1
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
2
|
Phytochemical Composition, Antimicrobial, Anticancer Properties, and Antioxidant Potential of Green Husk from Several Walnut Varieties ( Juglans regia L.). Antioxidants (Basel) 2022; 12:antiox12010052. [PMID: 36670914 PMCID: PMC9854983 DOI: 10.3390/antiox12010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Husk powder was prepared from seven varieties of walnut fruit and their hulling rate, chemical compounds, and total phenolic contents were evaluated. The apolar and polar extracts were prepared, respectively, from hexane and a hydroethanolic solvent, while qualitative and semi-quantitative analyses were performed by GC/MS and UHPLC-PDA-HRMS/MS. The antioxidant, antimicrobial, and antitumor properties of green walnut husk were also evaluated. The total content of phenolic compounds varied between the varieties, ranging from 35.2 ± 0.9 to 58.0 ± 0.0 mg/g gallic acid equivalent of dry husk weight (dw). The apolar extract was found to contain alkanes, tocopherols, sterols, and fatty acids, including oleic, linoleic, and linolenic, while the polar extract showed the presence of phenolics including salicylate glucuronide, taxifolin, catechin, and quercetin isomers. The antioxidant power obtained by the PAOT (total antioxidant power) method for the husk powders ranged from 256.5 ± 5.9 to 746.8 ± 6.9 score/g dw, and seemed consistent with the total phenolic content and the results obtained by the classic antioxidant test with DPPH. The walnut husk also showed an antibacterial effect against Gram-negative and Gram-positive bacteria and cytotoxic potential against HepG2. Among the selected varieties, the green Saman had the highest antioxidant properties, while the Saman with a brown color had the lowest.
Collapse
|
3
|
Liu Y, Shen Y, Liang M, Zhang X, Xu J, Shen Y, Chen Z. Identification of Peanut AhMYB44 Transcription Factors and Their Multiple Roles in Drought Stress Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3522. [PMID: 36559634 PMCID: PMC9788490 DOI: 10.3390/plants11243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
MYB transcription factors (TFs) comprise a large gene family that plays an important role in plant growth, development, stress responses, and defense regulation. However, their functions in peanut remain to be further elucidated. Here, we identified six AhMYB44 genes (AhMYB44-01/11, AhMYB44-05/15, and AhMYB44-06/16) in cultivated peanut. They are typical R2R3-MYB TFs and have many similarities but different expression patterns in response to drought stress, suggesting different functions under drought stress. Homologous genes with higher expression in each pair were selected for further study. All of them were nuclear proteins and had no self-transactivation activity. In addition, we compared the performances of different lines at germination, seedling, and adult stages under drought stress. After drought treatment, the overexpression of AhMYB44-11 transgenic plants resulted in the longest root length at the seedling stage. Levels of proline, soluble sugar and chlorophyll, and expression levels of stress-related genes, including P5CS1, RD29A, CBF1, and COR15A, were higher than those of the wild type (WT) at the adult stage. While the overexpression of AhMYB44-16 significantly increased the drought sensitivity of plants at all stages, with differential ABA content, the expression levels of the ABA-related genes PP2CA and ABI1 were significantly upregulated and those of ABA1 and ABA2 were significantly downregulated compared with the WT. AhMYB44-05 showed similar downregulated expression as AhMYB44-16 under drought stress, but its overexpression in Arabidopsis did not significantly affect the drought resistance of transgenic plants. Based on the results, we propose that AhMYB44-11 plays a role as a positive factor in drought tolerance by increasing the transcription abundance of stress-related genes and the accumulation of osmolytes, while AhMYB44-16 negatively regulates drought tolerance through its involvement in ABA-dependent stress response pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Shen
- Correspondence: (Y.S.); (Z.C.)
| | | |
Collapse
|
4
|
Efficient combination of ionic-liquid-based ultrasound-assisted extraction, complex chromatography, and molecular docking for screening of acetylcholinesterase inhibitors from Ganoderma atrum. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Caballero JL, Perez de Souza L, Alseekh S, Fernie AR, Muñoz-Blanco J, Rodríguez-Franco A. Azacytidine arrests ripening in cultivated strawberry (Fragaria × ananassa) by repressing key genes and altering hormone contents. BMC PLANT BIOLOGY 2022; 22:278. [PMID: 35672704 PMCID: PMC9172142 DOI: 10.1186/s12870-022-03670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José Luis Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
6
|
Siebeneichler TJ, Crizel RL, Reisser PL, Perin EC, da Silva Messias R, Rombaldi CV, Galli V. Changes in the abscisic acid, phenylpropanoids and ascorbic acid metabolism during strawberry fruit growth and ripening. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Lin TF, Qiu JN, Zhang S, Zhang Y, Zhang Y, Sun M, Zhang JH, Liu B, Cheng FF, Jiang YY. Screening out the anti-insomnia components from Prunella vulgaris L. based on plasma pharmacochemistry combined with pharmacodynamic experiments and UPLC-MS/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114373. [PMID: 34181959 DOI: 10.1016/j.jep.2021.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunella vulgaris L. (P. vulgaris) is a medicinal plant belonging to the Labiatae family, and its dried spikes is called as Xiakucao in China, which is a common traditional Chinese medicine with the activities of clearing the liver and expelling fire, improving eyesight, dispersing nodules and detumescence. Modern pharmacological studies have proved that P. vulgaris has various pharmacological activities such as immunomodulatory, antiviral, antibacterial and anti-insomnia activities. AIMS OF THIS REVIEW P. vulgaris have been reported to have anti-insomnia effects. Nevertheless, the pharmacodynamic substance basis of this anti-insomnia effect is still unclear. The aim of this study was to identify the active components responsible for evoking the anti-insomnia effect of P. vulgaris and to evaluate its anti-insomnia effect. MATERIALS AND METHODS In this study, we proposed a method combined with pharmacodynamic experiments, extraction and enrichment of chemical components, and the plasma pharmacochemistry to screen out the anti-insomnia components of P. vulgaris. Firstly, the active eluted fraction of the ethanol extract was screened out based on pharmacodynamic tracing method, and then the chemical composition was analyzed systematically by UPLC-MS/MS. Thirdly, pharmacodynamic tracing method and silica gel column chromatography were employed to screen out the active fraction of 70% ethanol eluted fraction, and its bioactive components in vitro and in vivo were identified by UPLC-MS/MS. Finally, screening out the anti-insomnia components of P. vulgaris by comparing the difference between in vivo and in vitro components, and three potentially bioactive ingredients were validated experimentally. RESULTS It was confirmed that the fraction eluted with 70% ethanol from macroporous adsorption resin column was responsible for the anti-insomnia efficacy, and 55 compounds were identified or preliminarily identified. Then totally 9 compounds in vitro and 12 compounds in vivo from the active fraction of 70% ethanol eluted fraction were tentatively identified. Among them, mangiferin, rosmarinic acid and salviaflaside were the prototype components of P. vulgaris, which indicated that the three compounds might play the key role in the anti-insomnia activities. In vivo, compared to blank control group, the three compounds significantly shortened the sleeping latency and prolonged the sleeping time produced by pentobarbital sodium. CONCLUSIONS This study clarified that mangiferin, rosmarinic acid and salviaflaside were considered as the anti-insomnia components of P. vulgaris. This is the first study on screening out the active ingredients responsible for evoking the anti-insomnia effect of P. vulgaris. The three compounds of P. vulgaris may help develop one or more drugs to prevent or treat insomnia. Further investigations are recommended to define the mechanism of the anti-insomnia activity of P. vulgaris.
Collapse
Affiliation(s)
- Tian-Feng Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jun-Na Qiu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Shuang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Meng Sun
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jin-Hua Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yan-Yan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
8
|
Auler PA, Nogueira do Amaral M, Rossatto T, Lopez Crizel R, Milech C, Clasen Chaves F, Maia Souza G, Bolacel Braga EJ. Metabolism of abscisic acid in two contrasting rice genotypes submitted to recurrent water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:304-316. [PMID: 32421869 DOI: 10.1111/ppl.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Drought is the main constrain for crops worldwide, however, the effects of recurrent water deficit remain still hidden. We analysed two rice genotypes, 'BRS-Querência' (lowlands) and 'AN-Cambará' (uplands), after 7 days of recurrent drought followed by 24 h of rehydration, hypothesising that genotypes grown in regions with different water availabilities respond differently to water deficits, and that a previous exposure to stress could alter abscisic acid (ABA) metabolism. The results showed that both genotypes reduced stomatal conductance and increased ABA concentration. After rehydration, the ABA levels decreased, mainly in the plants of BRS-Querência subjected to recurrent stress. However, the levels of ABA were higher in plants in recurrent water deficit compared to non-recurrent stress plants in both genotypes. Remarkably in the lowland genotype, the ABA glucosyl-ester (ABA-GE) concentration increased after recovery in the plants under recurrent stress. Regarding of gene expression, the genes associated in ABA biosynthesis with the highest expression levels were NCED2, NCED3, NCED4 and AAO2. However, 'AN-Cambará' showed less transcriptional activation. Taking into account the genes involved in ABA catabolism, ABAH1 appears to play an important role related to the recurrent stress in upland plants. These results indicate that one of the factors that can promote greater tolerance for the upland genotype is the tradeoff between ABA and ABA-GE when plants are subjected to water deficits. In addition, they indicate that abscisic acid metabolism is altered due to the genotype (upland or lowland) and pre-exposure to stress can also modify adaptive responses in rice varieties (recurrent stress).
Collapse
Affiliation(s)
- Priscila Ariane Auler
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Marcelo Nogueira do Amaral
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Tatiana Rossatto
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Rosane Lopez Crizel
- Department of Agroindustrial Science and Technology - Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Cristini Milech
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - Fabio Clasen Chaves
- Department of Agroindustrial Science and Technology - Agronomy, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Department of Botany, Biology Institute, Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | | |
Collapse
|
9
|
Figueroa NE, Hoffmann T, Olbricht K, Abrams SR, Schwab W. Contrasting dynamics in abscisic acid metabolism in different Fragaria spp. during fruit ripening and identification of the enzymes involved. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1245-1259. [PMID: 33130885 DOI: 10.1093/jxb/eraa503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) is a key hormone in non-climacteric Fragaria spp, regulating multiple physiological processes throughout fruit ripening. Its concentration increases during ripening, and it promotes fruit (receptacle) development. However, its metabolism in the fruit is largely unknown. We analyzed the concentrations of ABA and its catabolites at different developmental stages of strawberry ripening in diploid and octoploid genotypes and identified two functional ABA-glucosyltransferases (FvUGT71A49 and FvUGT73AC3) and two regiospecific ABA-8'-hydroxylases (FaCYP707A4a and FaCYP707A1/3). ABA-glucose ester content increased during ripening in diploid F. vesca varieties but decreased in octoploid F.×ananassa. Dihydrophaseic acid content increased throughout ripening in all analyzed receptacles, while 7'-hydroxy-ABA and neo-phaseic acid did not show significant changes during ripening. In the studied F. vesca varieties, the receptacle seems to be the main tissue for ABA metabolism, as the concentration of ABA and its metabolites in the receptacle was generally 100 times higher than in achenes. The accumulation patterns of ABA catabolites and transcriptomic data from the literature show that all strawberry fruits produce and metabolize considerable amounts of the plant hormone ABA during ripening, which is therefore a conserved process, but also illustrate the diversity of this metabolic pathway which is species, variety, and tissue dependent.
Collapse
Affiliation(s)
- Nicolás E Figueroa
- Biotechnology of Natural Products, Technical University Munich, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich, Freising, Germany
| | | | - Suzanne R Abrams
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Freising, Germany
| |
Collapse
|
10
|
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 2021; 371:science.abd0695. [DOI: 10.1126/science.abd0695] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Isai Salas-González
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guilhem Reyt
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Valéria Custódio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidad de Nova de Lisboa, Lisboa, Portugal
| | - David Gopaulchan
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Niokhor Bakhoum
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Tristan P. Dew
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jeffery L. Dangl
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E. Salt
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|
11
|
AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling. Int J Mol Sci 2020; 21:ijms21165727. [PMID: 32785037 PMCID: PMC7460842 DOI: 10.3390/ijms21165727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.
Collapse
|
12
|
Siebeneichler TJ, Crizel RL, Camozatto GH, Paim BT, da Silva Messias R, Rombaldi CV, Galli V. The postharvest ripening of strawberry fruits induced by abscisic acid and sucrose differs from their in vivo ripening. Food Chem 2020; 317:126407. [PMID: 32078996 DOI: 10.1016/j.foodchem.2020.126407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
In this study, we compared the chemical composition of strawberry (Fragaria × ananassa) fruits that were ripened in vivo (attached to plant) to those ripened during postharvest storage. The effects of the application of abscisic acid (ABA) and sucrose on the postharvest ripening were also evaluated. The results suggested that the postharvest ripening process was dependent on the signal triggered by ABA and differed from in vivo ripening, resulting in fruits with altered chemical composition and firmness. The application of sucrose in unripe strawberries resulted in the induction of ripening, which is dependent on ABA and its derivatives. This induction was more pronounced during the first days of storage and associated with the application of mannitol rather than water, suggesting that mannitol negatively regulated the postharvest strawberry ripening. These results provide further insights into the role of ABA and sucrose in the regulation of postharvest ripening of strawberry.
Collapse
Affiliation(s)
| | - Rosane Lopes Crizel
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Bruna Trindade Paim
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rafael da Silva Messias
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - César Valmor Rombaldi
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Vanessa Galli
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
13
|
Electro-Oxidation and Simultaneous Determination of Indole-3-Acetic Acid and Salicylic Acid on Graphene Hydrogel Modified Electrode. SENSORS 2019; 19:s19245483. [PMID: 31842420 PMCID: PMC6960803 DOI: 10.3390/s19245483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022]
Abstract
A selective and sensitive electrochemical sensor was developed for simultaneous detection of phytohormones indole-3-acetic acid (IAA) and salicylic acid (SA). The sensing interface was fabricated on a porous, three-dimensional networked graphene hydrogel (GH) modified glassy carbon electrode (GCE). The electrocatalytic behavior of IAA and SA on the surface of the modified electrode (GH/GCE) was investigated by cyclic voltammetry and linear sweep voltammetry. Results show that the oxidation reactions of IAA and SA occur at different potentials, which enable their simultaneous detection at the sensing interface. Under optimal conditions, the GH/GCE exhibited good selectivity and stability and its response, unaffected by various interferents, was linear in the range of 4 to 200 μM of IAA and SA. The limit of detection (S/N = 3) achieved were 1.42 μM for IAA and 2.80 μM for SA. The sensor performance was validated by measuring for IAA and SA in real vegetable samples with satisfactory results.
Collapse
|
14
|
Perin EC, da Silva Messias R, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 2018; 271:516-526. [PMID: 30236710 DOI: 10.1016/j.foodchem.2018.07.213] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
Strawberry crop is very sensitive to osmotic stress conditions. We investigated the effect of the stress induced by mild drought (DS) and salt (SS) stresses, on molecular, physiological, and metabolic processes in the strawberry crop (Fragaria ananassa), cv. Camarosa. The results showed that the fruit yield was not affected. Mild DS and SS also resulted in an increased content of phenolics, anthocyanins, and l-ascorbic acid, and an increased antioxidant activity. These effects were accompanied by increased levels of ABA and its derivatives (phaseic and dehydrophasic acids), alongside the upregulation of several genes involved on their synthesis. Therefore, the results obtained in this study suggest that mild DS and SS improve the functional quality of strawberry fruits through and ABA-dependent mechanism.
Collapse
Affiliation(s)
- Ellen Cristina Perin
- Embrapa Clima Temperado, Rodovia BR 396, Km 78, Cx Postal 403, CEP 96001-970 Pelotas, Rio Grande do Sul, Brazil; Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Rafael da Silva Messias
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Joyce Moura Borowski
- Embrapa Clima Temperado, Rodovia BR 396, Km 78, Cx Postal 403, CEP 96001-970 Pelotas, Rio Grande do Sul, Brazil; Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Rosane Lopes Crizel
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Igor Bulsing Schott
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Ivan Ricardo Carvalho
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Cesar Valmor Rombaldi
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Vanessa Galli
- Universidade Federal de Pelotas, Campus universitário S/N, Cx Postal 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Sampaio Filho IDJ, Jardine KJ, de Oliveira RCA, Gimenez BO, Cobello LO, Piva LRDO, Candido LA, Higuchi N, Chambers JQ. Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. Int J Mol Sci 2018; 19:E2023. [PMID: 30002274 PMCID: PMC6073271 DOI: 10.3390/ijms19072023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.
Collapse
Affiliation(s)
- Israel de Jesus Sampaio Filho
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Kolby Jeremiah Jardine
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| | | | - Bruno Oliva Gimenez
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Leticia Oliveira Cobello
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Luani Rosa de Oliveira Piva
- Federal University of Paraná (UFPR), Ave. Pref. Lothario Meissner 632, Campus III, Forest Sciences Department, Curitiba, PR 80210-170, Brazil.
| | - Luiz Antonio Candido
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Jeffrey Quintin Chambers
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| |
Collapse
|