1
|
Bansal S, Tomer A, Singh A, Tyagi N, Kushwaha HR, Jain P. In-vitro assay studies and molecular docking of functionalized chitosan decorated vanadium pentoxide nano-agents as an antidiabetic drug. Int J Biol Macromol 2025; 298:139986. [PMID: 39826716 DOI: 10.1016/j.ijbiomac.2025.139986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
This study aims to enhance the antidiabetic potential of Vanadium pentoxide (V2O5) by synthesizing chitosan-based nanoparticles (NPs). Chitosan and its derivatives were used to fabricate V2O5 NPs, ensuring enhanced antioxidant and antidiabetic activity. Surface topography was analyzed using atomic force microscopy (AFM), revealing bioactive sites on the NPs with improved electron-transfer capability, as confirmed by cyclic voltammetry (CV). Furthermore, NPs were exploited for their possible antioxidant and antidiabetic potency by using different in-vitro assays. Among the fabricated NPs, chitosan-salicylaldehyde decorated V2O5 NPs (CHVD2) exhibited highest antidiabetic activity with 72.69 ± 0.76 % inhibition against α-amylase, 69.15 ± 0.58 % inhibition against α-glucosidase, and glycemic diffusion retardation index (GDRI) of 60.33 ± 0.47 %. Importantly, CHVD2 did not inhibit the growth of Bifidobacterium bacteria, as shown by disc-diffusion assay and exhibit least cytotoxicity among all NPs as tested on HacaT cell line. Molecular docking studies revealed strong binding interactions between CHVD2 and the target enzymes, α-amylase, and α-glucosidase supporting its inhibitory potential. This work demonstrates the promising enhanced antidiabetic and antioxidant properties of chitosan-coated V2O5 NPs.
Collapse
Affiliation(s)
- Smriti Bansal
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India.
| | - Archana Tomer
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Purnima Jain
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India.
| |
Collapse
|
2
|
Teparak C, Uriyapongson J, Phoemsapthawee J, Tunkamnerdthai O, Aneknan P, Tong-un T, Panthongviriyakul C, Leelayuwat N, Alkhatib A. Diabetes Therapeutics of Prebiotic Soluble Dietary Fibre and Antioxidant Anthocyanin Supplement in Patients with Type 2 Diabetes: Randomised Placebo-Controlled Clinical Trial. Nutrients 2025; 17:1098. [PMID: 40218856 PMCID: PMC11990404 DOI: 10.3390/nu17071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/15/2025] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Antioxidants and prebiotics are popular functional foods known for their distinct physiological ameliorating benefits on type 2 diabetes mellitus (T2DM). Whether and how a combined antioxidant-prebiotic supplement affects primary and secondary T2DM outcomes is not known. OBJECTIVES We investigated the therapeutic effects of an antioxidant (anthocyanin from riceberry rice) combined with prebiotics (dietary fibre from rice bran and Jerusalem artichoke) on glucose control, lipid profile, oxidative stress, inflammation, and cardiorespiratory fitness in T2DM patients. METHODS A total of 60 T2DM patients were randomly assigned to receive antioxidant/prebiotic (supplement group, SG) or maltodextrin (control group, CG), (two capsules (350 mg)/meal after three meals and before bedtime, 2.8 g/day), for 60 days. Venous blood samples were collected at baseline and after 60 days intervention to assess blood metabolic variables (glucose, insulin, and lipid profiles, renal and liver functions, oxidative stress, inflammation). Nutrition status, anthropometry, body composition (DEXA) and cardiorespiratory fitness were also measured. RESULTS Analysis of co-variance showed superior effects on T2DM's glucose and lipid profiles in the SG compared with the CG including reduced fasting blood glucose (p = 0.01 within-group effects, p = 0.03 interaction effects), reduced glycated haemoglobin (p = 0.004 within-group effects, p = 0.002 interaction), and reduced low density lipoprotein (p = 0.006 within-group effects, p = 0.02 interaction effects). No significant change was found within the CG for any of these parameters. Kidney function's glomerular filtration rate was also improved in the SG (p = 0.01 within-group effects), but not in the placebo CG. Intermediatory biomarkers of oxidative stress, inflammation, and cardiorespiratory fitness were not significantly affected in either group with no interaction effects. No adverse effects were detected following the 60-day supplementation intervention. CONCLUSIONS The findings suggest that a combined anthocyanin-fibre may be promoted as an adjacent therapy in patients with T2DM, but the intermediary mechanisms of action require further research.
Collapse
Affiliation(s)
- Chompoonut Teparak
- Exercise and Sport Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Juntanee Uriyapongson
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jatuporn Phoemsapthawee
- Department of Sports Science, Faculty of Sports and Health Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Orathai Tunkamnerdthai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ploypailin Aneknan
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Terdthai Tong-un
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | | | - Naruemon Leelayuwat
- Exercise and Sport Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand;
- Exercise and Sport Sciences Development and Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; (P.A.); (T.T.-u.)
| | - Ahmad Alkhatib
- College of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
3
|
Liu Y, Ran J, Xu Z, Cheng H, Lin B, Deng T, Yi C. Preparation and characterization of microcrystalline cellulose from rice bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:218-226. [PMID: 39150228 DOI: 10.1002/jsfa.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Rice bran, a by-product of rice processing, has not been fully utilized except for the small amount used for raising animals. The raw material source requirements of microcrystalline cellulose are becoming increasingly extensive. However, the characteristics of preparing microcrystalline cellulose from rice bran have not been reported, which limits the application of rice bran. RESULTS Microcrystalline cellulose was obtained from rice bran by alkali treatment, delignification, bleaching and acid hydrolysis. The morphology, particle size distribution, degree of polymerization, crystallinity, and thermal stability of rice bran microcrystalline cellulose were analyzed. The chemical compositions, scanning electron microscopy and Fourier-transform infrared analysis for rice bran microcrystalline cellulose showed that the lignin and hemicellulose were successfully removed from the rice bran fiber matrix. The morphology of rice bran microcrystalline cellulose was shown to be of a short rod-shaped porous structure with an average diameter of 65.3 μm. The polymerization degree of rice bran microcrystalline cellulose was 150. The X-ray diffraction pattern of rice bran microcrystalline cellulose showed the characteristic peak of natural cellulose (type I), and its crystallization index was 71%. The rice bran microcrystalline cellulose may be used in biological composites with temperatures between 150 °C and 250 °C. CONCLUSION These results suggest the feasibility of using rice bran as a low-price source of microcrystalline cellulose. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanlan Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P. R. China
| | - Jingfeng Ran
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Ziyang Xu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P. R. China
| | - Benping Lin
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Tianran Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| |
Collapse
|
4
|
Vishwakarma K, Chandra Sekaran V, Patwardhan V, Kamath A. A bibliometric review of functional ingredients and their efficacy in developing functional biscuits. F1000Res 2024; 13:421. [PMID: 39850615 PMCID: PMC11754956 DOI: 10.12688/f1000research.148029.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Numerous studies have concluded that the functional ingredients benefit human health. Similarly, present times have seen exponential growth in functional food in bakery product segments like breads and biscuits. However, there is a lack of information on functional ingredients and their usefulness in developing functional bakery products. This bibliometric study addresses this gap by identifying the current research trends in functional ingredients. Objective To investigate current research trends on functional ingredients and their usefulness in developing functional biscuits. Method The study followed the "Scientific Procedures and Rationales for Systematic Literature Reviews" standards for retrieving literature. The study went through three major stages, "assembling," "arranging," and "assessing," to retrieve 612 articles from the Scopus database from 2013 to 2023. Through further filtering, 395 articles were selected. Result The analysis was conducted using R Studio and VOS viewer. The performance analysis and science mapping tools were used to evaluate the articles. The results showed a 5.76% annual growth in publication trends. The most researched functional ingredients were antioxidants, bioactive compounds, and dietary fiber. The review summarized the most studied foods to develop functional biscuits and highlighted the most experimented technological advancements. Conclusion The study revealed the need for future research studies on functional ingredients with a focus on studying the technical implications of technical advancements in extracting functional ingredients from foods. The study highlights the significance of future studies based on the acceptance of functional biscuits and their sensory properties, focusing on the mass population. The study derives the possible applicability of functional ingredients in developing new formulations from publications and their usefulness in developing new formulations. This insight on the applicability of functional ingredients provides an opportunity for biscuit/cookie manufacturing to boost consumption among the population to a new ascending graph.
Collapse
Affiliation(s)
- Kshama Vishwakarma
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varalakshmi Chandra Sekaran
- Department of Health Policy, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidya Patwardhan
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Asha Kamath
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
5
|
Cheng J, Ye K, Fu C, Zhou Y, Chen Y, Ma G, Chen S, Tu J, Xiao H. Comprehensive assessment of rice bran dietary fiber on gut microbiota composition and metabolism during in vitro fermentation. Food Res Int 2024; 197:115231. [PMID: 39577956 DOI: 10.1016/j.foodres.2024.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Rice bran, a by-product of rice processing, is rich in various nutrients. As one of the main components of rice bran, dietary fiber has a variety of potential health benefits, especially its probiotic effects on gut health. This study involved the preparation and characterization of soluble rice bran dietary fibers (RB-SDF) and insoluble rice bran dietary fibers (RB-IDF), followed by an investigation into their gastrointestinal probiotic impact and principal metabolites. These results showed that rice bran dietary fiber could promote the production of short-chain fatty acids and the growth of probiotics during the fermentation in vitro. Specifically, RB-SDF significantly stimulated the growth of Bacteroides, Parabacteroides, and Acinetobacter, while RB-IDF encouraged the expansion of Tyzzerella, Pseudoflavonifractor, and Lachnospiraceae_UCG_004. Both dietary fibers could reduce the relative abundance of Escherichia_Shigella and Fusobacterium. The differential metabolites identified by untargeted metabolomics were l-pyroglutamic acid, d-(+)-tryptophan, indole-3-lactic acid, sulfolithocholic acid, 4-hydroxybenzaldehyde, indicating that different carbohydrates could significantly affect the metabolic profile of gut microbiota. Our finding indicated that rice bran dietary fiber can produce beneficial metabolites and modulate microbial ecosystems, which deserve further development for health applications.
Collapse
Affiliation(s)
- Jingni Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chujing Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Tu
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu Province, Zhenjiang 212008, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science, University of Massachusetts, Amherst 01003, USA.
| |
Collapse
|
6
|
Feng X, Ameer K, Ramachandraiah K, Jiang G. Extraction Method Effects on Structural Properties and Functional Characteristics of Dietary Fiber Extracted from Ginseng Residue. Molecules 2024; 29:4875. [PMID: 39459244 PMCID: PMC11510121 DOI: 10.3390/molecules29204875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
In this research, the dietary fibers (DFs) from ginseng residue were extracted by employing three different extraction methods (alkaline: AL, acidic: AC, enzymatic: EN). The extracted DFs were characterized in terms of their structural and functional properties. The results clearly showed that, regardless of the extraction methods, all DF samples exhibited representative infrared spectral features. The DF extracted by AC (citric acid) had more porous structures with a looser configuration, in conjunction with high apparent viscosity, whereas the DF extracted by EN (α-amylase and protease) exhibited higher thermal stability. Moreover, the monosaccharide composition of the DF samples was significantly influenced by the extraction method type. The DF from ginseng residue extracted by AC had the highest functional properties, such as water holding capacity (8.16 g/g), oil holding capacity (3.99 g/g), water swelling capacity (8.13 g/g), cholesterol-absorption capacity (12.85 mg/g), bile acid absorption capacity (91.51 mg/g), nitrite ion absorption capacity (124.38 ug/g at pH 2.0), glucose absorption capacity (52.67 mg/g at 150 mmol/L), as compared to those of DF extracted by the EN and AL (sodium hydroxide) methods. Hence, ginseng residue-derived DF extracted by the AC method may be potentially employed in the preparation of functional food ingredients.
Collapse
Affiliation(s)
- Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China;
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | | | - Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
7
|
Ban H, Liu Q, Xiu L, Cai D, Liu J. Effect of Solid-State Fermentation of Hericium erinaceus on the Structure and Physicochemical Properties of Soluble Dietary Fiber from Corn Husk. Foods 2024; 13:2895. [PMID: 39335822 PMCID: PMC11431227 DOI: 10.3390/foods13182895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Corn husk, a by-product of corn starch production and processing, contains high-quality dietary fiber (DF). Our study compares and analyzes the impact of Hericium erinaceus solid-state fermentation (SSF) on the structure and physicochemical characteristics of soluble dietary fiber (SDF) of corn husks. The study also investigates the kinetics of SSF of H. erinaceus in this process. The scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) results revealed significant structural changes in corn husk SDF before and after fermentation, with a significant elevation in the functional group numbers. The data indicate that the fermented corn husk SDF's water-holding, swelling, and oil-holding capacities increased to 1.57, 1.95, and 1.80 times those of the pre-fermentation SDF, respectively. Additionally, the results suggest that changes in extracellular enzyme activity and nutrient composition during SSF of H. erinaceus are closely associated with the mycelium growth stage, with a mutual promotion or inhibition relationship between the two. Our study offers a foundation for corn husk SDF fermentation and is relevant to the bioconversion of maize processing by-products.
Collapse
Affiliation(s)
- He Ban
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Qiannan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Lin Xiu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (H.B.); (Q.L.); (L.X.); (J.L.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
8
|
Ng HM, Maggo J, Wall CL, Bayer SB, McNabb WC, Mullaney JA, Foster M, Cabrera DL, Fraser K, Cooney J, Trower T, Günther CS, Frampton C, Gearry RB, Roy NC. Effects of Defatted Rice Bran-Fortified Bread on the Gut Microbiota Composition of Healthy Adults With Low Dietary Fiber Intake: Protocol for a Crossover Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e59227. [PMID: 39207833 PMCID: PMC11393501 DOI: 10.2196/59227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/59227.
Collapse
Affiliation(s)
- Hwei Min Ng
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jasjot Maggo
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Catherine Louisa Wall
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Simone Brigit Bayer
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane Adair Mullaney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Grasslands, Palmerston North, New Zealand
| | - Meika Foster
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Edible Research, Christchurch, New Zealand
| | - Diana L Cabrera
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Palmerston North, New Zealand
| | - Karl Fraser
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Grasslands, Palmerston North, New Zealand
| | - Janine Cooney
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Tania Trower
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Catrin S Günther
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Plant and Food Research, Ruakura Research Centre, Hamilton, New Zealand
| | - Chris Frampton
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, Christchurch, New Zealand
| | - Richard Blair Gearry
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole Clemence Roy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Zhang Z, Ruan Q, Sun X, Yuan J. Optimization of Enzymolysis Modification Conditions of Dietary Fiber from Bayberry Pomace and Its Structural Characteristics and Physicochemical and Functional Properties. Molecules 2024; 29:3415. [PMID: 39064993 PMCID: PMC11279638 DOI: 10.3390/molecules29143415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically been underutilized due to a lack of thorough research. This study aimed to investigate the physicochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to extract the total DF, which was then optimized to produce modified soluble dietary fiber (MSDF) and insoluble dietary fiber (MIDF). The optimized conditions yielded 15.14% of MSDF with a water-holding capacity (WHC) of 54.13 g/g. The DFs were evaluated for their structural, physicochemical, and functional properties. The MSDF showed a higher (p < 0.05) WHC, oil-holding capacity (OHC), swelling capacity (SC), cation exchange capacity (CEC), and glucose adsorption capacity (GAC) (about 14.15, 0.88, 1.23, 1.22, and 0.34 times) compared to the DF. Additionally, the MSDF showed strong, superior radical scavenging and blood sugar-lowering capabilities, with a more porous surface morphology. A Fourier-transform infrared (FT-IR) spectroscopy analysis indicated that enzymatic modification degraded the cellulose and hemicellulose, reducing the DF crystallinity. Overall, the results demonstrated that cellulase hydrolysis could effectively improve the physicochemical and functional properties of DF, thereby paving the way for its development into functional food products.
Collapse
Affiliation(s)
- Zhaolin Zhang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
| | - Qin Ruan
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
| | - Xiaoming Sun
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
- Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jianfeng Yuan
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; (Z.Z.); (Q.R.); (X.S.)
- Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
10
|
Liu T, Zhen X, Lei H, Li J, Wang Y, Gou D, Zhao J. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chem X 2024; 22:101424. [PMID: 38840726 PMCID: PMC11152658 DOI: 10.1016/j.fochx.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Legumes are widely appreciated for their abundant reserves of insoluble dietary fiber, which are characterized by their high fiber content and diverse bioactive compounds. Insoluble dietary fiber in leguminous crops is primarily localized in the structural cell walls and outer integument and exhibits strong hydrophilic properties that enable water absorption and volumetric expansion, resulting in increased food bulk and viscosity. This contributes to enhanced satiety and accelerated gastrointestinal transit. The benefits of legume insoluble dietary fiber extend to its notable antioxidant, anti-inflammatory, and anti-cancer properties, as well as its ability to modulate the composition of the intestinal microbiota, promoting the growth of beneficial bacteria while suppressing the proliferation of harmful pathogens, thereby promoting optimal intestinal health. It is highly valued as a valuable thickening agent, stabilizer, and emulsifier, contributing to the texture and stability of a wide range of food products.
Collapse
Affiliation(s)
- Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Junbo Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free for the Disabled Ministry of Education, Changchun University, Changchun 130022, China
| |
Collapse
|
11
|
He N, Xia M, Zhang X, He M, Li L, Li B. Quality attributes and functional properties of whole wheat bread baked from frozen dough with the addition of enzymes and hydrocolloids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1928-1941. [PMID: 37932850 DOI: 10.1002/jsfa.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The increased demand for healthy and standardized bread has led to a demand for an efficient and promising dough improver, of natural origin, to reduce the deterioration of whole wheat bread baked from frozen dough caused by the high levels of dietary fiber and by freezing treatment. In this study, the combined effects of xylanase (XYL), lipase (LIP), and xanthan gum (XAN) on the quality attributes and functional properties of whole wheat bread baked from frozen dough were evaluated. RESULTS The optimal combination, which contained XYL (0.12 g kg-1 ), LIP (0.25 g kg-1 ), and XAN (3.1 g kg-1 ), was obtained using response surface methodology (RSM). The addition of the optimal combination endowed frozen dough bread with a higher specific volume, softer texture, better brown crumb color, and greater overall acceptability. The optimal combination had no adverse impact on the volatile organic compounds (VOCs) of frozen dough bread. In terms of the functional properties of bread, the water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SWC) of dietary fiber in frozen dough bread decreased in the presence of the optimal combination, whereas the glucose adsorption capacity (GAC) did not affect them. Correspondingly, the in vitro digestive glucose release was not significantly different between the control group and the optimal combination group after frozen storage. CONCLUSION The optimal combination could improve the quality attributes and functional properties of whole wheat bread baked from frozen dough effectively, thereby increasing consumption. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ni He
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Mingwei Xia
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Min He
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lin Li
- Food Chemistry and Technology, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Su X, Jin Q, Xu Y, Wang H, Huang H. Subcritical water treatment to modify insoluble dietary fibers from brewer's spent grain for improved functionality and gut fermentability. Food Chem 2024; 435:137654. [PMID: 37820401 DOI: 10.1016/j.foodchem.2023.137654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Lactic acid (LA)-assisted subcritical water treatment (SWT) was applied to modify the insoluble dietary fiber (IDF) from brewer's spent grain (BSG) for enhancing its functionality and gut fermentability. Modified IDFs were thoroughly characterized for their chemical and structural properties. The results revealed that increasing the treatment temperature and LA concentration reduced hemicellulose content in IDFs from 38.4 % to 0.7 %, alongside a decreased yield (84.8 %-51.4 %), reduced particle size (519.8-288.6 μm), and more porous structure of IDFs. These modifications were linked to improved functionalities, evidenced by the highest water and oil holding capacity increasing by 36 % and 67 %, respectively. Remarkably, the highest glucose adsorption capacity increased by 6.5 folds. Notably, modified IDFs exhibited slower in-vitro fermentation, elevated short-chain fatty acids (SCFAs) production, and a higher proportion of butyrate in SCFAs. These findings highlight the potential of LA-assisted SWT in transforming BSG-derived IDF into a valuable functional food ingredient.
Collapse
Affiliation(s)
- Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Qing Jin
- School of Food and Agriculture, The University of Maine, 5763 Rogers Hall, Orono, ME 04469, USA.
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, United States Department of Agriculture, Agricultural Research Station, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg VA 24061, USA.
| |
Collapse
|
13
|
Zhao Y, Xu J, Zheng Y, Li Q, Huang Y, Zong M, Guo W. Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber. Molecules 2024; 29:478. [PMID: 38257389 PMCID: PMC10819664 DOI: 10.3390/molecules29020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Jujube residue is an abundant and low-cost dietary fiber resource, but its relatively lower hydration and functional properties limit its utilization as an ingredient of functional food. Thus, cellulase and hemicellulase hydrolysis, enzymatic hydrolysis assisted by phosphate grafting (EPG), and enzymatic hydrolysis assisted by acrylate grafting (EAG) were used to improve the functional properties of jujube residue dietary fiber (JRDF) in this study. The results evidenced that these modifications all increased the porosity of the microstructure of JRDF and increased the soluble fiber content, surface area, and hydration properties, but reduced its brightness (p < 0.05). Moreover, JRDF modified by enzymolysis combined with acrylate grafting offered the highest extractable polyphenol content, oil, sodium cholate, and nitrite ion sorption abilities. Meanwhile, JRDF modified via enzymolysis assisted by phosphate grafting showed the highest soluble fiber content (23.53 g∙100 g-1), water-retention ability (12.84 g∙g-1), viscosity (9.37 cP), water-swelling volume (10.80 mL∙g-1), and sorption ability of copper (II) and lead (II) ions. Alternatively, JRDF modified with cellulase hydrolysis alone exhibited the highest glucose adsorption capacity (21.9 g∙100 g-1) at pH 7.0. These results indicate that EPG is an effective way to improve the hypolipidemic effects of JRDF, while EAG is a good choice to enhance its hydration and hypoglycemic properties.
Collapse
Affiliation(s)
| | - Jianguo Xu
- Food Science College, Shanxi Normal University, Taiyuan 030619, China; (Y.Z.); (Q.L.); (Y.H.); (M.Z.); (W.G.)
| | - Yajun Zheng
- Food Science College, Shanxi Normal University, Taiyuan 030619, China; (Y.Z.); (Q.L.); (Y.H.); (M.Z.); (W.G.)
| | | | | | | | | |
Collapse
|
14
|
Ke S, Wang X, Wang A, Zhuang M, Zhou Z. Study of the acetylation-induced changes in the physicochemical and functional characteristics of insoluble dietary fiber from wheat bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:32-41. [PMID: 37506335 DOI: 10.1002/jsfa.12887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Wheat bran is rich in dietary fiber (DF), particularly insoluble dietary fiber (IDF). Although the benefits for human health following the consumption of these DFs have been documented, the lower water retention capacity (WRC) and other properties still limit the applications of DF. Therefore, the current research investigated the impact of acetylation on the changes in the corresponding physicochemical and functional properties of DF. RESULTS The current results indicated the acetylated group restricted the alignment of the molecular chains, which led to an increased amorphous phase in the fiber structure, followed by an enhanced thermal sensitivity and a reduced crystallinity as evidenced by X-ray diffraction (XRD). Moreover, the acetylation of the IDFs enhanced the cholesterol absorption capacity, but the corresponding antioxidant capacity and cation exchange capacity were reduced, which might be due to the partial loss of the phenolic compounds onto the polysaccharides during the modification. Interestingly, a lower degree of substitution (DS) of the IDF achieved from water-acetic anhydride modification led to a higher WRC and water swelling capacity (WSC). In contrast, a higher DS from acetic anhydride modification demonstrated a greatly improved in vitro hypoglycemic performance of the IDF, including α-amylase inhibitory activity and glucose dialysis retardation index (GDRI), compared to the other samples. CONCLUSION This study highlights a new approach to modify the functionality of IDFs via acetylation and the design of a novel IDF with hypoglycemic activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Ke
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
15
|
Chen L, He X, Pu Y, Wang H, Cao J, Jiang W. Adsorption removal properties of β-cyclodextrin-modified pectin on cholesterol and sodium cholate. Food Chem 2024; 430:137059. [PMID: 37541039 DOI: 10.1016/j.foodchem.2023.137059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
A novel adsorbent β-cyclodextrin-modified pectin was synthesized for removing cholesterol and bile salts from the gastric-intestinal passage. Different amounts of β-cyclodextrin were cross-linked to pectin by aldol condensation reaction via glutaraldehyde. The prepared β-cyclodextrin-modified pectins were successfully confirmed by characterization, showing a higher specific surface area and improved thermal stability with satisfactory cellular compatibility. The introduction of β-cyclodextrins dramatically improved the cholesterol adsorption capacity of pectin due to their hydrophobic cavities. Meanwhile, the modified pectins exhibited superior adsorption for sodium cholate than β-cyclodextrin or pectin itself, which was attributed to hydrophobic interactions. P10:1 displayed the strongest adsorption performance, with a maximum adsorption ability of 44.21 mg/g for cholesterol and 21.38 mg/g for sodium cholate. Furthermore, their adsorption favored the Langmuir isotherm model and pseudosecond-order kinetic model. These results indicate that modified pectin has potential as a nature-based adsorbent for removal of cholesterol and bile salts in the health food industry.
Collapse
Affiliation(s)
- Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Xu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
16
|
Zhu R, Tan S, Wang Y, Zhang L, Huang L. Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods 2023; 12:3695. [PMID: 37835348 PMCID: PMC10572562 DOI: 10.3390/foods12193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated the effects of three oil production methods on the physicochemical properties of dietary fiber from rice bran flour, and the hypolipidemic effects of the dietary fibers were investigated in vitro and in vivo. The particle size results showed that the organic-solvent-impregnated rice bran meal dietary fiber (N-RBDF) had the smallest average particle size and the aqueous enzymatic rice bran meal dietary fiber (E-RBDF) had the narrowest particle size distribution. Scanning electron microscopy (SEM) results demonstrated that all three kinds of rice bran meal dietary fibers (RBDFs) were irregularly flaky. Fourier transform infrared spectroscopy (FT-IR) results revealed that the three RBDFs had similar reactive groups, and X-ray diffraction (XRD) results indicated that all three RBDFs were cellulose type I crystals. The results of thermogravimetric analysis showed that the lignin content of N-RBDF was significantly lower than that of the other two. Among the three kinds of RBDFs, E-RBDF had higher water retention capacity, swelling capacity, oil holding capacity, and adsorption capacity for cholesterol and sodium bile salts. The results of experimental studies in hyperlipidemic rats showed that all three kinds of RBDFs significantly reduced triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and elevated high-density lipoprotein cholesterol (HDL-C) in the serum of hyperlipidemic rats; they also significantly lowered malondialdehyde (MDA) and elevated total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in the livers of rats. In addition, all three kinds of RBDFs decreased aminotransferase (ALT) and aminotransferase (AST) activity in serum and also improved liver steatosis and reduced atherosclerosis index (AI) in rats with hyperlipidemia. Our study provides a reference for the development and utilization of rice bran meal and the application of rice bran meal dietary fiber in food processing.
Collapse
Affiliation(s)
- Renwei Zhu
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Sha Tan
- School of Materials and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Yayi Wang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Linwei Zhang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| | - Liang Huang
- School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
17
|
Hariri Z, Afzalzade F, Sohrab G, Saadati S, Yari Z. The effects of rice bran supplementation for management of blood lipids: A GRADE-assessed systematic review, dose-response meta-analysis, and meta-regression of randomized controlled trials. Syst Rev 2023; 12:65. [PMID: 37046340 PMCID: PMC10091523 DOI: 10.1186/s13643-023-02228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to conduct a systematic review and meta-analysis of randomized controlled trials (RCTs) to investigate the effects of rice bran supplementation on serum lipid profile levels. METHODS We searched PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar using related keywords. Published RCTs exploring the effects of rice bran consumption on lipid profile were searched up to June 2022. Evidence certainty was assessed on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. The data were pooled using a random-effects model and reported as weighted mean difference (WMD) and 95% confidence interval (CI) for each outcome. RESULTS Meta-analysis of eight RCTs (with 11 effect sizes) showed no significant effect of rice bran supplementation on serum levels of triglyceride (WMD: -11.38 mg/dl; 95% CI: -27.73, 4.96; P = 0.17), total cholesterol (WMD: -0.68 mg/dl; 95% CI: -7.25, 5.88; P = 0.834), low-density lipoprotein cholesterol (WMD: -1.68 mg/dl; 95% CI: -8.46, 5.09; P = 0.627) and high-density lipoprotein cholesterol (WMD: 0.16 mg/dl; 95% CI: -1.52, 1.85; P = 0.848) compared to control group. CONCLUSION Our meta-analysis suggests that rice bran supplementation has no significant effects on serum levels of lipid profile components. However, larger studies with longer durations and improved methodological quality are needed before firm conclusions can be reached.
Collapse
Affiliation(s)
- Zahra Hariri
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Afzalzade
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Sharake Qods, West Arghavan St. Farahzadi Blvd, Tehran, Iran.
| |
Collapse
|
18
|
Tang W, Lin X, Walayat N, Liu J, Zhao P. Dietary fiber modification: structure, physicochemical properties, bioactivities, and application-a review. Crit Rev Food Sci Nutr 2023; 64:7895-7915. [PMID: 36995253 DOI: 10.1080/10408398.2023.2193651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
There is increasing attention on the modification of dietary fiber (DF), since its effective improvement on properties and functions of DF. Modification of DF can change their structure and functions to enhance their bioactivities, and endow them with huge application potential in the field of food and nutrition. Here, we classified and explained the different modification methods of DF, especially dietary polysaccharides. Different modification methods exert variable effects on the chemical structure of DF such as molecular weight, monosaccharide composition, functional groups, chain structure, and conformation. Moreover, we have discussed the change in physicochemical properties and biological activities of DF, resulting from alterations in the chemical structure of DF, along with a few applications of modified DF. Finally, we have summarized the modified effects of DF. This review will provide a foundation for further studies on DF modification and promote the future application of DF in food products.
Collapse
Affiliation(s)
- Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xinyi Lin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
19
|
Sivamaruthi BS, Alagarsamy K, Thangaleela S, Bharathi M, Kesika P, Chaiyasut C. Composition, Microbiota, Mechanisms, and Anti-Obesity Properties of Rice Bran. Foods 2023; 12:foods12061300. [PMID: 36981226 PMCID: PMC10048552 DOI: 10.3390/foods12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Rice is a major cereal crop and a staple food for nearly 50% of people worldwide. Rice bran (RB) is a nutrient-rich by-product of rice processing. RB is rich in carbohydrates, fibers, proteins, lipids, minerals, and several trace elements (phosphorus, calcium, magnesium, potassium, and manganese). The extraction process and storage have influenced RB extracts and RB oil's quality. The RB composition has also varied on the rice cultivars. The color of RB indicates the richness of the bioactive compounds, especially anthocyanins. γ-oryzanol, tocopherols, tocotrienols, and unsaturated fatty acids are major components of RB oil. It has been established that RB supplementation could improve the host's health status. Several preclinical and clinical studies have reported that RB has antioxidant, anticancer, anti-inflammatory, anticolitis, and antidiabetic properties. The beneficial biological properties of RB are partially attributed to its ability to alter the host microbiome and help to maintain and restore eubiosis. Non-communicable diseases (NCDs), including heart disease, diabetes, cancer, and lung disease, account for 74% of deaths worldwide. Obesity is a global health problem and is a major reason for the development of NCDs. The medical procedures for managing obesity are expensive and long-term health supplements are required to maintain a healthy weight. Thus, cost-effective natural adjuvant therapeutic strategy is crucial to treat and manage obesity. Several studies have revealed that RB could be a complementary pharmacological candidate to treat obesity. A comprehensive document with basic information and recent scientific results on the anti-obesity activity of RB and RB compounds is obligatory. Thus, the current manuscript was prepared to summarize the composition of RB and the influence of RB on the host microbiome, possible mechanisms, and preclinical and clinical studies on the anti-obesity properties of RB. This study suggested that the consumption of RB oil and dietary RB extracts might assist in managing obesity-associated health consequences. Further, extended clinical studies in several ethnic groups are required to develop dietary RB-based functional and nutritional supplements, which could serve as an adjuvant therapeutic strategy to treat obesity.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karthikeyan Alagarsamy
- Department of Microbiology (Aided), PSG College of Arts and Science, Avinashi Road, Civil Aerodrome Post, Coimbatore 641014, Tamil Nadu, India
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice. Foods 2023; 12:foods12040899. [PMID: 36832977 PMCID: PMC9957187 DOI: 10.3390/foods12040899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Consumers' general preference for white rice over whole grain rice stems from the hardness and low palatability of cooked whole grain rice; however, strong links have been found between consuming a large amount of white rice, leading a sedentary lifestyle, and acquiring type 2 diabetes. This led us to formulate a new breeding goal to improve the softness and palatability of whole grain rice while promoting its nutritional value. In this study, the association between dietary fibre profiles (using an enzymatic method combined with high-performance liquid chromatography) and textural properties of whole grain rice (using a texture analyser) was observed. The results showed that a variation in the ratio of soluble dietary fibre (SDF) and insoluble dietary fibre (IDF) influenced the textural characteristics of cooked whole grain rice; found a strong association between SDF to IDF ratio and hardness (r = -0.74, p < 0.01) or gumminess (r = -0.69, p < 0.01) of cooked whole grain rice, and demonstrated that the SDF to IDF ratio was also moderately correlated with cohesiveness (r = -0.45, p < 0.05), chewiness (r = -0.55, p < 0.01), and adhesiveness (r = 0.45, p < 0.05) of cooked whole grain rice. It is suggested that the SDF to IDF ratio can be used as a biomarker for breeding soft and highly palatable whole grain rice of cultivated tropical indica rice to achieve consumer well-being. Lastly, a simple modified method from the alkaline disintegration test was developed for high-throughput screening of dietary fibre profiles in the whole grain indica rice samples.
Collapse
|
21
|
A Comparative Study on Extraction and Physicochemical Properties of Soluble Dietary Fiber from Glutinous Rice Bran Using Different Methods. SEPARATIONS 2023. [DOI: 10.3390/separations10020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The methods of hot water extraction and ultrasound-assisted enzymatic treatment were applied for extracting the soluble dietary fiber from the glutinous rice bran in the study. Based on the single factor experiment for the hot water method, the optimum parameters of the extraction time of 120 min, solid-liquid ratio 1:20 (w/v), and pH 8.0, as well as the extraction temperature 80 °C, were obtained, while the yield and purity of SDF reached 31.83 ± 0.06% and 93.28 ± 0.27%, respectively. Furthermore, the SDF yield was improved to 34.87 ± 0.55% by using the ultrasound-assisted enzymatic treatment under the optimum conditions of cellulase dosage 9 × 103 U/g and ultrasonic temperature of 50 °C. Similar polysaccharide compositions were detected based on the infrared spectroscopic analysis. Compared with the SDF obtained from hot water extraction, the whiteness, solubility, water holding capacity, and swelling properties of SDF extracted by ultrasound-assisted enzymatic method improved significantly. These results demonstrated that both two strategies could be applied to SDF extraction in practical production, and the ultrasound-assisted enzymatic method might be an effective tool to improve the functional properties of SDF.
Collapse
|
22
|
Ultrasound-assisted cellulase pretreatment and cooking with enzymatic hydrolysates enhance the freeze-thaw stability of brown rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Su W, Jiang Z, Wang C, Zhang Y, Gong T, Wang F, Jin M, Wang Y, Lu Z. Co-fermented defatted rice bran alters gut microbiota and improves growth performance, antioxidant capacity, immune status and intestinal permeability of finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:413-424. [PMID: 36382202 PMCID: PMC9640948 DOI: 10.1016/j.aninu.2022.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 05/19/2023]
Abstract
Based on preparation of co-fermented defatted rice bran (DFRB) using Bacillus subtilis, Saccharomyces cerevisiae, Lactobacillus plantarum and phytase, the present study aimed to evaluate the effects of co-fermented DFRB on growth performance, antioxidant capacity, immune status, gut microbiota and permeability in finishing pigs. Ninety finishing pigs (85.30 ± 0.97 kg) were randomly assigned to 3 treatments (3 replicates/treatment) with a basal diet (Ctrl), a basal diet supplemented with 10% unfermented DFRB (UFR), and a basal diet supplemented with 10% fermented DFRB (FR) for 30 d. Results revealed that the diet supplemented with FR notably (P < 0.05) improved the average daily gain (ADG), gain to feed ratio (G:F) and the digestibility of crude protein, amino acids and dietary fiber of finishing pigs compared with UFR. Additionally, FR supplementation significantly (P < 0.05) increased total antioxidant capacity, the activities of superoxide dismutase and catalase, and decreased the content of malonaldehyde in serum. Furthermore, FR remarkably (P < 0.05) increased serum levels of IgG, anti-inflammatory cytokines (IL-22 and IL-23) and reduced pro-inflammatory cytokines (TNF-α, IL-1β and INF-γ). The decrease of serum diamine oxidase activity and serum D-lactate content in the FR group (P < 0.05) suggested an improvement in intestinal permeability. Supplementation of FR also elevated the content of acetate and butyrate in feces (P < 0.05). Moreover, FR enhanced gut microbial richness and the abundance of fiber-degrading bacteria such as Clostridium butyricum and Lactobacillus amylovorus. Correlation analyses indicated dietary fiber in FR was associated with improvements in immune status, intestinal permeability and the level of butyrate-producing microbe C. butyricum, which was also verified by the in vitro fermentation analysis. These findings provided an experimental and theoretical basis for the application of fermented DFRB in finishing pigs.
Collapse
Affiliation(s)
- Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zipeng Jiang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Cheng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yu Zhang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China
- Corresponding author.
| |
Collapse
|
24
|
Tajasuwan L, Kettawan A, Rungruang T, Wunjuntuk K, Prombutara P, Muangnoi C, Kettawan AK. Inhibitory Effect of Dietary Defatted Rice Bran in an AOM/DSS-Induced Colitis-Associated Colorectal Cancer Experimental Animal Model. Foods 2022; 11:3488. [PMID: 36360101 PMCID: PMC9654186 DOI: 10.3390/foods11213488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2023] Open
Abstract
Defatted rice bran (DRB) is gaining immense popularity worldwide because of its nutritional and functional aspects. Emerging evidence suggests that DRB is a potential source of dietary fiber and phenolic compounds with numerous purported health benefits. However, less is known about its chemoprotective efficacy. In the present study, we determined and examined the nutrient composition of DRB and its chemopreventive effect on azoxymethane and dextran sulphate sodium (AOM/DSS)-induced colitis-associated colorectal cancer (CRC) in rats. The results showed the presence of several bioactive compounds, such as dietary fiber, phytic acid, and phenolic acids, in DRB. In addition, DRB supplementation reduced the progression of CRC symptoms, such as colonic shortening, disease activity index (DAI), and histopathological changes. Interestingly, a significant decrease was observed in total numbers of aberrant crypt foci (ACFs) and tumors with DRB supplementation. Furthermore, DRB supplementation suppressed the expression of pro-inflammatory cytokines (IL-6) and inflammatory mediators (NF-κB and COX-2) through the inactivation of the NF-κB signaling pathway. The administration of DRB revealed a negative effect on cancer cell proliferation by repressing the expression of nuclear β-catenin, cyclin D1, and c-Myc. These findings suggest that DRB supplementation mitigates chronic inflammation and cancer cell proliferation and delays tumorigenesis in rat AOM/DSS-induced colitis-associated CRC. Therefore, the establishment of DRB as a natural dietary food-derived chemopreventive agent has the potential to have a significant impact on cancer prevention in the global population.
Collapse
Affiliation(s)
- Laleewan Tajasuwan
- Graduate Student in Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thanaporn Rungruang
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kansuda Wunjuntuk
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Pinidphon Prombutara
- OMICS Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
25
|
Sharma N, Behl T, Singh S, Kaur P, Zahoor I, Mohan S, Rachamalla M, Dailah HG, Almoshari Y, Salawi A, Alshamrani M, Aleya L. Targeting Nanotechnology and Nutraceuticals in Obesity: An Updated Approach. Curr Pharm Des 2022; 28:3269-3288. [PMID: 36200206 DOI: 10.2174/1381612828666221003105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
HYPOTHESIS This review article represents a brief layout of the risk factors and pathophysiology responsible for obesity, customary treatment strategies, and nanotechnology-based nutraceutical for the therapeutics of obesity. EXPERIMENTS An exhaustive search of the literature was done for this purpose, using Google Scholar, PubMed, and ScienceDirect databases. A literature study was conducted using publications published in peer-reviewed journals between 2000 and 2022. FINDINGS This was revealed that risk factors responsible for obesity were genetic abnormalities and environmental and socio-economic factors. Several research articles published between 2000 and 2022 were based on phytoconstituents-based nanoformulation for obesity therapeutics and, therefore, have been systematically compiled in this review. Various nutraceuticals like Garcinia cambogia, quercetin, resveratrol, capsaicin, Capsicum, Curcuma longa, Camella Sinensis, Zingiber officinalis, Citrus aurantium, Aegle marmelos, Coffea canephora, Asparagus officinalis, Gardenia jasminoides, Catha edulis, Clusia nemroisa, Rosmarinus officinalis, Cirsium setidens, Betula platyphylla, Tripterygium wilfordi possessing anti-obesity actions are discussed in this review along with their patents, clinical trials as well as their nanoformulation available. CONCLUSION This review illustrates that nanotechnology has a great propensity to impart a promising role in delivering phytochemicals and nutraceuticals in managing obesity conditions and other related disorders.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana 133207, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana 133207, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.,Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-environment Laboratory, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
26
|
Khalid W, Arshad MS, Jabeen A, Muhammad Anjum F, Qaisrani TB, Suleria HAR. Fiber-enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci Nutr 2022; 10:3203-3218. [PMID: 36249968 PMCID: PMC9548355 DOI: 10.1002/fsn3.2920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Plant-based foods are natural sources including vegetables, fruits, cereals and legumes. These foods consist of various types of nutrients in which carbohydrate is the basic component. However, some plant-based diets contain carbohydrates in the form of fiber. The fiber is usually a nondigestible polysaccharide that is not digested in the human body. It is present in the form of soluble or insoluble in different part of foods like peel, bran, pulp and grain. Pectin, beta-glucan, mucilage, psyllium, resistant starch and inulin are soluble fiber, and cellulose, hemicellulose and lignin are insoluble fiber attained from plant foods. The major function enhances immunity by creating gastrointestinal barrier, mucus production, immune cell activity and IgA level. Previous evidences showed that peoples with strong immunity have fewer chances of viral disease. A recent viral disease named COVID-19 spread in the world and millions of peoples died due to this viral disease. Coronavirus mostly attacks humans that suffer with weak immune system. It is due chronic diseases like diabetes and CVD (cardiovascular disease). The current review shows that fiber-containing plant-based foods boost immunity and aid human against COVID-19. The therapeutic role of fiber in the human body is to control the risk of hypertension and diabetes because a high-fiber diet has the ability to lower cholesterol, blood pressure and blood sugar. Fibers aid in GIT (gastrointestinal tract) and prevent constipation because it absorbs water and adds bulk to stool.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Jabeen
- Department of Food ScienceFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faqir Muhammad Anjum
- University of the GambiaBanjulThe Gambia
- IFANCA Halal Apex (Pvt.) LimitedFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | | |
Collapse
|
27
|
Wang YQ, Wang JD, Cai ZH, Huang H, Zhang S, Fu LN, Zhao PQ, Yan XY, Fu YJ. Improved physicochemical and functional properties of dietary fiber from Rosa roxburghii pomace fermented by Bacillus natto. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Gao K, Liu T, Cao L, Liu Y, Zhang Q, Ruan R, Feng S, Wu X. Feasibility of pomelo peel dietary fiber as natural functional emulsifier for preparation of Pickering-type emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4491-4499. [PMID: 35122272 DOI: 10.1002/jsfa.11804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The application of Pickering emulsions stabilized by food-derived particles is of great interest, studies have focused on development of natural functional emulsifiers from agricultural byproducts. Dietary fiber (DF) has been recognizing for its excellent physiological functions. Moreover, physicochemical properties of pomelo peel DF (PDF) make it a potential emulsifier. However, pristine PDF is not suitable as emulsifier due to its compact physical structure and high hydrophobicity, which seriously limits its utilization. The objective of the study was to investigate the effects of cellulase on physicochemical properties of PDF and to illustrate the feasibility of cellulase modified PDF (MPDF) as natural functional emulsifier. RESULTS Cellulase modification significantly improved (P < 0.05) specific surface area, water-holding capacity/oil-holding capacity, viscoelasticity, hydrophobicity, and pore structure while decreased crystallinity index and particle size of PDF. Emulsion could remain stable over 30 days as MPDF concentrations up to 1 wt% and oil/water ratio 3:7. The appearance stability of emulsions was not influenced by temperature (4-60 °C), pH (3.0-12.0), and ion concentration (0-200 mmol L-1 ) which was similar to Pickering emulsions. The mechanism of MPDF as an emulsifier was mainly attributed to the combination of Pickering effect and the three-dimensional network. In addition, MPDF showed higher antioxidant capacity in emulsions than other classical emulsifiers. CONCLUSION The results illustrated that MPDF has a favorable feasibility for preparation of stable Pickering-type emulsions, which will be a practical support for application of PDF as a natural functional emulsifier and will be helpful to realize the resource utilization of DF in pomelo industries. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaili Gao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, USA
| | - Shuoru Feng
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Guo T, Zheng B, He H, Chen L. Effects of non-covalent binding of lignans with rice starch driven by high-pressure homogenization on the starch structure and in vitro nutritional characteristics. Food Funct 2022; 13:9243-9253. [PMID: 36000543 DOI: 10.1039/d2fo00798c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a type of phytoestrogen, lignans have attracted attention in recent years for their nutritional functions. To investigate the effects of lignans on the structural and nutritional functions of starch, honokiol (HK) and arctiin (AC) were complexed with rice starch respectively under high-pressure homogenization (UHPH) (UHPHRS/HK and UHPHRS/AC). The results showed that both HK and AC could form inclusive complexes with rice starch via non-covalent bonding (hydrophobic interaction and hydrogen bonds), and these complexes could further form V-type crystals and aggregates, which reduced the starch digestibility as well as endowing them with the ability to retard glucose release and bind sodium cholate. Interestingly, due to its smaller molecular size, HK could induce starch to form a more compact structure than AC, leading to better nutritional functions. When the addition of HK/AC reached 8%, the resistant starch content could reach 26% and 19.8%, respectively. Meanwhile, the glucose dialysis retardation index could increase to 17.2% and 14.8%, respectively, and the sodium cholate-binding capacity could increase to 33.1 mg g-1 and 21.8 mg g-1, respectively. These results demonstrated that UHPH with lignans' molecular interaction could be beneficial for controlling the nutritional functions of starch products with the desired digestibility.
Collapse
Affiliation(s)
- Tianli Guo
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hai He
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
30
|
Mehta D, Shivhare US, Yadav SK. A statistical and neural network-assisted sustainable integrated process-based on ‘zero solid waste’ for the extraction of polyphenols, dietary fiber and xylooligosaccharide from de-oiled rice and corn bran. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
A comparative study of dietary fiber content, In vitro starch digestibility and cooking quality characteristics of pigmented and non–pigmented traditional and improved rice (Oryza sativa L.). Food Res Int 2022; 157:111389. [DOI: 10.1016/j.foodres.2022.111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
|
32
|
The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingiiHu. fruits. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Eng HY, Mohd Rozalli NH. Rice bran and its constituents: Introduction and potential food uses. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Yi Eng
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Minden 11800 Pulau Pinang Malaysia
| | - Norazatul Hanim Mohd Rozalli
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Minden 11800 Pulau Pinang Malaysia
| |
Collapse
|
34
|
Hu K, Chen D, Sun Z. Structures, physicochemical properties, and hypoglycemic activities of soluble dietary fibers from white and black glutinous rice bran: a comparative study. Food Res Int 2022; 159:111423. [DOI: 10.1016/j.foodres.2022.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
35
|
Braga‐Souto RN, Teixeira MG, Borges LA, Oliveira MLP, Soares JF, Paiva CL, Lima JP. Improvement of sensorial and technological characteristics of chocolate cakes with buriti fruit by‐product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Lara Aguiar Borges
- Department of Food Engineering and Technology School of Food Engineering, University of Campinas (UNICAMP) São Paulo Brazil
| | | | - José Fábio Soares
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| | - Caroline Liboreiro Paiva
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| | - Juliana Pinto Lima
- Institute of Agricultural Sciences Federal University of Minas Gerais (UFMG) Montes Claros Brazil
| |
Collapse
|
36
|
Fayaz G, Soleimanian Y, Mhamadi M, Turgeon SL, Khalloufi S. The applications of conventional and innovative mechanical technologies to tailor structural and functional features of dietary fibers from plant wastes: A review. Compr Rev Food Sci Food Saf 2022; 21:2149-2199. [DOI: 10.1111/1541-4337.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/04/2021] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Goly Fayaz
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Yasamin Soleimanian
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Mmadi Mhamadi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| | - Sylvie L. Turgeon
- Institute of Nutrition and Functional Foods Laval University Québec Canada
- Food Science Department Laval University Québec Canada
| | - Seddik Khalloufi
- Soils Science and Agri‐Food Engineering Department Laval University Québec Canada
- Institute of Nutrition and Functional Foods Laval University Québec Canada
| |
Collapse
|
37
|
Jaichakan P, Thongsook T, Nakphaichit M, Wattanasiritham LS, Phongthai S, Pattarapisitorn A, Utama‐ang N, Laokuldilok T, Klangpetch W. Xylobiose and Xylotriose Production from Alkali Soluble Defatted Rice Bran Arabinoxylan Using Endoxylanase from
Neocallimastix partriciarum. STARCH-STARKE 2022. [DOI: 10.1002/star.202100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pannapapol Jaichakan
- Department of Agro‐Industry Faculty of Agriculture Natural Resources and Environment Naresuan University Phitsanulok 65000 Thailand
| | - Tipawan Thongsook
- Department of Agro‐Industry Faculty of Agriculture Natural Resources and Environment Naresuan University Phitsanulok 65000 Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | | | - Suphat Phongthai
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Research Center for Development of Local Lanna Rice and Rice Products Chiang Mai University Chiang Mai 50200 Thailand
| | | | - Niramon Utama‐ang
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of High Value Products from Thai rice and Plants for Health Chiang Mai University Chiang Mai 50100 Thailand
- Cluster of Innovative Food and Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
| |
Collapse
|
38
|
Liu Y, Ao H, Zheng J, Liang Y, Ren D. Improved functional properties of dietary fiber from
Rosa roxburghii
Tratt residue by steam explosion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People’s Republic of China
| | - Huan‐ping Ao
- Guizhou Hongcai Gather Agriculture Investment Co., Ltd Guizhou People’s Republic of China
| | - Jia‐Xin Zheng
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People’s Republic of China
| | - Ya‐xin Liang
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People’s Republic of China
| | - Di‐Feng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing People’s Republic of China
| |
Collapse
|
39
|
The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Sapwarobol S, Saphyakhajorn W, Astina J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr Metab Insights 2021; 14:11786388211058559. [PMID: 34898989 PMCID: PMC8655829 DOI: 10.1177/11786388211058559] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rice bran (RB) is a nutrient-rich by-product of the rice milling process. It consists of pericarp, seed coat, nucellus, and aleurone layer. RB is a rich source of a protein, fat, dietary fibers, vitamins, minerals, and phytochemicals (mainly oryzanols and tocopherols), and is currently mostly used as animal feed. Various studies have revealed the beneficial health effects of RB, which result from its functional components including dietary fiber, rice bran protein, and gamma-oryzanol. The health effects of RB including antidiabetic, lipid-lowering, hypotensive, antioxidant, and anti-inflammatory effects, while its consumption also improves bowel function. These health benefits have drawn increasing attention to RB in food applications and as a nutraceutical product to mitigate metabolic risk factors in humans. This review therefore focuses on RB and its health benefits.
Collapse
Affiliation(s)
- Suwimol Sapwarobol
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Saphyakhajorn
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Junaida Astina
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
41
|
Zadeike D, Vaitkeviciene R, Degutyte R, Bendoraitiene J, Rukuiziene Z, Cernauskas D, Svazas M, Juodeikiene G. A comparative study on the structural and functional properties of water‐soluble and alkali‐soluble dietary fibres from rice bran after hot‐water, ultrasound, hydrolysis by cellulase, and combined pre‐treatments. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Ruta Vaitkeviciene
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Rimgaile Degutyte
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Zaneta Rukuiziene
- Centre of Laboratories Faculty of Mechanical Engineering and Design Kaunas University of Technology Studentu str. 56 Kaunas LT‐51424 Lithuania
| | - Darius Cernauskas
- Food Institute of Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Mantas Svazas
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology Kaunas University of Technology Radvilenu rd. 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
42
|
Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Cao TC, Nguyen TP, Nguyen SN, Tran TTT, Ton NMN, Le VVM. Cellulase-treated deoiled rice bran: effects of treatment conditions on dietary fiber content and utilization for formulation of cookies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Zheng Y, Wang X, Tian H, Li Y, Shi P, Guo W, Zhu Q. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Res Int 2021; 147:110565. [PMID: 34399541 DOI: 10.1016/j.foodres.2021.110565] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
To improve the adsorption capacities and hypoglycemic properties of millet bran dietary fibre (MBDF), four methods including acrylate-grafting, carboxymethylation, heat assisted with cellulase hydrolysis, and enzymatic hydrolysis combined with acrylate-grafting were used. The results demonstrated that all carboxymethylation, acrylate-grafting, and enzymatic hydrolysis combined with acrylate-grafting improved soluble dietary fibre content, water swelling ability and α-amylase-inhibition activity of MBDF. They also increased oil, cholesterol, sodium cholate, copper ion and nitrite ion adsorption capacities of MBDF. But carboxymethylation, acrylate-grafting and enzymatic hydrolysis combined with acrylate-grafting decreased polyphenol content, glucose-binding ability and glucose dialysis retardation index of MBDF (p < 0.05). The heat assisted with cellulase hydrolysis increased soluble dietary fibre content, polyphenol content, sodium cholate-adsorption capacity, and hypoglycemic properties of MBDF including glucose-binding ability, glucose dialysis retardation index and α-amylase-inhibition activity; but reduced adsorption capacity of MBDF on cholesterol and copper ion (p < 0.05). Changes in structure of MBDF caused by these modification methods were proved by the results of scanning electron microscopy and Fourier-transformed infrared spectroscopy analysis. These results highlight potential applications of these modified MBDFs as ingredients of hypolipidemic and hypoglycemic foods, or scavenger of nitrite and copper ion.
Collapse
Affiliation(s)
- Yajun Zheng
- College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Xueying Wang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Hailong Tian
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Yan Li
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Panqi Shi
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Wenyuan Guo
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Qingqing Zhu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
46
|
Liu T, Wang K, Xue W, Wang L, Zhang C, Zhang X, Chen Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Nevara GA, Muhammad SKS, Zawawi N, Mustapha NA, Karim R. Dietary Fiber: Fractionation, Characterization and Potential Sources from Defatted Oilseeds. Foods 2021; 10:754. [PMID: 33918108 PMCID: PMC8066650 DOI: 10.3390/foods10040754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/30/2023] Open
Abstract
Dietary fiber (DF) has wide applications, especially in the food and pharmaceutical industries due to its health-promoting effects and potential techno-functional properties in developing functional food products. There is a growing interest in studies related to DF; nevertheless, there is less focus on the fractionation and characterization of DF. The characteristics of DF fractions explain their functionality in food products and provide clues to their physiological effects in food and pharmaceutical industrial applications. The review focuses on a brief introduction to DF and methods for its fractionation. It discusses the characterization of DF in terms of structural, physicochemical and rheological properties. The potential sources of DF from selected defatted oilseeds for future studies are highlighted.
Collapse
Affiliation(s)
- Gita Addelia Nevara
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.A.N.); (S.K.S.M.); (N.Z.)
- Department of Nutrition, Universitas Mohammad Natsir Bukittinggi, Sumatera Barat 26100, Indonesia
| | - Sharifah Kharidah Syed Muhammad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.A.N.); (S.K.S.M.); (N.Z.)
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (G.A.N.); (S.K.S.M.); (N.Z.)
| | - Nor Afizah Mustapha
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
48
|
Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem 2020; 342:128352. [PMID: 33268168 DOI: 10.1016/j.foodchem.2020.128352] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Rice bran dietary fiber (ERBDF) subjected to pre-water-washing and complex enzyme treatment using heat-stable α-amylase, alcalase, and glucoamylase had significantly higher (p < 0.05) proportions of cellulose, hemicellulose, lignin, and lower proportions of lipid, protein, and starch than rice bran dietary fiber subjected to complex enzyme treatment without pre-water-washing. Cellulase modification of ERBDF significantly decreased (p < 0.05) cellulose, hemicellulose, starch, and protein contents while the relative lignin content increased. Cellulase modification significantly improved (p < 0.05) water-holding capacity, oil-holding capacity, swelling capacity, cholesterol absorption capacity, and glucose adsorption capacity, while decreasing the emulsifying capacity and glucose dialysis retardation index. The changes of physicochemical and functional properties of fiber samples after cellulase modification were attributed to the increased porosity of the fiber surface, greater exposure of binding sites caused by reduced crystallinity, and changes to the chemical composition.
Collapse
|
49
|
Effect of enzyme supplementation and extruding process on the digestibility of nutrients and phenolic acids of defatted rice bran based diets in ileal-cannulated growing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Yang K, Yang Z, Wu W, Gao H, Zhou C, Sun P, Wu C, Xia Q, Chen J. Physicochemical properties improvement and structural changes of bamboo shoots ( Phyllostachys praecox f . Prevernalis) dietary fiber modified by subcritical water and high pressure homogenization: a comparative study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3659-3666. [PMID: 32904000 PMCID: PMC7447742 DOI: 10.1007/s13197-020-04398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
In presented study, the effects of subcritical water (SW) and high pressure homogenization (HPH) treatments on the physicochemical and structural characteristics of dietary fibers (DFs) from bamboo shoots (Phyllostachys praecox f. Prevernalis) were investigated. The soluble dietary fiber (SDF) content was dramatically increased in SW and HPH treated DFs. Compared with HPH, SW modification enhanced higher physicochemical properties including water holding capacity (WHC), oil holding capacity (OHC) and swelling capacity (SC) of DFs. The abilities of DFs to absorb cholesterol and nitrite ions were both greatly increased after treatments. The results of Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) showed that the structure of DFs were changed by SW and HPH. In conclusion, SW treatment showed better effects on improvement of physicochemical properties of bamboo shoot DFs than that of HPH, and the modified DFs could be a potential new functional foods or food additives.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150 USA
| | - Zhenhuan Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Cheng Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716-2150 USA
| | - Qile Xia
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| | - Jianbing Chen
- Key Laboratory of Post-Harvest Handling of Fruits, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Ministry of Agriculture, Hangzhou, 310021 People’s Republic of China
| |
Collapse
|