1
|
Ngo A, Fattakhov N, Toborek M. Sigma-1 receptor signaling: A potential therapeutic approach for ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1430-1440. [PMID: 39246093 PMCID: PMC11571975 DOI: 10.1177/0271678x241281547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Strokes constitute over 50% of all neurological diseases, standing as the foremost cause of physical and mental disability. Currently, there are no widely accepted gold standard treatments for ischemic strokes beyond intravenous thrombolysis and mechanical thrombectomy applied during the acute therapeutic window. Therefore, the need for novel treatments targeting crucial signaling mediators involved in ischemic stroke is of utmost importance. The sigma-1 receptor (S1R), a molecular chaperone located at mitochondria-associated endoplasmic reticulum membranes (MAM), has exhibited neuroprotective effects when modulated by synthetic and endogenous agents across various cerebrovascular diseases. In this review, we describe the emerging therapeutic role of S1R agonists and antagonists in regulating blood-brain barrier (BBB) dysfunction, neuroinflammation, and neurocognitive impairment following ischemic stroke.
Collapse
Affiliation(s)
- Alex Ngo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
2
|
Schreihofer DA, Dalwadi D, Kim S, Metzger D, Oppong-Gyebi A, Das-Earl P, Schetz JA. Treatment of Stroke at a Delayed Timepoint with a Repurposed Drug Targeting Sigma 1 Receptors. Transl Stroke Res 2024; 15:1035-1049. [PMID: 37704905 DOI: 10.1007/s12975-023-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Sigma 1 receptors are intracellular chaperone proteins that have been explored as a subacute treatment to enhance post-stroke recovery. We recently identified the antitussive oxeladin as a selective sigma 1 receptor agonist with the ability to stimulate the release of brain-derived neurotrophic factor from neurons in vitro. In this study, we hypothesized that oral oxeladin citrate would stimulate BDNF secretion and improve stroke outcomes when administered to male rats starting 48 h after transient middle cerebral artery occlusion. Oxeladin did not alter blood clotting and crossed the blood brain barrier within 30 min of oral administration. Rats underwent 90 min of transient middle cerebral artery occlusion. Forty-eight hours later rats began receiving daily oxeladin (135 mg/kg) for 11 days. Oxeladin significantly improved neurological function on days 3, 7, and 14 following MCAO. Infarct size was not altered by a single dose, but the final extent of infarct after 14 days was decreased. However, there was no significant reduction in astrogliosis or microgliosis compared to vehicle-treated control rats. In agreement with in vitro studies, oxeladin increased the amount of mature BDNF in the cerebral cortex 2, 6, and 24 h after single oral dose. However, the increase in BDNF did not result in increases in cellular proliferation in the subventricular zone or dentate gyrus when compared to vehicle-treated controls. These results suggest that oxeladin may reduce the extent of infarct expansion in the subacute phase of stroke, although this action does not appear to involve a reduction in inflammation or increased cell proliferation.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA.
| | | | - Seongcheol Kim
- Department of Cellular and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Daniel Metzger
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| | - Anthony Oppong-Gyebi
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
- Cognizant Technology Solutions, 300 Frank W. Burr Blvd, Teaneck, NJ, 07666, USA
| | - Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - John A Schetz
- Department of Pharmacology and Neuroscience, University of North Texas Helath Science Center, Fort Worth, Texas, 76107, USA
| |
Collapse
|
3
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Li J, Zhang S, Li C, Zhang X, Shan Y, Zhang Z, Bo H, Zhang Y. Endurance exercise-induced histone methylation modification involved in skeletal muscle fiber type transition and mitochondrial biogenesis. Sci Rep 2024; 14:21154. [PMID: 39256490 PMCID: PMC11387812 DOI: 10.1038/s41598-024-72088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Sheng Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Tianjin Hospital, Tianjin, 300299, China
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Department of sport science, Tianjin normal university, Tianjin, 300387, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yuhui Shan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
5
|
Seyedaghamiri F, Geranmayeh MH, Ghadiri T, Ebrahimi-Kalan A, Hosseini L. A new insight into the role of pericytes in ischemic stroke. Acta Neurol Belg 2024; 124:767-774. [PMID: 37805645 DOI: 10.1007/s13760-023-02391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
The functional structure of the blood-brain barrier (BBB) deteriorates after stroke by developing diffuse microvascular and neurovascular dysfunction and loss of white matter integrity. This causes nervous tissue injury and causes sensory and motor disabilities in stroke patients. Improving the integrity of the BBB and neurovascular remodeling after stroke can promote post-stroke injury conditions. Pericytes are contractile cells abundant in the BBB and sandwiched between astrocytes and endothelial cells of the microvessels. Stroke could lead to the degeneration of pericytes in the BBB. However, recent evidence shows that promoting pericytes enhances BBB integrity and neurovascular remodeling. Furthermore, pericytes achieve multipotent properties under hypoxic conditions, allowing them to transdifferentiate into the brain resident cells such as microglia. Microglia regulate immunity and inflammatory response after stroke. The current review studies recent findings in the intervening mechanisms underlying the regulatory effect of pericytes in BBB recovery after stroke.
Collapse
Affiliation(s)
- Fatemehsadat Seyedaghamiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Ghadiri
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Nakahara H, Hiranita T, Shibata O. A Sigma 1 Receptor Agonist Alters Fluidity and Stability of Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6484-6492. [PMID: 38470245 PMCID: PMC11554242 DOI: 10.1021/acs.langmuir.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Interactions between the sigma1 receptor agonist PRE-084 and various lipid monolayers, including dipalmitoylphosphatidylcholine (DPPC), DPP-ethanolamine (DPPE), DPP-glycerol (DPPG), DPP-serine (DPPS), palmitoylsphingomyelin (PSM), and cholesterol (Ch), were investigated to elucidate the effects of PRE-084 on membrane fluidity and stability. Their interactions with sigma1 receptor agonists have potential implications for neuroprotection, antidepressant, analgesic, and cognitive enhancement effects. In this study, we observed that the presence of PRE-084 in the subphase led to increased fluidity in DPPC and DPPE monolayers, whereas decreasing fluidity was observed in DPPG, DPPS, and PSM monolayers. The interaction of PRE-084 with Ch monolayers was found to be distinct from its interaction with other lipids. Fluorescence microscopy images revealed changes in the size and shape of liquid-condensed domains in the presence of PRE-084, supporting the notion of altered membrane fluidity. Our findings provide new insights into the interaction of PRE-084 with lipid monolayers and its potential implications for biological and membrane science.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Osamu Shibata
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
7
|
Milani SZ, Rezabakhsh A, Karimipour M, Salimi L, Mardi N, Narmi MT, Sadeghsoltani F, Valioglu F, Rahbarghazi R. Role of autophagy in angiogenic potential of vascular pericytes. Front Cell Dev Biol 2024; 12:1347857. [PMID: 38380339 PMCID: PMC10877016 DOI: 10.3389/fcell.2024.1347857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The vasculature system is composed of a multiplicity of juxtaposed cells to generate a functional biological barrier between the blood and tissues. On the luminal surface of blood vessels, endothelial cells (ECs) are in close contact with circulating cells while supporting basal lamina and pericytes wrap the abluminal surface. Thus, the reciprocal interaction of pericytes with ECs is a vital element in the physiological activity of the vascular system. Several reports have indicated that the occurrence of pericyte dysfunction under ischemic and degenerative conditions results in varied micro and macro-vascular complications. Emerging evidence points to the fact that autophagy, a conserved self-digestive cell machinery, can regulate the activity of several cells like pericytes in response to various stresses and pathological conditions. Here, we aim to highlight the role of autophagic response in pericyte activity and angiogenesis potential following different pathological conditions.
Collapse
Affiliation(s)
- Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ferzane Valioglu
- Technology Development Zones Management CO., Sakarya University, Sakarya, Türkiye
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Lu W, Huang J, Flores J, Li P, Wang W, Liu S, Zhang JH, Tang J. GW0742 reduces mast cells degranulation and attenuates neurological impairments via PPAR β/δ/CD300a/SHP1 pathway after GMH in neonatal rats. Exp Neurol 2024; 372:114615. [PMID: 37995951 PMCID: PMC10842885 DOI: 10.1016/j.expneurol.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Activation of mast cells plays an important role in brain inflammation. CD300a, an inhibitory receptor located on mast cell surfaces, has been reported to reduce the production of pro-inflammatory cytokines and exert protective effects in inflammation-related diseases. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), a ligand-activated nuclear receptor, activation upregulates the transcription of CD300a. In this study, we aim to investigate the role of PPARβ/δ in the attenuation of germinal matrix hemorrhage (GMH)-induced mast cell activation via CD300a/SHP1 pathway. METHODS GMH model was induced by intraparenchymal injection of bacterial collagenase into the right hemispheric ganglionic eminence in P7 Sprague Dawley rats. GW0742, a PPARβ/δ agonist, was administered intranasally at 1 h post-ictus. CD300a small interfering RNA (siRNA) and PPARβ/δ siRNA were injected intracerebroventricularly 5 days and 2 days before GMH induction. Behavioral tests, Western blot, immunofluorescence, Toluidine Blue staining, and Nissl staining were applied to assess post-GMH evaluation. RESULTS Results demonstrated that endogenous protein levels of PPARβ/δ and CD300a were decreased, whereas chymase, tryptase, IL-17A and transforming growth factor β1 (TGF-β1) were elevated after GMH. GMH induced significant short- and long-term neurobehavioral deficits in rat pups. GW0742 decreased mast cell degranulation, improved neurological outcomes, and attenuated ventriculomegaly after GMH. Additionally, GW0742 increased expression of PPARβ/δ, CD300a and phosphorylation of SHP1, decreased phosphorylation of Syk, chymase, tryptase, IL-17A and TGF-β1 levels. PPARβ/δ siRNA and CD300a siRNA abolished the beneficial effects of GW0742. CONCLUSIONS GW0742 inhibited mast cell-induced inflammation and improved neurobehavior after GMH, which is mediated by PPARβ/δ/CD300a/SHP1 pathway. GW0742 may serve as a potential treatment to reduce brain injury for GMH patients.
Collapse
Affiliation(s)
- Weitian Lu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Juan Huang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Wenna Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shengpeng Liu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
9
|
Wang T, Jia H. The Sigma Receptors in Alzheimer's Disease: New Potential Targets for Diagnosis and Therapy. Int J Mol Sci 2023; 24:12025. [PMID: 37569401 PMCID: PMC10418732 DOI: 10.3390/ijms241512025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Sigma (σ) receptors are a class of unique proteins with two subtypes: the sigma-1 (σ1) receptor which is situated at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), and the sigma-2 (σ2) receptor, located in the ER-resident membrane. Increasing evidence indicates the involvement of both σ1 and σ2 receptors in the pathogenesis of Alzheimer's disease (AD), and thus these receptors represent two potentially effective biomarkers for emerging AD therapies. The availability of optimal radioligands for positron emission tomography (PET) neuroimaging of the σ1 and σ2 receptors in humans will provide tools to monitor AD progression and treatment outcomes. In this review, we first summarize the significance of both receptors in the pathophysiology of AD and highlight AD therapeutic strategies related to the σ1 and σ2 receptors. We then survey the potential PET radioligands, with an emphasis on the requirements of optimal radioligands for imaging the σ1 or σ2 receptors in humans. Finally, we discuss current challenges in the development of PET radioligands for the σ1 or σ2 receptors, and the opportunities for neuroimaging to elucidate the σ1 and σ2 receptors as novel biomarkers for early AD diagnosis, and for monitoring of disease progression and AD drug efficacy.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
10
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
11
|
Zhang Y, Liu L, Hou X, Zhang Z, Zhou X, Gao W. Role of Autophagy Mediated by AMPK/DDiT4/mTOR Axis in HT22 Cells Under Oxygen and Glucose Deprivation/Reoxygenation. ACS OMEGA 2023; 8:9221-9229. [PMID: 36936290 PMCID: PMC10018509 DOI: 10.1021/acsomega.2c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background: cerebral ischemia/reperfusion (I/R) injury is an important complication of ischemic stroke, and autophagy is one of the mechanisms of it. In this study, we aimed to determine the role and mechanism of autophagy in cerebral I/R injury. Methods: the oxygen and glucose deprivation/reoxygenation (OGD/R) method was used to model cerebral I/R injury in HT22 cells. CCK-8 and LDH were conducted to detect viability and damage of the cells, respectively. Apoptosis was measured by flow cytometry and Tunel staining. Autophagic vesicles of HT22 cells were assessed by transmission electron microscopy. Western blotting analysis was used to examine the protein expression involving AMPK/DDiT4/mTOR axis and autophagy-related proteins. 3-Methyladenine and rapamycin were, respectively, used to inhibit and activate autophagy, compound C and AICAR acted as AMPK inhibitor and activator, respectively, and were used to control the starting link of AMPK/DDiT4/mTOR axis. Results: autophagy was activated in HT22 cells after OGD/R was characterized by an increased number of autophagic vesicles, the expression of Beclin1 and LC3II/LC3I, and a decrease in the expression of P62. Rapamycin could increase the viability, reduce LDH leakage rate, and alleviate cell apoptosis in OGD/R cells by activating autophagy. 3-Methyladenine played an opposite role to rapamycin in OGD/R cells. The expression of DDiT4 and the ratio of p-AMPK/AMPK were increased after OGD/R in HT22 cells. While the ratio of p-mTOR/mTOR was reduced by OGD/R, AICAR effectively increased the number of autophagic vesicles, improved viability, reduced LDH leakage rate, and alleviated apoptosis in HT22 cells which suffered OGD/R. However, the effects of compound C in OGD/R HT22 cells were opposite to that of AICAR. Conclusions: autophagy is activated after OGD/R; autophagy activator rapamycin significantly enhanced the protective effect of autophagy on cells of OGD/R. AMPK/DDiT4/mTOR axis is an important pathway to activate autophagy, and AMPK/DDiT4/mTOR-mediated autophagy significantly alleviates cell damage caused by OGD/R.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijuan Gao
- . Phone: 86 311 89926007. Fax: (86) 311 89926000
| |
Collapse
|
12
|
Chen T, Hu Y, Lu L, Zhao Q, Tao X, Ding B, Chen S, Zhu J, Guo X, Lin Z. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol 2023; 14:1134464. [PMID: 36969871 PMCID: PMC10031108 DOI: 10.3389/fphar.2023.1134464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Hypoxic-ischemic encephalopathy (HIE) is a crucial cause of neonatal death and neurological sequelae, but currently there is no effective therapy drug for HIE. Both oxidative stress and apoptosis play critical roles in the pathological development of HIE. Myricetin, a naturally extracted flavonol compound, exerts remarkable effects against oxidative stress, apoptosis, and inflammation. However, the role and underlying molecular mechanism of myricetin on HIE remain unclear. Methods: In this study, we established the neonatal rats hypoxic-ischemic (HI) brain damage model in vivo and CoCl2 induced PC12 cell model in vitro to explore the neuroprotective effects of myricetin on HI injury, and illuminate the potential mechanism. Results: Our results showed that myricetin intervention could significantly reduce brain infarction volume, glia activation, apoptosis, and oxidative stress marker levels through activating NRF2 (Nuclear factor-E2-related factor 2) and increase the expressions of NRF2 downstream proteins NQO-1 and HO-1. In addition, the NRF2 inhibitor ML385 could significantly reverse the effects of myricetin. Conclusion: This study found that myricetin might alleviate oxidative stress and apoptosis through NRF2 signaling pathway to exert the protective role for HI injury, which suggested that myricetin might be a promising therapeutic agent for HIE.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Xiaoling Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jianghu Zhu, ; Xiaoling Guo, ; Zhenlang Lin,
| |
Collapse
|
13
|
Sil S, Thangaraj A, Oladapo A, Hu G, Kutchy NA, Liao K, Buch S, Periyasamy P. Role of Autophagy in HIV-1 and Drug Abuse-Mediated Neuroinflammaging. Viruses 2022; 15:44. [PMID: 36680084 PMCID: PMC9866731 DOI: 10.3390/v15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Centre for Excellence in Nanobio Translational Research, Anna University, BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA 90048, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Liu Y, Liu R, Huang L, Zuo G, Dai J, Gao L, Shi H, Fang Y, Lu Q, Okada T, Wang Z, Hu X, Lenahan C, Tang J, Xiao J, Zhang JH. Inhibition of Prostaglandin E2 Receptor EP3 Attenuates Oxidative Stress and Neuronal Apoptosis Partially by Modulating p38MAPK/FOXO3/Mul1/Mfn2 Pathway after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7727616. [PMID: 36531208 PMCID: PMC9757947 DOI: 10.1155/2022/7727616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/23/2022] [Accepted: 11/19/2022] [Indexed: 09/30/2023]
Abstract
Oxidative stress and neuronal apoptosis contribute to pathological processes of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies demonstrated that the inhibition of prostaglandin E2 receptor EP3 suppressed oxidative stress and apoptotic effects after Alzheimer's disease and intracerebral hemorrhage. This study is aimed at investigating the antioxidative stress and antiapoptotic effect of EP3 inhibition and the underlying mechanisms in a rat mode of SAH. A total of 263 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Selective EP3 antagonist L798106 was administered intranasally at 1 h, 25 h, and 49 h after SAH induction. EP3 knockout CRISPR and FOXO3 activation CRISPR were administered intracerebroventricularly at 48 h prior to SAH, while selective EP3 agonist sulprostone was administered at 1 h prior to SAH. SAH grade, neurological deficits, western blots, immunofluorescence staining, Fluoro-Jade C staining, TUNEL staining, 8-OHdG staining, and Nissl staining were conducted after SAH. The expression of endogenous PGES2 increased and peaked at 12 h while the expression of EP1, EP2, EP3, EP4, and Mul1 increased and peaked at 24 h in the ipsilateral brain after SAH. EP3 was expressed mainly in neurons. The inhibition of EP3 with L798106 or EP3 KO CRISPR ameliorated the neurological impairments, brain tissue oxidative stress, and neuronal apoptosis after SAH. To examine potential downstream mediators of EP3, we examined the effect of the increased expression of activated FOXO3 following the administration of FOXO3 activation CRISPR. Mechanism studies demonstrated that L798106 treatment significantly decreased the expression of EP3, p-p38, p-FOXO3, Mul1, 4-HNE, Bax, and cleaved caspase-3 but upregulated the expression of Mfn2 and Bcl-2 in SAH rats. EP3 agonist sulprostone or FOXO3 activation CRISPR abolished the neuroprotective effects of L798106 and its regulation on expression of p38MAPK/FOXO3/Mul1/Mfn2 in the ipsilateral brain after SAH. In conclusion, the inhibition of EP3 by L798106 attenuated oxidative stress and neuronal apoptosis partly through p38MAPK/FOXO3/Mul1/Mfn2 pathway post-SAH in rats. EP3 may serve as a potential therapeutic target for SAH patients.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiaxing Dai
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuanjian Fang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Emergency, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92350, USA
| |
Collapse
|
15
|
Wu X, Jiao W, Chen J, Tao Y, Zhang J, Wang Y. Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting oxidative stress and neuroinflammation via ROS/MAPK/Nrf2 signaling pathway. Acta Cir Bras 2022; 37:e370606. [PMID: 36074399 PMCID: PMC9448248 DOI: 10.1590/acb370606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: Spontaneous intracerebral hemorrhage (ICH) is still a major public health problem, with high mortality and disability. Ulinastatin (UTI) was purified from human urine and has been reported to be anti-inflammatory, organ protective, and antioxidative stress. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. In the present study, we aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced early brain injury in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine levels, oxidative stress levels, and neuronal damage were evaluated. Results: UTI treatment markedly increased the neurological score, alleviated brain edema, decreased the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and NF-κB, decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and upregulated the levels of glutathione (GSH), superoxide dismutase (SOD), and Nrf2. This finding indicated that UTI-mediated inhibition of neuroinflammation and oxidative stress alleviated neuronal damage after ICH. The neuroprotective capacity of UTI is partly dependent on the ROS/MAPK/Nrf2 signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Xi Wu
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Wei Jiao
- MD. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Junhui Chen
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Yunna Tao
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Jing Zhang
- BS. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| | - Yuhai Wang
- PhD. 904th Hospital of Joint Logistic Support Force of PLA - Anhui Medical University - Wuxi Clinical College - Department of Neurosurgery - Wuxi, China
| |
Collapse
|
16
|
Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091747. [PMID: 36139821 PMCID: PMC9495910 DOI: 10.3390/antiox11091747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebrovascular disease is highly prevalent and has a complex etiology and variable pathophysiological activities. It thus poses a serious threat to human life and health. Currently, pathophysiological research on cerebrovascular diseases is gradually improving, and oxidative stress and autophagy have been identified as important pathophysiological activities that are gradually attracting increasing attention. Many studies have found some effects of oxidative stress and autophagy on cerebrovascular diseases, and studies on the crosstalk between the two in cerebrovascular diseases have made modest progress. However, further, more detailed studies are needed to determine the specific mechanisms. This review discusses nuclear factor erythroid 2-related factor 2 (Nrf2) molecules, which are closely associated with oxidative stress and autophagy, and the crosstalk between them, with the aim of providing clues for studying the two important pathophysiological changes and their crosstalk in cerebrovascular diseases as well as exploring new target treatments.
Collapse
|
17
|
Xu Z, Lei Y, Qin H, Zhang S, Li P, Yao K. Sigma-1 Receptor in Retina: Neuroprotective Effects and Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23147572. [PMID: 35886921 PMCID: PMC9321618 DOI: 10.3390/ijms23147572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Retinal degenerative diseases are the major factors leading to severe visual impairment and even irreversible blindness worldwide. The therapeutic approach for retinal degenerative diseases is one extremely urgent and hot spot in science research. The sigma-1 receptor is a novel, multifunctional ligand-mediated molecular chaperone residing in endoplasmic reticulum (ER) membranes and the ER-associated mitochondrial membrane (ER-MAM); it is widely distributed in numerous organs and tissues of various species, providing protective effects on a variety of degenerative diseases. Over three decades, considerable research has manifested the neuroprotective function of sigma-1 receptor in the retina and has attempted to explore the molecular mechanism of action. In the present review, we will discuss neuroprotective effects of the sigma-1 receptor in retinal degenerative diseases, mainly in aspects of the following: the localization in different types of retinal neurons, the interactions of sigma-1 receptors with other molecules, the correlated signaling pathways, the influence of sigma-1 receptors to cellular functions, and the potential therapeutic effects on retinal degenerative diseases.
Collapse
|
18
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
19
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
20
|
Zhong W, Cheng J, Yang X, Liu W, Li Y. Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca 2+ Elevation. Transl Stroke Res 2022; 14:409-424. [PMID: 35445968 DOI: 10.1007/s12975-022-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Our previous studies have indicated that heliox preconditioning (HePC) may exert neuroprotective effects on neonatal hypoxic-ischemic encephalopathy (HIE). The present study was to investigate whether HePC alleviates neonatal HIE by inhibiting necroptosis and explore the potential mechanism. Seven-day-old rat pups were randomly divided into Sham group, HIE group, HIE + HePC group, HIE + Dantrolene (DAN) group, and HIE + Necrostatin-1 (Nec-1) group. HIE was induced by common carotid artery ligation and subsequent hypoxia exposure. The neurological function, brain injury, and molecular mechanism were evaluated by histological staining, neurobehavioral test, Western blotting, Ca2+, immunofluorescence staining, co-immunoprecipitation (Co-IP), and transmission electron microscopy (TEM). Results supported that the expression of necroptosis markers and p-RyR2 in the brain increased significantly after HIE. HePC, DAN, or Nec-1 was found to improve the neurological deficits after H/I and inhibit neuronal necroptosis. Interestingly, both HePC and DAN inhibited the increases in cytoplasmic Ca2+ and CaMK-II phosphorylation in the brain secondary to HIE, but Nec-1 failed to affect Ca2+. In conclusion, our results suggest HePC may alleviate cytoplasmic Ca2+ overload by regulating p-RyR2, which inhibits the necroptosis in the brain, exerting neuroprotective effects on HIE.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenwu Liu
- Naval Characteristic Medical Center Diving and Hyperbaric Medicine Research Laboratory, Shanghai, 200433, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
21
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
22
|
Wang Y, Kisler K, Nikolakopoulou AM, Fernandez JA, Griffin JH, Zlokovic BV. 3K3A-Activated Protein C Protects the Blood-Brain Barrier and Neurons From Accelerated Ischemic Injury Caused by Pericyte Deficiency in Mice. Front Neurosci 2022; 16:841916. [PMID: 35431776 PMCID: PMC9005806 DOI: 10.3389/fnins.2022.841916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pericytes, mural cells of brain capillaries, maintain the blood-brain barrier (BBB), regulate cerebral blood flow (CBF), and protect neurons against ischemic damage. To further investigate the role of pericytes in ischemia, we induced stroke by 45-min transient middle cerebral artery occlusion (tMCAo) in 6-month-old pericyte-deficient Pdgfrb + /- mice and control Pdgfrb+/+ littermates. Compared to controls, Pdgfrb + /- mice showed a 26% greater loss of CBF during early reperfusion, and 40-50% increase in the infarct and edema volumes and motor neurological score 24 h after tMCAo. These changes were accompanied by 50% increase in both immunoglobulin G and fibrinogen pericapillary deposits in the ischemic cortex 8 h after tMCAo indicating an accelerated BBB breakdown, and 35 and 55% greater losses of pericyte coverage and number of degenerating neurons 24 h after tMCAo, respectively. Treatment of Pdgfrb + /- mice with 3K3A-activated protein C (APC), a cell-signaling analog of plasma protease APC, administered intravenously 10 min and 4 h after tMCAo normalized CBF during the early reperfusion phase and reduced infarct and edema volume and motor neurological score by 55-60%, with similar reductions in BBB breakdown and number of degenerating neurons. Our data suggest that pericyte deficiency results in greater brain injury, BBB breakdown, and neuronal degeneration in stroked mice and that 3K3A-APC protects the brain from accelerated injury caused by pericyte deficiency. These findings may have implications for treatment of ischemic brain injury in neurological conditions associated with pericyte loss such as those seen during normal aging and in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yaoming Wang
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Angeliki Maria Nikolakopoulou
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Jose A. Fernandez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Effect of Pericytes on Cerebral Microvasculature at Different Time Points of Stroke. BIOMED RESEARCH INTERNATIONAL 2022; 2021:5281182. [PMID: 34977241 PMCID: PMC8716223 DOI: 10.1155/2021/5281182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023]
Abstract
Pericyte, as an important component of the blood-brain barrier, has received increasing attention in the study of cerebrovascular diseases. However, the mechanism of pericytes after the occurrence of cerebral ischemia is controversial. On the one hand, the expression of pericytes increases after cerebral ischemia, constricting the blood vessels to restrict blood supply and aggravating the damage caused by ischemia; on the other hand, pericytes participate in capillary angiogenesis in the ischemic area, which facilitates the repair of the ischemic injury area. The multifunctionality of pericytes is an important reason for this phenomenon, but the different time points of observation for the outcome indicators in each study are also an important factor that leads to the controversy of pericytes. Based on the review of a large database of original studies, the authors' team summarized the effects of pericytes on cerebral microvasculature at different time points after stroke, searched the possible markers, and explored possible therapeutic.
Collapse
|
24
|
Wang L, Jiao W, Wu J, Zhang J, Tang M, Chen Y. Ulinastatin alleviates early brain injury after intracerebral hemorrhage by inhibiting necroptosis and neuroinflammation via MAPK/NF-κB signaling pathway. Acta Cir Bras 2022; 37:e370301. [PMID: 35584533 PMCID: PMC9109988 DOI: 10.1590/acb370301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major public health problem
with a huge economic burden worldwide. Ulinastatin (UTI), a serine protease
inhibitor, has been reported to be anti-inflammatory, immune regulation, and
organ protection by reducing reactive oxygen species production, and
inflammation. Necroptosis is a programmed cell death mechanism that plays a
vital role in neuronal cell death after ICH. However, the neuroprotection of
UTI in ICH has not been confirmed, and the potential mechanism is unclear.
The present study aimed to investigate the neuroprotection and potential
molecular mechanisms of UTI in ICH-induced EBI in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine
levels, and neuronal damage were evaluated. The anti-inflammation
effectiveness of UTI in ICH patients also was evaluated. Results: UTI treatment markedly increased the neurological score, alleviate the brain
edema, decreased the inflammatory cytokine TNF-α, interleukin‑1β (IL‑1β),
IL‑6, NF‑κB levels, and RIP1/RIP3, which indicated that UTI-mediated
inhibition of neuroinflammation, and necroptosis alleviated neuronal damage
after ICH. UTI also can decrease the inflammatory cytokine of ICH patients.
The neuroprotective capacity of UTI is partly dependent on the MAPK/NF-κB
signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by
protecting against neural neuroinflammation, and necroptosis.
Collapse
Affiliation(s)
- Li Wang
- Anhui Medical University, China
| | | | | | | | | | | |
Collapse
|
25
|
Tao Y, Xu Y, Shen M, Feng X, Wu Y, Wu Y, Shen L, Wang Y. The neuroprotection of cerebrolysin after spontaneous intracerebral hemorrhage through regulates necroptosis via Akt/ GSK3β signaling pathway. Acta Cir Bras 2021; 36:e361002. [PMID: 34817023 PMCID: PMC8610213 DOI: 10.1590/acb361002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. METHODS In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). RESULTS The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. CONCLUSIONS CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wu
- Anhui Medical University, China
| | | | | | | |
Collapse
|
26
|
Li H, Chen G. Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2021; 13:357-358. [PMID: 34734357 DOI: 10.1007/s12975-021-00965-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/24/2023]
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
27
|
Wu NH, Ye Y, Wan BB, Yu YD, Liu C, Chen QJ. Emerging Benefits: Pathophysiological Functions and Target Drugs of the Sigma-1 Receptor in Neurodegenerative Diseases. Mol Neurobiol 2021; 58:5649-5666. [PMID: 34383254 DOI: 10.1007/s12035-021-02524-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
The sigma-1 receptor (Sig-1R) is encoded by the SIGMAR1 gene and is a nonopioid transmembrane receptor located in the mitochondrial-associated endoplasmic reticulum membrane (MAM). It helps to locate endoplasmic reticulum calcium channels, regulates calcium homeostasis, and acts as a molecular chaperone to control cell fate and participate in signal transduction. It plays an important role in protecting neurons through a variety of signaling pathways and participates in the regulation of cognition and motor behavior closely related to neurodegenerative diseases. Based on its neuroprotective effects, Sig-1R has now become a breakthrough target for alleviating Alzheimer's disease and other neurodegenerative diseases. This article reviews the most cutting-edge research on the function of Sig-1R under normal or pathologic conditions and target drugs of the sigma-1 receptor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ning-Hua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- Basic Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yu Ye
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Bin-Bin Wan
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuan-Dong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing-Jie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
28
|
Xie S, Jiang X, Doycheva DM, Shi H, Jin P, Gao L, Liu R, Xiao J, Hu X, Tang J, Zhang L, Zhang JH. Activation of GPR39 with TC-G 1008 attenuates neuroinflammation via SIRT1/PGC-1α/Nrf2 pathway post-neonatal hypoxic-ischemic injury in rats. J Neuroinflammation 2021; 18:226. [PMID: 34645465 PMCID: PMC8513331 DOI: 10.1186/s12974-021-02289-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxic–ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic–ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. Methods A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. Results The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post-HIE.
Conclusions TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02289-7.
Collapse
Affiliation(s)
- Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Chongqing Medical University, Yongchuan Hospital, Yongchuan, Chongqing, 402160, China
| | - Peng Jin
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Intensive Care Unit, HuaShan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Lina Zhang
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| |
Collapse
|
29
|
Fei W, Jiao W, Feng X, Chen X, Wang Y. Intermittent hypoxia mimicking obstructive sleep apnea aggravates early brain injury following ICH via neuroinflammation and apoptosis. Mol Med Rep 2021; 24:824. [PMID: 34558649 PMCID: PMC8485128 DOI: 10.3892/mmr.2021.12464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke associated with high mortality and morbidity due to the lack of effective therapy. Obstructive sleep apnea (OSA) has been reported to aggravate early brain injury (EBI) and worsen the overall outcome of patients with ICH. However, the precise role of OSA-mediated neuroinflammation and apoptosis following ICH has not been confirmed. The present study aimed to investigate the neuronal damage induced by OSA and the potential molecular mechanisms by which ICH-induced EBI regulates neural apoptosis in a C57BL/6 mouse ICH model. Mortality, neurological score, brain water content and neuronal death were evaluated by Evans blue extravasation, TUNEL staining, ELISA, analysis of reactive oxygen species/lipid peroxidation and western blotting. The results showed that OSA induction decreased survival rate, neurological score and neuron survival and upregulated the protein expression levels of Caspase-3, Bax, cytokines IL-1β, IL-6 and TNF-α and NF-κB, which indicated that OSA-mediated induction of apoptosis and neuroinflammation aggravated neuronal death following ICH. The molecular mechanism was partly dependent on the activating transcription factor/CHOP pathway. Taken together, the results demonstrated that OSA worsens neurological outcomes in mice and increases neuronal death by enhancing neural apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Wenjing Fei
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei Jiao
- Department of Nursing, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xiaoyan Feng
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Xufeng Chen
- Department of Gastroenterology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yuhai Wang
- Department of Neurology, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
30
|
Ping F, Zhang C, Wang X, Wang Y, Zhou D, Hu J, Chen Y, Ling J, Zhou J. Cx32 inhibits the autophagic effect of Nur77 in SH-SY5Y cells and rat brain with ischemic stroke. Aging (Albany NY) 2021; 13:22188-22207. [PMID: 34551394 PMCID: PMC8507301 DOI: 10.18632/aging.203526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
The pathogenesis of cerebral ischemia-reperfusion (I/R) is complex. Cx32 expression has been reported to be up-regulated in ischemic lesions of aged human brain. Nevertheless, the function of Cx32 during cerebral I/R is poorly understood. Autophagy is of vital importance in the pathogenesis of cerebral I/R. In the current study, we found that oxygen-glucose deprivation/reoxygenation (OGD/R) or I/R insult significantly induced the up-regulation of Cx32 and activation of autophagy. Inhibition of Cx32 alleviated OGD/R or I/R injury, and further activated autophagy. In addition, Nur77 expression was found to be up-regulated after OGD/R or I/R. After inhibiting Cx32, the expression of Nur77 was further increased and Nur77 was translocated from nucleus to mitochondrial. Inhibition of Cx32 also activated mitophagy by promoting autophagosome formation and up-regulating the expression of mitochondrial autophagy marker molecules. Of note, in the siNur77-transfected cells, the number of dysfunctional mitochondrial was increased, and mitophagy was suppressed, which aggravated OGD/R-induced neuronal injury. In conclusion, Cx32 might act as a regulatory factor of Nur77 controlling neuronal autophagy in the brains. Understanding the mechanism of this regulatory pathway will provide new insight into the role Cx32 and Nur77 in cerebral ischemia, offering new opportunities for therapeutics.
Collapse
Affiliation(s)
- Fengfeng Ping
- Department of Reproductive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Chao Zhang
- Department of Reproductive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Xue Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Danli Zhou
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jing Hu
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Yanhua Chen
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jingjing Ling
- Department of Good Clinical Practice, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
31
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Yang L, Wang Y, Zhang C, Cheng H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Mol Med Rep 2021; 24:544. [PMID: 34080030 PMCID: PMC8185517 DOI: 10.3892/mmr.2021.12183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapies. The alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid receptor antagonist perampanel has been reported to alleviate early brain injury following subarachnoid hemorrhage and traumatic brain injury by reducing reactive oxygen species, apoptosis, autophagy, and necroptosis. Necroptosis is a caspase‑independent programmed cell death mechanism that serves a vital role in neuronal cell death following ICH. However, the precise role of necroptosis in perampanel‑mediated neuroprotection following ICH has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of perampanel in ICH‑induced early brain injury by regulating neural necroptosis in C57BL/6 mice and in a hemin‑induced neuron damage cell culture model. Mortality, neurological score, brain water content, and neuronal death were evaluated. The results demonstrated that perampanel treatment increased the survival rate and neurological score, and increased neuron survival. In addition, perampanel treatment downregulated the protein expression levels of receptor interacting serine/threonine kinase (RIP) 1, RIP3, and mixed lineage kinase domain like pseudokinase, and of the cytokines IL‑1β, IL‑6, TNF‑α, and NF‑κB. These results indicated that perampanel‑mediated inhibition of necroptosis and neuroinflammation ameliorated neuronal death in vitro and in vivo following ICH. The neuroprotective capacity of perampanel was partly dependent on the PTEN pathway. Taken together, the results of the present study demonstrated that perampanel improved neurological outcomes in mice and reduced neuronal death by protecting against neural necroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
33
|
Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L. Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition. Int J Mol Med 2021; 48:178. [PMID: 34296284 PMCID: PMC8354314 DOI: 10.3892/ijmm.2021.5011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability. Diabetes mellitus, characterized by hyperglycemia, is a common concomitant disease of ischemic stroke, which is associated with autophagy dysfunction and blood‑brain barrier (BBB) damage following cerebral ischemia/reperfusion (I/R) injury. At present, there is no effective treatment strategy for the disease. The purpose of the present study was to explore the molecular mechanisms underlying the protective effects of selenium on the BBB following I/R injury in hyperglycemic rats. Middle cerebral artery occlusion was performed in diabetic Sprague‑Dawley rats. Treatment with selenium and the autophagy inhibitor 3‑methyladenine significantly reduced cerebral infarct volume, brain water content and Evans blue leakage, while increasing the expression of tight junction (TJ) proteins and decreasing that of autophagy‑related proteins (P<0.05). In addition, selenium increased the phosphorylation levels of PI3K, AKT and mTOR (P<0.05). A mouse bEnd.3 brain microvascular endothelial cell line was co‑cultured in vitro with an MA‑h mouse astrocyte‑hippocampal cell line to simulate the BBB. The cells were then subjected to hyperglycemia, followed by oxygen‑glucose deprivation for 1 h and reoxygenation for 24 h. It was revealed that selenium increased TJ protein levels, reduced BBB permeability, decreased autophagy levels and enhanced the expression of phosphorylated (p)‑AKT/AKT and p‑mTOR/mTOR proteins (P<0.05). Treatment with wortmannin (an inhibitor of PI3K) significantly prevented the beneficial effects of selenium on the BBB, whereas insulin‑like growth factor 1 (a PI3K activator) mimicked the effects of selenium. In conclusion, the present findings indicated that selenium can inhibit autophagy by regulating the PI3K/AKT/mTOR signaling pathway, significantly preventing BBB damage following cerebral I/R injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- Biao Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaqiong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanmei Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaopeng Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xilin Shen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianzhong Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Jing
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
34
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Liu E, Peng X, Ma H, Zhang Y, Yang X, Zhang Y, Sun L, Yan J. The Involvement of Aquaporin-4 in the Interstitial Fluid Drainage Impairment Following Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 12:611494. [PMID: 33574749 PMCID: PMC7870692 DOI: 10.3389/fnagi.2020.611494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of brain injury following subarachnoid hemorrhage (SAH) has not yet been clarified. The glymphatic system (GS), a glia-dependent waste clearance pathway, drains away soluble waste proteins and metabolic products, even some toxic factors from the brain. Aquaporin-4 (Aqp4) is highly expressed on the astrocyte foot processes and facilitates the interstitial fluid (ISF) transportation in the GS system. In this study, the role of Aqp4 in the GS injury after SAH was explored using Aqp4 gene knockout (Aqp4−/−) Sprague Dawley rats. The results of MRI, fluorescent imaging, and transmission electron microscopy (TEM) indicated that, after SAH, the inflow of cerebrospinal fluid (CSF) into the brain and the clearance of ISF from the brain were both significantly decreased. Meanwhile, the expression level of Aqp4 around the artery was markedly higher than that around the vein following SAH. Aqp4 knockout exacerbated the GS damage after SAH. In summary, after SAH, there was an apparent GS impairment, and Aqp4 played key roles in modulating the function of GS in the brain.
Collapse
Affiliation(s)
- E Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Anatomy, School of Medicine, Shandong University, Jinan, China
| | - Xianlong Peng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haowen Ma
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaomei Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China.,Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
36
|
Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl Stroke Res 2021; 12:905-922. [PMID: 33423214 DOI: 10.1007/s12975-020-00883-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.
Collapse
|
37
|
Qu J, Li M, Li D, Xin Y, Li J, Lei S, Wu W, Liu X. Stimulation of Sigma-1 Receptor Protects against Cardiac Fibrosis by Alleviating IRE1 Pathway and Autophagy Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8836818. [PMID: 33488945 PMCID: PMC7801073 DOI: 10.1155/2021/8836818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023]
Abstract
Sigma-1 receptor (Sig1R), a chaperone in the endoplasmic reticulum (ER) membrane, has been implicated in cardiac hypertrophy; however, its role in cardiac fibroblast activation has not been established. This study investigated the possible association between Sig1R and this activation by subjecting mice to sham, transverse aortic constriction (TAC), and TAC plus fluvoxamine (an agonist of Sig1R) treatments. Cardiac function and fibrosis were evaluated four weeks later by echocardiography and histological staining. In an in vitro study, neonatal rat cardiac fibroblasts were treated with fluvoxamine or NE-100 (an antagonist of Sig1R) in the presence or absence of transforming growth factor beta1 (TGF-β1). Fibrotic markers, ER stress pathways, and autophagy were then investigated by qPCR, western blotting, immunofluorescence, confocal microscopy, and transmission electron microscopy. Fluvoxamine treatment reduced cardiac fibrosis, preserved cardiac function, and attenuated cardiac fibroblast activation. Inhibition of the IRE1/XBP1 pathway, a branch of ER stress, by a specific inhibitor of IRE1 endonuclease activity, attenuated the pathological process. Fluvoxamine stimulation of Sig1R restored autophagic flux in cardiac fibroblasts, indicating that Sig1R appears to play a protective role in the activation of cardiac fibroblasts by inhibiting the IRE1 pathway and restoring autophagic flux. Sig1R may therefore represent a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Qu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Dongxu Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanguo Xin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Ding YX, Eerduna GW, Duan SJ, Li T, Liu RX, Zhang LM, Wang T, Fu FH. Escin ameliorates the impairments of neurological function and blood brain barrier by inhibiting systemic inflammation in intracerebral hemorrhagic mice. Exp Neurol 2020; 337:113554. [PMID: 33309746 DOI: 10.1016/j.expneurol.2020.113554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
This study aims to investigate whether escin ameliorates the impairments of neurological function by ameliorating systemic inflammation instead of targeting the brain directly in intracerebral hemorrhage (ICH) mice. It showed that escin did not cross the blood brain barrier (BBB). Compared with the ICH group, the Garcia test scores in the escin groups were significantly increased. Brain water contents and Evans blue extravasation of the right basal ganglia in the ICH group were augmented, and significantly reduced by escin. Escin abated the increases of monocyte counts and serum IL-1β levels induced by ICH. IL-1β administration reversed the effect of escin on Garcia test scores, the brain water contents, and the Evans blue extravasation. Escin ameliorated the increasing levels of RhoA, ROCK1, nuclear NF-κB and the decreasing expression of IκBα, cytosolic NF-κB, occludin, claudin-5 in the ICH group. IL-1β administration blocked not only escin-mediated increases of IκBα, cytosolic NF-κB, occludin, and claudin-5, but also escin-caused decreases of RhoA, ROCK1, and nuclear NF-κB. The results indicate that escin improves neurological outcomes and the BBB function in ICH mice, which is associated with attenuating ICH-induced peripheral system inflammation, and therefore, inhibiting IL-1β/RhoA/NF-κB signaling pathway in BBB, at least in part. These findings suggest that it may be useful to ameliorate brain injury by inhibiting systemic inflammation instead of aiming to target the brain directly after ICH.
Collapse
Affiliation(s)
- Yu-Xin Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Gao-Wa Eerduna
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, PR China
| | - Si-Jin Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ting Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Rong-Xia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Lei-Ming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Feng-Hua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
39
|
Chen S, Xu P, Fang Y, Lenahan C. The Updated Role of the Blood Brain Barrier in Subarachnoid Hemorrhage: From Basic and Clinical Studies. Curr Neuropharmacol 2020; 18:1266-1278. [PMID: 32928088 PMCID: PMC7770644 DOI: 10.2174/1570159x18666200914161231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke associated with high mortality and morbidity. The blood-brain-barrier (BBB) is a structure consisting primarily of cerebral microvascular endothelial cells, end feet of astrocytes, extracellular matrix, and pericytes. Post-SAH pathophysiology included early brain injury and delayed cerebral ischemia. BBB disruption was a critical mechanism of early brain injury and was associated with other pathophysiological events. These pathophysiological events may propel the development of secondary brain injury, known as delayed cerebral ischemia. Imaging advancements to measure BBB after SAH primarily focused on exploring innovative methods to predict clinical outcome, delayed cerebral ischemia, and delayed infarction related to delayed cerebral ischemia in acute periods. These predictions are based on detecting abnormal changes in BBB permeability. The parameters of BBB permeability are described by changes in computed tomography (CT) perfusion and magnetic resonance imaging (MRI). Kep seems to be a stable and sensitive indicator in CT perfusion, whereas Ktrans is a reliable parameter for dynamic contrast-enhanced MRI. Future prediction models that utilize both the volume of BBB disruption and stable parameters of BBB may be a promising direction to develop practical clinical tools. These tools could provide greater accuracy in predicting clinical outcome and risk of deterioration. Therapeutic interventional exploration targeting BBB disruption is also promising, considering the extended duration of post-SAH BBB disruption.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - PengLei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - YuanJian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
40
|
Yang Y, Torbey MT. Angiogenesis and Blood-Brain Barrier Permeability in Vascular Remodeling after Stroke. Curr Neuropharmacol 2020; 18:1250-1265. [PMID: 32691713 PMCID: PMC7770645 DOI: 10.2174/1570159x18666200720173316] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, is a natural defense mechanism helping to restore oxygen and nutrient supply to the affected brain tissue following an ischemic stroke. By stimulating vessel growth, angiogenesis may stabilize brain perfusion, thereby promoting neuronal survival, brain plasticity, and neurologic recovery. However, therapeutic angiogenesis after stroke faces challenges: new angiogenesis-induced vessels have a higher than normal permeability, and treatment to promote angiogenesis may exacerbate outcomes in stroke patients. The development of therapies requires elucidation of the precise cellular and molecular basis of the disease. Microenvironment homeostasis of the central nervous system is essential for its normal function and is maintained by the blood-brain barrier (BBB). Tight junction proteins (TJP) form the tight junction (TJ) between vascular endothelial cells (ECs) and play a key role in regulating the BBB permeability. We demonstrated that after stroke, new angiogenesis-induced vessels in peri-infarct areas have abnormally high BBB permeability due to a lack of major TJPs in ECs. Therefore, promoting TJ formation and BBB integrity in the new vessels coupled with speedy angiogenesis will provide a promising and safer treatment strategy for improving recovery from stroke. Pericyte is a central neurovascular unite component in vascular barriergenesis and are vital to BBB integrity. We found that pericytes also play a key role in stroke-induced angiogenesis and TJ formation in the newly formed vessels. Based on these findings, in this article, we focus on regulation aspects of the BBB functions and describe cellular and molecular special features of TJ formation with an emphasis on role of pericytes in BBB integrity during angiogenesis after stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| | - Michel T Torbey
- Department of Neurology, University of New Mexico Health Sciences Center; Albuquerque, New Mexico, 87131, United States
| |
Collapse
|
41
|
Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6801587. [PMID: 33101590 PMCID: PMC7568161 DOI: 10.1155/2020/6801587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS) and neuronal apoptosis are major pathological processes after hypoxic-ischemic encephalopathy (HIE). Colony stimulating factor 1 (CSF1), binding to CSF1 receptor (CSF1R), has been shown to reduce neuronal loss after hypoxic-ischemia- (HI-) induced brain injury. In the present study, we hypothesized that CSF1 could alleviate OS-induced neuronal degeneration and apoptosis through the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of HI. A total of 127 ten-day old Sprague Dawley rat pups were used. HI was induced by right common carotid artery ligation with subsequent exposure to hypoxia for 2.5 h. Exogenous recombinant human CSF1 (rh-CSF1) was administered intranasally at 1 h and 24 h after HI. The CSF1R inhibitor, BLZ945, or phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, was injected intraperitoneally at 1 h before HI induction. Brain infarct volume measurement, cliff avoidance test, righting reflex test, double immunofluorescence staining, western blot assessment, 8-OHdG and MitoSOX staining, Fluoro-Jade C staining, and TUNEL staining were used. Our results indicated that the expressions of endogenous CSF1, CSF1R, p-CSF1R, p-PLCG2, p-PKA, and uncoupling protein2 (UCP2) were increased after HI. CSF1 and CSF1R were expressed in neurons and astrocytes. Rh-CSF1 treatment significantly attenuated neurological deficits, infarct volume, OS, neuronal apoptosis, and degeneration at 48 h after HI. Moreover, activation of CSF1R by rh-CSF1 significantly increased the brain tissue expressions of p-PLCG2, p-PKA, UCP2, and Bcl2/Bax ratio, but reduced the expression of cleaved caspase-3. The neuroprotective effects of rh-CSF1 were abolished by BLZ945 or U73122. These results suggested that rh-CSF1 treatment attenuated OS-induced neuronal degeneration and apoptosis after HI, at least in part, through the CSF1R/PLCG2/PKA/UCP2 signaling pathway. Rh-CSF1 may serve as therapeutic strategy against brain damage in patients with HIE.
Collapse
|
42
|
Zhang M, Lu H, Xie X, Shen H, Li X, Zhang Y, Wu J, Ni J, Li H, Chen G. TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion. Mol Brain 2020; 13:113. [PMID: 32799888 PMCID: PMC7429711 DOI: 10.1186/s13041-020-00651-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 01/15/2023] Open
Abstract
As the main organelles for the clearance of damaged proteins and damaged organelles, the function of lysosomes is crucial for maintaining the intracellular homeostasis of long-lived neurons. A stable acidic environment is essential for lysosomes to perform their functions. TMEM175 has been identified as a new K+ channel that is responsible for regulating lysosomal membrane potential and pH stability in neurons. This study aimed to understand the role of TMEM175 in lysosomal function of neurons and neuronal injury following cerebral ischemia-reperfusion (I/R). A middle-cerebral-artery occlusion/reperfusion (MCAO/R) model was established in adult male Sprague-Dawley rats in vivo, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemia-reperfusion (I/R) injury in vitro. We found that the protein level of TMEM175 decreased after cerebral I/R injury and that TMEM175 overexpression ameliorated MCAO/R-induced brain-cell death and neurobehavioral deficits in vivo. Furthermore, these results were recapitulated in cultured neurons. Acridine orange (AO) staining, as well as LysoSensor Green DND-189, cathepsin-B (CTSB), and cathepsin-D (CTSD) activities, showed that TMEM175 deficiency inhibited the hydrolytic function of lysosomes by affecting lysosomal pH. In contrast, TMEM175 upregulation reversed OGD/R-induced lysosomal dysfunction and impaired mitochondrial accumulation in cultured neurons. TMEM175 deficiency induced by cerebral I/R injury leads to compromised lysosomal pH stability, thus inhibiting the hydrolytic function of lysosomes. Consequently, lysosomal-dependent degradation of damaged mitochondria is suppressed and thereby exacerbates brain damage. Exogenous up-regulation of TMEM175 protein level could reverse the neuronal lysosomal dysfunction after ischemia-reperfusion.
Collapse
Affiliation(s)
- Mengling Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
43
|
Pan Q, Liu Y, Wang G, Wen Z, Wang Y. MTMR14 protects against cerebral stroke through suppressing PTEN-regulated autophagy. Biochem Biophys Res Commun 2020; 529:1045-1052. [PMID: 32819563 DOI: 10.1016/j.bbrc.2020.06.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide phosphatase, myotubularinrelated protein 14 (MTMR14), plays a critical role in the regulating autophagy. However, its functional contribution to neuronal autophagy is still unclear. In the present study, we attempted to explore the effects of MTMR14 on ischemic stroke progression, as well as the underlying molecular mechanisms. Oxygen-glucose deprivation/reoxygenation (OGDR)-induced primary cortical neurons and pheochromocytoma (PC12) cells, and middle cerebral artery occlusion (MCAO)-operated mice were used to establish cerebral ischemia/reperfusion (I/R) injury in vitro and in vivo, respectively. OGDR treatment markedly decreased the expression of MTMR14 expression from mRNA and protein levels in the cultured primary neurons and PC12 cells. Functional analysis showed that OGDR-reduced cell viability was further accelerated by MTMR14 knockdown. On the contrary, MTMR14 over-expression significantly rescued the cell survival in OGDR-exposed cells. Moreover, autophagic markers including LC3BII and Beclin 1 were highly up-regulated in OGDR-incubated neurons and PC12 cells, while being further exacerbated by MTMR14 deletion. However, promoting MTMR14 dramatically alleviated LC3BII and Beclin 1 expression levels stimulated by OGDR. Importantly, we found that MTMR14-regulated autophagy was through its interactions with phosphatase and tensin homolog (PTEN). MTMR14 negatively modulated PTEN protein expression levels in OGDR-exposed cells. In vivo, MCAO-operated mice exhibited significantly reduced expression of MTMR14 in the ischemic penumbra tissues. After MCAO operation, MTMR14 over-expression effectively reduced infarct volume and neurological deficits scores, along with decreased activation of LC3B in neurons. Consistently, MCAO-increased PTEN, LC3BII and Beclin 1 were repressed by MTMR14 in mice. An interaction between MTMR14 and PTEN in response to MCAO was confirmed in vivo. Together, these results indicated the neuroprotective effects of MTMR14 on modulating PTEN-dependent excessive autophagy during cerebral I/R injury. Thus, targeting MTMR14 may provide feasible therapy for ischemic stroke onset and progression.
Collapse
Affiliation(s)
- Qichen Pan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China.
| | - Yuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Yiqun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| |
Collapse
|
44
|
Hu X, Li S, Doycheva DM, Huang L, Lenahan C, Liu R, Huang J, Xie S, Tang J, Zuo G, Zhang JH. Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. J Neuroinflammation 2020; 17:182. [PMID: 32522286 PMCID: PMC7285566 DOI: 10.1186/s12974-020-01862-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a life-threatening cerebrovascular disease. Neuroinflammation plays an important role in the pathogenesis of HIE, in which microglia are key cellular mediators in the regulation of neuroinflammatory processes. Colony-stimulating factor 1 (CSF1), a specific endogenous ligand of CSF1 receptor (CSF1R), is crucial in microglial growth, differentiation, and proliferation. Recent studies showed that the activation of CSF1R with CSF1 exerted anti-inflammatory effects in a variety of nervous system diseases. This study aimed to investigate the anti-inflammatory effects of recombinant human CSF1 (rh-CSF1) and the underlying mechanisms in a rat model of HIE. METHODS A total of 202 10-day old Sprague Dawley rat pups were used. HI was induced by the right common carotid artery ligation with subsequent exposure of 2.5-h hypoxia. At 1 h and 24 h after HI induction, exogenous rh-CSF1 was administered intranasally. To explore the underlying mechanism, CSF1R inhibitor, BLZ945, and phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, were injected intraperitoneally at 1 h before HI induction, respectively. Brain infarct area, brain water content, neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS The expressions of endogenous CSF1, CSF1R, PLCG2, protein kinase C epsilon type (PKCε), and cAMP response element-binding protein (CREB) were gradually increased after HIE. Rh-CSF1 significantly improved the neurological deficits at 48 h and 4 weeks after HI, which was accompanied by a reduction in the brain infarct area, brain edema, brain atrophy, and neuroinflammation. Moreover, activation of CSF1R by rh-CSF1 significantly increased the expressions of p-PLCG2, p-PKCε, and p-CREB, but inhibited the activation of neutrophil infiltration, and downregulated the expressions of IL-1β and TNF-α. Inhibition of CSF1R and PLCG2 abolished these neuroprotective effects of rh-CSF1 after HI. CONCLUSIONS Our findings demonstrated that the activation of CSF1R by rh-CSF1 attenuated neuroinflammation and improved neurological deficits after HI. The anti-inflammatory effects of rh-CSF1 partially acted through activating the CSF1R/PLCG2/PKCε/CREB signaling pathway after HI. These results suggest that rh-CSF1 may serve as a potential therapeutic approach to ameliorate injury in HIE patients.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Shirong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Bvrrell College of Osteopathic Medicine, Las Cruces, NM, 88003, USA
| | - Rui Liu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Juan Huang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shucai Xie
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Taicang Hospital Affiliated to Soochow University, Taicang, Suzhou, 215400, Jiangsu, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92350, USA. .,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA. .,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
45
|
Huang J, Lu W, Doycheva DM, Gamdzyk M, Hu X, Liu R, Zhang JH, Tang J. IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. J Neuroinflammation 2020; 17:152. [PMID: 32375838 PMCID: PMC7203836 DOI: 10.1186/s12974-020-01796-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inhibition of inositol-requiring enzyme-1 alpha (IRE1α), one of the sensor signaling proteins associated with endoplasmic reticulum (ER) stress, has been shown to alleviate brain injury and improve neurological behavior in a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. However, there is no information about the role of IRE1α inhibitor as well as its molecular mechanisms in preventing neuronal pyroptosis induced by NLRP1 (NOD-, LRR- and pyrin domain-containing 1) inflammasome. In the present study, we hypothesized that IRE1α can degrade microRNA-125-b-2-3p (miR-125-b-2-3p) and activate NLRP1/caspased-1 pathway, and subsequently promote neuronal pyroptosis in HIE rat model. METHODS Ten-day old unsexed rat pups were subjected to hypoxia-ischemia (HI) injury, and the inhibitor of IRE1α, STF083010, was administered intranasally at 1 h after HI induction. AntimiR-125 or NLRP1 activation CRISPR was administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Immunofluorescence staining, western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), brain infarct volume measurement, neurological function tests, and Fluoro-Jade C staining were performed. RESULTS Endogenous phosphorylated IRE1α (p-IRE1α), NLRP1, cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18) were increased and miR-125-b-2-3p was decreased in HIE rat model. STF083010 administration significantly upregulated the expression of miR-125-b-2-3p, reduced the infarct volume, improved neurobehavioral outcomes and downregulated the protein expression of NLRP1, cleaved caspase-1, IL-1β and IL-18. The protective effects of STF083010 were reversed by antimiR-125 or NLRP1 activation CRISPR. CONCLUSIONS IRE1α inhibitor, STF083010, reduced neuronal pyroptosis at least in part via miR-125/NLRP1/caspase-1 signaling pathway after HI.
Collapse
Affiliation(s)
- Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Xiao Hu
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA.
| |
Collapse
|
46
|
Zhai M, Liu C, Li Y, Zhang P, Yu Z, Zhu H, Zhang L, Zhang Q, Wang J, Wang J. Dexmedetomidine inhibits neuronal apoptosis by inducing Sigma-1 receptor signaling in cerebral ischemia-reperfusion injury. Aging (Albany NY) 2019; 11:9556-9568. [PMID: 31682592 PMCID: PMC6874446 DOI: 10.18632/aging.102404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
Abstract
Dexmedetomidine is known to alleviate cerebral ischemia-reperfusion injury (CIRI). We established a rat model of CIRI, which exhibited higher neurological deficit scores and a greater number of apoptotic cells in the cerebral ischemic penumbra than controls. Dexmedetomidine reversed the neuronal apoptosis and improved neurological function in this model. We then examined Sigma-1 receptor (Sig-1R) expression on the endoplasmic reticulum (ER) in brain tissues at different reperfusion time points. Sig-1R expression increased with CIRI and decreased with increasing reperfusion times. After 24 hours of reperfusion, dexmedetomidine upregulated Sig-1R expression, and ER stress proteins (GRP78, CHOP, JNK and Caspase-3) were detected in brain tissues with Western blotting. Moreover, GRP78 expression followed a pattern similar to Sig-1R. Dexmedetomidine induced GRP78 expression but inhibited CHOP, Caspase-3 and phosphorylated-JNK expression in brain tissues. A Sig-1R-specific inhibitor reduced GRP78 expression and partially inhibited the upregulation of GRP78 by dexmedetomidine. The inhibitor also increased CHOP and Caspase-3 expression and partially reversed the inhibitory effects of dexmedetomidine on these pro-apoptotic ER stress proteins. These results suggest that dexmedetomidine at least partially inhibits ER stress-induced apoptosis by activating Sig-1R, thereby attenuating brain damage after 24 hours of ischemia-reperfusion.
Collapse
Affiliation(s)
- Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Chong Liu
- Department of Anesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, China
| | - Yuexiang Li
- Department of Anesthesiology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Peijun Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - He Zhu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Li Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Qian Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jianbo Wang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province 318000, China
| |
Collapse
|