1
|
Kleinnijenhuis AJ, van Holthoon FL. Convergent analysis of food products using molecular barcodes, based on LC-HRMS data. Food Chem 2024; 442:138466. [PMID: 38245987 DOI: 10.1016/j.foodchem.2024.138466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
There are various analytical techniques available to address the growing interest in the composition of food products. LC-HRMS(/MS) is the most comprehensive technique, providing detailed information at the molecular level. However, given the vast number of different molecules encountered in food products, it is important to obtain a global overview of the dataset before focusing on similarities and differences. Therefore, a convergent strategy was employed, going from non-targeted to targeted analysis, with insightful data representations, most notably Molecular Barcode. Additionally an intermediate, semi-targeted analysis was defined, aimed at the specific detection of animal tissue in food products, using pG+ and related fragments after all ion fragmentation. The use of Molecular Barcode as a starting point to obtain relevant molecular data was also demonstrated. In conclusion, the convergent approach facilitates the design of suitable targeted methods, either to discriminate between samples or to find a generic target.
Collapse
|
2
|
Kaleta M, Oklestkova J, Klíčová K, Kvasnica M, Koníčková D, Menšíková K, Strnad M, Novák O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem Neurosci 2024; 15:1990-2005. [PMID: 38655788 PMCID: PMC11099924 DOI: 10.1021/acschemneuro.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.
Collapse
Affiliation(s)
- Michal Kaleta
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Jana Oklestkova
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Kateřina Klíčová
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Kvasnica
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Dorota Koníčková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Kateřina Menšíková
- Department
of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Department
of Neurology, University Hospital Olomouc, Olomouc 779 00, Czech Republic
| | - Miroslav Strnad
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Ondřej Novák
- Laboratory
of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany
of the Czech Academy of Sciences, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| |
Collapse
|
3
|
Araki T, Li K, Suzuki D, Abe T, Kawabata R, Uemura T, Izumi S, Tsuruta S, Terasaki N, Kawano Y, Sekitani T. Broadband Photodetectors and Imagers in Stretchable Electronics Packaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304048. [PMID: 37403808 DOI: 10.1002/adma.202304048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The integration of flexible electronics with optics can help realize a powerful tool that facilitates the creation of a smart society wherein internal evaluations can be easily performed nondestructively from the surface of various objects that is used or encountered in daily lives. Here, organic-material-based stretchable optical sensors and imagers that possess both bending capability and rubber-like elasticity are reviewed. The latest trends in nondestructive evaluation equipment that enable simple on-site evaluations of health conditions and abnormalities are discussed without subjecting the targeted living bodies and various objects to mechanical stress. Real-time performance under real-life conditions is becoming increasingly important for creating smart societies interwoven with optical technologies. In particular, the terahertz (THz)-wave region offers a substance- and state-specific fingerprint spectrum that enables instantaneous analyses. However, to make THz sensors accessible, the following issues must be addressed: broadband and high-sensitivity at room temperature, stretchability to follow the surface movements of targets, and digital transformation compatibility. The materials, electronics packaging, and remote imaging systems used to overcome these issues are discussed in detail. Ultimately, stretchable optical sensors and imagers with highly sensitive and broadband THz sensors can facilitate the multifaceted on-site evaluation of solids, liquids, and gases.
Collapse
Affiliation(s)
- Teppei Araki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, 565-0871, Osaka, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kou Li
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Daichi Suzuki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, 841-0052, Saga, Japan
| | - Takaaki Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
| | - Rei Kawabata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Takafumi Uemura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, 565-0871, Osaka, Japan
| | - Shintaro Izumi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 657-8501, Kobe, Japan
| | - Shuichi Tsuruta
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
| | - Nao Terasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, 841-0052, Saga, Japan
| | - Yukio Kawano
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Tokyo, Japan
- National Institute of Informatics, Tokyo, 101-8430, Japan
| | - Tsuyoshi Sekitani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki-shi, 567-0047, Osaka, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, 565-0871, Osaka, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| |
Collapse
|
4
|
Jia Q, Liao GQ, Chen L, Qian YZ, Yan X, Qiu J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem 2024; 438:137974. [PMID: 37979266 DOI: 10.1016/j.foodchem.2023.137974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Pesticides are widely used in the cultivation and breeding of agricultural products all over the world. However, their direct use or indirect pollution in animal breeding may lead to residual accumulation, migration, and metabolism in animal-derived foods, posing potential health risks to humans through the food chain. Therefore, it is necessary to detect pesticide residues in animal-derived food using simple, reliable, and sensitive methods. This review summarizes sample extraction and clean-up methods, as well as the instrumental determination technologies such as chromatography and chromatography-mass spectrometry for residual analysis in animal-derived foods, including meat, eggs and milk. Additionally, we perspectives on the future of this field. This information aims to assist relevant researchers in this area, contribute to the development of ideas and novel technical methods for residual detection, metabolic research and risk assessment of pesticides in animal-derived food.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd./Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan 610023, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
5
|
Lepeschkin-Noel S, Lewis P, McCullough DG. Persistence and recovery of dinotefuran in eastern hemlock (Tsuga canadensis) foliage and twigs by UPLC-MS/MS and ELISA. PEST MANAGEMENT SCIENCE 2024; 80:1885-1894. [PMID: 38086734 DOI: 10.1002/ps.7926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Dinotefuran, a systemic neonicotinoid insecticide, is approved for control of hemlock woolly adelgid (HWA) (Adelges tsugae Annand), an invasive sap-feeding insect that can kill eastern hemlocks (Tsuga canadensis). Dinotefuran is highly water soluble, facilitating more rapid translocation and HWA control than other neonicotinoids, but its persistence is not well-known. Samples of needles and twigs were collected in spring 2021 from 50 hemlocks treated with a dinotefuran basal trunk spray in 2018 or 2019 (131-145 weeks and 85-93 weeks before sampling, respectively). Processed samples were analyzed with ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) and enzyme-linked immunosorbent assays (ELISA). RESULTS Dinotefuran residues were 4.6-6.1 times higher in needles than in twigs collected from the same trees. Average (±SE) residues in foliage samples collected from trees treated in 2019 ranged from 0.663 ± 0.243 to 0.564 ± 0.119 mg kg-1 , compared with 0.213 ± 0.033 and 0.225 ± 0.132 mg kg-1 in foliage from trees treated in 2018. Foliage residues from UPLC-MS/MS were consistently lower but strongly related to those from ELISA. Matrix effects appeared to disrupt ELISA analysis of twigs. None of the 25 trees treated in 2019 had live HWA when samples were collected in 2021 while low densities of HWA were observed on 52% of trees treated in 2018. CONCLUSIONS Dinotefuran was recovered from hemlock foliage, and to a lesser extent twigs, >2 years post-treatment. This, along with its relatively rapid translocation, suggests dinotefuran is a viable option for protecting declining or heavily infested hemlocks from HWA. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Phillip Lewis
- USDA APHIS PPQ, Forest Pest Methods Laboratory, Buzzards Bay, MA, USA
| | - Deborah G McCullough
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Yan Z, Nie J, Cheng Y, Han L, Farooq S. Method development, validation, and risk assessment of multiple pesticide residues of fruits in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18826-18841. [PMID: 38353823 DOI: 10.1007/s11356-024-32198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
In this study, a muti-residue analysis method of 40 pesticides in five different categories of fruits in China was developed based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Five hundred real samples were analyzed and assessed for the dietary exposure risk. The sample treatment method was optimized by comparing four clean-up methods. The matrix effects of different fruits were evaluated. The analytical method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision. The results showed that the optimal method was the treatment by clean up with ODS (octadecylsilane) and MgSO4. The matrix effect was the strongest in orange and weakest in apple. The LOD and LOQ of pesticides were 0.04-5.9 μg kg-1 and 0.13-19.5 μg kg-1, respectively. The recoveries at three spiked levels were ranged from 71.2 to 115.2% with the RSDs from 0.1 to 19.6%. Twenty-two pesticides were detected in 500 fruit samples from the major production regions of China, with concentrations ranging from 0.1 to 1930 μg kg-1. A total of 13, 10, 9, 8, and 4 pesticides were detected in peach, orange, grape, apple, and strawberry. Both the acceptable daily intake (ADI) and acute reference dose (ARfD) for all the detected pesticides were lower than 100%, indicating that the dietary intake risks are acceptable and would not pose potential health risks.
Collapse
Affiliation(s)
- Zhen Yan
- Institute of Pomology of Chinese Academy of Agricultural Sciences/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), MARA, Xingcheng, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| | - Yang Cheng
- Institute of Pomology of Chinese Academy of Agricultural Sciences/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), MARA, Xingcheng, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
7
|
Torabi E, Talebi K, Pourbabaee AA, Homayoonzadeh M, Ghamari MJ, Ebrahimi S, Faridy N. Optimizing the QuEChERS method for efficient monitoring of fipronil, thiobencarb, and cartap residues in paddy soils with varying properties. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:125. [PMID: 38195960 DOI: 10.1007/s10661-023-12279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
This study aims to optimize the QuEChERS methodology for extracting three pesticides (fipronil, thiobencarb, and cartap) from two paddy soils with distinct characteristics. Various modifications were explored to enhance extraction efficiency, employing acetonitrile (MeCN) or ethyl acetate (EtOAc) for extraction and primary-secondary amine (PSA) and graphitized carbon black (GCB) for the clean-up. Assessment criteria included accuracy, precision, linearity, detection limits, uncertainty, and matrix effects. Results revealed that the clayey soil with lower organic carbon (OC) content (1.26%) and 100% moisture yielded the highest pesticide recoveries (113.72%, 115.73%, and 116.41% for FIP, THIO, and CART, respectively). In contrast, the silty clayey soil with higher OC content (2.91%) and 20% water content exhibited poor recoveries (< 60%). FIP and CART demonstrated better recoveries with MeCN, while THIO performed better with EtOAc under specific moisture conditions. Clean-up sorbents significantly reduced FIP and CART recoveries, with THIO recoveries less affected. Acidifying with HCl substantially improved CART recovery. EtOAc introduced a moderate to strong matrix effect for FIP and THIO, while MeCN in soils with 100% moisture resulted in a strong matrix effect for CART. The study highlighted the substantial impact of extraction conditions, pesticide properties, and soil conditions on the outcomes of the QuEChERS method. A comprehensive understanding of these interplays was deemed crucial for accurately quantifying pesticide residues in agricultural soils.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Homayoonzadeh
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohamad Javad Ghamari
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyedali Ebrahimi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
8
|
Grondona SI, Lima ML, Massone HE, Miglioranza KSB. Pesticides in aquifers from Latin America and the Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165992. [PMID: 37536597 DOI: 10.1016/j.scitotenv.2023.165992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
In Latin America and the Caribbean (LAC), agriculture is the primary consumer of water and the biggest user of pesticides worldwide. Given that groundwater is a crucial resource in this region, a systematic review was conducted to evaluate the current state of knowledge on the presence of pesticides in aquifers. The review examined 48 research papers published between 1998 and 2020, and found that only six countries in the region have information on pesticides in groundwater. A total of 70 agrochemicals were detected, encompassing legacy pesticides, herbicides, insecticides, fungicides, and metabolites. Herbicides, including the widely used atrazine and glyphosate, were the most commonly detected current-use pesticides. These herbicides are being gradually banned or restricted due to their potentially harmful effects on the environment. Factors that contribute to the presence of these contaminants in aquifers include preferential flows, seasonal variations in rainfall, aquifer type, unsaturated zone thickness, and land use and management practices. Researchers noted that analysis of these contaminants is often beyond the economic or methodological scope, and analytical capacity in the region is generally limited. Based on the findings of this review, there is a clear need for groundwater pesticide monitoring in the region to reduce health risks to humans and ecosystems.
Collapse
Affiliation(s)
- Sebastian Iván Grondona
- Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata-Comisión de Investigaciones Científicas Bs. As. Mar del Plata, Argentina, Funes 3350, 7600 Mar del Plata, Argentina; Laboratorio de Ecotoxicología y Contaminación Ambiental (ECoA), Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina.
| | - María Lourdes Lima
- Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata-Comisión de Investigaciones Científicas Bs. As. Mar del Plata, Argentina, Funes 3350, 7600 Mar del Plata, Argentina
| | - Héctor Enrique Massone
- Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata-Comisión de Investigaciones Científicas Bs. As. Mar del Plata, Argentina, Funes 3350, 7600 Mar del Plata, Argentina
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental (ECoA), Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina
| |
Collapse
|
9
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
10
|
Zhu L, Wu M, Li R, Zhao Y, Lu Y, Wang T, Du L, Wan L. Research progress on pesticide residue detection based on microfluidic technology. Electrophoresis 2023; 44:1377-1404. [PMID: 37496295 DOI: 10.1002/elps.202300048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
The problem of pesticide residue contamination has attracted widespread attention and poses a risk to human health. The current traditional pesticide residue detection methods have difficulty meeting rapid and diverse field screening requirements. Microfluidic technology integrates functions from sample preparation to detection, showing great potential for quick and accurate high-throughput detection of pesticide residues. This paper reviews the latest research progress on microfluidic technology for pesticide residue detection. First, the commonly used microfluidic materials are summarized, including silicon, glass, paper, polydimethylsiloxane, and polymethyl methacrylate. We evaluated their advantages and disadvantages in pesticide residue detection applications. Second, the current pesticide residue detection technology based on microfluidics and its application to real samples are summarized. Finally, we discuss this technology's present challenges and future research directions. This study is expected to provide a reference for the future development of microfluidic technology for pesticide residue detection.
Collapse
Affiliation(s)
- Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
11
|
Chuasontia I, Sirisom W, Nakpathomkun N, Toommee S, Pechyen C, Tangnorawich B, Parcharoen Y. Development and Characterization of Nano-Ink from Silicon Carbide/Multi-Walled Carbon Nanotubes/Synthesized Silver Nanoparticles for Non-Enzymatic Paraoxon Residuals Detection. MICROMACHINES 2023; 14:1613. [PMID: 37630149 PMCID: PMC10456359 DOI: 10.3390/mi14081613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The ongoing advancement in the synthesis of new nanomaterials has accelerated the rapid development of non-enzymatic pesticide sensors based on electrochemical platforms. This study aims to develop and characterize Nano-ink for applying organophosphorus pesticides using paraoxon residue detection. Multi-walled carbon nanotubes, silicon carbide, and silver nanoparticles were used to create Nano-ink using a green synthesis process in 1:1:0, 1:1:0.5, and 1:1:1 ratios, respectively. These composites were combined with chitosan of varying molecular weights, which served as a stabilizing glue to keep the Nano-ink employed in a functioning electrode stable. By using X-ray powder diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and a field emission scanning electron microscope, researchers were able to examine the crystallinity, element composition, and surface morphology of Nano-ink. The performance of the proposed imprinted working electrode Nano-ink was investigated using cyclic voltammetry and differential pulse voltammetry techniques. The Cyclic voltammogram of Ag NPs/chitosan (medium, 50 mg) illustrated high current responses and favorable conditions of the Nano-ink modified electrode. Under the optimized conditions, the reduction currents of paraoxon using the DPV techniques demonstrated a linear reaction ranging between 0.001 and 1.0 µg/mL (R2 = 0.9959) with a limit of detection of 0.0038 µg/mL and a limit of quantitation of 0.011 µg/mL. It was concluded that the fabricated Nano-ink showed good electrochemical activity for non-enzymatic paraoxon sensing.
Collapse
Affiliation(s)
- Itsarapong Chuasontia
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Faculty of Learning Science and Education, Thammasat University, Bangkok 12120, Thailand
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Wichaya Sirisom
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand
| | - Natthapon Nakpathomkun
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Surachet Toommee
- Industrial Arts Program, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
| | - Chiravoot Pechyen
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand
| | - Benchamaporn Tangnorawich
- Department of Physics, Faculty of Science and Technology, Thammasat University, Bangkok 12120, Thailand; (I.C.)
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
| | - Yardnapar Parcharoen
- Thammasat University Center of Excellence in Modern Technology and Advanced Manufacturing for Medical Innovation, Thammasat University, Bangkok 12120, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Bangkok 12120, Thailand
| |
Collapse
|
12
|
Lazofsky A, Brinker A, Rivera-Núñez Z, Buckley B. A comparison of four liquid chromatography-mass spectrometry platforms for the analysis of zeranols in urine. Anal Bioanal Chem 2023; 415:4885-4899. [PMID: 37432442 PMCID: PMC10386926 DOI: 10.1007/s00216-023-04791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Targeted biomonitoring studies quantifying the concentration of zeranols in biological matrices have focused on liquid chromatography interfaced to mass spectrometry (LC-MS). The MS platform for measurement, quadrupole, time-of-flight (ToF), ion trap, etc., is often chosen based on either sensitivity or selectivity. An instrument performance comparison of the benefits and limitations using matrix-matched standards containing 6 zeranols on 4 MS instruments, 2 low-resolution (linear ion traps), and 2 high-resolution (Orbitrap and ToF) was undertaken to identify the best measurement platform for multiple biomonitoring projects characterizing the endocrine disruptive properties of zeranols. Analytical figures of merit were calculated for each analyte to compare instrument performance across platforms. The calibration curves had correlation coefficients r = 0.989 ± 0.012 for all analytes and LODs and LOQs were ranked for sensitivity: Orbitrap > LTQ > LTQXL > G1 (V mode) > G1 (W mode). The Orbitrap had the smallest measured variation (lowest %CV), while the G1 had the highest. Instrumental selectivity was calculated using full width at half maximum (FWHM) and as expected, the low-resolution instruments had the broadest spectrometric peaks, concealing coeluting peaks under the same mass window as the analyte. Multiple peaks from concomitant ions, unresolved at low resolution (within a unit mass window), were present but did not match the exact mass predicted for the analyte. For example, the high-resolution platforms were able to differentiate between a concomitant peak at 319.1915 from the analyte at 319.1551, included in low-resolution quantitative analyses demonstrating the need to consider coeluting interfering ions in biomonitoring studies. Finally, a validated method using the Orbitrap was applied to human urine samples from a pilot cohort study.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Xue Y, Jiang H. Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model. Foods 2023; 12:2402. [PMID: 37372614 DOI: 10.3390/foods12122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study presents a novel method for the quantitative detection of residual chlorpyrifos in corn oil through Raman spectroscopy using a combined long short-term memory network (LSTM) and convolutional neural network (CNN) architecture. The QE Pro Raman+ spectrometer was employed to collect Raman spectra of corn oil samples with varying concentrations of chlorpyrifos residues. A deep-learning model based on LSTM combined with a CNN structure was designed to realize feature self-learning and model training of Raman spectra of corn oil samples. In the study, it was discovered that the LSTM-CNN model has superior generalization performance compared to both the LSTM and CNN models. The root-mean-square error of prediction (RMSEP) of the LSTM-CNN model is 12.3 mg·kg-1, the coefficient of determination (RP2) is 0.90, and the calculation of the relative prediction deviation (RPD) results in a value of 3.2. The study demonstrates that the deep-learning network based on an LSTM-CNN structure can achieve feature self-learning and multivariate model calibration for Raman spectra without preprocessing. The results of this study present an innovative approach for chemometric analysis using Raman spectroscopy.
Collapse
Affiliation(s)
- Yingchao Xue
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Sindhu S, Manickavasagan A. Nondestructive testing methods for pesticide residue in food commodities: A review. Compr Rev Food Sci Food Saf 2023; 22:1226-1256. [PMID: 36710657 DOI: 10.1111/1541-4337.13109] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
Pesticides play an important role in increasing the overall yield and productivity of agricultural foods by controlling pests, insects, and numerous plant-related diseases. However, the overuse of pesticides has resulted in pesticide contamination of food products and water bodies, as well as disruption of ecological and environmental systems. Global health authorities have set limits for pesticide residues in individual food products to ensure the availability of safe foods in the supply system and to assist farmers in developing the best agronomic practices for crop production. Therefore, the use of nondestructive testing (NDT) methods for pesticide residue detection is gaining interest in the food supply chain. The NDT techniques have several advantages, such as simultaneous measurement of chemical and physical characteristics of food without destroying the product. Although numerous studies have been conducted on NDT for pesticide residue in agro-food products, there are still challenges in real-time implementation. Further study on NDT methods is needed to establish their potential for supplementing existing methods, identifying mixed pesticides, and performing volumetric quantification (not surface accumulation alone).
Collapse
Affiliation(s)
- Sindhu Sindhu
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
15
|
Hu H, Tian Y, Yin X, Ren J, Su L, Xu J, Jia C, Wang J, Zhang D. A lateral flow immunoassay based on chemisorbed probes in virtue of hydrogen bond receptors on the Bi2S3 NPs. Food Chem 2023; 401:134133. [DOI: 10.1016/j.foodchem.2022.134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
|
16
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
17
|
Wang R, Wang S, Qin C, Nie Q, Luo Y, Qin QP, Wang R, Liu B, Luo D. An Electrochemical Sensor Based on Electropolymerization of β-Cyclodextrin on Glassy Carbon Electrode for the Determination of Fenitrothion. SENSORS (BASEL, SWITZERLAND) 2022; 23:435. [PMID: 36617033 PMCID: PMC9824020 DOI: 10.3390/s23010435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
An electrochemical sensor enabled by electropolymerization (EP) of β-cyclodextrin on glassy carbon electrode (β-CDP/GCE) is built for the determination of fenitrothion (FNT). The effects of the EP cycles, pH value, and enrichment time on the electrochemical response of FNT were studied. With the optimum conditions, good linear relationships between the current of the reduction peak of the nitroso derivative of FNT and the concentration are obtained in the range of 10-150 and 150-4000 ng/mL, with a detection limit of 6 ng/mL (S/N = 3). β-CDP/GCE also exhibits a satisfactory applicability in cabbage and tap water, with recovery values between 98.43% and 112%. These outstanding results suggest that β-CDP/GCE could be a new effective alternative for the determination of FNT in real samples.
Collapse
Affiliation(s)
- Rong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Caihong Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Qiyang Nie
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Yougang Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Ruijuan Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Baiquan Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
18
|
Li K, Kinoshita Y, Sakai D, Kawano Y. Recent Progress in Development of Carbon-Nanotube-Based Photo-Thermoelectric Sensors and Their Applications in Ubiquitous Non-Destructive Inspections. MICROMACHINES 2022; 14:61. [PMID: 36677122 PMCID: PMC9865119 DOI: 10.3390/mi14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The photo-thermoelectric (PTE) effect in electronic materials effectively combines photo-absorption-induced local heating and associated thermoelectric conversion for uncooled and broadband photo-detection. In particular, this work comprehensively summarizes the operating mechanism of carbon nanotube (CNT)-film-based PTE sensors and ubiquitous non-destructive inspections realized by exploiting the material properties of CNT films. Formation of heterogeneous material junctions across the CNT-film-based PTE sensors, namely photo-detection interfaces, triggers the Seebeck effect with photo-absorption-induced local heating. Typical photo-detection interfaces include a channel-electrode boundary and a junction between P-type CNTs and N-type CNTs (PN junctions). While the original CNT film channel exhibits positive Seebeck coefficient values, the material selections of the counterpart freely govern the intensity and polarity of the PTE response signals. Based on these operating mechanisms, CNT film PTE sensors demonstrate a variety of physical and chemical non-destructive inspections. The device aggregates broad multi-spectral optical information regarding the targets and reconstructs their inner composite or layered structures. Arbitrary deformations of the device are attributed to the macroscopic flexibility of the CNT films to further monitor targets from omni-directional viewing angles without blind spots. Detection of blackbody radiation from targets using the device also visualizes their behaviors and associated changes.
Collapse
Affiliation(s)
- Kou Li
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, School of Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuya Kinoshita
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Daiki Sakai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yukio Kawano
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, School of Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| |
Collapse
|
19
|
Rahman A, Ali MA, Xavier C, Santos DM, Daam MA, Azevedo EB, Brigante Castele J, Vieira EM. Modified QuEChERS Method for Extracting Thiamethoxam and Imidacloprid from Stingless Bees: Development, Application, and Green Metrics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2365-2374. [PMID: 35770720 DOI: 10.1002/etc.5419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In the present study, a method for the determination of residues of the neonicotinoid insecticides thiamethoxam and imidacloprid in the stingless bee Melipona scutellaris Latreille (1811) was optimized through a factorial design, tested using green metrics, and then applied to exposed bees. It combines the extraction with a modified quick, easy, cheap, effective, rugged, and safe method and the determination by liquid chromatography-tandem mass spectrometry analysis. Different parameters such as the mass of the sample, dispersive sorbents, and elution solvents were assessed. Method validation parameters were checked and include sensitivity, specificity, and linearity. The limit of quantification of 0.0025 μg g-1 was obtained for both insecticides, where accuracy was 94%-100% with satisfactory intraday and interday precisions (relative standard deviation <10%). The qualified method was applied to orally and topically exposed bee samples, and the results indicated that it is suitable for the determination and quantification of neonicotinoid pesticide residues in this species. Moreover, green analytical metrics like the National Environmental Methods Index, Eco Scale score, high-performance liquid chromatography with an environmental assessment tool (HPLC-EAT), waste generation, and amount of sample were compared with methods described in the literature involving neonicotinoid analysis in honeybees. As a result, the present study displayed the highest Eco Scale score and HPLC-EAT score and the second smallest amount of sample and waste generated. Thus, the method meets green analytical metrics more than other methods. In this sense, besides the application, the multicriteria decision analysis tool employed suggests that this is a good option as a green analytical method. Environ Toxicol Chem 2022;41:2365-2374. © 2022 SETAC.
Collapse
Affiliation(s)
- Asma Rahman
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Mian Abdul Ali
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | - Chubraider Xavier
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, Caparica, Portugal
| | | | | | - Eny Maria Vieira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
20
|
Khan NS, Pradhan D, Choudhary S, Swargam S, Jain AK, Poddar NK. The interaction analysis between human serum albumin with chlorpyrifos and its derivatives through sub-atomic docking and molecular dynamics simulation techniques. 3 Biotech 2022; 12:272. [PMID: 36105863 PMCID: PMC9464670 DOI: 10.1007/s13205-022-03344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns about it contaminating the environment and human health, with estimated three lakh deaths annually. The molecular modeling protocol was assisted in redesigning thirteen well-known CPF linkers and inserting them at five selectable CPF (R1-R5) positions of CPF to get 258 CPF derivatives. CPF and its derivatives were optimized using LigPrep and docked to a grid centralized on Trp214 using extra precision glide docking. The Binding free energy of complexes was calculated using molecular mechanics/generalized born surface area (MM-GBSA). CPF and CPFD-225 have glide scores of - 3.08 and - 6.152 kcal/mol, respectively, with human serum albumin and ΔG bind for CPF (- 33.041817 kcal/mol) (- 52.825 kcal/mol) for CPF-D225. The top ten CPF derivatives showed at least ninefold better binding free energy than the CPF proposed for polyclonal antibody production. Subsequently, molecular docking studies revealed that CPF and its derivatives could bind to human serum albumin (HSA). Furthermore, using the Desmond package, a 100-ns molecular dynamics (MD) simulation was performed on the potential binding site. The final systems of CPF-HSA and CPF-222D complexes consist of 76,014 and 76,026 atoms, respectively. The physical stability of both the systems (CPF-HSA and CPF-222D) was analyzed by considering the overall potential energy, RMSF, RMSD, Hydrophobic interactions, and water-mediated patterns, which showed total energy of - 141,610 kcal/mol and - 140,150 kcal/mol, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03344-7.
Collapse
Affiliation(s)
- Noor Saba Khan
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
| | | | - Saumya Choudhary
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
| | - Sandeep Swargam
- Genomics and Epidemiology Division, INSACOG Unit, National Centre for Disease Control, New Delhi, 110054 India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Nitesh Kumar Poddar
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| |
Collapse
|
21
|
Optimization of an Analytical Method for Indoxacarb Residues in Fourteen Medicinal Herbs Using GC–μECD, GC–MS/MS and LC–MS/MS. SEPARATIONS 2022. [DOI: 10.3390/separations9090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pesticide residue analysis in medicinal herbs is a challenging task because of the matrix effect and its influence on quantitative analysis despite the continuous development of several new analytical methods and instrumentations. In this study, a modified QuEChERS method was developed for the analysis of indoxacarb residue in medicinal herbs by using the conventional instrument, gas chromatography micro-electron-capture-detector (GC–μECD), and comparing it with gas chromatography–tandem mass spectrometry (GC–MS/MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Samples were extracted with acetonitrile and purified using an NH2 cartridge. The optimized method efficiently removes the co-extractives and offered a limit of quantification of 0.01 mg kg−1. The GC–μECD analysis results of indoxacarb in seven medicinal herbs out of fourteen species at a fortification level of 0.01 mg kg−1 showed a recovery range of 79.7–117.6%, while the rest showed recovery > 120%. Similarly, the recovery of indoxacarb by GC and LC–MS/SM were 74.1–105.9 and 73.0–99.0%, respectively, with a relative standard deviation of <20%. Matrix effects for the majority of medicinal herbs analyzed by GC–MS/MS were >±20%. Whereas the results for LC–MS/MS were <20%, which was within the acceptable range according to the SANTE/11312/2021 guidelines. Considering the performance of the method and alignment with the regulatory guidelines, LC–MS/MS is recommended for the analysis of indoxacarb in selected medicinal herbs.
Collapse
|
22
|
do Rego EL, Nakamura TC, Diniz PHGD, Oliveira UR, de Souza JR, da Silva JDS. Spatiotemporal evaluation of organochlorine pesticide residues in bottom sediments of the Rio de Ondas hydrographic basin, western Bahia, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50376-50391. [PMID: 35230632 DOI: 10.1007/s11356-022-19223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The Rio de Ondas Hydrographic Basin (ROHB), Bahia state, Brazil, is located in a region with abundant water resources and is highly impacted by intense agricultural activity. In such a scenario, the use of organochlorine pesticides can represent a potential risk to the aquatic environments, due to their persistence, high bioaccumulation capacity, and high toxicity. Thus, organochlorine pesticide residues in bottom sediment samples from rivers on eighteen sites distributed along the ROHB in the dry and rainy periods were analyzed by gas chromatography coupled with mass spectrometry. The validated method showed no matrix effect, recoveries ranging from 82% (β-HCB) to 118% (DDD), limits of detection between 0.003 ng g-1 (α-HCH) and 0.011 ng g-1 (DDT), limits of quantification of 0.010 ng g-1 (α-HCH) to 0.036 ng g-1 (DDT), repeatability with the highest relative standard deviation of 0.97% (α-hexachlorocyclohexane at 2.000 ng g-1), and inter-day precision ranging from 10% (aldrin at 0.050 ng g-1 and 0.600 ng g-1 and α-endosulfan at 0.600 ng g-1) to 25% (β-endosulfan at 0.050 ng g-1). Although most compounds were banned since 1985, it was observed that their residues were widely distributed in the ROHB, with the total concentrations varying from 3.242 ng g-1 (P02) to 12.052 ng g-1 (P17) and from 0.313 ng g-1 (P14) to 30.861 ng g-1 (P13) in the dry and rainy periods, respectively, which may be related to historical contamination and/or prohibited use. Moreover, the spatiotemporal variation showed the highest concentrations of organochlorine pesticide residues in the rainy season, coinciding with the planting period.
Collapse
Affiliation(s)
- Enoc Lima do Rego
- Institute of Chemistry, Graduate Program in Chemistry, University of Brasília, Brasília, DF, Brazil
- Center for Exact Sciences and Technologies, Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, BA, Brazil
- Department of Human Sciences, State University of Bahia, Barreiras, BA, Brazil
| | - Thamilin Costa Nakamura
- Center for Exact Sciences and Technologies, Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, BA, Brazil
- Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | - Paulo Henrique Gonçalves Dias Diniz
- Center for Exact Sciences and Technologies, Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, BA, Brazil
| | | | | | - José Domingos Santos da Silva
- Center for Exact Sciences and Technologies, Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Barreiras, BA, Brazil.
| |
Collapse
|
23
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
24
|
Establishment of optimal QuEChERS conditions of various food matrices for rapid measurement of heterocyclic amines in various foods. Food Chem 2022; 380:132184. [DOI: 10.1016/j.foodchem.2022.132184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
|
25
|
One-dimensional bimetallic PdRh alloy mesoporous nanotubes constructed for ultra-sensitive detection of carbamate pesticide. Anal Biochem 2022; 652:114726. [PMID: 35588856 DOI: 10.1016/j.ab.2022.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
Abstract
Bimetallic nanomaterials with various dimensions have been successfully explored in electrochemical biosensor to detect the carbamate pesticide. One-dimensional bimetallic nanomaterials with mesoporous, which possess bigger electrochemical active area, more catalytic active sites and faster electron transmission efficiency, may have excellent performance in electrochemical biosensor, but have been rarely reported. In order to confirm this hypothesis, one-dimensional PdRh alloy mesoporous nanotubes were prepared and applied as a platform for carbamate pesticide electrochemical detection. Upon optimum conditions, the constructed AChE sensor showed an ultrahigh sensitivity (0.279 μA/nM), a wide linear range (9.44 × 10-8 - 0.944 mg/L) and a low detection limit (9.44 × 10-8 mg/L) for carbaryl. And the biosensor exhibited outstanding anti-interference ability, precision and stability. Moreover, the actual sample detection of the biosensor has been demonstrated with a satisfactory recovery (94.01%-102.80%). The remarkable property may attribute to the integrated advantages of one-dimensional mesoporous structure and bimetallic alloy.
Collapse
|
26
|
Li K, Araki T, Utaki R, Tokumoto Y, Sun M, Yasui S, Kurihira N, Kasai Y, Suzuki D, Marteijn R, den Toonder JM, Sekitani T, Kawano Y. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping. SCIENCE ADVANCES 2022; 8:eabm4349. [PMID: 35544563 PMCID: PMC9094654 DOI: 10.1126/sciadv.abm4349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Chemical monitoring communicates diverse environmental information from industrial and biological processes. However, promising and sustainable systems and associated inspection devices that dynamically enable on-site quality monitoring of target chemicals confined inside transformable and opaque channels are yet to be investigated. This paper designs stretchable photo-sensor patch sheets for nonsampling, source-free, and label-free on-site dynamic chemical monitoring of liquids flowing inside soft tubes via simple deformable surface wrapping. The device integrates carbon nanotube-based broadband photo-absorbent thin films with multilayer-laminated stretchable electrodes and substrates. The patterned rigid-soft structure of the proposed device provides durability and optical stability against mechanical deformations with a stretchability range of 70 to 280%, enabling shape-conformable attachments to transformable objects. The effective use of omnidirectional and transparent blackbody radiation from free-form targets themselves allows compact measurement configuration and enhances the functionality and simplicity of this scheme, while the presenting technology monitors concentrations of arbitrary water-soluble chemicals.
Collapse
Affiliation(s)
- Kou Li
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Teppei Araki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Ryogo Utaki
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yu Tokumoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Meiling Sun
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Satsuki Yasui
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Naoko Kurihira
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Yuko Kasai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Daichi Suzuki
- Sensing System Research Center, National Institute of Advanced Science and Technology, 807-1 Shuku-machi, Tosu-shi, Saga 841-0052, Japan
| | - Ruben Marteijn
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Jaap M.J. den Toonder
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Yukio Kawano
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| |
Collapse
|
27
|
Determination of selected pesticide residues in non-fatty fruits using GC–MS in combination with QuEChERS method. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Jensen KR, Dane AJ, Cody RB. Fast pesticide analysis using low-pressure gas chromatography paired with a triple quadrupole mass spectrometer equipped with short collision cell technology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9258. [PMID: 35040211 PMCID: PMC9286808 DOI: 10.1002/rcm.9258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE A proof of concept showing GC-MS/MS analysis time for pesticides can be dramatically reduced while maintaining a similar separation efficiency by combining a low-pressure gas chromatography (LPGC) column with the enhanced selected reaction monitoring (SRM) switching speed of the short collision cell of a JEOL JMS-TQ4000GC. METHODS Triple-quadrupole tandem mass spectrometry (standard EI + at 70 eV) was used to measure pesticides eluting from a low-pressure gas chromatograph capillary column. Three transitions for each of 244 pesticide compounds were measured within an 11-min analysis time, and the data were checked to confirm the method's reproducibility and ability to distinguish all three transitions for each pesticide. RESULTS All three transitions for all 244 pesticides were detected in the standard mixture at 1X concentration within the 11-min analysis time. Relative standard deviation (RSD) of peak areas was less than 15% for 242 pesticides, and I/Q RSDs were less than 10% for 242 compounds. Retention time RSD over 15 replicates was less than 0.1%. CONCLUSIONS Results show that analysis time can be markedly decreased using an LPGC column, and that the ability of the short collision cell to distinguish a large number of coeluting peaks makes the two technologies a natural pairing. The effective measurement of pesticides within a short time could benefit any scientists doing pesticide analysis work.
Collapse
|
29
|
A New LC-MS Method for Evaluating the Efficacy of Pesticide Residue Removal from Fruit Surfaces by Washing Agents. Processes (Basel) 2022. [DOI: 10.3390/pr10040793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern agriculture uses pesticides to improve the quality and quantity of crops. However, pesticide residues can remain on agricultural products, posing very serious risks to human health and life. It is recommended to wash fruits and vegetables before consumption. To assess the removal efficacy of pesticide residue, a sensitive and reliable method based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed and optimized for the simultaneous determination of four pesticide residues (acetamiprid, boscalid, pyraclostrobin, and pendimethalin). Isotope-labeled standards were used to validate the method in terms of recovery, linearity, matrix effects, precision, and sensitivity. The mean recovery values for both low-quality control (LQC) and high-quality control (HQC) transitions were in the range of 89–105%, and the intra-day precision was less than 13.7%. The limits of detection (LOD) and quantification (LOQ) were 0.003 mg/kg and 0.01 mg/kg, respectively. The proposed method is suitable for evaluating the quality of detergents for removing pesticide residues from fruit surfaces.
Collapse
|
30
|
Tsagkaris AS, Uttl L, Dzuman Z, Pulkrabova J, Hajslova J. A critical comparison between an ultra-high-performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method and an enzyme assay for anti-cholinesterase pesticide residue detection in cereal matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1479-1489. [PMID: 35343530 DOI: 10.1039/d2ay00355d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analytical method development for the control of pesticide residues occurring in significant dietary foodstuffs is of utmost importance considering their potential impact on consumer health and food market sustainability. Depending on the purpose, either instrumental analysis, mainly chromatographic methods, or screening assays, mostly using biorecognition affinity, are commonly used, featuring different advantages and drawbacks. To practically compare these two different types of analytical strategies, we applied them for the detection of (i) 97 organophosphate (OP) and carbamate (CM) pesticide residues in wheat flour and (ii) carbofuran (a carbamate insecticide) in wheat, rye and maize flour samples. Regarding high-end analysis, an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method was developed and validated achieving low limits of quantification (LOQs, from 0.002 to 0.040 mg kg-1) and a short chromatographic run (12 min). In terms of bioanalytical methods, a fast (17 min) and cost-efficient (∼0.01€ per sample) acetylcholinesterase (AChE) microplate assay for carbofuran screening was utilized. Importantly, carbofuran was the strongest of the 11 OP and CM tested pesticides achieving a half maximal inhibitory concentration (IC50) of 0.021 μM whilst the assay detectability was at the parts per billion level in all three cereal matrices. Based on the attained results, a critical discussion is presented providing the analytical merits and bottlenecks for each case and a wider outlook related to the application of analytical methods in the food safety control analytical scheme.
Collapse
Affiliation(s)
- A S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - L Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - Z Dzuman
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| |
Collapse
|
31
|
Okoye CO, Okeke ES, Okoye KC, Echude D, Andong FA, Chukwudozie KI, Okoye HU, Ezeonyejiaku CD. Occurrence and fate of pharmaceuticals, personal care products (PPCPs) and pesticides in African water systems: A need for timely intervention. Heliyon 2022; 8:e09143. [PMID: 35345397 PMCID: PMC8956874 DOI: 10.1016/j.heliyon.2022.e09143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The occurrence of emerging contaminants (ECs) such as pharmaceuticals, personal care products (PPCPs) and pesticides in the aquatic environment has raised serious concerns about their adverse effects on aquatic species and humans. Because of their toxicity and bioactive nature, PPCPs and pesticides have more potential to impair water systems than any other contaminants, causing several adverse effects, including antibiotic resistance, reproductive impairment, biomagnification, bioaccumulation, etc. Over 35 publications from Africa have reported on the occurrence and fate of PPCPs and pesticides in African water systems with little or no data on remediation and control. As a result, adequate intervention strategies are needed for regulating the persistence of PPCPs and pesticides in African water systems.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
- Corresponding author.
| | - Emmanuel Sunday Okeke
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Biochemistry, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
- Corresponding author.
| | - Kingsley Chukwuebuka Okoye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Entomology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Daniel Echude
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Felix Attawal Andong
- Ecology and Environmental Biology Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, 25305000100, Nairobi, Kenya
| | - Henrietta Ukamaka Okoye
- Social Policy Unit, Department of Public Administration and Local Government, University of Nigeria, Nsukka, 410001, Nigeria
| | | |
Collapse
|
32
|
Rapid Quantitative Determination of Multiple Pesticide Residues in Mango Fruits by Surface-Enhanced Raman Spectroscopy. Processes (Basel) 2022. [DOI: 10.3390/pr10030442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Imidacloprid, acephate, and carbaryl are common insecticides that are extensively used in planting mango, a well-known fruit in Vietnam, to ease mango hopper issues. The accurate detection of pesticide residues is critical for mango export to meet quality criteria. This study developed a novel SERS platform by using polydimethylsiloxane (PDMS) to simulate the rose petal structure incorporated with a silver coating layer and silver nanoparticles (AgNPs) to detect imidacloprid, acephate, and carbaryl in mango fruits. In this paper, the rose petal PDMS/Ag-AgNPs replica was considered the most efficient substrate for SERS measurement with an EF of 4.7 × 107. The Raman spectra of the three insecticides obtained from the PDMS/Ag-AgNPs substrate were clearly observed with their characteristic peaks of 1105 cm−1 for imidacloprid, 1083 cm−1, and 1579 cm−1 for acephate, and 727 cm−1 and 1378 cm−1 for carbaryl. The application of PDMS/Ag-AgNPs substrate in quantitative analysis of the three pesticides in mango fruit was evaluated. As a result, the limit of detection was 0.02 mg/kg for imidacloprid, 5 × 10−5 mg/kg for acephate, and 5 × 10−3 mg/kg for carbaryl. The SERS result also revealed that the pesticide residues in the mango sample were within an acceptable limit. This suggested the possibility of the rose petal PDMS/Ag-AgNPs replica for rapid quantification of pesticide residues not only in mango fruit but also in many other agricultural products.
Collapse
|
33
|
Wu H, Chen J, Yang Y, Yu W, Chen Y, Lin P, Liang K. Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides. Anal Bioanal Chem 2022; 414:1759-1772. [DOI: 10.1007/s00216-021-03839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/01/2022]
|
34
|
McDonald ND, Love CE, Gibbons HS. The ChpR transcriptional regulator of Sinorhizobium meliloti senses 3,5,6-trichloropyridinol, a degradation product of the organophosphate pesticide chlorpyrifos. Access Microbiol 2022; 3:000297. [PMID: 35024557 PMCID: PMC8749142 DOI: 10.1099/acmi.0.000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
The global use of organophosphate insecticides (OPPs) and the growing concern of off-target side effects due to OPP exposure has prompted the need for sensitive and economical detection methods. Here we set out to engineer a previously identified OPP responsive transcription factor, ChpR, from Sinorhizobium melilotii to respond to alternative OPPs and generate a repertoire of whole-cell biosensors for OPPs. The ChpR transcription factor and cognate promoter P chpA, have been shown to activate transcription in the presence of the OPP chlorpyrifos (CPF). Utilizing a GFP reporter regulated by ChpR in a whole-cell biosensor we found that the system responds significantly better to 3,5,6-trichloro-2-pyridinol (TCP), the main degradation product of CPF, compared to CPF itself. This biosensor was able to respond to TCP at 390 nM within 4 h compared to 50 µM of CPF in 7 h. The ChpR-P chpA , and the activating ligand TCP, were able to regulate expression of a kanamycin resistance/sucrose sensitivity (kan/sacB) selection/counterselection module suitable for high throughput mutagenesis screening studies. The ability to control both GFP and the kan/sacB module demonstrates the utility of this reporter for the detection of CPF affected areas. The ChpR-P chpA system serves as an additional positive regulator switch to add to the growing repertoire of controllers available within synthetic biology.
Collapse
Affiliation(s)
- Nathan D McDonald
- United States Army Combat Capabilities Development Command - Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Courtney E Love
- United States Army Combat Capabilities Development Command - Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Henry S Gibbons
- United States Army Combat Capabilities Development Command - Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
35
|
Lassabe G, Pírez-Schirmer M, González-Sapienza G. Functionalization of Magnetic Beads with Biotinylated Nanobodies for MALDI-TOF/MS-Based Quantitation of Small Analytes. Methods Mol Biol 2022; 2446:531-546. [PMID: 35157292 DOI: 10.1007/978-1-0716-2075-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last two decades, the variable domains from heavy chain-only antibodies in camelids (nanobodies) have emerged as valuable immunoreagents for analytical and diagnostic applications. One prominent use of nanobodies is for the detection of small molecules due to their ease of production, resistance to solvents used in sample extraction, facile genetic manipulation, and small size. These last two properties make it possible to produce biotinylated nanobodies in vivo, which can be loaded in an orientated manner on magnetic beads covered with avidin, creating high-density immunoadsorbenpi twbch ""ts. The method described here details the use of nanobody-based adsorbents to concentrate small molecular weight analytes for subsequent quantitative analysis by MALDI-TOF mass spectrometry. Quantitation requires the inclusion of an internal standard (IS), a compound with properties similar to those of the analyte, enabling compensation for uneven distribution during crystallization of the MALDI-TOF matrix. Since nanobody generation against small compounds requires conjugation to carrier proteins, the same conjugation chemistry can be used to synthesize the IS. By design the IS cross reacts with the capture nanobody and can be preloaded in the immunoadsorbent, facilitating quantitative detection of the target compound.
Collapse
Affiliation(s)
- Gabriel Lassabe
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UdelaR, Montevideo, Uruguay.
| | - Macarena Pírez-Schirmer
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UdelaR, Montevideo, Uruguay
| | | |
Collapse
|
36
|
Chen S, Yun SN, Liu Y, Yu R, Tu Q, Wang J, Yuan MS. A highly selective and sensitive CdS fluorescent quantum dot for the simultaneous detection of multiple pesticides. Analyst 2022; 147:3258-3265. [DOI: 10.1039/d2an00575a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We presented one-pot prepared CdS fluorescent quantum dots (QDs) which can sensitively and selectively detect three different organic pesticides.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shu-Na Yun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yujiao Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
37
|
López-Ruiz R, Romero-González R, Martín-Torres S, Jimenez-Carvelo AM, Cuadros-Rodríguez L, Garrido Frenich A. Applying an instrument-agnostizing methodology for the standardization of pesticide quantitation using different liquid chromatography-mass spectrometry platforms: A case study. J Chromatogr A 2021; 1664:462791. [PMID: 34998027 DOI: 10.1016/j.chroma.2021.462791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful technique commonly used for pesticide residue analysis in agri-food matrices. Despite the fact it has several advantages, one of the main problems is the transferability of the data from one analytical equipment to another for identification and quantitation purposes. In this study, instrument-agnostizing methodology was used to set standard retention scores (SRSs), which was utilized as a parameter for the identification of 74 targeted compounds when different instruments are used. The SRS variation was lower than 5% for most of the compounds included in this study, which is much lower than those obtained when retention times were compared, correcting the elution shift between LC instruments. Additionally, this methodology was also tested for quantitation purposes, and normalized areas were used as analytical responses, allowing for the determination of the concentrations of the targeted compounds in samples injected in one equipment using the analytical responses of standards from another one. The applicability of this approach was tested at two concentrations, 0.06 and 0.15 mg/kg, and less than 10 out of 74 compounds were quantified with an error higher than 40% at 0.06 mg/kg and 0.15 mg/kg, showing that this methodology could be useful to minimize differences between LC-MS systems.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Department of Chemistry and Physics, Research Group "Analytical Chemistry of Contaminants", Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E Almeria 04120, Spain
| | - Roberto Romero-González
- Department of Chemistry and Physics, Research Group "Analytical Chemistry of Contaminants", Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E Almeria 04120, Spain.
| | - Sandra Martín-Torres
- Department of Analytical Chemistry, Faculty of Science, University of Granada, C/ Fuentenueva s/n, E , Granada 18071, Spain
| | - Ana M Jimenez-Carvelo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, C/ Fuentenueva s/n, E , Granada 18071, Spain
| | - Luis Cuadros-Rodríguez
- Department of Analytical Chemistry, Faculty of Science, University of Granada, C/ Fuentenueva s/n, E , Granada 18071, Spain
| | - Antonia Garrido Frenich
- Department of Chemistry and Physics, Research Group "Analytical Chemistry of Contaminants", Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E Almeria 04120, Spain
| |
Collapse
|
38
|
Establishment of an appropriate method for determining multiple heterocyclic amines in soy products processed with various methods. Food Chem 2021; 375:131905. [PMID: 34959138 DOI: 10.1016/j.foodchem.2021.131905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022]
Abstract
A method using UPLC-MS/MS and a core-shell C18 column was developed to simultaneously determine 21 heterocyclic amines (HAs) in 15 min. Appropriate QuEChERS conditions were also established to conveniently extract HAs from soy products cooked with various methods. These conditions presented good analytical performance; limit of detection, limit of quantification, recovery (%), repeatability (coefficient of variation (CV) %) and intermediate precision (CV%) were 0.008 ∼ 0.150 ng/g, 0.025 ∼ 0.500 ng/g, 62 ∼ 91%, ≤ 28% and ≤ 23% for tofu sample, and 0.003 ∼ 0.100 ng/g, 0.010 ∼ 0.350 ng/g, 64 ∼ 93%, ≤ 19% and ≤ 20% for soy milk sample, respectively. HAs contents in the samples increased with cooking temperature and time. The tofu samples cooked by frying had much higher HAs content than those cooked by boiling and roasting. Norharman and Harman mainly contributed HAs content in all samples. For the general population in Taiwan, the highest estimated level of HAs consumed from the samples is 373.67 ng/day.
Collapse
|
39
|
Muehlwald S, Meyburg N, Rohn S, Buchner N. A Comparison between a Two-Dimensional Liquid Chromatography System and a Traditional QuEChERS-LC Method with Regard to Matrix Removal and Matrix Effects in Pesticide Analysis Using Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15005-15019. [PMID: 34855392 DOI: 10.1021/acs.jafc.1c05199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a fully automated two-dimensional liquid chromatography (2D-LC) system was used for the investigation of the clean-up effect and was compared with a traditional Quick Easy Cheap Effective Rugged and Safe (QuEChERS) liquid chromatography (LC) method. The focus of those investigations was on negative electrospray ionization (ESI) mode. For that purpose, matrix fingerprinting profiles were created. The results allowed a comparison of both methods regarding the estimation of the number and the polarity of detected compounds. Moreover, the results of the present study were compared with the results generated in positive ESI mode (presented in a previous study). Furthermore, the two methods were compared with regard to matrix effects (ME) of 321 analytes in positive ESI mode and 96 analytes in negative ESI mode. In general, fewer compounds could be detected when 2D-LC and/or the negative ESI mode was used. Especially, very polar compounds with m/z values >1000 could be separated and could not be detected anymore when 2D-LC was applied. Furthermore, the best results were obtained for most analytes when 2D-LC was used, although the extent of ME seemed to be higher with 2D-LC.
Collapse
Affiliation(s)
- Sandra Muehlwald
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nina Meyburg
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nadja Buchner
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| |
Collapse
|
40
|
Wang P, Galhardi JA, Liu L, Bueno V, Ghoshal S, Gravel V, Wilkinson KJ, Bayen S. Development of an LC-MS-based method to study the fate of nanoencapsulated pesticides in soils and strawberry plant. Talanta 2021; 239:123093. [PMID: 34920258 DOI: 10.1016/j.talanta.2021.123093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.
Collapse
Affiliation(s)
- Peiying Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Vinicius Bueno
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Valérie Gravel
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
41
|
Kim YR, Kang HS. Multi-residue determination of twenty aminoglycoside antibiotics in various food matrices by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Xing J, Zhang Z, Zheng R, Xu X, Mao L, Lu J, Shen J, Dai X, Yang Z. Simultaneous Detection of Seven Alternaria Toxins in Mixed Fruit Puree by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Coupled with a Modified QuEChERS. Toxins (Basel) 2021; 13:toxins13110808. [PMID: 34822592 PMCID: PMC8619939 DOI: 10.3390/toxins13110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
The presence of Alternaria toxins (ATs) in fruit purees may cause potential harm to the life and health of consumers. As time passes, ATs have become the key detection objects in this kind of food. Based on this, a novel and rapid method was established in this paper for the simultaneous detection of seven ATS (tenuazonic acid, alternariol, alternariol monomethyl ether, altenuene, tentoxin, altenusin, and altertoxin I) in mixed fruit purees using ultra-high performance liquid chromatography-tandem mass spectrometry. The sample was prepared using the modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method to complete the extraction and clean-up steps in one procedure. In this QuEChERS method, sample was extracted with water and acetonitrile (1.5% formic acid), then salted out with NaCl, separated on an ACQUITY UPLC BEH C18 with gradient elution by using acetonitrile and 0.1% formic acid aqueous as eluent, and detected by UPLC-MS/MS under positive (ESI+) and negative (ESI−) electrospray ionization and MRM models. Results showed that the seven ATs exhibited a good linearity in the concentration range of 0.5–200 ng/mL with R2 > 0.9925, and the limits of detection (LODs) of the instrument were in the range of 0.18–0.53 μg/kg. The average recoveries ranged from 79.5% to 106.7%, with the relative standard deviations (RSDs) no more than 9.78% at spiked levels of 5, 10, and 20 μg/kg for seven ATs. The established method was applied to the determination and analysis of the seven ATs in 80 mixed fruit puree samples. The results showed that ATs were detected in 31 of the 80 samples, and the content of ATs ranged from 1.32 μg/kg to 54.89 μg/kg. Moreover, the content of TeA was the highest in the detected samples (23.32–54.89 μg/kg), while the detection rate of Ten (24/31 samples) was higher than the other ATs. Furthermore, the other five ATs had similar and lower levels of contamination. The method established in this paper is accurate, rapid, simple, sensitive, repeatable, and stable, and can be used for the practical determination of seven ATs in fruit puree or other similar samples. Moreover, this method could provide theory foundation for the establishment of limit standard of ATs and provide a reference for the development of similar detection standard methods in the future.
Collapse
Affiliation(s)
- Jiali Xing
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China;
| | - Zigeng Zhang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Ruihang Zheng
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
- Correspondence: (R.Z.); (X.D.); Tel.: +86-574-89078647 (R.Z.); +86-574-89077478 (X.D.)
| | - Xiaorong Xu
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Lingyan Mao
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Jingping Lu
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Jian Shen
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315048, China; (J.X.); (X.X.); (L.M.); (J.L.); (J.S.)
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
- Correspondence: (R.Z.); (X.D.); Tel.: +86-574-89078647 (R.Z.); +86-574-89077478 (X.D.)
| | - Zhenfeng Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China;
| |
Collapse
|
43
|
Campanale C, Massarelli C, Losacco D, Bisaccia D, Triozzi M, Uricchio VF. The monitoring of pesticides in water matrices and the analytical criticalities: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Skotadis E, Kanaris A, Aslanidis E, Kalatzis N, Chatzipapadopoulos F, Marianos N, Tsoukalas D. Identification of Two Commercial Pesticides by a Nanoparticle Gas-Sensing Array. SENSORS 2021; 21:s21175803. [PMID: 34502694 PMCID: PMC8433924 DOI: 10.3390/s21175803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
This study presents the experimental testing of a gas-sensing array, for the detection of two commercially available pesticides (i.e., Chloract 48 EC and Nimrod), towards its eventual use along a commercial smart-farming system. The array is comprised of four distinctive sensing devices based on nanoparticles, each functionalized with a different gas-absorbing polymeric layer. As discussed herein, the sensing array is able to identify as well as quantify three gas-analytes, two pesticide solutions, and relative humidity, which acts as a reference analyte. All of the evaluation experiments were conducted in close to real-life conditions; specifically, the sensors response towards the three analytes was tested in three relative humidity backgrounds while the effect of temperature was also considered. The unique response patterns generated after the exposure of the sensing-array to the two gas-analytes were analyzed using the common statistical analysis tool Principal Component Analysis (PCA). The sensing array, being compact, low-cost, and highly sensitive, can be easily integrated with pre-existing crop-monitoring solutions. Given that there are limited reports for effective pesticide gas-sensing solutions, the proposed gas-sensing technology would significantly upgrade the added-value of the integrated system, providing it with unique advantages.
Collapse
Affiliation(s)
- Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
- NEUROPUBLIC S.A., 18545 Piraeus, Greece; (N.K.); (F.C.); (N.M.)
- Correspondence: ; Tel.: +30-2107721679
| | - Aris Kanaris
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| | - Evangelos Aslanidis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| | - Nikos Kalatzis
- NEUROPUBLIC S.A., 18545 Piraeus, Greece; (N.K.); (F.C.); (N.M.)
| | | | | | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (A.K.); (E.A.); (D.T.)
| |
Collapse
|
46
|
Khan NS, Pradhan D, Choudhary S, Saxena P, Poddar NK, Jain AK. Immunoassay-based approaches for development of screening of chlorpyrifos. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractChlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns of it contaminating the environment and human health with estimated three lakh deaths annually. Detection of CPF in blood samples holds significance to avoid severe health outcomes due to continuous exposure. The most common techniques for CPF detection are Gas chromatography (GC) and high-performance liquid chromatography (HPLC). However, these techniques might not be feasible at the community healthcare level due to high-cost instrumentation, time-consuming sample preparation protocol and skilled analysts. Therefore, rapid, effective and economical methods such as immunoassay would be imperative for CPF detection in biological samples. The vital step in immunoassay development is the design of a potent immunogen from non-immunogenic molecules. The molecular modelling protocol could assist in redesigning known CPF linkers and inserting them at different substitutable positions of CPF to get distinctive CPF derivatives. Molecular docking and binding free energy analysis can be used to identify the CPF derivatives having a better binding affinity with carrier protein compared to CPF. The top-ranked CPF derivatives based on docking score and binding energy could be ideal for synthesis and immunogen development. The present review will comprehend technological trends in immunoassay kits for detecting chlorpyrifos from biological samples.
Collapse
|
47
|
Cutillas V, Ferrer C, R Fernández-Alba A. Liquid chromatography versus supercritical fluid chromatography coupled to mass spectrometry: a comparative study of performance for multiresidue analysis of pesticides. Anal Bioanal Chem 2021; 413:5849-5857. [PMID: 34327563 PMCID: PMC8437864 DOI: 10.1007/s00216-021-03565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Abundant studies have been published evaluating different parameters of reverse-phase liquid chromatography (LC) and supercritical fluid chromatography (SFC), both coupled to electrospray (ESI)/mass spectrometry (MS) for pesticide residue analysis. However, there is a lack of a comprehensive comparative study that facilitates deep knowledge about the benefits of using each technique. In the present study, the same mass spectrometer was used coupled to both liquid and supercritical fluid chromatographies with a multiresidue method of 215 compounds, for the analysis of pesticide residues in food samples. Through the injection of the spiked extracts, separate experiments were conducted. A study of the optimum ion source temperature using the different chromatography modes was performed. The results were evaluated in terms of sensitivity with tomato, leek, onion, and orange as representative fruit and vegetable matrices. The compounds which reported the highest area values in each chromatography were evaluated through their substance groups and polarity values. The impact of matrix effects obtained in tomato matrix was similar for both cases; however, SFC clearly showed better results in analyzing matrices with a higher number of natural co-extracted compounds. This can be explained by the combination of two effects: (i) chromatography separation and (ii) ion source efficiency. The chromatographic elution presented different profiles of matrix components, which had diverse impact on the coelution with the analytes, being more beneficial when SFC was used in the matrices studied. The data showed that the best results obtained in SFC are also related to a higher ionization efficiency even when the ESI emitter tip was not optimized for SFC flow. In the present study a comprehensive evaluation of the benefits and drawbacks of these chromatography modes for routine pesticide residue analysis related to target compounds/commodities is provided.
Collapse
Affiliation(s)
- Víctor Cutillas
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N, La Cañada de San Urbano, 04120, Almería, Spain
| | - Carmen Ferrer
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
48
|
Gaouar ZL, Chefirat B, Saadi R, Djelad S, Rezk-Kallah H. Pesticide residues in tomato crops in Western Algeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:281-286. [PMID: 34266368 DOI: 10.1080/19393210.2021.1953156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to evaluate levels of pesticide residues commonly used on tomato crops in Western Algeria. It showed a significant use of pesticides, especially insecticides (47%) and fungicides (41%) among listed pesticides in crop fields. A total of 30 tomato samples were analysed using multi-residue analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after QuEChERS extraction. Five pesticides (difenoconazole, triadimenol, metalaxyl, chlorpyriphos and methomyl) were detected in 14 samples (47%). Among these five samples containing residues of two different types of pesticides. The levels ranged from 2.29 to 64.3 µg/kg. The methomyl residue in one sample was above the maximum limit (MRLs) set by the European Union. Our results indicate an excessive use of pesticides and undeniable non-compliance with good agricultural practices. Routine monitoring for pesticides is recommended to preserve consumer's health.
Collapse
Affiliation(s)
- Zakaria Lotfi Gaouar
- Department of Pharmacy, Faculty of Medicine, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Environmental Health Research Laboratory, University Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Bilel Chefirat
- Department of Pharmacy, Faculty of Medicine, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Environmental Health Research Laboratory, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Department of Pharmacology Toxicology, University Hospital of Oran, Oran, Algeria
| | - Rachida Saadi
- Department of Pharmacy, Faculty of Medicine, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Environmental Health Research Laboratory, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Department of Pharmacology Toxicology, University Hospital of Oran, Oran, Algeria
| | - Sanae Djelad
- Department of Pharmacy, Faculty of Medicine, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Environmental Health Research Laboratory, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Department of Pharmacology Toxicology, University Hospital of Oran, Oran, Algeria
| | - Haciba Rezk-Kallah
- Department of Pharmacy, Faculty of Medicine, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Environmental Health Research Laboratory, University Oran1 Ahmed Ben Bella, Oran, Algeria.,Department of Pharmacology Toxicology, University Hospital of Oran, Oran, Algeria
| |
Collapse
|
49
|
Wagner M, Andrew Lin KY, Oh WD, Lisak G. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption - A mini review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125325. [PMID: 33601143 DOI: 10.1016/j.jhazmat.2021.125325] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
The global population growth demands intensification of anthropogenic processes, thus leading to inter alia pollution of both land and aquatic environments with toxic organic compounds. Particularly harmful synthetic compounds are classified as persistent organic pollutants (POPs). Their relatively high chemical resistance resulted in a worldwide ban or strict control on the use of POPs. The majority of POPs were commonly used as pesticides, and unfortunately, some of them are still utilized as an aid in agricultural practices. Therefore, environmental monitoring in terms of reliable detection and quantification of pesticidal POPs is an ever-increasing need. Chemical sensors and adsorption materials crafted for specific pesticide operate on host-guest interactions should provide selectivity and sensitivity, thus leading to the detection of target molecule down to the nanomolar range. This could be achieved with materials exhibiting a very large active surface area, well-defined structure, and high stability. The novel materials studied in that context are metal-organic frameworks (MOFs). The structure of various MOFs can be functionalized to provide desired host-guest interactions. In this mini-review, we critically discuss the application of MOFs for the detection and adsorption of selected pesticides that are classified as POPs according to the Stockholm Convention.
Collapse
Affiliation(s)
- Michal Wagner
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
50
|
McCullagh M, Goscinny S, Palmer M, Ujma J. Investigations into pesticide charge site isomers using conventional IM and cIM systems. Talanta 2021; 234:122604. [PMID: 34364418 DOI: 10.1016/j.talanta.2021.122604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
A growing number of pesticides are being used around the world necessitating strict regulatory policies to guarantee consumer safety. Liquid Chromatography - Mass Spectrometry (LC-MS) is a highly sensitive method for pesticide screening, which provides retention time, mass/charge ratios and the relative abundances of characteristic product ions. Variability in the latter necessitates relatively large tolerances (±30%, SANCO/12682/2019, current EU regulation). One cause of this variability may stem from the presence of different charge-site isomers (charge carrier being a proton, sodium cation, potassium cation and alike); each yielding a set of different product ions, of which the relative ratios are influenced by solution and ion source conditions. Consequently, varying relative abundances may be observed for analyte ions produced from calibration standards, chemical residues in food matrices and across different instruments. Ion Mobility Spectrometry (IMS) is a fast, gas phase separation technique which can resolve charge-site isomers based on differences in their collisional cross sections (CCSs). We previously used the IM device embedded in LC-IM-MS geometry to generate a pesticide CCS database and subsequently focussed upon identification of pesticides which form charge-site isomers. Latterly, we applied this approach to screen food commodities for pesticide residues. In some instances, isomer separation was clear, however sometimes broad, unresolved distributions were observed. Using a high-resolution cyclic IM device (cIM) we resolved and determined CCS values of species of indoxacarb, spinosad, fenpyroximate, epoxiconazole, metaflumizone and avermectin. Furthermore, utilising novel cIM functionalities (tandem-IM) we discovered that two spinosyn sodimers can interconvert in the gas phase.
Collapse
Affiliation(s)
| | - Séverine Goscinny
- Scientific Institute of Public Health, 14, Rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, UK
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, UK
| |
Collapse
|