1
|
Awere-Duodu A, Donkor ES. Rotavirus in Water Environments: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241276667. [PMID: 39439598 PMCID: PMC11494518 DOI: 10.1177/11786302241276667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 10/25/2024]
Abstract
Background Despite the adoption of rotavirus vaccines, sporadic outbreaks of the virus have been reported in many parts of the world. These outbreaks are facilitated by several factors including the ease of transmission of rotavirus through water environments. This systematic review aimed to determine the global prevalence of rotavirus in water environments. Methodology Comprehensive Boolean searches were conducted in PubMed, SCOPUS, and Web of Science. A total of 75 eligible studies were included in the study, from which data was extracted for both systematic review and meta-analysis. Extracted prevalence data was grouped according to six water categories: drinking water, untreated sewage, treated sewage, surface water, groundwater, and others. A single-group prevalence meta-analysis was conducted in RStudio version 4.3.3 subjecting the data to the random-effects model. Results The included studies were conducted in 32 countries that span 5 continents: Africa, Asia, Europe, North America, and South America. The pooled prevalence of rotavirus in water environments was 40.86%. Among the individual water environments, untreated sewage had the highest prevalence (68.27%), followed by treated sewage (53.07%), surface water (33.40%), groundwater (25.64%) and drinking water (9.46%). Continental stratification of the prevalence data was as follows: Africa (51.75%), Asia (32.48%), Europe (55.90%), North America (41.80%), and South America (28.51%). Conclusion There is a high prevalence of rotavirus in water environments, especially in untreated sewage, and in Europe. Further research is needed to find more efficient methods that can effectively eliminate rotavirus to insignificant levels in water environments.
Collapse
Affiliation(s)
- Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
2
|
Miyani B, Li Y, Guzman HP, Briceno RK, Vieyra S, Hinojosa R, Xagoraraki I. Bioinformatics-based screening tool identifies a wide variety of human and zoonotic viruses in Trujillo-Peru wastewater. One Health 2024; 18:100756. [PMID: 38798735 PMCID: PMC11127556 DOI: 10.1016/j.onehlt.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Peru was one of the most affected countries during the COVID-19 pandemic. Moreover, multiple other viral diseases (enteric, respiratory, bloodborne, and vector-borne) are endemic and rising. According to Peru's Ministry of Health, various health facilities in the country were reallocated for the COVID-19 pandemic, thereby leading to reduced action to curb other diseases. Many viral diseases in the area are under-reported and not recognized. The One Health approach, in addition to clinical testing, incorporates environmental surveillance for detection of infectious disease outbreaks. The purpose of this work is to use a screening tool that is based on molecular methods, high throughput sequencing and bioinformatics analysis of wastewater samples to identify virus-related diseases circulating in Trujillo-Peru. To demonstrate the effectiveness of the tool, we collected nine untreated wastewater samples from the Covicorti wastewater utility in Trujillo-Peru on October 22, 2022. High throughput metagenomic sequencing followed by bioinformatic analysis was used to assess the viral diversity of the samples. Our results revealed the presence of sequences associated with multiple human and zoonotic viruses including Orthopoxvirus, Hepatovirus, Rhadinovirus, Parechovirus, Mamastrovirus, Enterovirus, Varicellovirus, Norovirus, Kobuvirus, Bocaparvovirus, Simplexvirus, Spumavirus, Orthohepevirus, Cardiovirus, Molliscipoxvirus, Salivirus, Parapoxvirus, Gammaretrovirus, Alphavirus, Lymphocryptovirus, Erythroparvovirus, Sapovirus, Cosavirus, Deltaretrovirus, Roseolovirus, Flavivirus, Betacoronavirus, Rubivirus, Lentivirus, Betapolyomavirus, Rotavirus, Hepacivirus, Alphacoronavirus, Mastadenovirus, Cytomegalovirus and Alphapapillomavirus. For confirmation purposes, we tested the samples for the presence of selective viruses belonging to the genera detected above. PCR based molecular methods confirmed the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), monkeypox virus (MPXV), noroviruses GI and GII (NoVGI and NoVGII), and rotavirus A (RoA) in our samples. Furthermore, publicly available clinical data for selected viruses confirm our findings. Wastewater or other environmental media surveillance, combined with bioinformatics methods, has the potential to serve as a systematic screening tool for the identification of human or zoonotic viruses that may cause disease. The results of this method can guide further clinical surveillance efforts and allocation of resources. Incorporation of this bioinformatic-based screening tool by public health officials in Peru and other Latin American countries will help manage endemic and emerging diseases that could save human lives and resources.
Collapse
Affiliation(s)
- Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ruben Kenny Briceno
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Sabrina Vieyra
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Rene Hinojosa
- Institute for Global Health, Michigan State University, East Lansing, MI, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
3
|
Viviana B, Matias S, Daiana M, Rodney C, Matias V. Molecular Characterization of Gastroenteric Viruses in Wastewater from Cities in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:318-330. [PMID: 37872461 DOI: 10.1007/s12560-023-09567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Group A Rotavirus, Human Astrovirus, and Norovirus (RVA, HAstV, and NoV) are recognized as the major causative agents of acute gastroenteritis in children and adults worldwide. The aim of this study was to determine the prevalence and molecular epidemiology of RVA, HAstV, and NoV in wastewater from three cities in Uruguay. Thirty-six samples from Bella Unión, Salto, and Fray Bentos cities were analyzed using quantitative and qualitative PCR. RVA was the most frequently detected virus (50%), followed by HAstV (39%), NoV GII (36%), and NoV GI (25%). RVA strains were characterized as P[8] and G3 based on the VP4 and VP7 genes, respectively. Among NoV-positive samples, genotypes GI.2, GI.3, GI.5, GI.6, GI.7, GII.2, GII.6, and GII.4 were detected, and only one HAstV genotype (MLB1) was found. Our wastewater-based epidemiological approach provides a snapshot of the overall genetic diversity of these viruses in three cities of the Uruguay River basin during 2017-2018. These findings reinforce the importance of this environmental surveillance tool for monitoring epidemiological trends of enteric viruses circulating in the population, which can be used to guide public health intervention.
Collapse
Affiliation(s)
- Bortagaray Viviana
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Salvo Matias
- Department of Water, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Mir Daiana
- Genomic and Bioinformatic Unit, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Colina Rodney
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Victoria Matias
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay.
| |
Collapse
|
4
|
Azevedo LS, Costa FF, Ghani MBA, Viana E, França Y, Medeiros RS, Guiducci R, Morillo SG, Primo D, Lopes RD, Gomes-Gouvêa MS, da Costa AC, Luchs A. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch Virol 2023; 168:176. [PMID: 37306860 DOI: 10.1007/s00705-023-05807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.
Collapse
Affiliation(s)
- Lais Sampaio Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Dieli Primo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratorio de Gastroenterologia e Hepatologia Tropical-LIM07, Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratorio de Parasitologia Médica-LIM46, Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
5
|
Miura T, Kadoya SS, Takino H, Sano D, Akiba M. Temporal variations of human and animal Rotavirus A genotypes in surface water used for drinking water production. Front Microbiol 2022; 13:912147. [PMID: 36016785 PMCID: PMC9395708 DOI: 10.3389/fmicb.2022.912147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Rotavirus is a major cause of gastroenteritis among infants and children. In this study, nested PCR assays were developed to amplify partial regions of the VP7, VP4, and VP6 genes of Rotavirus A (RVA) for amplicon-based Illumina MiSeq sequencing to investigate RVA genotypes in environmental water samples. Eight sets of inner primers were first designed and screened for use in the nested PCR assays, and four sets of them could produce amplicons. Six sets of outer primers were then designed and combined with the four sets of inner primers that worked. The assays were evaluated for sensitivity using raw water samples collected from one drinking water treatment plant between April 2019 and March 2020 (Sample Set 1; N = 12) and seven DWTPs between 2018 and 2020 (Sample Set 2; N = 18). In total, 43 amplicons from Set 1 were sequenced and diverse sequences from human, porcine, bovine, equine, and feline RVA were observed. Human G8, G3, and G2 genotypes were obtained, with G8 predominant (relative abundance, 36–87%) in samples taken during the rotavirus epidemic season between April and June. Porcine G5, G11, and G4, and bovine G10 and G6 genotypes were also detected. VP4 sequence analysis revealed that the human P[8] genotype was present throughout the year, whereas P[4] and P[9] were present only in the epidemic season. The vaccine strains P[5] and P[8] (RotaTeq®) were also detected. Our approach enables the identification of prevalent human and animal RVA genotypes and their host species that potentially caused fecal contamination in water sources.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
- *Correspondence: Takayuki Miura,
| | - Syun-suke Kadoya
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan
- Department of Urban Engineering, The University of Tokyo, Bunkyo, Japan
| | - Hiroyuki Takino
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Tohoku University, Sendai, Japan
| | - Michihiro Akiba
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| |
Collapse
|
6
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|
7
|
Atabakhsh P, Kargar M, Doosti A. Detection and evaluation of rotavirus surveillance methods as viral indicator in the aquatic environments. Braz J Microbiol 2021; 52:811-820. [PMID: 33599964 PMCID: PMC8105488 DOI: 10.1007/s42770-020-00417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Group A rotaviruses (RVAs) have been introduced as the most important causative agents of acute gastroenteritis in the young children. One of every 260 children born globally will die due to rotavirus (RV) before 5 years old. The RV is widely known as a viral indicator for health (fecal contamination) because this pathogen has a high treatment resistance nature, which has been listed as a relevant waterborne pathogen by the World Health Organization (WHO). Therefore, monitoring of environmental is important, and RV is one of the best-known indicators for monitoring. It has been proved that common standards for microbiological water quality do not guarantee the absence of viruses. On the other hand, in order to recover and determine RV quantity within water, standard methods are scarce. Therefore, dependable prediction of RV quantities in water sample is crucial to be able to improve supervision efficiency of the treatment procedure, precise quantitative evaluation of the microbial risks as well as microbiological water safety. Hence, this study aimed to introduce approaches to detecting and controlling RV in environmental waters, and discussed the challenges faced to enable a clear perception on the ubiquity of the RV within different types of water across the world.
Collapse
Affiliation(s)
- Paymaneh Atabakhsh
- Department of Microbiology, Isfahan Water and Wastewater Company, Isfahan, Iran
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Kiulia NM, Gonzalez R, Thompson H, Aw TG, Rose JB. Quantification and Trends of Rotavirus and Enterovirus in Untreated Sewage Using Reverse Transcription Droplet Digital PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:154-169. [PMID: 33591485 DOI: 10.1007/s12560-020-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The quantification and trends in concentrations for naturally occurring rotaviruses (RV) and enteroviruses (EV) in untreated sewage in various wastewater systems have not often been compared. There is now greater interest in monitoring the infections in the community including live vaccine efficacy by evaluating untreated sewage. The goals of this study were to 1) survey the concentrations of naturally occurring RV and EV in untreated sewage using a reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) and 2) investigate the use of a new adsorption elution (bag-mediated filtration system (BMFS) using ViroCap filters) against more traditional polyethylene glycol (PEG) precipitation for virus concentration. Sewage samples were collected from lagoons in Kenya and Michigan (MI), the United States (USA) and from wastewater treatment plants (WWTPs) in the USA. RVs were detected at geometric mean concentrations in various locations, California (CA) 1.31 × 105 genome copies/L (gc/L), Kenya (KE) 2.71 × 104 gc/L and Virginia (VA) 1.48 × 105 gc/L, and EVs geometric means were 3.72 × 106 gc/L (CA), 1.18 × 104 gc/L (Kenya), and 6.18 × 103 gc/L (VA). The mean RV concentrations using BMFS-ViroCap in split samples compared to PEG precipitation methods demonstrated that the levels were only 9% (#s BMFS/PEG) in the Michigan lagoons which was significantly different (p < 0.01). This suggests that RV concentrations in Kenya are around 1.69 × 106 gc/L. Overall, there was no difference in concentrations for the other sampling locations across the methods of virus recovery (i.e., PEG precipitation and HA filters) using one-way ANOVA (F = 1.7, p = 0.2739) or Tukey-Kramer pairwise comparisons (p > 0.05). This study provides useful data on RV and EV concentrations in untreated sewage in Kenya and the USA. It also highlights on the usefulness of the RT-ddPCR for absolute quantification of RV and EV in sewage samples. The BMFS using ViroCap filters while less efficient compared to the more traditional PEG precipitation method was able to recover RVs and EVs in untreated sewage and may be useful in poor resource settings while underestimating viruses by 1 to 1.5 logs.
Collapse
Affiliation(s)
- Nicholas M Kiulia
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
- Enteric Pathogens and Water Research Laboratory, Institute of Primate Research, P.O. Box 24481-00502, Karen, Nairobi, Kenya.
| | - Raul Gonzalez
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Hannah Thompson
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Joan B Rose
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Mousavi-Nasab SD, Sabahi F, Kaghazian H, Paryan M, Mirab Samiee S, Ghaderi M, Zali F, Makvandi M. A Real-Time RT-PCR Assay for Genotyping of Rotavirus. IRANIAN BIOMEDICAL JOURNAL 2020; 24:399-404. [PMID: 32660931 PMCID: PMC7601544 DOI: 10.29252/ibj.24.6.394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Human rotavirus (HRV) is the causative agent of severe gastroenteritis in children and responsible for two million hospitalizations and more than a half-million deaths annually. Sequence characteristics of the gene segments encoding the VP7 and VP4 proteins are used for the genotype classification of rotavirus. A wide variety of molecular methods are available, mainly based on reverse transcription PCR for rapid, specific and sensitive genotyping of rotaviruses. This study describes an alternative real-time PCR assay for genotyping of rotavirus. Methods The samples of stools studied in this research have been collected from patients referred to Children's Medical Centers, Tehran, Iran. Rotavirus detection and genotyping were performed using the RT-PCR and semi-nested RT-PCR, respectively. Samples were then genotyped with a new real-time PCR. Results The real-time PCR was able to genotype all positive samples with a mean Ct of 28.2. Besides, a concordance rate of 100% was detected between real-time PCR and semi-nested RT-PCR. Conclusion In this study, the genotyping of rotavirus with real-time PCR showed that this method can provide several favorable features, including high sensitivity and specificity, and a wide dynamic range for rotavirus genotyping.
Collapse
Affiliation(s)
- Seyed Dawood Mousavi-Nasab
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran.,Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farzaneh Sabahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooman Kaghazian
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Siamak Mirab Samiee
- Reference Health Laboratories Research Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mostafa Ghaderi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Fatemeh Zali
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Manoochehr Makvandi
- Infectious and Tropical Diseases Research Center, Health research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Bortagaray V, Girardi V, Pou S, Lizasoain A, Tort LFL, Spilki FR, Colina R, Victoria M. Detection, Quantification, and Microbial Risk Assessment of Group A Rotavirus in Rivers from Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:89-98. [PMID: 31792742 DOI: 10.1007/s12560-019-09416-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to detect, quantify, and assess the risk of infection and illness for Group A Rotavirus (RVA) in the watersheds of the Santa Lucia and Uruguay rivers in Uruguay. Monthly sampling was carried out for one year in six sites in the watershed of the Santa Lucía River and four in the Uruguay River. All the collection sites are used for recreational activities. Viral concentration was performed with the adsorption-elution method, and detection and quantification of RVA was carried out by TaqMan quantitative PCR (qPCR). Quantitative microbial risk assessment was applied to estimate the daily and annual risk of RVA infection, as well as the daily risk of illness considering direct exposure through recreational activity. RVA was detected in 42% (20/48) of the analyzed samples in the Uruguay River and 40% (29/72) in the Santa Lucía River. The virus was present in all the analyzed points in both watersheds. A pattern of seasonality, characterized by a higher detection frequency of the virus during coldest month of the year, was observed in both basins. The mean concentration for RVA was 1.3 × 105 genomic copies/L. The microbiological risk assessment shows that Santa Lucía watershed presented the highest daily risk of infection (6.41E-01) and illness (3.20E-01) estimated for the point downstream of Florida City; meanwhile for Uruguay River, the highest probabilities of infection (6.82E-01) and illness (3.41E-01) were estimated for the collection site for drinking water intake in Salto city. These results suggest that RVA contamination of these important rivers negatively impact on their microbiological quality since they are used for recreation and drinking water intake, demonstrating that the disposal of waste from cities located in their riverside confers a constant threat of infection for the general population, especially for children.
Collapse
Affiliation(s)
- Viviana Bortagaray
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Viviane Girardi
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - Sonia Pou
- Institute of Research in Health Sciences (INICSA), Faculty of Medical Sciences, CONICET and Biostatistics Unit, School of Nutrition, Faculty of Medical SciencesNational University of Córdoba, Córdoba, Argentina
| | - Andrés Lizasoain
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Luis Fernando López Tort
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Fernando R Spilki
- Laboratório de Saúde Única, Universidade Feevale, Novo Hamburgo, Brazil
| | - Rodney Colina
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Matias Victoria
- Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay.
| |
Collapse
|
11
|
Molecular detection and genotyping of group A rotavirus in two wastewater treatment plants, Iran. Braz J Microbiol 2019; 51:197-203. [PMID: 31407291 DOI: 10.1007/s42770-019-00131-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
In different countries especially developing countries, treatment of urban wastewater might be ineffective removal of pathogens such as group A rotavirus. The objective of this study is to evaluate the efficiency of rotavirus removal in two wastewater treatment plants (WWTPs) in Isfahan, Iran. To meet the study objectives, 96 sewage samples from influent (n = 48) and final effluents (n = 48) were collected by grab sampling. Two different concentration methods included pellet and two-phase used for concentrating sewage samples. The presence of rotavirus antigens in all concentrated sewage samples was screened by enzyme-linked immunosorbent method. To analyze the study samples, real-time PCR technique with SYBR Green I fluorescent dye and nested multiplex PCR for rotavirus genotyping were utilized respectively. Result indicated positive rotavirus percentage in two methods of ELISA and real-time PCR was equal to 61.45% (59 cases) and 44.79% (43 cases). In addition, analyzing seasonal distribution of rotavirus shows different distributions as below: in spring (18.64%), summer (20.33%), autumn (35.60%), and winter (25.42%). Finally, rotaviruses illustrate significantly higher frequency in cold seasons. G10 and G1 types are considered the most, among common genotypes which identified in 11 (25.58%) and 5 (11.62%), out of the 43 positive samples in WWTPs, followed by non-typeable genotypes (13.95%) and mix genotypes (11.62%); and different genotypes including G2, G3, G4, G8, G9, and G12 were equal to 2.33, 9.30, 9.30, 2.33, 7, and 7% in the WWTPs, respectively. Such high prevalence underlines the significance of environmental surveillance. Also, to eliminate potential pathogens especially enteric viruses from sewage, the improvement of treatment systems is essential.
Collapse
|
12
|
Miura T, Gima A, Akiba M. Detection of Norovirus and Rotavirus Present in Suspended and Dissolved Forms in Drinking Water Sources. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:9-19. [PMID: 30560490 DOI: 10.1007/s12560-018-9361-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
We investigated the present forms of genogroup II norovirus and group A rotavirus in surface water used for drinking water production. River water samples (N = 15) collected at a drinking water treatment plant (DWTP) monthly from June 2017 to August 2018 were fractioned by filtration through 10- and 0.45-μm-pore-size membranes, and viruses present in suspended and dissolved forms were quantitatively detected. Norovirus GII was present in > 10-μm- and 0.45-10-μm-suspended and dissolved forms with detection rates of 33%, 60%, and 87%, respectively. Rotavirus A was detected more frequently than norovirus GII in each form (> 10 μm suspended, 73%; 0.45-10 μm suspended, 93%; dissolved, 100%). We also analyzed surface water samples from 21 DWTPs all over Japan in non-epidemic and epidemic seasons of gastroenteritis. Norovirus GII was detected in 48% and 81% of samples with the concentrations of up to 4.1 and 5.3 log10 copies/L in dissolved form in non-epidemic and epidemic seasons, respectively, and GII.4 Sydney 2012 was predominant genotype followed by GII.2. Rotavirus A was detected in 95% and 86% of samples with the maximum concentrations of 5.5 and 6.3 log10 copies/L in dissolved form in respective seasons. Concentration of norovirus GII was similar in 0.45-10-μm suspended and dissolved forms, while there was a significant difference for rotavirus A (P < 0.01, pared t test), indicating that rotavirus A was less associated with suspended solids in the surface water samples compared to norovirus GII. Our observations provide important implications for understanding of viral behavior in environmental waters.
Collapse
Affiliation(s)
- Takayuki Miura
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama, 351-0197, Japan.
| | - Arisa Gima
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama, 351-0197, Japan
| | | |
Collapse
|
13
|
Pereira JG, Soares VM, de Souza FG, Tadielo LE, Dos Santos EAR, Brum MCS, Henzel A, Duval EH, Spilki FR, da Silva WP. Hepatitis A Virus, Hepatitis E Virus, and Rotavirus in Foods of Animal Origin Traded at the Borders of Brazil, Argentina, and Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:365-372. [PMID: 30206760 DOI: 10.1007/s12560-018-9357-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate hepatitis A virus (HAV), hepatitis E (HEV), and rotavirus (RV) in fresh and processed meat traded on the border of Brazil with Argentina and Uruguay. In total, 159 samples of raw and processed foods of animal origin were collected in Paso de los Libres, Argentina (n = 53 raw meat, n = 24 processed meat) and Rivera, Uruguay (n = 55 raw meat, n = 18 processed meat), or were seized by the Brazilian International Agricultural Surveillance System-VIGIAGRO (Brazil-Argentina border) (n = 8 raw meat, n = 1 bush meat). All samples were tested for the presence of HAV, HEV, and RV genomes. HAV genes were detected in 18.23% of samples and RV genes in 23.89%. No HEV-positive samples were detected. HAV was also detected in two of the VIGIAGRO samples. Processed meats from Argentina and Uruguay had a higher rate of HAV and RV than raw meat (P > 0.05). The median HAV in the Argentinian and Uruguayan samples was 6.9 × 104 and 3.5 × 103 copies/g, respectively. The presence of RV viral genes in raw meats from Argentina was significant, and this was not observed in processed meats. The presence of HAV and RV genes in a significant portion of products from Argentina and Uruguay is a potential source of human infection. This also indicates precarious conditions of acquisition, processing, and manipulation, which could be improved by improved regulation of food across borders.
Collapse
Affiliation(s)
- Juliano Gonçalves Pereira
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Botucatu, Rua Prof. Walter Maurício Correa, SN, Botucatu, SP, CEP 18618681, Brazil.
- Universidade Federal de Pelotas, Campus Capão do Leão. Avenida Eliseu Maciel, SN, Capão do Leão, RS, CEP 96010900, Brazil.
| | - Vanessa Mendonça Soares
- Universidade Federal do Pampa, Campus Uruguaiana. BR 472, Km 585, Uruguaiana, RS, CEP 97501970, Brazil
| | - Fernanda Gil de Souza
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Rodovia ERS-239, 2755, Novo Hamburgo, RS, CEP 93525075, Brazil
| | - Leonardo Ereno Tadielo
- Universidade Federal do Pampa, Campus Uruguaiana. BR 472, Km 585, Uruguaiana, RS, CEP 97501970, Brazil
| | | | - Mário Celso Sperotto Brum
- Universidade Federal do Pampa, Campus Uruguaiana. BR 472, Km 585, Uruguaiana, RS, CEP 97501970, Brazil
| | - Andreia Henzel
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Rodovia ERS-239, 2755, Novo Hamburgo, RS, CEP 93525075, Brazil
| | - Eduarda Hallal Duval
- Universidade Federal de Pelotas, Campus Capão do Leão. Avenida Eliseu Maciel, SN, Capão do Leão, RS, CEP 96010900, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Rodovia ERS-239, 2755, Novo Hamburgo, RS, CEP 93525075, Brazil
| | - Wladimir Padilha da Silva
- Universidade Federal de Pelotas, Campus Capão do Leão. Avenida Eliseu Maciel, SN, Capão do Leão, RS, CEP 96010900, Brazil.
| |
Collapse
|
14
|
Lizasoain A, Burlandy FM, Victoria M, Tort LFL, da Silva EE, Colina R. An Environmental Surveillance in Uruguay Reveals the Presence of Highly Divergent Types of Human Enterovirus Species C and a High Frequency of Species A and B Types. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:343-352. [PMID: 29907902 DOI: 10.1007/s12560-018-9351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Information about Human Enterovirus circulation in Uruguay is scarce. The aim of this study was to generate the first description about their circulation in the country through the study of sewage samples collected before and after the switch from Oral Poliovirus Vaccine to Inactivated Poliovirus Vaccine. Viruses were concentrated by an adsorption-elution to a negatively charged membrane, and real-time quantitative PCR and qualitative PCR methods were used to detect, quantify, and characterize enteroviruses. Positive samples were inoculated in RD cells and two passages were performed. Additionally, RD+ samples were subsequently passed onto L20B cells. Human Enteroviruses were detected in 67.6% of the samples, with concentrations between 4.9 and 6.6 Log10 genomic copies per liter. 10% of positive samples replicated in RD cells, of which none in L20B cells. Molecular characterization of Human Enterovirus strains directly detected from sewage sample concentrates allowed the identification of highly divergent members of species C such as Enterovirus C99 and Coxsackievirus A13, as well as the frequent detection of species A and B members (particularly Coxsackievirus A16 and Echovirus 6, respectively). Other detected types were Coxsackievirus A2, A22, B1, B5, Echovirus 5, and 9. The characterization of viruses isolated in cell culture revealed the presence of Echovirus 6 and Coxsackievirus B3. Despite the absence of poliovirus, a wide circulation of different enterovirus types was evidenced in Uruguayan sewage samples, highlighting that the local populations are exposed to different kinds of diseases originated by several human enterovirus.
Collapse
Affiliation(s)
- Andrés Lizasoain
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Fernanda M Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Luis F López Tort
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Edson E da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
15
|
Species A Rotavirus (RVA) Isolated from Sewage in Nigeria, 2014: Close Genetic Relatedness of Partial G, P, and NSP4 Gene Sequences Encoding G1 with Cogent Genes of Other Asian and African Rotaviruses. J Pathog 2018; 2018:8425621. [PMID: 30034883 PMCID: PMC6035835 DOI: 10.1155/2018/8425621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
Rotavirus has been identified as a major cause of gastroenteritis in Nigeria. There is limited information on the intragenotype diversity of Nigerian rotavirus isolates. We therefore investigated the molecular characteristics of some rotavirus gene sequences detected in sewage from Nigeria. Seven sewage samples, out of a total of 68, tested positive for rotavirus RNA (10.3%). Genotype G1P[4] was the most common genotype (5 isolates) and one isolate for genotypes G1P[8] and G3P[6]. Phylogenetic analysis of the partial VP7 gene of 3 G1P[4] isolates analyzed identified them as genotype G1 Lineage 2 along with Chinese strains with 99.1% to 100% amino acid similarity. Amino acid substitutions D-97→E and S-147→D/N were observed within the 7-1a and 7-2 domains of VP7 gene among the study G1P4 isolates in reference to vaccine strain RotaTeq®. Phylogenetic analysis of the G3P[6] study isolate identified it as genotype G3 Lineage 3, forming a monophyletic cluster with 100% bootstrap value with other West African strains G3 isolates. Phylogenetic analysis of GIP[4] VP4 genes identified them as P4 Lineage 5, while 3 NSP4 gene sequences belonged to genotype E1, while 1 belonged to E2. The results from this study represent phylogenetic analysis of partial gene sequences of environmental group A rotavirus (RVA) isolates from Nigeria.
Collapse
|
16
|
Salvo M, Lizasoain A, Castells M, Bortagaray V, Castro S, Colina R, Tort FL, Victoria M. Human Bocavirus: Detection, Quantification and Molecular Characterization in Sewage and Surface Waters in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:193-200. [PMID: 29299861 DOI: 10.1007/s12560-017-9334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Human bocavirus (HBoV) infections are related to respiratory and gastroenteric diseases. The aim of this study was to investigate the presence of HBoV in both sewage and surface waters in Uruguay. Sixty-eight sewage samples from the cities of Salto, Paysandú, Bella Unión, Fray Bentos, Treinta y Tres and Melo and 36 surface water samples from the cities of Salto, Florida and Santa Lucía were studied. HBoV was screened by multiplex qPCR for the detection of the four subtypes, followed by monoplex qPCRs for the independent quantification of each subtype. A qualitative PCR followed by DNA sequencing and phylogenetic analysis was carried out for molecular characterization of HBoV strains. HBoV was present in a high frequency (69%) in sewage and only one positive sample (3%) was found in surface water. Concerning sewage samples, HBoV1 was detected in 11 (23%) out of the 47 positives samples, with a mean concentration of 8.2 × 104 genomic copies/Liter (gc/L), HBoV3 was detected in 35 (74%) of the positive samples with a mean concentration of 4.1 × 106 gc/L and subtypes 2 and/or 4 were detected in 39 (83%) of the positive samples with a mean concentration of 7.8 × 106 gc/L. After the phylogenetic analysis performed by a Bayesian approach, the four HBoV subtypes were confirmed. This is the first study determining a high frequency of HBoV and the presence of the four HBoV subtypes in aquatic matrices in Latin America, mainly in sewage. Although HBoV was scarcely detected in surface water, a waterborne transmission is likely to occur if people enter in contact with polluted surface waters for recreational activities such as fishing or swimming since an elevated frequency of HBoV was detected in raw sewage which is usually directly discharged into surface waters.
Collapse
Affiliation(s)
- Matías Salvo
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Andrés Lizasoain
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Matías Castells
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Viviana Bortagaray
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Sebastián Castro
- Department of Mathematics and Statistics of Litoral, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Rodney Colina
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Fernando Lopez Tort
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay
| | - Matías Victoria
- Department of Biological Sciences, Laboratory of Molecular Virology, CENUR Litoral Norte, Sede Salto, Universidad de la República, Rivera 1350, Salto, Uruguay.
| |
Collapse
|