated the PI3K/Akt pathway and promoted c-Fos expression. This suggested that c-Fos acted as a transcription factor to activate NONRATT023402.2 expression, and form a positive feedback regulation loop in LID rats, thus, aggravating LID symptoms. NONRATT023402.2 is therefore a possible novel therapeutic target for LID.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizhi Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenjia Meng
- Clinical School, Tianjin Medical University, Tianjin, China
| | - Chong Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Renpeng Li
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Moxuan Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kun Liang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Tingting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
9
|
Martins PLB, Moura IA, Mendes G, Ribeiro VCAF, Arnaud A, Gama CS, Maes M, Macedo DS, Pinto JP. Immunoinflammatory and oxidative alterations in subjects with schizophrenia under clozapine: A meta-analysis. Eur Neuropsychopharmacol 2023; 73:82-95. [PMID: 37148631 DOI: 10.1016/j.euroneuro.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Clozapine presents immunoregulatory properties not well understood. To address this issue, we performed this systematic review to evaluate the immune alterations induced by clozapine and its relationship with the drug's clinical response and compare it with other antipsychotics. Our systematic review has selected nineteen studies meeting the inclusion criteria, from which eleven were included in the meta-analysis, totalizing 689 subjects distributed over three different comparisons. The results revealed that clozapine treatment activates the compensatory immune-regulatory system (CIRS) (Hedges's g = +1.049; CI +0.62 - +1.47, p < 0.001) but has no effects on the immune-Inflammatory Response System (IRS) (Hedges's g= -0.27; CI -1.76 - +1.22, p = 0.71), M1 macrophage (Hedges's g= -0.32; CI -1.78 - +1.14, p = 0.65) and Th1 (Hedge's g = 0.86; CI -0.93 - +1.814, p = 0.07) profiles. Comparing clozapine-treated patients with other anti-psychotics-treated, plasma levels of interleukin (IL)-6 were greater in the clozapine group (Hedge's g = 0.75; CI 0.35 - 1.15, p<0.001). In addition, higher IL-6 plasma levels after four weeks of clozapine treatment were related to the development of clozapine-induced fever; however, IL-6 levels recovered to baseline in 6-10 weeks due to an unexplained compensatory mechanism. In conclusion, our results show that clozapine treatment causes a time-dependent mixed immune profile characterized by increased IL-6 levels and CIRS activation, which may contribute to this drug mechanism of action and adverse effects. Future studies must be designed to investigate the relationship between clozapine-induced immune alterations and symptom remission, treatment resistance, and adverse effects, given the importance of this drug for treating resistant schizophrenia.
Collapse
Affiliation(s)
- Paulo Levi Bezerra Martins
- Health Sciences Center, Fortaleza University (UNIFOR), Av. Washington Soares, 1321, Fortaleza, CE, Brazil.
| | - Ian Araújo Moura
- Health Sciences Center, Fortaleza University (UNIFOR), Av. Washington Soares, 1321, Fortaleza, CE, Brazil
| | - Gabrielle Mendes
- Health Sciences Center, Fortaleza University (UNIFOR), Av. Washington Soares, 1321, Fortaleza, CE, Brazil
| | | | - André Arnaud
- Health Sciences Center, Fortaleza University (UNIFOR), Av. Washington Soares, 1321, Fortaleza, CE, Brazil
| | - Clarissa S Gama
- Laboratório de Psiquiatria Molecular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Psiquiatria, Faculdade de Medicina, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Faculty of Medicine, Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| | - Joel Porfirio Pinto
- Health Sciences Center, Fortaleza University (UNIFOR), Av. Washington Soares, 1321, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Neuropsychopharmacology and Translational Psychiatry Laboratory, Drug Research and Development Center, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
11
|
Fu S, Bury LAD, Eum J, Wynshaw-Boris A. Autism-specific PTEN p.Ile135Leu variant and an autism genetic background combine to dysregulate cortical neurogenesis. Am J Hum Genet 2023; 110:826-845. [PMID: 37098352 PMCID: PMC10183467 DOI: 10.1016/j.ajhg.2023.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.403A>C (p.Ile135Leu) variant found in an ASD-affected individual with macrocephaly dysregulates cortical neurogenesis in an ASD-genetic-background-dependent fashion. Transcriptome analysis at both bulk and single-cell level revealed that the PTEN c.403A>C variant and ASD genetic background affected genes involved in neurogenesis, neural development, and synapse signaling. We also found that this PTEN p.Ile135Leu variant led to overproduction of NPC subtypes as well as neuronal subtypes including both deep and upper layer neurons in its ASD background, but not when introduced into a control genetic background. These findings provide experimental evidence that both the PTEN p.Ile135Leu variant and ASD genetic background contribute to cellular features consistent with ASD associated with macrocephaly.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Luke A D Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jaejin Eum
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
12
|
Walker AJ, Mohebbi M, Maes M, Berk M, Walder K, Bortolasci CC, Liu ZSJ, Ng CH, Ashton MM, Berk L, Singh AB, Malhi GS, Dean OM. Adjunctive minocycline for major depressive disorder: A sub-study exploring peripheral immune-inflammatory markers and associated treatment response. Brain Behav Immun Health 2022; 27:100581. [PMID: 36632339 PMCID: PMC9826878 DOI: 10.1016/j.bbih.2022.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adjunctive minocycline shows promise in treating affective and psychotic disorders; however, the therapeutic mechanism remains unclear. Identifying relevant biomarkers may enhance the efficacy of novel adjunctive treatment candidates. We thus investigated the peripheral immune-inflammatory profile in a randomized controlled trial (RCT) of minocycline in major depressive disorder (MDD). Methods This sub-study investigated serum samples from a RCT evaluating minocycline (200 mg/day, 12 weeks) in addition to treatment as usual for MDD (ACTRN12612000283875). Of the original sample (N = 71), serum assays were conducted in 47 participants (placebo n = 24; minocycline n = 23) targeting an array of 46 immune-inflammatory analytes including cytokines, chemokines, and acute-phase reactants. General estimating equations (GEE) were used to assess whether analyte concentration at baseline (effect modification) and change in analytes (change association) influenced change in Montgomery-Åsberg Depression Rating Scale (MADRS) score over time. The Benjamini-Hochberg approach was applied when adjusting for false discovery rates (FDR). Results GEE models revealed several interaction effects. After adjusting for FDR several change association-models survived correction. However, no such models remained significant for effect modification. Three-way group × time × marker interactions were significant for complement C3 (B = -10.46, 95%CI [-16.832, -4.095], q = 0.019) and IL-1Ra (B = -9.008, 95%CI [-15.26, -2.751], q = 0.036). Two-way group × biomarker interactions were significant for ICAM-1/CD54 (B = -0.387, 95%CI [-0.513, -0.26], q < 0.001) and IL-8/CXCL8 (B = -4.586, 95%CI [-7.698, -1.475], q = 0.036) indicating that increases in the serum concentration of these analytes were associated with an improvement in MADRS scores in the minocycline group (compared with placebo). Conclusions Change in complement C3, IL-1Ra, IL-8/CXCL8, and ICAM-1 may be associated with greater change in depressive scores following adjunctive minocycline treatment in MDD. Further investigations are needed to assess the utility of these biomarkers.
Collapse
Affiliation(s)
- Adam J. Walker
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia,Corresponding author. Deakin University, IMPACT, School of Medicine, Barwon Health, HERB B Level 3, P.O. Box 281, Geelong, 3220, Australia.
| | - Mohammadreza Mohebbi
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia,Biostatistics Unit, Faculty of Health, Deakin University, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Department of Psychiatry, Medical University of Plodiv, Plodiv, Bulgaria
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia,Department of Psychiatry, University of Melbourne, Parkville, Australia,Orygen, National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe SJ. Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Chee H. Ng
- The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Richmond, Australia
| | - Melanie M. Ashton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Lesley Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Ajeet B. Singh
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Gin S. Malhi
- CADE Clinic and Department of Psychiatry, Royal North Shore Hospital, The University of Sydney, Sydney, Australia
| | - Olivia M. Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Al-Hakeim HK, Altufaili MF, Almulla AF, Moustafa SR, Maes M. Increased Lipid Peroxidation and Lowered Antioxidant Defenses Predict Methamphetamine Induced Psychosis. Cells 2022; 11:3694. [PMID: 36429122 PMCID: PMC9688750 DOI: 10.3390/cells11223694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND a significant percentage of methamphetamine (MA) dependent patients develop psychosis. The associations between oxidative pathways and MA-induced psychosis (MIP) are not well delineated. OBJECTIVE the aim of this study is to delineate whether acute MA intoxication in MA dependent patients is accompanied by increased nitro-oxidative stress and whether the latter is associated with MIP. METHOD we recruited 30 healthy younger males and 60 acutely intoxicated males with MA dependence and assessed severity of MA use and dependence and psychotic symptoms during intoxication, and serum oxidative toxicity (OSTOX) biomarkers including oxidized high (oxHDL) and low (oxLDL)-density lipoprotein, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO), and antioxidant defenses (ANTIOX) including HDL-cholesterol, zinc, glutathione peroxidase (GPx), total antioxidant capacity (TAC), and catalase-1. RESULTS a large part (50%, n = 30) of patients with MA dependence could be allocated to a cluster characterized by high psychosis ratings including delusions, suspiciousness, conceptual disorganization and difficulties abstract thinking and an increased OSTOX/ANTIOX ratio. Partial Least Squares analysis showed that 29.9% of the variance in MIP severity (a first factor extracted from psychosis, hostility, excitation, mannerism, and formal thought disorder scores) was explained by HDL, TAC and zinc (all inversely) and oxLDL (positively). MA dependence and dosing explained together 44.7% of the variance in the OSTOX/ANTIOX ratio. CONCLUSIONS MA dependence and intoxication are associated with increased oxidative stress and lowered antioxidant defenses, both of which increase risk of MIP during acute intoxication. MA dependence is accompanied by increased atherogenicity due to lowered HDL and increased oxLDL and oxHDL.
Collapse
Affiliation(s)
| | | | - Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- School of Medicine, Barwon Health, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong VIC 3216, Australia
| |
Collapse
|
14
|
Al-Musawi AF, Al-Hakeim HK, Al-Khfaji ZA, Al-Haboby IH, Almulla AF, Stoyanov DS, Maes M. In Schizophrenia, the Effects of the IL-6/IL-23/Th17 Axis on Health-Related Quality of Life and Disabilities Are Partly Mediated by Generalized Cognitive Decline and the Symptomatome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15281. [PMID: 36429996 PMCID: PMC9690590 DOI: 10.3390/ijerph192215281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 05/08/2023]
Abstract
Schizophrenia patients show increased disabilities and lower quality of life (DisQoL). Nevertheless, there are no data on whether the activation of the interleukin (IL)-6, IL-23, T helper (Th)-17 axis, and lower magnesium and calcium levels impact DisQoL scores. This study recruited 90 patients with schizophrenia (including 40 with deficit schizophrenia) and 40 healthy controls and assessed the World Health Association QoL instrument-Abbreviated version and Sheehan Disability scale, Brief Assessment of Cognition in Schizophrenia (BACS), IL-6, IL-23, IL-17, IL-21, IL-22, tumor necrosis factor (TNF)-α, magnesium and calcium. Regression analyses showed that a large part of the first factor extracted from the physical, psychological, social and environmental HR-QoL and interference with school/work, social life, and home responsibilities was predicted by a generalized cognitive deterioration (G-CoDe) index (a latent vector extracted from BACs scores), and the first vector extracted from various symptom domains ("symptomatome"), whereas the biomarkers had no effects. Partial Least Squares analysis showed that the IL6IL23Th17 axis and magnesium/calcium had highly significant total (indirect + direct) effects on HR-QoL/disabilities, which were mediated by G-CoDe and the symptomatome (a first factor extracted from negative and positive symptoms). The IL6IL23Th17 axis explained 63.1% of the variance in the behavioral-cognitive-psycho-social (BCPS) worsening index a single latent trait extracted from G-CoDe, symptomatome, HR-QoL and disability data. In summary, the BCPS worsening index is partly caused by the neuroimmunotoxic effects of the IL6IL23Th17 axis in subjects with lowered antioxidant defenses (magnesium and calcium), thereby probably damaging the neuronal circuits that may underpin deficit schizophrenia.
Collapse
Affiliation(s)
- Ali Fattah Al-Musawi
- Department of Clinical Pharmacy and Laboratory Sciences, College of Pharmacy, University of Al-Kafeel, Kufa 54001, Iraq
| | | | - Zahraa Abdulrazaq Al-Khfaji
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Al-Zahraa University for Women, Karbala 56001, Iraq
| | | | - Abbas F. Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, PathumWan, Bangkok 10330, Thailand
| | - Drozdstoj St. Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, PathumWan, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- IMPACT, School of Medicine, Barwon Health, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong 3217, Australia
| |
Collapse
|
15
|
Trevarrow M, Sanmann JN, Wilson TW, Kurz MJ. A Val 66Met polymorphism is associated with weaker somatosensory cortical activity in individuals with cerebral palsy. Heliyon 2022; 8:e10545. [PMID: 36119851 PMCID: PMC9474307 DOI: 10.1016/j.heliyon.2022.e10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) protein plays a prominent role in the capacity for neuroplastic change. However, a single nucleotide polymorphism at codon 66 of the BDNF gene results in significant reductions in neuroplastic change. Potentially, this polymorphism also contributes to the weaker somatosensory cortical activity that has been extensively reported in the neuroimaging literature on cerebral palsy (CP). Aims The primary objective of this study was to use magnetoencephalography (MEG) to probe if BDNF genotype affects the strength of the somatosensory-evoked cortical activity seen within individuals with CP. Methods and procedures and Procedures: Twenty individuals with CP and eighteen neurotypical controls participated. Standardized low resolution brain electromagnetic tomography (sLORETA) was used to image the somatosensory cortical activity evoked by stimulation of the tibial nerve. BDNF genotypes were determined from saliva samples. Outcomes and results The somatosensory cortical activity was weaker in individuals with CP compared to healthy controls (P = 0.04). The individuals with a Val66Met or Met66Met BDNF polymorphism also showed a reduced response compared to the individuals without the polymorphism (P = 0.03), had higher GMFCS levels (P = 0.04), and decreased walking velocity (P = 0.05). Conclusions and implications These results convey that BDNF genotype influences the strength of the somatosensory activity and mobility in individuals with CP. What this paper adds Previous literature has extensively documented altered sensorimotor cortical activity in individuals with CP, which ultimately contributes to the clinical deficits in sensorimotor processing documented in this population. While some individuals with CP see vast improvements in their sensorimotor functioning following therapeutic intervention, others are clear non-responders. The underlying basis for this discrepancy is not well understood. Our study is the first to identify that a polymorphism at the gene that codes for brain derived neurotrophic factor (BDNF), a protein well-known to be involved in the capacity for neuroplastic change, may influence the altered sensorimotor cortical activity within this population. Potentially, individuals with CP that have a polymorphism at the BDNF gene may reflect those that have difficulties in achieving beneficial outcomes following intervention. Thus, these individuals may require different therapeutic approaches in order to stimulate neuroplastic change and get similar benefits from therapy as their neurotypical peers.
Collapse
Affiliation(s)
- Michael Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jennifer N Sanmann
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|