1
|
Anelli P, Dall'Asta C, Cozzi G, Epifani F, Carella D, Scarpetta D, Brasca M, Moretti A, Susca A. Analysis of composition and molecular characterization of mycobiota occurring on surface of cheese ripened in Dossena's mine. Food Microbiol 2024; 123:104587. [PMID: 39038900 DOI: 10.1016/j.fm.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Accurate identification of the fungal community spontaneously colonizing food products, aged in natural and not controlled environments, provides information about potential mycotoxin risk associated with its consumption. Autochthonous mycobiota colonizing cheese aging in Dossena mines, was investigated and characterized by two approaches: microbial isolations and metabarcoding. Microbial isolations and metabarcoding analysis were conducted on cheese samples, obtained by four batches, produced in four different seasons of the year, aged for 90 and 180 days, by five dairy farms. The two approaches, with different taxonomical resolution power, highlighted Penicillium biforme among filamentous fungi, collected from 58 out of 68 cheeses, and Debaryomyces hansenii among yeasts, as the most abundant species (31 ÷ 65%), none representing a health risk for human cheese consumption. Shannon index showed that the richness of mycobiota increases after 180 days of maturation. Beta diversity analysis highlighted significant differences in composition of mycobiota of cheese produced by different dairy farms and aged for different durations. Weak negative growth interaction between P. biforme and Aspergillus westerdijkiae by in vitro analysis was observed leading to hypothesize that a reciprocal control is possible, also affected by natural environmental conditions, possibly disadvantageous for the last species.
Collapse
Affiliation(s)
- Pamela Anelli
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy
| | - Giuseppe Cozzi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Daria Carella
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Davide Scarpetta
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy.
| |
Collapse
|
2
|
Kuchkarova N, Lei L, Luo S, Toshmatov Z, Han C, Zhou S, Zhang C, Shao H. Plant Growth Regulatory Activity of Secondary Metabolites Produced by the Invasive Xanthium spinosum’s Endophytic Dematiopleospora sp. JOURNAL OF PLANT GROWTH REGULATION 2024; 43:2046-2057. [DOI: 10.1007/s00344-024-11246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 01/05/2025]
|
3
|
Zadravec M, Lešić T, Brnić D, Pleadin J, Kraak B, Jakopović Ž, Perković I, Vahčić N, Tkalec VJ, Houbraken J. Regional distribution and diversity of Aspergillus and Penicillium species on Croatian traditional meat products. Int J Food Microbiol 2023; 406:110404. [PMID: 37778241 DOI: 10.1016/j.ijfoodmicro.2023.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Various factors, such as weather and production practices (e.g., environmental hygiene, process duration, raw material quality, ripening temperature, and relative humidity), in combination with the intrinsic product properties (e.g., pH, aw, salt content), significantly affect the growth of surface moulds. The aim of this study was to isolate and identify surface moulds retrieved from traditional meat products (TMPs) and correlate these data to the production region and production technology. The surface of 250 TMPs (dry-fermented sausages, n = 108; dry-cured meat products, n = 142) from five Croatian regions were sampled during a two-year period. Dry-fermented sausages had a significantly higher pH and a lower salt concentration when compared to dry-cured meat products. In total, 528 isolates were obtained, comprising 20 Penicillium and 17 Aspergillus species. The species most frequently isolated from the dry-fermented sausages were P. commune (32.4 %), A. proliferans (33 %), and P. solitum (14.8 %), while A. proliferans (52.1 %), P. commune (28.9 %) and P. citrinum (19.7 %) predominated in dry-cured meat products. Aspergillus predominated on the TMPs from southern Croatia, while Penicillium was prevalent on products from the other four regions, possibly due to differences in weather conditions. Seven potentially mycotoxigenic species (A. creber, A. flavus, A. niger, A. westerdijkiae, P. citrinum, P. commune, and P. nordicum) were isolated and identified. Regular monitoring of mould species and their toxigenic metabolites present on traditional meat products is of the utmost importance from the public health perspective, while the results of such a monitoring can prove beneficial for the tailoring of the production technology development.
Collapse
Affiliation(s)
- Manuela Zadravec
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Tina Lešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Perković
- Croatian Veterinary Institute, Veterinary Department Vinkovci, J. Kozarca 24, 32100 Vinkovci, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Vesna Jaki Tkalec
- Croatian Veterinary Institute, Veterinary Department Križevci, Ivana Zakmardija Dijankovečkog 10, 48260 Križevci, Croatia.
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
4
|
Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson R, Visagie C, Yilmaz N, Gené J, Cano J, Chen A, Nováková A, Yaguchi T, Kolařík M, Hubka V. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Stud Mycol 2022; 102:53-93. [PMID: 36760461 PMCID: PMC9903908 DOI: 10.3114/sim.2022.102.02] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.
Collapse
Affiliation(s)
- F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - K. Glässnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - C.M. Visagie
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J. Cano
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - A.J. Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, China
| | - A. Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - M. Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
5
|
Organic Farm Bedded Pack System Microbiomes: A Case Study with Comparisons to Similar and Different Bedded Packs. DAIRY 2022. [DOI: 10.3390/dairy3030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with the ecological assessment of cultured Trichocomaceae isolates (focusing on Penicillium and Aspergillus species) and yeasts (Saccharomycetales). Bedding from five certified organic dairy farms in northern Vermont USA were sampled monthly between October 2015 and May 2016. Additional herd level samples from bulk tank milk and two bedding types were collected from two farms to collect fungal isolates for culturing and ecology. Most of the microorganisms in cattle bedding were microbial decomposers (saprophytes) or coprophiles, on account of the bedding being composed of dead plant matter, cattle feces, and urine. Composition of bacterial and fungal communities exhibited distinct patterns of ecological succession measured through time and by bedding depth. Community composition patterns were related to management practices and choice of bedding material. Aspergillus and Penicillium species exhibited niche differentiation expressed as differential substrate requirements; however, they generally exhibited traits of early colonizers of bedding substrates, typically rich in carbon and low in nitrogen. Pichia kudriavzevii was the most prevalent species cultured from milk and bedding. P. kudriavzevii produced protease and its abundance directly related to temperature. The choice of bedding and its management represent a potential opportunity to curate the microbial community of the housing environment.
Collapse
|
6
|
The Occurrence of Five Unregulated Mycotoxins Most Important for Traditional Dry-Cured Meat Products. Toxins (Basel) 2022; 14:toxins14070476. [PMID: 35878214 PMCID: PMC9315684 DOI: 10.3390/toxins14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
This study investigated the occurrence of 5 unregulated mycotoxins in a total of 250 traditional dry-cured meat products sampled in 2020 and 2021 in five Croatian regions (eastern, northern, central, western, and southern). Aflatoxin B1 (AFB1), ochratoxin A (OTA), sterigmatocystin (STC), citrinin (CIT), and cyclopiazonic acid (CPA) concentrations were related to the geographical region of the product’s origin and to local weather. The results revealed the contamination of 27% of samples, namely, STC in 4% of samples in concentrations of up to 3.93 µg/kg, OTA in 10% of samples in concentrations of up to 4.81 µg/kg, and CPA in 13% of samples in concentrations of up to 335.5 µg/kg. No AFB1 or CIT contamination was seen. Although no statistically significant differences in concentrations of individual mycotoxins across the production regions were found, differences in mycotoxin occurrence were revealed. The eastern and western regions, with moderate climate, delivered the largest number of contaminated samples, while the southern region, often compared with subtropics, delivered the smallest, so that the determined mycotoxins were probably mainly produced by the Penicillium rather than the Aspergillus species. Due to the interaction of various factors that may affect mycotoxin biosynthesis during production, the detected concentrations cannot be related solely to the weather.
Collapse
|
7
|
Géry A, Séguin V, Eldin de Pécoulas P, Bonhomme J, Garon D. Aspergilli series Versicolores: importance of species identification in the clinical setting. Crit Rev Microbiol 2022:1-14. [PMID: 35758008 DOI: 10.1080/1040841x.2022.2082267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The moulds of the genus Aspergillus section Nidulantes series Versicolores are ubiquitous and particularly recurrent in indoor air. They are considered present in 70% of the bioaerosols to which we are exposed most of our time spent indoors. With the taxonomic revision proposed in 2012 and the discovery of four new species, the series Versicolores currently includes 18 species. These moulds, although considered as cryptic (except Aspergillus sydowii), are opportunistic pathogens that can exhibit increased minimal inhibitory concentrations to conventional antifungal agents. In this review, we discuss the ecology and clinical implications of each species belonging to the series Versicolores. This survey also highlights the lack of consideration for taxonomic revisions in clinical practice and in scientific studies which greatly limits the acquisition of specific knowledge on species belonging to the series Versicolores.
Collapse
Affiliation(s)
- Antoine Géry
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | - Virginie Séguin
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | | | - Julie Bonhomme
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France.,Department of Microbiology, Caen University Hospital, Caen, France
| | - David Garon
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| |
Collapse
|
8
|
Chromosome-Level Genome Sequence of Aspergillus puulaauensis MK2, a Fungus Isolated from a Dead Hard Tick. Microbiol Resour Announc 2021; 10:e0037221. [PMID: 34498921 PMCID: PMC8428244 DOI: 10.1128/mra.00372-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus puulaauensis strain MK2 was isolated from a dead hard tick (Haemaphysalis longicornis). Here, we determined the chromosome-level genome sequence of A. puulaauensis MK2.
Collapse
|
9
|
Muñoz-Tebar N, González-Navarro EJ, López-Díaz TM, Santos JA, de Elguea-Culebras GO, García-Martínez MM, Molina A, Carmona M, Berruga MI. Biological Activity of Extracts from Aromatic Plants as Control Agents against Spoilage Molds Isolated from Sheep Cheese. Foods 2021; 10:1576. [PMID: 34359446 PMCID: PMC8303263 DOI: 10.3390/foods10071576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the antifungal and antioxidant activity of essential oils and ethanolic extracts from distilled solid by-products from aromatic plants (Artemisia dracunculus, Hyssopus officinalis, Lavandula stoechas, Origanum vulgare and Satureja montana) against 14 fungi strains isolated from sheep cheese and identified at species level using DNA barcoding based on β-tubulin sequence analysis. In addition, capacity of fungi to produce ochratoxin A, patulin, cyclopiazonic acid and sterigmatocystin was analyzed. Of the isolates, 85.7% belonged to Penicillium (P. commune/biforme, P. crustosum) and 14.3% to Aspergillus (A. puulaauensis and A. jensenii), the first time that these Aspergillus species have been found in sheep's cheese. All P. commune isolates were producers of cyclopiazonic acid, and the two Aspergillus strains produced sterigmatocystin, but the others did not produce any tested mycotoxin. Among the essential oils tested, oregano, savory and tarragon had a significant antifungal activity against all the isolated strains, but no ethanolic extract showed antifungal activity. By contrast, ethanolic extracts showed great potential as antioxidants. The identification of new molds in cheese will help the dairy industry to know more about those molds affecting the sector, and the use of aromatic plants in the control of fungal spoilage could be a suitable alternative to chemical preservatives used in the agri-food industry.
Collapse
Affiliation(s)
- Nuria Muñoz-Tebar
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Emilio J. González-Navarro
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Teresa María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | - Jesús A. Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (T.M.L.-D.); (J.A.S.)
| | | | - M. Mercedes García-Martínez
- Catedra de Química Agrícola, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Ana Molina
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - Manuel Carmona
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| | - María Isabel Berruga
- Food Quality Research Group, Institute for Regional Development (IDR), Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (N.M.-T.); (E.J.G.-N.); (A.M.); (M.C.)
| |
Collapse
|
10
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
11
|
Jakšić D, Sertić M, Kifer D, Kocsubè S, Mornar Turk A, Nigović B, Šarkanj B, Krska R, Sulyok M, Šegvić Klarić M. Fungi and their secondary metabolites in water-damaged indoors after a major flood event in eastern Croatia. INDOOR AIR 2021; 31:730-744. [PMID: 33314413 DOI: 10.1111/ina.12777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In winter and summer of 2016 and 2017, airborne fungi and house dust were collected in indoors of the village Gunja, which had been flooded, and the control village Gornji Stupnik (Croatia) in order to explore variations of fungal indoor levels, particularly Aspergilli section Nidulantes series Versicolores, as well as fungal metabolites in dust. Levels of airborne Aspergilli (Versicolores) were three times as high in winter and summer in Gunja than in the control village, while dustborne isolates were equally present in both locations. Sequencing of the calmodulin gene region revealed that among Aspergilli (Versicolores), A. jensenii and A. creber were dominant and together with A. puulaauensis, A. tennesseensis and A. venenatus produced sterigmatocystin and 5-methoxysterigmatocystin (HPLC coupled with mass spectrometry); A. amoenus, A. fructus, A. griseoaurantiacus, A. pepii, and A. protuberus produced sterigmatocystin but not 5-methoxysterigmatocystin; A. sydowii did not produce any of these toxins. A total of 75 metabolites related to Penicillium (29), Aspergillus (22), Fusarium (10), Alternaria (5), Stachybotrys (2), and other fungi (7) were detected in dust by liquid chromatography-tandem mass spectrometry. The majority of metabolites including sterigmatocystin and 5-methoxysterigmatocystin exhibited a higher prevalence in winter in Gunja.
Collapse
Affiliation(s)
- Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Miranda Sertić
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sandor Kocsubè
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ana Mornar Turk
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Biljana Nigović
- Department of Pharmaceutical Analysis, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bojan Šarkanj
- Department of Food Technology, University North, Koprivnica, Croatia
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
Bobadilla-Carrillo GI, Magallón-Servín P, López-Vela M, Palomino-Hermosillo YA, Ramírez-Ramírez JC, Gutiérrez-Leyva R, Ibarra-Castro L, Bautista-Rosales PU. Characterization and proliferation capacity of potentially pathogenic fungi in marine and freshwater fish commercial feeds. Arch Microbiol 2020; 202:2379-2390. [PMID: 32588083 DOI: 10.1007/s00203-020-01954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/22/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
In the aquaculture industry, the selection and quality of feed are highly relevant because their integrity and management have an impact on the health and development of organisms. In general, feeds contamination depends on storage conditions and formulation. Furthermore, it has been recognized that filamentous fungi are among the most important contaminating agent in formulated feeds. Therefore, the purpose of this research was to identify saprophytic fungi capable of proliferating in commercial feeds, as well as determining their prevalence, extracellular enzymes profile, ability to assimilate carbon sources, and finally their ability to produce aflatoxins. In order to do that, twenty-two fungi were isolated from commercial fish feeds. After, the species Aspergillus chevalieri, A. cristatus, A. sydowii, A. versicolor, A. flavus, A. creber, and Lichtheimia ramosa were identified. These fungi were able to produce extracellular enzymes, such as phosphatases, esterases, proteases, β-glucosidase, and N-acetyl-β-glucosaminidase. The isolated fungi showed no selective behavior in the assimilation of the different carbon sources, showing a strong metabolic diversity. Prevalence percentages above 85% were recorded. Among all fungi studied, A. flavus M3-C1 had the highest production of aflatoxins when this strain was inoculated directly in the feeds (295 ppb). The aflatoxin production by this strain under the experimental setting is above the permitted levels, and it has been established that high levels of aflatoxins in feeds can cause alterations in fish growth as well as the development of cancerous tumors in the liver, in addition to enhancing mortality.
Collapse
Affiliation(s)
- Giovanna Ilieva Bobadilla-Carrillo
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico.,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico
| | - Paola Magallón-Servín
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | - Melissa López-Vela
- Environmental Microbiology Group At Centro de Investigaciones Biológicas del Noroeste, Km. 1 Carretera a San Juan de La Costa "El Comitan", C. P. 23205, La Paz, Baja California Sur, Mexico.,Bashan Institute of Sciences, 1730 Post Oak Ct. Auburn, Dadeville, Alabama, 36830, USA
| | | | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Ranferi Gutiérrez-Leyva
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Km. 3.5 Carretera Compostela-Chapalilla, C. P. 63700, Compostela, Nayarit, Mexico
| | - Leonardo Ibarra-Castro
- Centro de Investigación en Alimentación y Desarrollo, Av. Sábalo Cerritos S/N, Col. Cerritos, C. P. 82100, Mazatlán, Sinaloa, Mexico
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km. 9, Carretera Tepic-Compostela, C. P. 63780, Xalisco, Nayarit, Mexico. .,Unidad de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de La Cultura S/N. Col. Centro, C. P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
13
|
Kubosaki A, Kobayashi N, Watanabe M, Yoshinari T, Takatori K, Kikuchi Y, Hara-Kudo Y, Terajima J, Sugita-Konishi Y. A New Protocol for the Detection of Sterigmatocystin-producing Aspergillus Section Versicolores Using a High Discrimination Polymerase. Biocontrol Sci 2020; 25:113-118. [PMID: 32507789 DOI: 10.4265/bio.25.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Aspergillus section Versicolores species, except Aspergillus sydowii, produce a carcinogenic mycotoxin sterigmatocystin (STC). Since these fungi are found in varied environmental milieu including indoor dust and food products, our aim was to develop a sensitive and convenient assay to detect STC producing fungal strains. We made use of a high discrimination DNA polymerase (HiDi DNA polymerase), for single nucleotide polymorphism (SNP)-based PCR amplification. Using specific primer pairs based on the SNPs between A. sydowii and other strains of Aspergillus section Versicolores, we succeeded in amplifying the genomic DNA all target strains except A. sydowii. These results confirm that the SNP-based PCR amplification technique, using a high discrimination DNA polymerase, was a reliable and robust screening method for target fungal strains.
Collapse
Affiliation(s)
| | - Naoki Kobayashi
- Department of Life and Environmental Sciences, Azabu University
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences
| | | | - Kosuke Takatori
- Faculty of Healthcare Sciences, Center for Fungal Consultation, NPO Corporation
| | - Yutaka Kikuchi
- Division of Microbiology, National Institute of Health Sciences
| | | | - Jun Terajima
- Division of Microbiology, National Institute of Health Sciences
| | | |
Collapse
|
14
|
Kandasamy S, Park WS, Yoo J, Yun J, Kang HB, Seol KH, Oh MH, Ham JS. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1002-1011. [PMID: 32054221 PMCID: PMC7206383 DOI: 10.5713/ajas.19.0553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. METHODS Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. RESULTS The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillusin a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. CONCLUSION The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.
Collapse
Affiliation(s)
- Sujatha Kandasamy
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Won Seo Park
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jayeon Yoo
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jeonghee Yun
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Han Byul Kang
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Kuk-Hwan Seol
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Mi-Hwa Oh
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jun Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| |
Collapse
|
15
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
16
|
Piontelli E, Vieille P, Peterson SW. Aspergillus incahuasiensis sp. nov., isolated from soil in the semi-arid region of northern Chile. Int J Syst Evol Microbiol 2019; 69:3350-3355. [PMID: 31592755 DOI: 10.1099/ijsem.0.003361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During a study of the fungi from a semi-arid region of northern Chile, a novel species of Aspergillus was encountered in the soil from an area where pepper trees (Schinusmolle) were growing. Marker genes were sequenced to identify these isolates. The β-tubulin, calmodulin and DNA-dependent RNA polymerase loci all indicated that this was a novel species in Aspergillus section Nidulantes and in the Aspergillus multicolorclade. The new species was studied morphologically and differences between it and the other members of the A. multicolor clade are described. We provide a name and description for these isolates as Aspergillus incahuasiensis sp. nov.
Collapse
Affiliation(s)
- Eduardo Piontelli
- Laboratorio de Micologia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Peggy Vieille
- Laboratorio de Micologia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen W Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
17
|
Jakšić D, Šegvić Klarić M, Crnolatac I, Šijaković Vujičić N, Smrečki V, Górecki M, Pescitelli G, Piantanida I. Unique Aggregation of Sterigmatocystin in Water Yields Strong and Specific Circular Dichroism Response Allowing Highly Sensitive and Selective Monitoring of Bio-Relevant Interactions. Mar Drugs 2019; 17:E629. [PMID: 31698712 PMCID: PMC6891739 DOI: 10.3390/md17110629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
We demonstrated the hitherto unknown property of the mycotoxin sterigmatocystin (STC) to provide homogeneous solutions in aqueous medium by forming a unique aggregate type (not formed by analogous aflatoxins), characterized by exceptionally strong circular dichroism (CD) bands in the 300-400 nm range. Results showed that these CD bands do not originate from intrinsic STC chirality but are a specific property of a peculiar aggregation process similar to psi-DNA CD response. Transmission electron microscopy (TEM) experiments revealed a fine fiber network resembling a supramolecular gel structure with helical fibers. Thermodynamic studies of aggregates by differential scanning calorimetry (DSC) revealed high reversibility of the dominant aggregation process. We demonstrated that the novel STC psi-CD band at 345 nm could be applied at biorelevant conditions (100 nanomolar concentration) and even in marine-salt content conditions for specific and quantitative monitoring of STC. Also, we showed that STC strongly non-covalently interacts with ds-DNA with likely toxic effects, thus contrary to the previous belief requiring prior enzyme epoxidation.
Collapse
Affiliation(s)
- Daniela Jakšić
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | - Maja Šegvić Klarić
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | - Ivo Crnolatac
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.C.); (N.Š.V.)
| | | | - Vilko Smrečki
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.C.); (N.Š.V.)
| | - Marcin Górecki
- Department of Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy; (M.G.); (G.P.)
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224 Warsaw, Poland
| | - Gennaro Pescitelli
- Department of Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy; (M.G.); (G.P.)
| | - Ivo Piantanida
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (I.C.); (N.Š.V.)
| |
Collapse
|
18
|
SAKHRI AFAF, CHAOUCHE NOREDDINEKACEM, CATANIA MARIAROSARIA, RITIENI ALBERTO, SANTINI ANTONELLO. Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities. Pol J Microbiol 2019; 68:309-316. [PMID: 31880876 PMCID: PMC7256719 DOI: 10.33073/pjm-2019-033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/10/2022] Open
Abstract
Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds. Among the species belonging to the Aspergillus section Versicolores, Aspergillus creber has been poorly studied and still unexplored for its biological activities. The present study was undertaken to analyze A. creber extract and to evaluate its in vitro antimicrobial and anti-oxidant activities. UHPLC-MS/MS analysis of A. creber extract allowed the characterization of five known fungal metabolites including: asperlactone, emodin, sterigmatocystin, deoxybrevianamide E, and norsolorinic acid. The highest antimicrobial activity was displayed against Candida albicans, with a mean strongest inhibition zone of 20.6 ± 0.8 mm, followed by Gram-positive drug-resistant bacteria. The MIC values of A. creber extract varied from 0.325 mg/ml to 5 mg/ml. A. creber extract was shown a potent antioxidant activity and a high level of phenolic compounds by recording 89.28% scavenging effect for DPPH free radical, 92.93% in ABTS assay, and 85.76 mg gallic acid equivalents/g extract in Folin-Ciocalteu assay. To our knowledge, this is the first study concerning biological and chemical activities of A. creber species. Based on the obtained results, A. creber could be a promising source of natural antimicrobial and antioxidant compounds.
Collapse
Affiliation(s)
- AFAF SAKHRI
- Laboratoire de Mycologie, de Biotechnologie et de l’Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine-1, Constantine, Algeria
- Department of Medicine, University of Batna 2, Batna, Algeria
| | - NOREDDINE KACEM CHAOUCHE
- Laboratoire de Mycologie, de Biotechnologie et de l’Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine-1, Constantine, Algeria
| | - MARIA ROSARIA CATANIA
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Naples, Italy
| | - ALBERTO RITIENI
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - ANTONELLO SANTINI
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
19
|
Min T, Xiong L, Liang Y, Xu R, Fa C, Yang S, Hu H. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol 2019; 35:109. [DOI: 10.1007/s11274-019-2687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
20
|
Anelli P, Haidukowski M, Epifani F, Cimmarusti MT, Moretti A, Logrieco A, Susca A. Fungal mycobiota and mycotoxin risk for traditional artisan Italian cave cheese. Food Microbiol 2019; 78:62-72. [DOI: 10.1016/j.fm.2018.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022]
|
21
|
Díaz Nieto CH, Granero AM, Zon MA, Fernández H. Sterigmatocystin: A mycotoxin to be seriously considered. Food Chem Toxicol 2018; 118:460-470. [DOI: 10.1016/j.fct.2018.05.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
|
22
|
Viegas C, Nurme J, Piecková E, Viegas S. Sterigmatocystin in foodstuffs and feed: aspects to consider. Mycology 2018; 11:91-104. [PMID: 32923018 PMCID: PMC7448898 DOI: 10.1080/21501203.2018.1492980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023] Open
Abstract
Sterigmatocystin (STC) is a possible human carcinogen (2B) according to International Agency for Research on Cancer classification and has been associated with immunotoxic and immunomodulatory activity, together with mutagenic effects. It might be found in numerous substrates, from foods and feeds to chronically damp building materials and indoor dust. Although European Food Safety Authority concluded that the exposure to STC to be of low concern for public health, reinforces the need of data concerning exposure of European citizens. Climate change can represent an increased risk of exposure to STC since it is a crucial factor for agro-ecosystem powering fungal colonisation and mycotoxin production This aspect can represent an increased risk for European countries with temperate climates and it was already reported by the scientific community.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Janne Nurme
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elena Piecková
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Distribution of Sterigmatocystin-producing Aspergilli in Japan. Food Saf (Tokyo) 2018; 6:67-73. [PMID: 32231949 DOI: 10.14252/foodsafetyfscj.2018001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Sterigmatocystin is a genotoxic and hepatocarcinogenic mycotoxin that contaminates foods and environments worldwide. Sterigmatocystin is produced as a precursor to aflatoxin B1 or as an end product by certain Aspergilli. Aspergillus section Versicolores is one of the major sections including sterigmatocystin-producing species and is thus a potential health and environmental hazard. Recently, the taxonomy of this section was revised and classified into 14 species on the basis of molecular phylogenetic analysis. However, investigation of the distribution and sterigmatocystin production of each species has been limited; in particular, its distribution in foods has been scarcely reported. In this study, we collected isolates of Aspergillus section Versicolores from various foods and environments in Japan and investigated their distribution and sterigmatocystin production. The isolates were classified into nine species or species groups, which revealed that A. creber, A. puulaauensis/tennesseensis and A. sydowii are the main species/species groups in Japan. In addition, A. versicolor sensu stricto was detected with some frequency, specifically in foods. Furthermore, the two species A. creber and A. versicolor sensu stricto frequently produced sterigmatocystin. It is therefore important for food safety to intensively monitor these two species and distinguish them from other species, especially A. sydowii, which is not considered to produce sterigmatocystin.
Collapse
|
24
|
Viegas C, Faria T, Caetano LA, Carolino E, Gomes AQ, Viegas S. Aspergillus spp. prevalence in different Portuguese occupational environments: What is the real scenario in high load settings? JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2017; 14:771-785. [PMID: 28609213 DOI: 10.1080/15459624.2017.1334901] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The genus Aspergillus is one of the most prevalent regarding fungi in several highly contaminated occupational environments. The goal of the current study was to assess the prevalence of Aspergillus spp. in different settings, focusing on those where a higher load of fungal contamination is expected according to the European Agency for Safety and Health at Work. A specific protocol to ensure a more accurate assessment of the exposure to Aspergillus spp. is proposed aimed at allowing a detailed risk characterization and management. Two wastewater treatment plants, one wastewater elevation plant, four waste treatment plants, three cork industries, five slaughter houses, four feed industries, one poultry pavilion, and two swineries, all located in the outskirts of Lisbon, were assessed. In total, 125 air samples and 125 surface samples were collected and analysed by culture-based methods. Real-time polymerase chain reaction was performed to detect fungal presence in 100 samples, targeting the Aspergillus sections Circumdati, Flavi, and Fumigati. The highest prevalence of Aspergillus spp. was found in wastewater treatment plants (69.3%; 31.1%), waste treatment plants (34.8%; 73.6%), and poultry feed industry (6.3%; 26.1%), in air and surfaces, respectively. Aspergillus spp. was also prevalent in cork industry (0.9%; 23.4%), slaughter houses (1.6%; 17.7%), and swineries (7.4%; 9.5%), in air and surfaces, respectively. The Aspergillus sections more prevalent in the air and surfaces of all the assessed settings were the Nigri section (47.46%; 44.71%, respectively), followed by Fumigati (22.28%; 27.97%, respectively) and Flavi (10.78%; 11.45%, respectively) sections. Aspergillus section Fumigati was successfully amplified by qPCR in 18 sampling sites where the presence of this fungal species had not been identified by conventional methods. It should be highlighted that the occupational exposure burden is due not only to the Aspergillus load, but also to the toxigenic potential of this genus. Based on our results, a protocol relied in the application of conventional and molecular methods in parallel is herein suggested aimed at allowing a better risk characterization and management.
Collapse
Affiliation(s)
- Carla Viegas
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Tiago Faria
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Liliana Aranha Caetano
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- c Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| | - Elisabete Carolino
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Anita Quintal Gomes
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- d Instituto de Medicina Molecular , Faculdade de Medicina de Lisboa , Lisboa , Portugal
| | - Susana Viegas
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
25
|
Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol 2017; 120:1458-1467. [PMID: 27742099 DOI: 10.1016/j.funbio.2016.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022]
Abstract
Aspergillus section Versicolores includes species of clinical relevance and many others that have been poorly studied but are occasionally found in clinical samples. The aim of this study was to investigate, using a multilocus phylogenetic approach, the spectrum of species of the section Versicolores and to determine their in vitro antifungal susceptibility. The study was based on a set of 77 clinical isolates from different USA medical centres, which had been previously identified as belonging to this section. The genetic markers used were internal transcribed spacer (ITS), β-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2), and the drugs tested, following the CLSI guidelines, were amphotericin B (AMB), itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, micafungin, terbinafine (TBF), and flucytosine (5FC). The most frequent species were Aspergillus sydowii (26 %), Aspergillus creber (22 %), and Aspergillus amoenus (18.2 %), followed by Aspergillus protuberus (13 %), Aspergillus jensenii (10.4 %), and Aspergillus tabacinus (5.2 %); while Aspergillus cvjetkovicii, Aspergillus fructus, Aspergillus puulaauensis, and Aspergillus versicolor were represented by only one isolate each (1.3 %). This is the first time that A. jensenii and A. puulaauensis have been reported from clinical samples. Considering the high number of isolates identified as belonging to this fungal group in this study, its clinical relevance should not be overlooked. Aspergillus versicolor, traditionally considered one of the most common species in this section in a clinical setting, was only rarely recovered in our study. The in vitro antifungal results showed that echinocandins and TBF were the most potent drugs, the azoles showed variable results, AMB was poorly active, and 5FC was the less active.
Collapse
|
26
|
Libert X, Packeu A, Bureau F, Roosens NH, De Keersmaecker SCJ. Discrimination of three genetically close Aspergillus species by using high resolution melting analysis applied to indoor air as case study. BMC Microbiol 2017; 17:84. [PMID: 28376723 PMCID: PMC5381056 DOI: 10.1186/s12866-017-0996-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Indoor air pollution caused by fungal contamination is suspected to have a public health impact. Monitoring of the composition of the indoor airborne fungal contaminants is therefore important. To avoid problems linked to culture-dependent protocols, molecular methods are increasingly being proposed as an alternative. Among these molecular methods, the polymerase chain reaction (PCR) and the real-time PCR are the most frequently used tools for indoor fungal detection. However, even if these tools have demonstrated their appropriate performance, some of them are not able to discriminate between species which are genetically close. A solution to this could be the use of a post-qPCR high resolution melting (HRM) analysis, which would allow the discrimination of these species based on the highly accurate determination of the difference in melting temperature of the obtained amplicon. In this study, we provide a proof-of-concept for this approach, using a dye adapted version of our previously developed qPCR SYBR®Green method to detect Aspergillus versicolor in indoor air, an important airborne fungus in terms of occurrence and cause of health problems. Despite the good performance observed for that qPCR method, no discrimination could previously be made between A. versicolor, Aspergillus creber and Aspergillus sydowii. Methods In this study, we developed and evaluated an HRM assay for the discrimination between A. versicolor, Aspergillus creber and Aspergillus sydowii. Results Using HRM analysis, the discrimination of the 3 Aspergillus species could be made. No false positive, nor false negatives were observed during the performance assessment including 20 strains of Aspergillus. The limit of detection was determined for each species i.e., 0.5 pg of gDNA for A. creber and A. sydowii, and 0.1 pg of gDNA for A. versicolor. The HRM analysis was also successfully tested on environmental samples. Conclusion We reported the development of HRM tools for the discrimination of A. versicolor, A. creber and A. sydowii. However, this study could be considered as a study case demonstrating that HRM based on existing qPCR assays, allows a more accurate identification of indoor air contaminants. This contributes to an improved insight in the diversity of indoor airborne fungi and hence, eventually in the causal link with health problems. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0996-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xavier Libert
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium.,Mycology and Aerobiology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Ann Packeu
- Mycology and Aerobiology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Fabrice Bureau
- Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Université de Liège (ULg), Avenue de l'Hôpital, 1 (B34), 4000, Sart-Tilman, Belgium
| | - Nancy H Roosens
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| |
Collapse
|
27
|
Rajachan OA, Kanokmedhakul K, Soytong K, Kanokmedhakul S. Mycotoxins from the Fungus Botryotrichum piluliferum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1337-1341. [PMID: 28135416 DOI: 10.1021/acs.jafc.6b05522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two new sterigmatocystin derivatives, oxisterigmatocystins E and F (1 and 2, respectively), along with nine known compounds, oxisterigmatocystins G and H (3 and 4, respectively), sterigmatocystin (5), N-0532B (6), O-methylsterigmatocystin (7), N-0532A (8), 6-O-methylversicolorin A (9), 6,8-O-dimethylversicolorin A (10), and 8-O-methylaverufin (11), were isolated from the fungus Botryotrichum piluliferum. The structures of these mycotoxins were elucidated by spectroscopic evidence. Among these, compounds 3, 4, and 9 were discovered as natural products for the first time. Compounds 1, 3, and 4 displayed antimalarial activity toward Plasmodium falciparum (IC50 = 7.9-23.9 μM). In addition, compounds 1-6 and 8-11 exhibited cytotoxicity against KB, MCF-7, and NCI-H187 cell lines (IC50 = 0.38-78.6 μM). However, compounds 1-9 showed cytotoxic effects against the Vero cell line (IC50 = 0.65-12.3 μM). This finding should promote awareness of the contamination of B. piluliferum in the food chain and agricultural soil.
Collapse
Affiliation(s)
- Oue-Artorn Rajachan
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| | - Kasem Soytong
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University , Khon Kaen 40002, Thailand
| |
Collapse
|
28
|
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, Damásio ARDL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JVDC, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 2017; 18:28. [PMID: 28196534 PMCID: PMC5307856 DOI: 10.1186/s13059-017-1151-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
Collapse
Affiliation(s)
- Ronald P. de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ad Wiebenga
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Guillermo Aguilar-Osorio
- Department of Food Science and Biotechnology, Faculty of Chemistry, National University of Mexico, Ciudad Universitaria, D.F. C.P. 04510 Mexico
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Cristiane Akemi Uchima
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Present address: VTT Brasil, Alameda Inajá, 123, CEP 06460-055 Barueri, São Paulo Brazil
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojtaba Asadollahi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Marion Askin
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: CSIRO Publishing, Unipark, Building 1 Level 1, 195 Wellington Road, Clayton, VIC 3168 Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Evy Battaglia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Biology, Maynooth University, Maynooth, Co. Kildare Ireland
| | - Tiziano Benocci
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, Sao Paulo Brazil
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria
| | | | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Cindy Choi
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Renato Augusto Corrêa dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - André Ricardo de Lima Damásio
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, CEP 13083-862 Campinas, SP Brazil
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15781 Athens, Greece
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Susanne Freyberg
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Christos Gournas
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
- Present address: Université Libre de Bruxelles Institute of Molecular Biology and Medicine (IBMM), Brussels, Belgium
| | - Rob Habgood
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | | | - María Laura Harispe
- Institut Pasteur de Montevideo, Unidad Mixta INIA-IPMont, Mataojo 2020, CP11400 Montevideo, Uruguay
- Present address: Instituto de Profesores Artigas, Consejo de Formación en Educación, ANEP, CP 11800, Av. del Libertador 2025, Montevideo, Uruguay
| | - Bernard Henrissat
- CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kristiina S. Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ryan Hope
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Abeer Hossain
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eugenia Karabika
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
- Present Address: Department of Chemistry, University of Ioannina, Ioannina, 45110 Greece
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Nada Kraševec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
- Department of Medical Informatics, University Medical Centre, Robert-Koch-Str.40, 37075 Göttingen, Germany
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen, 37073 Germany
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Ellen L. Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Alla Lapidus
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Present address: Center for Algorithmic Biotechnology, St.Petersburg State University, St. Petersburg, Russia
| | - Anthony Levasseur
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Andrew MacCabe
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Miia R. Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Petter Melin
- Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, 750 07 Uppsala, Sweden
- Present address: Swedish Chemicals Agency, Box 2, 172 13 Sundbyberg, Sweden
| | - Vera Meyer
- Institute of Biotechnology, Department Applied and Molecular Microbiology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Natalia Mielnichuk
- Department of Genetics, Faculty of Biology, University of Seville, Avda de Reina Mercedes 6, 41012 Sevilla, Spain
- Present address: Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Márton Miskei
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Momentum, Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Nagyerdei krt.98., 4032 Debrecen, Hungary
| | - Ákos P. Molnár
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Giuseppina Mulé
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Margarita Orejas
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Erzsébet Orosz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Jean Paul Ouedraogo
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Karin M. Overkamp
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 702-701 Republic of Korea
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francois Piumi
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Present address: INRA UMR1198 Biologie du Développement et de la Reproduction - Domaine de Vilvert, Jouy en Josas, 78352 Cedex France
| | - Peter J. Punt
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech BV, Utrechtseweg 48, 3703AJ Zeist, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Stefan Rauscher
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Eric Record
- INRA, Aix-Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Julian Röhrig
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Roberto Ruller
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Nadhira S. Salih
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Department of Biology, School of Science, University of Sulaimani, Al Sulaymaneyah, Iraq
| | - Rob A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Tabea Schütze
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ekaterina Shelest
- Systems Biology/Bioinformatics group, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305-5120 USA
| | - Vicky Sophianopoulou
- Institute of Biosciences and Applications, Microbial Molecular Genetics Laboratory, National Center for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Hui Sun
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Shiela E. Unkles
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH UK
| | - Nathalie van de Wiele
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Diana van Rossen-Uffink
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present address: BaseClear B.V., Einsteinweg 5, 2333 CC Leiden, The Netherlands
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192 CEP 13083-970, Campinas, São Paulo Brasil
| | - Tammi C. Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Jaap Visser
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706 USA
| | - Miaomiao Zhou
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Scott E. Baker
- Fungal Biotechnology Team, Pacific Northwest National Laboratory, Richland, Washington, 99352 USA
| | - Isabelle Benoit
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Present address: Centre of Functional and Structure Genomics Biology Department Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6 Canada
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI) and Institute for Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology, Institute for Applied Biosciences, Hertzstrasse 16,, 76187 Karlsruhe, Germany
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903 Ribeirão Preto, São Paulo Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Berl Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 USA
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, Université Paris‐Saclay, 91198 Gif‐sur‐Yvette cedex, France
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstraße 1a, 1060 Vienna, Austria
| | - Patricia A. vanKuyk
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Jennifer Wortman
- Broad Institute, 415 Main St, Cambridge, MA 02142 USA
- Present address: Seres Therapeutics, 200 Sidney St, Cambridge, MA 02139 USA
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| |
Collapse
|
29
|
Wegner S, Bauer J, Dietrich R, Märtlbauer E, Usleber E, Gottschalk C, Gross M. A highly specific competitive direct enzyme immunoassay for sterigmatocystin as a tool for rapid immunochemotaxonomic differentiation of mycotoxigenicAspergillusspecies. Lett Appl Microbiol 2017; 64:124-130. [DOI: 10.1111/lam.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Affiliation(s)
- S. Wegner
- Chair of Dairy Science; Institute of Veterinary Food Science; Justus-Liebig-University; Giessen Germany
| | - J.I. Bauer
- Chair of Dairy Science; Institute of Veterinary Food Science; Justus-Liebig-University; Giessen Germany
| | - R. Dietrich
- Veterinary Faculty; Chair of Hygiene and Technology of Milk; Ludwig-Maximilians-University; Oberschleißheim Germany
| | - E. Märtlbauer
- Veterinary Faculty; Chair of Hygiene and Technology of Milk; Ludwig-Maximilians-University; Oberschleißheim Germany
| | - E. Usleber
- Chair of Dairy Science; Institute of Veterinary Food Science; Justus-Liebig-University; Giessen Germany
| | - C. Gottschalk
- Veterinary Faculty; Chair of Food Safety; Ludwig-Maximilians-University; Oberschleißheim Germany
| | - M. Gross
- Institute of Veterinary Food Science; Junior Professorship of Veterinary Food Diagnostics; Justus-Liebig-University; Giessen Germany
| |
Collapse
|
30
|
New sterigmatocystin-producing species of Aspergillus section Versicolores from indoor air in Croatia. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1250-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud Mycol 2016; 84:1-118. [PMID: 28050053 PMCID: PMC5198626 DOI: 10.1016/j.simyco.2016.10.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.
Collapse
Affiliation(s)
- A J Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Søltofts Plads B. 221, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - J Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - S Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - D H Kim
- Division of Forest Environment Protection, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - S-B Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
32
|
Piontek M, Łuszczyńska K, Lechów H. Occurrence of the Toxin-Producing Aspergillus versicolor Tiraboschi in Residential Buildings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090862. [PMID: 27589778 PMCID: PMC5036695 DOI: 10.3390/ijerph13090862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022]
Abstract
In an area representative of a moderate climate zone (Lubuskie Province in Poland), mycological tests in over 270 flats demonstrated the occurrence of 82 species of moulds. Aspergillus versicolor Tiraboschi was often encountered on building partitions (frequency 4: frequently). The ability to synthesize the carcinogenic sterigmatocystin (ST) means that it poses a risk to humans and animals. Biotoxicological tests of biomasses of A. versicolor were conducted in the Microbiological and Toxicological Laboratory, using the planarians Dugesia tigrina (Girard). The obtained results of the tests covered a broad range of toxicity levels of isolated strains: from weakly toxic (100–1000 mg·L−3) to potently toxic (1–10 mg·L−3). The high-performance liquid chromatography (HPLC) physicochemical method confirmed the ability of A. versicolor strains to synthesize sterigmatocystin. All of the samples of the air-dry biomasses of the fungi contained ST in the range between 0.03 and 534.38 mg·kg−1. In the bio-safety level (BSL) classification A. versicolor belongs to category 1. Additionally, A. versicolor is an allergenic mould.
Collapse
Affiliation(s)
- Marlena Piontek
- Department of Applied Ecology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Environmental Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 15, 65-516 Zielona Góra, Poland.
| | - Katarzyna Łuszczyńska
- Department of Applied Ecology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Environmental Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 15, 65-516 Zielona Góra, Poland.
| | - Hanna Lechów
- Department of Applied Ecology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Environmental Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 15, 65-516 Zielona Góra, Poland.
| |
Collapse
|
33
|
Despot DJ, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Vágvölgyi C, Varga J, Klarić MŠ. Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:296-304. [PMID: 27100010 DOI: 10.1016/j.scitotenv.2016.03.183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
This study presents the distribution and species diversity of sterigmatocystin-producing Aspergilli from the section Versicolores in the indoor air of apartment-AP, basements-BS and grain mill-GM in Croatia, as well as the cytotoxic potency of isolates. The species comprised 0.7-20% of total airborne fungi detected in the AP, 11-55% in the BS, and 0-2% in the GM. Based on CaM sequences, seven species were identified; dominant were Aspergillus jensenii and Aspergillus creber, followed by Aspergillus protuberus, Aspergillus venenatus, Aspergillus tennesseensis, Aspergillus amoenus, Aspergillus griseoaurantiacus and three undescribed species. All of the identified species produced sterigmatocystin-STC (HPLC/UV-VIS); A. griseoaurantiacus (208.29μg/mL) and A. jensenii (1.192-133.63μg/mL) produced the highest levels, the lowest were detected in A. protuberus and A. tennesseensis (0.117-2.749μg/mL). Lower species diversity was obtained in the GM due to overgrowth with more propulsive fungi. Relatively high STC levels (0.06-2.35μg/g) detected in 52% of GM dust samples confirmed the presence of STC-producers, although this STC cannot be exclusively attributed to Aspergilli (Versicolores). STC and the majority of STC-producing Aspergilli were cytotoxic to human lung A549 cells (IC50 0.9-2.3μg/mL) and THP-1 macrophage-like cells (IC50 0.3-0.6μg/mL) in relatively low concentrations suggesting that humans can be at high risk during chronic exposure.
Collapse
Affiliation(s)
- Daniela Jakšić Despot
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| | - Sandor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - Janos Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia.
| |
Collapse
|
34
|
Micheluz A, Sulyok M, Manente S, Krska R, Varese G, Ravagnan G. Fungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library in Venice. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The secondary metabolite production of several fungal strains of Aspergillus creber, Aspergillus jensenii, Aspergillus penicillioides, Aspergillus protuberus, Aspergillus vitricola, Cladosporium cladosporioides, Eurotium chevalieri, Eurotium halophilicum, Penicillium brevicompactum and Penicillium chrysogenum were characterised by liquid chromatography tamdem mass spectometry. All fungi were isolated from both air and book covers as well as from settled dust from a contaminated library in Venice (Italy). For A. creber and A. jensenii, we identified sterigmatocystin, methoxysterigmatocystin, versicolorin A and related precursors/side metabolites from the biosynthetic pathways. Deoxybrevianamid E, neoechinulin A, pseurotin A and D, and rugulusovin were principally detected from the strains of E. halophilicum, an emerging fungal species implicated in book contaminations in specific indoor niches. The analysis of settled dust showed a wide range of toxic or bioactive fungal metabolites. Forty-five different metabolites were identified in different concentrations; in particular, high amounts of asperglaucide, alamethicin, andrastin A, terrecyclic acid and neoechinulin A were detected. Also one bacterial metabolite, chloramphenicole was detected. This study increases the knowledge about metabolite production of several fungal species, as well as on the indoor presence of fungi that are not detected by aerobiological sampling. These results emphasise how routine dusting operations are necessary and essential in order to prevent further microbiological developments in library environments.
Collapse
Affiliation(s)
- A. Micheluz
- Department of Environmental Sciences, Informatics and Statistic, Ca’ Foscari University, Via Torino 155, 30170 Mestre (VE), Italy
| | - M. Sulyok
- Christian Doppler Laboratory for Mycotoxin Research, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - S. Manente
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, Via Torino 155, 30170 Mestre (VE), Italy
| | - R. Krska
- Christian Doppler Laboratory for Mycotoxin Research, Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - G.C. Varese
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - G. Ravagnan
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, Via Torino 155, 30170 Mestre (VE), Italy
| |
Collapse
|
35
|
Ebrahim W, El-Neketi M, Lewald LI, Orfali RS, Lin W, Rehberg N, Kalscheuer R, Daletos G, Proksch P. Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal-Bacterial Mixed Cultures. JOURNAL OF NATURAL PRODUCTS 2016; 79:914-922. [PMID: 27070198 DOI: 10.1021/acs.jnatprod.5b00975] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The endophytic fungus Aspergillus austroafricanus isolated from leaves of the aquatic plant Eichhornia crassipes was fermented axenically on solid rice medium as well as in mixed cultures with Bacillus subtilis or with Streptomyces lividans. Chromatographic analysis of EtOAc extract of axenic cultures afforded two new metabolites, namely, the xanthone dimer austradixanthone (1) and the sesquiterpene (+)-austrosene (2), along with five known compounds (3-7). Austradixanthone (1) represents the first highly oxygenated heterodimeric xanthone derivative. When A. austroafricanus was grown in mixed cultures with B. subtilis or with S. lividans, several diphenyl ethers (8-11) including the new austramide (8) were induced up to 29-fold. The structures of new compounds were unambiguously elucidated using 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical derivatization. Compound 7 exhibited weak cytotoxicity against the murine lymphoma L5178Y cell line (EC50 is 12.6 μM). In addition, compounds 9 and 10, which were enhanced in mixed fungal/bacterial cultures, proved to be active against Staphylococcus aureus (ATCC 700699) with minimal inhibitory concentrations (MICs) of 25 μM each (6.6 μg/mL), whereas compound 11 revealed moderate antibacterial activity against B. subtilis 168 trpC2 with an MIC value of 34.8 μM (8 μg/mL).
Collapse
Affiliation(s)
- Weaam Ebrahim
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University , 35516 Mansoura, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University , 35516 Mansoura, Egypt
| | - Laura-Isabell Lewald
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| | - Raha S Orfali
- Pharmacognosy Department, Faculty of Pharmacy, King Saud University , Riyadh, Saudi Arabia
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Health Science Center , 100191 Beijing, People's Republic of China
| | - Nidja Rehberg
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| | - Georgios Daletos
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, Geb. 26.23, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Biancardi A, Dall'Asta C. Determination of sterigmatocystin in feed by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:2093-100. [PMID: 26471726 DOI: 10.1080/19440049.2015.1094709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An LC-MS/MS method is proposed for the analysis of sterigmatocystin in cereals and feed. The method is based on a solid-liquid extraction and a dilute-and-shoot approach. Accuracy and precision were established at the LOQ (1 μg kg(-1)); the mean overall recovery (n = 6) was 98%, with a confidence interval of 3.8% and a CV% of 3.7%. Accuracy and precision were also assessed at three other concentration levels (2.03, 5.07 and 10.14 μg kg(-1); six replicates per level). The mean overall recovery (n = 24, LOQ included) was 99% with a confidence interval of 0.8% and a CV% of 1.9%. The method was then applied to 14 naturally incurred feed samples. Aflatoxin B1 was present in the range 28.7-240.1 µg kg(-1), while lower concentrations of sterigmatocystin were found (0.7-2.2 µg kg(-1)). This method may represent a valuable choice, ensuring a high level of accuracy and precision, as well as high-throughput performance. Therefore, it meets the recent EFSA opinion recommendation in terms of availability of fast and sensitive methods (recommended LOQ = 1.5 μg kg(-1)) in order to increase data collection to allow for the assessment of dietary exposure.
Collapse
Affiliation(s)
- Alberto Biancardi
- a Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna , Brescia , Italy
| | - Chiara Dall'Asta
- b Dipartimento di Scienze degli Alimenti , Università degli Studi di Parma , Parma , Italy
| |
Collapse
|
37
|
Culliao AGL, Barcelo JM. Fungal and mycotoxin contamination of coffee beans in Benguet province, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:250-60. [PMID: 25534333 DOI: 10.1080/19440049.2014.1001796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coffee remains an important agricultural product in Benguet province, Philippines, but is highly susceptible to fungal and mycotoxin contamination in various stages of growth and processing and in different local climates. In this study, pre- and post-harvest coffee bean samples from temperate and warm farming areas were assessed for their fungal and mycotoxin contaminants. One hundred eighty-five fungal isolates belonging to six genera were isolated representing 88.1% of mycotoxigenic fungi. The predominant species belonged to the genus Aspergillus, which are known producers of mycotoxins. Coffee beans from the post-harvest temperate group were found to have the highest percentage mycotoxigenic contamination of 98.4%, suggesting that the risk for fungal contamination is high after drying. Determination of the mycotoxins indicated 28.6% contamination. Ochratoxin A was found to be highest in dried whole cherries which contained 97.3 μg kg(-1), whilst sterigmatocystin was also highest in dried whole cherries at 193.7 μg kg(-1). These results indicate that there are risks of fungal and mycotoxin contamination of Benguet coffee at the post-harvest stage.
Collapse
Affiliation(s)
- Audrey Glenn L Culliao
- a Natural Sciences Research Unit, School of Natural Sciences , Saint Louis University , Baguio City , Philippines
| | | |
Collapse
|
38
|
Li M, Li P, Wu H, Zhang Q, Ma F, Zhang Z, Ding X, Wang H. An ultra-sensitive monoclonal antibody-based competitive enzyme immunoassay for sterigmatocystin in cereal and oil products. PLoS One 2014; 9:e106415. [PMID: 25184275 PMCID: PMC4153633 DOI: 10.1371/journal.pone.0106415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022] Open
Abstract
Sterigmatocystin (STG), a biosynthesis precursor of aflatoxin B1, is well known for its toxic and carcinogenic effects in humans and animals. STG derivatives and protein conjugates are needed for generation of monoclonal antibodies (mAbs). This work describes a reliable and fast synthesis of novel STG derivatives, based on which novel STG bovine serum albumin conjugates were prepared. With the novel STG bovine serum albumin conjugates, three sensitive and specific mAbs against STG, named VerA 3, VerA 4, and VerA 6, were prepared by semi-solid hypoxanthine/aminopterin/thymidine (HAT) medium using a modified two-step screening procedure. They exhibited high affinity for STG and no cross-reactivity (CR) with aflatoxins B1, B2, G1, G2, and M1. Based on the most sensitive antibody VerA 3, an ultra-sensitive competitive enzyme-linked immunosorbent assay (ELISA) was developed for STG in wheat, maize, and peanuts. Assays were performed in the STG-GA-BSA-coated (0.5 µg·mL−1) ELISA format, in which the antibody was diluted to 1∶80,000. Several physicochemical factors influencing assay performance, such as pH, ionic strength, blocking solution, and diluting solution, were optimized. The final results showed that the assays had the detection limits of 0.08 ng·g−1 for wheat, 0.06 ng·g−1 for maize, and 0.1 ng·g−1 for peanuts, inter-assay and intra-assay variations of less than 10%, and recoveries ranging from 83% to 110%. These recoveries were in good agreement with those obtained by using HPLC-MS/MS method (90–104%), indicating the importance of the mAb VerA 3 in the study of STG in crude agricultural products.
Collapse
Affiliation(s)
- Min Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail: (PL); (QZ)
| | - Hui Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail: (PL); (QZ)
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Hengling Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| |
Collapse
|
39
|
Sasaki R, Hossain MZ, Abe N, Uchigashima M, Goto T. Development of an analytical method for the determination of sterigmatocystin in grains using LCMS after immunoaffinity column purification. Mycotoxin Res 2014; 30:123-9. [PMID: 24696064 DOI: 10.1007/s12550-014-0196-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
The mycotoxin sterigmatocystin (STC) is produced mainly by some Aspergillus and Penicillium fungi; it naturally contaminates cereals, peanuts, and products derived from these crops, and is both mutagenic and carcinogenic. As an intermediate of aflatoxin (AF) biosynthesis, its structure is similar to that of AF. Although immunoaffinity columns (IACs) are a popular approach to sample clean-up, no IAC is commercially available for STC, but a commercially available IAC for AF shows cross reactivity to STC. We here developed a new method for analyzing STC in grains using such an IAC and liquid chromatography mass spectrometry (LCMS), and validated this method using six different grains. The STC limit of detection (signal-to-noise ratio, S/N = 3) was 2.5 pg (1.0 μg/kg in the product), and the calibration curve was linear in the range of 7.5-375 pg (3.0-150 μg/kg in the product). The within-day recovery of STC from samples spiked with STC at 5.0 and 50 μg/kg was 83.2-102.5% and the RSDr (relative standard deviation of repeatability) of these samples was 1.9-6.5%; the RSDr of STC-pretreated grain samples was 3.1-14.0%. Average recovery of STC from samples spiked with STC in the range of 5.0-100 μg/kg STC was 83.2-102.5%, with an RSDr of 0.24-6.5%; the RSDr of STC-pretreated grain samples was 2.4-14.0%. In an intermediate precision study, the average STC recovery from STC-spiked samples by three analysts was 95.2-107.5%, with RSDRi (intermediate precision) of 4.0-7.1%; the RSDRi of the STC-pretreated samples was 4.8-10.4%. Thus, the proposed method was effective for STC analysis in grains, and holds potential for a novel application of a commercial IAC, intended for AFs, in STC analysis.
Collapse
Affiliation(s)
- R Sasaki
- Faculty of Agriculture, Shinshu University, 8304 Minami-minowa-Mura, Kamiina, Nagano, 399-4598, Japan
| | | | | | | | | |
Collapse
|