1
|
Mahmoud YAG, Elkaliny NE, Darwish OA, Ashraf Y, Ebrahim RA, Das SP, Yahya G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res 2025:10.1007/s12550-025-00582-5. [PMID: 39891869 DOI: 10.1007/s12550-025-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
Collapse
Affiliation(s)
- Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar A Darwish
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Ain Shams, 11772, Egypt
| | - Rumaisa Ali Ebrahim
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Shankar Prasad Das
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt.
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
Shahryari B, Khani R, Feizy J. A Cu/β-cyclodextrin/reduced graphene oxide nanocomposite for efficient and multi-aflatoxin detection in rice, ginger and bean samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:339-348. [PMID: 39630059 DOI: 10.1039/d4ay01846j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aflatoxins (AFs) are some of the most important mycotoxins or fungal toxins that cause contamination of food products and are considered a threat to human and animal health. An efficient Cu/β-cyclodextrin/reduced graphene oxide nanocomposite (Cu/β-CD/rGO) has been prepared and applied as a new solid-phase extraction adsorbent for the separation and preconcentration of four AFs (B1, B2, G1, and G2) using high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The successful synthesis of the prepared nanocomposite was confirmed using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The impacts of pH, amount of adsorbent, sample volume, desorption solvent volume, and salt concentration on the recovery of AFs were precisely investigated and optimized by central composite design (CCD). Under the optimal conditions, the introduced method demonstrated good linearity in the range of 0.4-5.4, 0.08-1.08, 0.4-5.4, and 0.08-1.08 ng g-1 for AFs B1, B2, G1 and G2, respectively. The limits of detection and quantification for the four AFs were obtained in the range of 0.06-0.53 and 0.20-1.62 ng g-1, respectively. The accuracy of the method was evaluated using recovery measurements in spiked real samples such as rice, bean, and ginger samples, and satisfactory recoveries were obtained in the range of 83.5-109.0% with good precision (RSDs between 2.4 and 8.6%). The results of this research revealed that our developed method is sensitive, highly effective, and convenient to perform for the trace analysis of AFs in different real samples.
Collapse
Affiliation(s)
- Behnaz Shahryari
- Department of Chemistry, Faculity of Science, University of Birjand, Birjand 97179-414, Iran.
| | - Rouhollah Khani
- Department of Chemistry, Faculity of Science, University of Birjand, Birjand 97179-414, Iran.
| | - Javad Feizy
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
3
|
Subagia R, Schweiger W, Kunz-Vekiru E, Wolfsberger D, Schatzmayr G, Ribitsch D, Guebitz GM. Detoxification of aflatoxin B1 by a Bacillus subtilis spore coat protein through formation of the main metabolites AFQ1 and epi-AFQ1. Front Microbiol 2024; 15:1406707. [PMID: 39430102 PMCID: PMC11486672 DOI: 10.3389/fmicb.2024.1406707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
A variety of important agricultural crops host fungi from the Aspergillus genus can produce cancerogenic secondary metabolites such as aflatoxins. Consequently, novel strategies for detoxification and their removal from food and feed chains are required. Here, detoxification of Aflatoxin B1 (AFB1) by the Bacillus subtilis multi-copper oxidase CotA (BsCotA) was investigated. This laccase was recombinantly produced in E. coli while codon optimization led to duplication of the amount of active protein obtained. CuCl2 was added to the cultivation medium leading to a 25-fold increase of V max corresponding to improved incorporation of Cu2+ into the enzyme protein which is essential for the catalytic reaction. To avoid potential cytotoxicity of Cu2+, cultivation was performed at microaerobic conditions indeed leading to 100x more functional protein when compared to standard aerobic conditions. This was indicated by an increase of V max from 0.30 ± 0.02 to 33.56 ± 2.02 U/mg. Degradation kinetics of AFB1 using HPLC with fluorescence detection (HPLC-FLD) analysis indicated a theoretical substrate saturation above solubility in water. At a relatively high concentration of 500 μg/L, AFB1 was decomposed at 10.75 μg/Lh (0.17 nmol*min-1*mg-1) at a dosage of 0.2 μM BsCotA. AFQ1 and epi-AFQ1 were identified as the initial oxidation products according to mass spectrometry (i.e., HPLC-MS, HPLC-QTOF). None of these molecules were substrates for laccase but both decomposed in buffer. However, decomposition does not seem to be due to hydration of the vinyl ether in the terminal furan ring. Genotoxicity of the formed AFB1 was assessed in several dilutions based on the de-repression of the bacterial SOS response to DNA damage indicating about 80-times reduction in toxicity when compared to AFQ1. The results of this study indicate that BsCotA has high potential for the biological detoxification of aflatoxin B1.
Collapse
Affiliation(s)
- Raditya Subagia
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Schweiger
- dsm-firmenich, Animal Nutrition and Health R&D Center Tulln, Tulln, Austria
| | | | | | - Gerd Schatzmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Ribitsch
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Zuo TT, Liu J, Zan K, Liu LN, Wang Q, Wang Z, Xu WY, Liu YX, Guo YS, Kang S, Jin HY, Wei F, Ma SC. Bioaccessibility and bioavailability of exogenous and endogenous toxic substances in traditional Chinese medicine and their significance in risk assessment. Pharmacol Res 2024; 208:107388. [PMID: 39243915 DOI: 10.1016/j.phrs.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Scientific risk assessment of exogenous and endogenous toxic substances in traditional Chinese medicine (TCM) is of great significance. The present review comprises a comprehensive summary of progress in the health risk assessment of harmful exogenous substances in TCMs. Such substances include heavy metals, pesticide residues, biotoxins, and endogenous toxic components involving pyrrolizidine alkaloids. The review also discusses the strengths and weaknesses of various bioaccessibility and bioavailability models, and their applications in risk assessment. Future avenues of risk assessment research are highlighted, including further exploration of risk assessment parameters, innovation of bioaccessibility and bioavailability techniques, enhancement of probabilistic risk assessment combined with bioavailability, improvement of cumulative risk assessment strategies, and formulation of strategies for reducing relative bioavailability (RBA) values in TCMs. Such efforts represent an attempt to develop a risk assessment system that is capable of evaluating the exogenous and endogenous toxic substances in TCMs to ensure its safe use in clinics, and to promote the sustainable development of the TCM industry.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Ke Zan
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Li-Na Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Qi Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Wei-Yi Xu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Xi Liu
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Yuan-Sheng Guo
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuai Kang
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; National Key Laboratory of Medicine Regulatory Science, China.
| | - Shuang-Cheng Ma
- Chinese Pharmacopeia Commission, Beijing 100061, China; National Key Laboratory of Medicine Regulatory Science, China.
| |
Collapse
|
5
|
Begum K, Hasan N, Shammi M. Selective biotic stressors' action on seed germination: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112156. [PMID: 38866107 DOI: 10.1016/j.plantsci.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In the realm of plant biology and agriculture, seed germination serves as a fundamental process with far-reaching implications for crop production and environmental health. This comprehensive review seeks to unravel the intricate web of interactions between some biotic stressors and seed germination, addressing the pertinent issue of how these stressors influence seed germination. Different chemicals produced by interacting plants (different parts), fungi, bacteria, or insects can either promote or inhibit seed germination. Releasing chemicals that modulate signaling pathways and cellular processes significantly disrupt essential cellular functions. This disruption leads to diverse germination outcomes, introducing additional layers of complexity to this regulatory landscape. The chemicals perturb enzyme activity and membrane integrity, imposing unique challenges on the germination process. Understanding the mechanisms- how allelochemicals, mycotoxins, or bacterial toxins affect seed germination or the modes of action holds promise for more sustainable agricultural practices, enhanced pest control, and improved environmental outcomes. In sum, this review contributes to a fundamental exposition of the pivotal role of biotic stressors in shaping the germination of seeds.
Collapse
Affiliation(s)
- Kohinoor Begum
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nazmul Hasan
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Fruit Science Laboratory, Saga University, Saga 840-8502, Japan.
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
6
|
Ismail AM, Raza MH, Zahra N, Ahmad R, Sajjad Y, Khan SA. Aflatoxins in Wheat Grains: Detection and Detoxification through Chemical, Physical, and Biological Means. Life (Basel) 2024; 14:535. [PMID: 38672805 PMCID: PMC11050897 DOI: 10.3390/life14040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Wheat (Triticum aestivum L.) is an essential food crop in terms of consumption as well as production. Aflatoxin exposure has a widespread public health impact in economically developing nations, so there is a need to establish preventive techniques for these high-risk populations. Pre-harvest and post-harvest practices are the two strategies used to control aflatoxin contamination, which include the use of genetically modified crops that show resistance against Aspergillus infection, the use of pesticides, changing the planting and harvesting time of crops, and physical, chemical, and biological methods. In this research, aflatoxin detection and quantification were performed in different wheat varieties to determine quantitative differences in comparison to the European Commission's limit of 4 ppb aflatoxins in wheat. TLC for qualitative and the ELISA kit method for quantitative analysis of aflatoxins were used. Out of 56 samples, 35 were found contaminated with aflatoxins, while the remaining 21 samples did not show any presence of aflatoxins. Out of the 35 contaminated samples, 20 samples showed aflatoxin contamination within the permissible limit, while the remaining 15 samples showed aflatoxin concentration beyond the permissible level, ranging from 0.49 to 20.56 ppb. After quantification, the nine highly contaminated wheat samples were detoxified using physical, chemical, and biological methods. The efficiency of these methods was assessed, and they showed a significant reduction in aflatoxins of 53-72%, 79-88%, and 80-88%, respectively. In conclusion, the difference in aflatoxin concentration in different wheat varieties could be due to genetic variations. Furthermore, biological treatment could be the method of choice for detoxification of aflatoxins in wheat as it greatly reduced the aflatoxin concentration with no harmful effect on the quality of the grains.
Collapse
Affiliation(s)
- Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Muhammad Hassan Raza
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Naseem Zahra
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| |
Collapse
|
7
|
Liu H, He Y, Gao X, Li T, Qiao B, Tang L, Lan J, Su Q, Ruan Z, Tang Z, Hu L. Curcumin alleviates AFB1-induced nephrotoxicity in ducks: regulating mitochondrial oxidative stress, ferritinophagy, and ferroptosis. Mycotoxin Res 2023; 39:437-451. [PMID: 37782431 DOI: 10.1007/s12550-023-00504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Aflatoxin B1 (AFB1), an extremely toxic mycotoxin that extensively contaminates feed and food worldwide, poses a major hazard to poultry and human health. Curcumin, a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Nevertheless, effects of curcumin on the kidneys of ducks exposed to AFB1 remain unclear. Additionally, the underlying mechanism between AFB1 and ferroptosis (based on excessive lipid peroxidation) has not been sufficiently elucidated. This study aimed to investigate the protective effects and potential mechanisms of curcumin against AFB1-induced nephrotoxicity in ducklings. The results indicated that curcumin alleviated AFB1-induced growth retardation and renal distorted structure in ducklings. Concurrently, curcumin inhibited AFB1-induced mitochondrial-mediated oxidative stress by reducing the expression levels of oxidative damage markers malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG) and improved the expression of mitochondria-related antioxidant enzymes and the Nrf2 pathway. Notably, curcumin attenuated iron accumulation in the kidney, inhibited ferritinophagy via the NCOA4 pathway, and balanced iron homeostasis, thereby alleviating AFB1-induced ferroptosis in the kidney. Collectively, our results suggest that curcumin alleviates AFB1-induced nephrotoxicity in ducks by inhibiting mitochondrial-mediated oxidative stress, ferritinophagy, and ferroptosis and provide new evidence for the mechanism of AFB1-induced nephrotoxicity in ducklings treated with curcumin.
Collapse
Affiliation(s)
- Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Xinglin Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Abd El-Hack ME, Kamal M, Altaie HAA, Youssef IM, Algarni EH, Almohmadi NH, Abukhalil MH, Khafaga AF, Alqhtani AH, Swelum AA. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon 2023; 234:107309. [PMID: 37802220 DOI: 10.1016/j.toxicon.2023.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
A facultative parasite called Aspergillus flavus contaminates several important food crops before and after harvest. In addition, the pathogen that causes aspergillosis infections in humans and animals is opportunistic. Aflatoxin, a secondary metabolite produced by Aspergillus flavus, is also carcinogenic and mutagenic, endangering human and animal health and affecting global food security. Peppermint essential oils and plant-derived natural products have recently shown promise in combating A. flavus infestations and aflatoxin contamination. This review discusses the antifungal and anti-aflatoxigenic properties of peppermint essential oils. It then discusses how peppermint essential oils affect the growth of A. flavus and the biosynthesis of aflatoxins. Several cause physical, chemical, or biochemical changes to the cell wall, cell membrane, mitochondria, and associated metabolic enzymes and genes. Finally, the prospects for using peppermint essential oils and natural plant-derived chemicals to develop novel antifungal agents and protect foods are highlighted. In addition to reducing the risk of aspergillosis infection, this review highlights the significant potential of plant-derived natural products and peppermint essential oils to protect food and feed from aflatoxin contamination and A. flavus infestation.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Hayman A A Altaie
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-kitab University, Kirkuk 36001, Iraq
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Eman H Algarni
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, 18 Taif 21944, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71111, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J Fungi (Basel) 2023; 9:766. [PMID: 37504754 PMCID: PMC10381279 DOI: 10.3390/jof9070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Five Aspergillus sections have members that are established agricultural pests and producers of different metabolites, threatening global food safety. Most of these pathogenic Aspergillus species have been isolated from almost all major biomes. The soil remains the primary habitat for most of these cryptic fungi. This review explored some of the ecological attributes that have contributed immensely to the success of the pathogenicity of some members of the genus Aspergillus over time. Hence, the virulence factors of the genus Aspergillus, their ecology and others were reviewed. Furthermore, some biological control techniques were recommended. Pathogenic effects of Aspergillus species are entirely accidental; therefore, the virulence evolution prediction model in such species becomes a challenge, unlike their obligate parasite counterparts. In all, differences in virulence among organisms involved both conserved and species-specific genetic factors. If the impacts of climate change continue, new cryptic Aspergillus species will emerge and mycotoxin contamination risks will increase in all ecosystems, as these species can metabolically adjust to nutritional and biophysical challenges. As most of their gene clusters are silent, fungi continue to be a source of underexplored bioactive compounds. The World Soil Charter recognizes the relevance of soil biodiversity in supporting healthy soil functions. The question of how a balance may be struck between supporting healthy soil biodiversity and the control of toxic fungi species in the field to ensure food security is therefore pertinent. Numerous advanced strategies and biocontrol methods so far remain the most environmentally sustainable solution to the control of toxigenic fungi in the field.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
10
|
Yang X, Li X, Gao Y, Wang J, Zheng N. Integrated Metabolomics and Lipidomics Analysis Reveals Lipid Metabolic Disorder in NCM460 Cells Caused by Aflatoxin B1 and Aflatoxin M1 Alone and in Combination. Toxins (Basel) 2023; 15:toxins15040255. [PMID: 37104193 PMCID: PMC10146203 DOI: 10.3390/toxins15040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) are universally found as environmental pollutants. AFB1 and AFM1 are group 1 human carcinogens. Previous sufficient toxicological data show that they pose a health risk. The intestine is vital for resistance to foreign pollutants. The enterotoxic mechanisms of AFB1 and AFM1 have not been clarified at the metabolism levels. In the present study, cytotoxicity evaluations of AFB1 and AFM1 were conducted in NCM 460 cells by obtaining their half-maximal inhibitory concentration (IC50). The toxic effects of 2.5 μM AFB1 and AFM1 were determined by comprehensive metabolomics and lipidomics analyses on NCM460 cells. A combination of AFB1 and AFM1 induced more extensive metabolic disturbances in NCM460 cells than either aflatoxin alone. AFB1 exerted a greater effect in the combination group. Metabolomics pathway analysis showed that glycerophospholipid metabolism, fatty acid degradation, and propanoate metabolism were dominant pathways that were interfered with by AFB1, AFM1, and AFB1+AFM1. Those results suggest that attention should be paid to lipid metabolism after AFB1 and AFM1 exposure. Further, lipidomics was used to explore the fluctuation of AFB1 and AFM1 in lipid metabolism. The 34 specific lipids that were differentially induced by AFB1 were mainly attributed to 14 species, of which cardiolipin (CL) and triacylglycerol (TAG) accounted for 41%. AFM1 mainly affected CL and phosphatidylglycerol, approximately 70% based on 11 specific lipids, while 30 specific lipids were found in AFB1+AFM1, mainly reflected in TAG up to 77%. This research found for the first time that the lipid metabolism disorder caused by AFB1 and AFM1 was one of the main causes contributing to enterotoxicity, which could provide new insights into the toxic mechanisms of AFB1 and AFM1 in animals and humans.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Li
- Research and Development Institute, Heilongjiang Feihe Dairy Co., Ltd., Qiqihar 161000, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Jaster-Keller J, Müller MEH, El-Khatib AH, Lorenz N, Bahlmann A, Mülow-Stollin U, Bunzel M, Scheibenzuber S, Rychlik M, von der Waydbrink G, Weigel S. Root uptake and metabolization of Alternaria toxins by winter wheat plants using a hydroponic system. Mycotoxin Res 2023; 39:109-126. [PMID: 36929507 PMCID: PMC10181980 DOI: 10.1007/s12550-023-00477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.
Collapse
Affiliation(s)
- Julia Jaster-Keller
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Marina E H Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Ahmed H El-Khatib
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany.
| | - Nicole Lorenz
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Arnold Bahlmann
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| | - Ulrike Mülow-Stollin
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
- Current address: German Federal Office of Consumer Protection and Food Safety, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), South Campus, Adenauerring 20 A, Karlsruhe, Germany
| | - Sophie Scheibenzuber
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, Technical University of Munich (TUM), Maximus-von-Imhof Forum 2, 85354, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Department of Life Science Engineering, Technical University of Munich (TUM), Maximus-von-Imhof Forum 2, 85354, Freising, Germany
| | - Grit von der Waydbrink
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Stefan Weigel
- Department for Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max‑Dohrn‑Str. 8‑10, 10589, Berlin, Germany
| |
Collapse
|
12
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Yadavalli R, Valluru P, Raj R, Reddy CN, Mishra B. Biological detoxification of mycotoxins: Emphasizing the role of algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Probiotic-Based Optimization of Pistachio Paste Production and Detoxification of Aflatoxin B1 Using Bifidobacterium lactis. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2504482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pistachio paste is very popular for breakfast or supper thanks to its desirable taste, flavor, and texture. One of the hazards that are directly related to agricultural practices, processing, storage, and transportation of pistachios and the byproducts is aflatoxin, which can cause irreversible effects on the consumer. Probiotics are one of the most effective and safe methods to reduce aflatoxins. The variables under study were temperature and time, aflatoxin concentration, and probiotic content. In total, 30 treatments were determined through the rotatable central composite design. This is the first and most comprehensive study to optimize the production of probiotic pistachio paste and investigate the detoxification effects of aflatoxin B1 using Bifidobacterium lactis with six treatments and three replications in the pistachio paste matrix. In simple terms, it is possible to remove a higher percentage of toxins by increasing the number of microorganisms and decreasing the toxin level. The highest aflatoxin B1 reduction was observed in pistachio paste with aflatoxin B1 contamination of (19.7039 ng/g), which was spiked with Bifidobacterium lactis (109 CFU/g) and then stored at 25°C for 26.1853 days (aflatoxin B1: 8.00007 ng/g = 59.4% reduction), which is consistent with the permissible limits of the Iran National Standards Organization and the European Commission Regulation. The results showed a significant reduction in the aflatoxin B1 level in pistachio paste. The probiotics reduced aflatoxin B1 contamination to a permissible level. This is an important, safe, and effective solution, and unlike other methods, it increases the nutritional value of the product.
Collapse
|
15
|
Li M, Yao B, Meng X. Inhibitory effect and possible mechanism of phenyllactic acid on Aspergillus flavus spore germination. J Basic Microbiol 2022; 62:1457-1466. [PMID: 35925551 DOI: 10.1002/jobm.202200274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
Abstract
Phenyllactic acid (PLA) has gained a lot of attention due to its broad antimicrobial activity, but the mechanism of its antifungal action has been barely reported until now. Herein, the inhibitory activity of PLA against Aspergillus flavus spore germination and its mechanism were preliminarily investigated. Results indicated that PLA had a strong antifungal activity against A. flavus with the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of 6 and 12 mg/ml, respectively. As observed by scanning electron microscopy (SEM), the A. flavus spores displayed wrinkled and shrunken appearance after treatment with PLA. In addition, the permeability and integrity of A. flavus cell membrane were changed obviously after PLA treatment as indicated by the propidium iodide (PI) staining results, which was further confirmed by a rise in electric conductivity and increased leakage of intracellular protein and nucleic acid. Furthermore, reduced activities of mitochondrial ATPase and dehydrogenases caused by PLA were also observed in A. flavus spores, with a result of remarkable decrease in ATP synthesis. Therefore, it could be concluded that PLA was effective in inhibiting spore germination of A. flavus mainly by disrupting cell membrane and interfering with mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Minghua Li
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu, China
| | - Binbin Yao
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu, China
| | - Xiumei Meng
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu, China
| |
Collapse
|
16
|
Mycotoxins in livestock feed in China - Current status and future challenges. Toxicon 2022; 214:112-120. [DOI: 10.1016/j.toxicon.2022.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022]
|
17
|
Liu D, Jia F, Wei Y, Li Y, Meng S, You T. Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to
DNA
duplex for the detection of aflatoxin
B1. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Fan Jia
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Ya Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
18
|
Juraschek LM, Kappenberg A, Amelung W. Mycotoxins in soil and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152425. [PMID: 34952071 DOI: 10.1016/j.scitotenv.2021.152425] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi that have harmful effects on animals and humans. Worldwide more than 300 different mycotoxins are already known, frequently with concentrations in harvest products exceeding acceptable limits. Nevertheless, although these compounds have extensively been studied in food and feed, only little is known about their occurrence and fate in soil and agro-environmental matrices, such as manure, sewage sludge, drainage water and sediments. Therefore, the aim of this review was to (i) resume available methods for quantifying mycotoxins in soil, (ii) describe the occurrence and quantities of mycotoxins in soil and related agro-environmental matrices, and (iii) discuss the environmental fate of these target compounds with specific focus on their leaching potential into groundwater. The safest and most reliable method for mycotoxin quantification relies on mass spectrometry, while the extraction method and solvent composition differ depending on the compound under investigation. Mycotoxin levels detected in soils to date were in the μg range, reaching maximum amounts of 72.1 μg kg-1 for zearalenone, 32.1 μg kg-1 for deoxynivalenol, 23.7 μg kg-1 for ochratoxin A, 6.7 μg kg-1 for nivalenol, and 5.5 μg kg-1 for aflatoxin. Different compartments in the agroecosystem (cereals, corn, rice, water, manure, sewage sludge) each contained at least one mycotoxin. Mycotoxin retention in soils is controlled by texture, with significant adsorption of the compounds to clays but leaching potentials in sandy soils. We did not find any reports detecting mycotoxins in sediments, although there are increasing reports of mycotoxins in freshwater samples. Overall, it appears that soils and sediments are still underrepresented in research on potential environmental contamination with mycotoxins.
Collapse
Affiliation(s)
- Lena Marie Juraschek
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Arne Kappenberg
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Zhang W, Lv Y, Yang H, Wei S, Zhang S, Li N, Hu Y. Sub3 Inhibits Mycelia Growth and Aflatoxin Production of Aspergillus Flavus. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Fouché T, Claassens S, Maboeta MS. Ecotoxicological Effects of Aflatoxins on Earthworms under Different Temperature and Moisture Conditions. Toxins (Basel) 2022; 14:toxins14020075. [PMID: 35202103 PMCID: PMC8878706 DOI: 10.3390/toxins14020075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Aflatoxin contamination remains one of the most important threats to food safety and human health. Aflatoxins are mainly found in soil, decaying plant material and food storage systems and are particularly abundant during drought stress. Regulations suggest the disposal of aflatoxin-contaminated crops by incorporation into the soil for natural degradation. However, the fate and consequences of aflatoxin in soil and on soil organisms providing essential ecological services remain unclear and could potentially pose a risk to soil health and productivity. The protection of soil biodiversity and ecosystem services are essential for the success of the declared United Nations Decade on Ecosystem Restoration. The focus of this study was to investigate the toxicological consequences of aflatoxins to earthworms’ survival, growth, reproduction and genotoxicity under different temperature and moisture conditions. Results indicated an insignificant effect of aflatoxin concentrations between 10 and 100 µg/kg on the survival, growth and reproduction but indicated a concentration-dependent increase in DNA damage at standard testing conditions. However, the interaction of the toxin with different environmental conditions, particularly low moisture, resulted in significantly reduced reproduction rates and increased DNA damage in earthworms.
Collapse
Affiliation(s)
- Tanya Fouché
- Department of Environmental Science, University of South Africa, Private Bag X6, Florida 1710, South Africa
- Correspondence: ; Tel.: +27-11-6709711
| | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (S.C.); (M.S.M.)
| | - Mark Steve Maboeta
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (S.C.); (M.S.M.)
| |
Collapse
|
21
|
Sahar N, Arif S, Iqbal S, Riaz S, Fatima T, Ara J, Banks J. Effects of drying surfaces and physical attributes on the development of Aflatoxins (AFs) in red chilies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Najmus Sahar
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Saqib Arif
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Sajid Iqbal
- Jinnah Government Degree College Karachi Pakistan
| | - Sundas Riaz
- Pakistan Agriculture Research Council Food Quality & Safety Research Institute Southern‐zone Agricultural Research Centre Karachi Pakistan
| | - Tehseen Fatima
- Dow College of Biotechnology Dow University of Health Sciences Karachi Pakistan
| | - Jahn Ara
- Department of Food Science & Technology University of Karachi Karachi Pakistan
| | - John Banks
- Faculty of Science Liverpool John Moores University Liverpool UK
| |
Collapse
|
22
|
Albert J, More CA, Dahlke NRP, Steinmetz Z, Schaumann GE, Muñoz K. Validation of a Simple and Reliable Method for the Determination of Aflatoxins in Soil and Food Matrices. ACS OMEGA 2021; 6:18684-18693. [PMID: 34337207 PMCID: PMC8319938 DOI: 10.1021/acsomega.1c01451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Aflatoxins (AFs) are toxic fungal secondary metabolites that are commonly detected in food commodities. Currently, there is a lack of generic methods capable of determining AFs both at postharvest stages in agricultural products and preharvest stages, namely, the agricultural soil. Here, we present a simple and reliable method for quantitative analysis of AFs in soil and food matrices at environmentally relevant concentrations for the first time, using the same extraction procedure and chromatography, either by HPLC-FLD or LC-MS. AFs were extracted from matrices by ultrasonication using an acetonitrile/water mixture (84:16, v + v) without extensive and time-consuming cleanup procedures. Food extracts were defatted with n-hexane. Matrix effects in terms of signal suppression/enhancement (SSE) for HPLC-FLD were within ±20% for all matrices tested. For LC-MS, the SSE values were mostly within ±20% for soil matrices but outside ±20% for all food matrices. The sensitivity of the method allowed quantitative analysis even at trace levels with quantification limits (LOQs) between 0.04 and 0.23 μg kg-1 for HPLC-FLD and 0.06-0.23 μg kg-1 for LC-MS. The recoveries ranged from 64 to 92, 74 to 101, and 78 to 103% for fortification levels of 0.5, 5, and 20 μg kg-1, respectively, with repeatability values of 2-18%. The validation results are in accordance with the quality criteria and limits for mycotoxins set by the European Commission, thus confirming a satisfactory performance of the analytical method. Although reliable analysis is possible with both instruments, the HPLC-FLD method may be more suitable for routine analysis because it does not require consideration of the matrix.
Collapse
Affiliation(s)
- Julius Albert
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Camilla A. More
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Niklaus R. P. Dahlke
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Zacharias Steinmetz
- iES
Landau, Institute for Environmental Sciences, Group of Environmental
and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Gabriele E. Schaumann
- iES
Landau, Institute for Environmental Sciences, Group of Environmental
and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Katherine Muñoz
- iES
Landau, Institute for Environmental Sciences, Group of Organic and
Ecological Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| |
Collapse
|
23
|
Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins (Basel) 2021; 13:399. [PMID: 34205163 PMCID: PMC8227755 DOI: 10.3390/toxins13060399] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults died by hitherto unknown turkey "X" disease in England. The disease was associated with Brazilian groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin-aflatoxin. From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total of 20 aflatoxins have been described, with B1, B2, G1, and G2 aflatoxins being the most significant. Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic, immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health, aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins in terms of historical development, the principal milestones of aflatoxin research, and recent data on their toxicity and different ways of mitigation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
24
|
Yang P, Xiao W, Lu S, Jiang S, Zheng Z, Zhang D, Zhang M, Jiang S, Jiang S. Recombinant Expression of Trametes versicolor Aflatoxin B 1-Degrading Enzyme (TV-AFB 1D) in Engineering Pichia pastoris GS115 and Application in AFB 1 Degradation in AFB 1-Contaminated Peanuts. Toxins (Basel) 2021; 13:toxins13050349. [PMID: 34068167 PMCID: PMC8153001 DOI: 10.3390/toxins13050349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
- Correspondence:
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Suwei Jiang
- School of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei 230601, China;
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Min Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuying Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| |
Collapse
|
25
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
26
|
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins (Basel) 2021; 13:toxins13010046. [PMID: 33435382 PMCID: PMC7827145 DOI: 10.3390/toxins13010046] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.
Collapse
Affiliation(s)
- Yun Guan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (M.L.); (W.W.); (K.K.)
| |
Collapse
|