1
|
Girigoswami A, Deepika B, Pandurangan AK, Girigoswami K. Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:59-68. [PMID: 38214666 DOI: 10.1080/21691401.2023.2301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| |
Collapse
|
2
|
Kaviyarasu K. Investigate the biological activities of Lawsonia inermis extract synthesized from TiO 2 doped graphene oxide nanoparticles. Microsc Res Tech 2024; 87:2425-2436. [PMID: 38845108 DOI: 10.1002/jemt.24625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 09/02/2024]
Abstract
Nanoparticles of titanium dioxide (TiO2) were made by reacting graphene oxide (GO) with Lawsonia inermis leaf extract. X-ray diffraction (XRD) analysis revealed crystalline TiO2 doped GO nanoparticles composed of a variety of anatase phases. Initially, UV-vis spectroscopy was performed to confirm the biogenesis of TiO2 doped GO nanoparticles (NP's). Using SEM, the research showed that the biosynthesized TiO2 nanoparticles were mostly spherical, polydispersed, and of a nanoscale size. Because of the energy dispersive X-ray spectroscopy (EDS) pattern, distinct and robust peaks of titanium (Ti) and oxygen (O) were observed, which were supportive of the formation of TiO2 nanoparticles. By using fourier transform infrared (FTIR) spectroscopy, it was demonstrated that terpenoids, flavonoids, and proteins are involved in the biosynthesis and production of TiO2 doped GO nanoparticles. 2,2-diphenylpicrylhydrazyl (DPPH) assays were conducted to evaluate the free radical scavenging activity of TiO2 doped GO nanoparticles. Additionally, the TiO2 doped GO NPs had enhanced antioxidant activity when compared with the TiO2 matrix. A series of pure TiO2 and TiO2 doped GO nanoparticles (5, 10, 50, and 100 mg/mL) solutions were investigated for their antibacterial activities. In the current study, zebrafish embryos exposed to pure TiO2 and TiO2 doped GO nanoparticles were toxic and suffered a low survival rate based on concentration. During photocatalysis, O2˙ and ˙OH radicals are rapidly produced because of the reactive species trapping experiment. It was estimated that pure TiO2 nanoparticles and those doped with GO were 80% effective in degrading methyl orange(MO) after 120 min, respectively. RESEARCH HIGHLIGHTS: The UV-vis absorption spectra showed a maximum absorbance peak at 290 nm. SEM, the pure TiO2 doped GO NPs exhibit agglomeration and spherical shape. When tested in zebrafish embryos, TiO2 NPs are toxic at high concentrations. GO nanoparticles showed better antioxidant activity. NPs exhibited concentration dependent antioxidative activity.
Collapse
Affiliation(s)
- K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate Studies, University of South Africa (UNISA), Johannesburg, South Africa
| |
Collapse
|
3
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
4
|
Murthy AN, Rachitha P, Sagar N, B Raghavendra V, Jhanani GK, M R, Arumugam N, I Almansour A, Sathiyamoorthi E, Lee J. Remediation of phenanthrene by highly efficient CdS-SnS photocatalyst and its cytotoxic assessments. CHEMOSPHERE 2024; 355:141790. [PMID: 38554870 DOI: 10.1016/j.chemosphere.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Cadmium sulfide-tin sulfide (CdS-SnS) nanoparticles are a novel kind of photocatalyst. These CdS-SnS nanoparticles are synthesized and characterized using UV-Vis, FT-IR, XRD, SEM-EDX, and DLS techniques, to understand their size distribution, crystalline nature, morphology, shape, optical properties, and elemental composition. This research offers insight into the efficient photocatalytic degradation of Phenanthrene (PHE) using CdS-SnS. The CdS-SnS NPs as photocatalyst can effectively photodegrade the polycyclic aromatic hydrocarbons (PAH) such as phenanthrene under simulated solar and UV light. UV-vis spectra of these nanoparticles exhibit peaks at 365 and 546 cm-1 respectively, the mean size of the CdS-SnS NPs in DLS is determined to be 78 nm. The CdS-SnS stretching frequency was observed at wave numbers below 700 cm-1, the absorption peak at 1123 cm-1 indicates the presence of C-N stretch or CS bond of thiourea, while the peak at 1350.38 cm-1 corresponds to the tris-amine C-N stretch in FT-IR. Additionally, the peaks observed at 2026 cm-1 indicate the presence of isothiocyanate (NCS). 1456.23 cm-1 represents the asymmetric scissor deformation vibration. EDAX revealed the presence of elemental Cd and Sn oxides. The antimicrobial studies showed that the CdS-SnS NPs at the concentration of 150 μg/mL, exhibit maximum inhibition (15 ± 1.25 mm) against the strains Proteus mirabilis followed by Staphylococcus epidermidis and Clostridium spp. Among fungal strains Colletotrichum spp. exhibits the maximum zone of inhibition (9 ± 0.25). This research also observed the cytotoxic effects of CdS-SnS NPs on HepG2 and ZF4 cells. HepG2 cells exhibited 50% inhibition at 50 μg/mL and 70% inhibition at 100 μg/mL concentrations, while ZF4 cells exhibited 50% inhibition at 50 μg/mL and 78% inhibition at 100 μg/mL concentrations, respectively. The parameters like concentration of PHE, concentration of CdS-SnS NPs, pH, and sources of irradiation on batch adsorption were examined to maximize the efficiency of the photodegradation process.
Collapse
Affiliation(s)
| | - P Rachitha
- P.G. Department of Biotechnology, Teresian College, Siddartha Nagar, Mysore, 570011, India
| | - Niju Sagar
- P.G. Department of Biotechnology, Teresian College, Siddartha Nagar, Mysore, 570011, India
| | - Vinay B Raghavendra
- Sampoorna International Institute of Agri. Science and Horticultural Technology K.B. Doddi, Maddur Tq, Mandya District-562160 Karnataka, India
| | - G K Jhanani
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India.
| | - Rithika M
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ezhaveni Sathiyamoorthi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
5
|
Narayanan M, Srinivasan S, Gnanasekaran C, Ramachandran G, Chelliah CK, Rajivgandhi G, Maruthupandy M, Quero F, Li WJ, Hayder G, Khaled JM, Arunachalam A, Manoharan N. Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties. Microb Pathog 2024; 189:106595. [PMID: 38387848 DOI: 10.1016/j.micpath.2024.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 μg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 μg/mL and 160 μg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 μg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 μg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 μg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.
Collapse
Affiliation(s)
- Mohankumar Narayanan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Suganthi Srinivasan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Govindan Ramachandran
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Chenthis Kanisha Chelliah
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Govindan Rajivgandhi
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad DeChile, Avenida Beauchef 851, 8370456, Santiago, Chile; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad DeChile, Avenida Beauchef 851, 8370456, Santiago, Chile
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Gasim Hayder
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang, 43000, Selangor Darul Ehsan, Malaysia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Natesan Manoharan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
6
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Miu BA, Stan MS, Mernea M, Dinischiotu A, Voinea IC. Pure Epigallocatechin-3-gallate-Assisted Green Synthesis of Highly Stable Titanium Dioxide Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:275. [PMID: 38255442 PMCID: PMC10821086 DOI: 10.3390/ma17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Nanoparticles (NPs) are conventionally produced by using physical and chemical methods that are no longer in alignment with current society's demand for a low environmental impact. Accordingly, green synthesis approaches are considered a potential alternative due to the plant extracts that substitute some of the hazardous reagents. The general mechanism is based on the reducing power of natural products that allows the formation of NPs from a precursor solution. In this context, our study proposes a simple, innovative, and reproducible green approach for the synthesis of titanium dioxide (TiO2 NPs) that uses, for the first time, the major component of green tea (Camellia sinensis)-epigallocatechin-3-gallate (EGCG), a non-toxic, dietary, accessible, and bioactive molecule. The influence of EGCG on the formation of TiO2 NPs was analyzed by comparing the physicochemical characteristics of green synthesized NPs with the chemically obtained ones. The synthesis of bare TiO2 NPs was performed by hydrolysis of titanium isopropoxide in distilled water, and green TiO2 NPs were obtained in the same conditions, but in the presence of a 1 mM EGCG aqueous solution. The formation of TiO2 NPs was confirmed by UV-VIS and FTIR spectroscopy. SEM micrographs showed spherical particles with relatively low diameters. Our findings also revealed that green synthesized NPs were more stable in colloids than the chemically synthesized ones. However, the phytocompound negatively influenced the formation of a crystalline structure in the green synthesized TiO2 NPs. Furthermore, the synthesis of EGCG-TiO2 NPs could become a versatile choice for applications extending beyond photocatalysis, including promising prospects in the biomedical field.
Collapse
Affiliation(s)
- Bogdan Andrei Miu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.A.M.); (A.D.); (I.C.V.)
- Sp@rte Team, Institute of Genetics and Development of Rennes, UMR6290 CNRS, University of Rennes 1, 35042 Rennes, France
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.A.M.); (A.D.); (I.C.V.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.A.M.); (A.D.); (I.C.V.)
| | - Ionela Cristina Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.A.M.); (A.D.); (I.C.V.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
8
|
Bhardwaj H, Khute S, Sahu RK, Jangde RK. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr Drug Metab 2024; 25:248-265. [PMID: 38918986 DOI: 10.2174/0113892002291778240610073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Sulekha Khute
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, 249161, India
| | - Rajendra Kumar Jangde
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
9
|
Hassaan MA, El-Nemr MA, Elkatory MR, Ragab S, Niculescu VC, El Nemr A. Principles of Photocatalysts and Their Different Applications: A Review. Top Curr Chem (Cham) 2023; 381:31. [PMID: 37906318 PMCID: PMC10618379 DOI: 10.1007/s41061-023-00444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human existence and societal growth are both dependent on the availability of clean and fresh water. Photocatalysis is a type of artificial photosynthesis that uses environmentally friendly, long-lasting materials to address energy and environmental issues. There is currently a considerable demand for low-cost, high-performance wastewater treatment equipment. By changing the structure, size, and characteristics of nanomaterials, the use of nanotechnology in the field of water filtration has evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced to become among the most promising techniques in the fields of sustainable energy generation and ecological cleanup. It is environmentally beneficial, cost-effective, and strictly linked to the zero waste discharge principle used in industrial effluent treatment. Owing to the reduction or removal of created unwanted byproducts, the green synthesis of photoactive nanomaterial is more beneficial than chemical synthesis approaches. Furthermore, unlike chemical synthesis methods, the green synthesis method does not require the use of expensive, dangerous, or poisonous ingredients, making it a less costly, easy, and environmental method for photocatalyst synthesis. This work focuses on distinct greener synthesis techniques utilized for the production of new photocatalysts, including metals, metal doped-metal oxides, metal oxides, and plasmonic nanostructures, including the application of artificial intelligence and machine learning to the design and selection of an innovative photocatalyst in the context of energy and environmental challenges. A brief overview of the industrial and environmental applications of photocatalysts is also presented. Finally, an overview and recommendations for future research are given to create photocatalytic systems with greatly improved stability and efficiency.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Safaa Ragab
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Rm. Valcea, 4th Uzinei Street, 240050, Valcea, Romania
| | - Ahmed El Nemr
- Marine Pollution Department, Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, 21556, Alexandria, Egypt.
| |
Collapse
|
10
|
Kaur H, Kumar S, Saini R, Singh PP, Pugazhendhi A. One-pot biogenic synthesis of C. limon/TiO 2 with dual applications as an advance photocatalyst and antimicrobial agent. CHEMOSPHERE 2023:139106. [PMID: 37270043 DOI: 10.1016/j.chemosphere.2023.139106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The present study portrays a facile, cost effective and environmental benign way for preparation of TiO2 nanoparticles utilizing C. limon extract which possesses phytochemicals as reducing and stabilizing agents. Structural characterization by XRD reveals that C. limon/TiO2 NPs exhibits anatase-type tetragonal crystallinity. An average crystallite-size is calculated using Debye Scherrer's method (3.79 nm), Williamson-Hall plot (3.60 nm), and Modified Debye Scherrer plot (3.68 nm) which are very much intercorrelated. The absorption peak at 274 nm (UV-Visible spectrum) corresponds to the bandgap (Eg) value of3.8 eV. The existence of different phytochemicals containing organic groups like N-H, C=O, O-H, has been elucidated from FTIR along with Ti-O bond stretching at wavenumber 780 cm-1. Micro-structural investigations of TiO2 NPs using FESEM and TEM display different geometrical configurations involving spherical, pentagons, hexagons, heptagons and capsule like structures. BET and BJH analysis show mesoporous characteristics of synthesized nanoparticles with specific surface-area (97.6 m2 g-1), pore-volume (0.018322 cm3 g-1), and mean pore-diameter (∼7.5 nm) values. In adsorption studies, the influence of reaction parameters i.e., catalyst dosage and contact-time for removal of Reactive Green dye is explored along with Langmuir and Freundlich models. The highest adsorption capability is ∼219 mg g-1 for green dye. TiO2 displays an excellent photocatalytic efficiency of ∼96% towards the degradation of reactive green dye within 180 min and excellent reusable performance. C. limon/TiO2 is found to have an outstanding performance with quantum yield value of 4.68 × 10-5 molecules photon-1 for Reactive Green dye degradation. Additionally, synthesized nanoparticles have exhibited antimicrobial activity against Gram-positive Staphylococcus aureus (S. aureus) and gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacteria.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physics, Chandigarh University, Gharuan Mohali, 140413, India
| | - Sanjeev Kumar
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India.
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School Engineering, York University, North York, Toronto, Ontario, M3J1P3, Canada
| | - Prit Pal Singh
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | | |
Collapse
|
11
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
12
|
Keskin M, Kaya G, Bayram S, Kurek-Górecka A, Olczyk P. Green Synthesis, Characterization, Antioxidant, Antibacterial and Enzyme Inhibition Effects of Chestnut ( Castanea sativa) Honey-Mediated Silver Nanoparticles. Molecules 2023; 28:molecules28062762. [PMID: 36985734 PMCID: PMC10055715 DOI: 10.3390/molecules28062762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, chestnut honey-based silver nanoparticles (CH-AgNPs) were synthesized at different temperatures (30, 60 and 90 °C) and these nanoparticles were characterized by different techniques such as UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The DPPH free radical scavenging assay was used to determine the antioxidant activity of the obtained nanoparticles. The inhibition effects of these nanoparticles for some clinically important enzymes such as myeloperoxidase and collagenase were investigated. In addition, the disk diffusion method (DDM), agar well diffusion (AWD), and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) techniques were used to determine the antibacterial activity of CH-AgNPs. In honey-based silver nanoparticle production processes using green synthesis, it was determined that the nanoparticle sizes decreased from 55 to 27 nm with an increase in temperature. In addition, it was determined that the rate of inhibition of myeloperoxidase (36.4% to 34.0%) and collagenase enzymes (74.2% to 68.7%) increased with a decrease in particle size. As a result of the antibacterial activity tests, it was observed that CH-AgNPs have antibacterial activity against all target pathogens including Gram-positive and Gram-negative bacteria. The obtained results show that CH-AgNPs produced using chestnut honey have the potential to be used in fields such as medicine, pharmacy and cosmetic technology.
Collapse
Affiliation(s)
- Merve Keskin
- Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik 11100, Türkiye
| | - Gülşen Kaya
- Scientific and Technological Research Center, Inonu University, Malatya 44000, Türkiye
| | - Sinan Bayram
- Vocational School of Health Services, Bayburt University, Bayburt 69000, Türkiye
| | - Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
13
|
Bikiaris ND, Koumentakou I, Samiotaki C, Meimaroglou D, Varytimidou D, Karatza A, Kalantzis Z, Roussou M, Bikiaris RD, Papageorgiou GZ. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers (Basel) 2023; 15:1196. [PMID: 36904437 PMCID: PMC10007491 DOI: 10.3390/polym15051196] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Meimaroglou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Varytimidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Karatza
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Zisimos Kalantzis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Magdalini Roussou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rizos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
| |
Collapse
|
14
|
Gamedze NP, Mthiyane DMN, Babalola OO, Singh M, Onwudiwe DC. Physico-chemical characteristics and cytotoxicity evaluation of CuO and TiO 2 nanoparticles biosynthesized using extracts of Mucuna pruriens utilis seeds. Heliyon 2022; 8:e10187. [PMID: 36033256 PMCID: PMC9404262 DOI: 10.1016/j.heliyon.2022.e10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The green synthesis approach to nanoparticles has been widely received as an alternative to the conventional methods, specifically for applications in areas such as biology, agriculture and medicine, where toxicity is of great concern. In this study, copper oxide (CuO) and titanium oxide (TiO2) nanoparticles (NPs) were synthesized using an aqueous extract of Mucuna pruriens utilis seed. The morphology and structural characterization of the NPs were achieved by using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction (XRD) measurement, while the elemental composition was studied using electron diffraction X-ray spectroscopy (EDS). A monoclinic phase of CuO and anatase phases of TiO2 with high crystallinity were confirmed from the diffraction patterns of the XRD. Both TEM and SEM micrographs of the CuO confirmed short rod-shaped nanostructure, while spherical morphologies were obtained for the TiO2 NPs. The EDS study indicated that the composition of the samples conformed with the identified products in the XRD and attest to the purity of the NPs. The nanoparticles exhibited a dose-dependent profile in MTT cytotoxicity assay with some cell specificity. However, the anticancer potential of these NPs was still lower than that of the standard anticancer drug, 5-fluorouracil.
Collapse
Affiliation(s)
- Nozipho P Gamedze
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Department of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Damian C Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa.,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
15
|
Evaluation of Ultrasonically ZnO Loading Effect on Photocatalytic Self-Cleaning, UV Protection and Antibacterial Activity of Plasma/Citric Acid-Activated Cotton Fabric. NANOMATERIALS 2022; 12:nano12122122. [PMID: 35745460 PMCID: PMC9228709 DOI: 10.3390/nano12122122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/10/2022]
Abstract
Zinc oxide (ZnO) nanoparticles were loaded over non-thermal plasma (P1) and citric acid (P2)-functionalized cotton fabrics using a room temperature sonification process. The cotton samples were pretreated with dielectric barrier discharge (DBD) plasma and citric acid to introduce some reactive moieties on the fabric to enhance the adhesion power of ZnO nanoparticles with an average particle size of 41 nm. The nanoparticles were dispersed homogeneously on the surface of the P1 sample, which enhanced the antibacterial, UV protection and photocatalytic self-cleaning characteristics of ZnO-loaded fabric. The self-cleaning efficiency of P1 and P2 samples was measured to be about 77% and 63%, respectively. The inhibition zones of 5.5 mm and 5.4 mm were produced by sample P1 against E. coli and S. aureusbacteria, respectively, which were slightly higher than the inhibition zones produced by sample P2. The inhibition zone of the samples roughly decreased by 17% after performing 10 wash cycles. The unloaded cotton fabric had a UPF value of 70.02 units and blocking percentage of 70.92% and 76.54% for UVA and UVB radiations, respectively. The UVA-blocking capacity of samples P1 and P2 was 95.27% and 91.22, respectively. Similarly, the UVB blocking capacity was 94.11% and 92.65%, respectively. The pre-coating plasma treatment was found to be helpful in improving the UV-blocking ability of ZnO-loaded cotton fabric.
Collapse
|
16
|
Govindasamy GA, Mydin RBSMN, Harun NH, Effendy WNFWE, Sreekantan S. Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO2 nanocomposites. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Verma V, Al-Dossari M, Singh J, Rawat M, Kordy MGM, Shaban M. A Review on Green Synthesis of TiO2 NPs: Synthesis and Applications in Photocatalysis and Antimicrobial. Polymers (Basel) 2022; 14:polym14071444. [PMID: 35406317 PMCID: PMC9002645 DOI: 10.3390/polym14071444] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Nanoparticles (NPs) are frequently prepared via a variety of physical and chemical processes. Simpler, sustainable, and cost-effective green synthesis technologies have recently been developed. The synthesis of titanium dioxide nanoparticles (TiO2 NPs) in a green/sustainable manner has gotten a lot of interest in the previous quarter. Bioactive components present in organisms such as plants and bacteria facilitate the bio-reduction and capping processes. The biogenic synthesis of TiO2 NPs, as well as the different synthesis methods and mechanistic perspectives, are discussed in this review. A range of natural reducing agents including proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. The physics of antibacterial and photocatalysis applications were also thoroughly discussed. Finally, we provide an overview of current research and future concerns in biologically mediated TiO2 nanostructures-based feasible platforms for industrial applications.
Collapse
Affiliation(s)
- Vishal Verma
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (V.V.); (M.R.)
| | - Mawaheb Al-Dossari
- Department of Physics, Dhahran Aljanoub, King Khalid University, Abha 61421, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
- Correspondence: or
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (V.V.); (M.R.)
| | - Mohamed G. M. Kordy
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.G.M.K.); (M.S.)
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.G.M.K.); (M.S.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| |
Collapse
|
18
|
ur Rehman K, Zaman U, Tahir K, Khan D, Khattak NS, Khan SU, Khan WU, Nazir S, Bibi R, Gul R. A Coronopus didymus based eco-benign synthesis of Titanium dioxide nanoparticles (TiO2 NPs) with enhanced photocatalytic and biomedical applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:673. [PMID: 35215000 PMCID: PMC8878231 DOI: 10.3390/nano12040673] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023]
Abstract
The key pathways for synthesizing nanoparticles are physical and chemical, usually expensive and possibly hazardous to the environment. In the recent past, the evaluation of green chemistry or biological techniques for synthesizing metal nanoparticles from plant extracts has drawn the attention of many researchers. The literature on the green production of nanoparticles using various metals (i.e., gold, silver, zinc, titanium and palladium) and plant extracts is discussed in this study. The generalized mechanism of nanoparticle synthesis involves reduction, stabilization, nucleation, aggregation and capping, followed by characterization. During biosynthesis, major difficulties often faced in maintaining the structure, size and yield of particles can be solved by monitoring the development parameters such as temperature, pH and reaction period. To establish a widely accepted approach, researchers must first explore the actual process underlying the plant-assisted synthesis of a metal nanoparticle and its action on others. The green synthesis of NPs is gaining attention owing to its facilitation of the development of alternative, sustainable, safer, less toxic and environment-friendly approaches. Thus, green nanotechnology using plant extract opens up new possibilities for the synthesis of novel nanoparticles with the desirable characteristics required for developing biosensors, biomedicine, cosmetics and nano-biotechnology, and in electrochemical, catalytic, antibacterial, electronics, sensing and other applications.
Collapse
Affiliation(s)
- Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohammad Shariq
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohd Asif
- Regional Ayurveda Research Institute, CCRAS, Ranikhet 263645, India;
| | - Mansoor Ahmad Siddiqui
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Pieter Malan
- Unit for Environmental Sciences and Management, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| |
Collapse
|
20
|
Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating its Photocatalytic and In Vitro Antimicrobial Activity. Catalysts 2022. [DOI: 10.3390/catal12020181] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Here, we present an innovative and creative sustainable technique for the fabrication of titania (TiO2) using Acorus calamus (A. calamus) leaf extract as a new biogenic source, as well as a capping and reducing agent. The optical, structural, morphological, surface, and thermal characteristics of biosynthesized nanoparticles were investigated using UV, FTIR, SEM, DLS, BET, and TGA-DSC analysis. The phase formation and presence of nanocrystalline TiO2 were revealed by the XRD pattern. FTIR analysis revealed conjugation, as well as the presence of Ti–O and O–H vibrational bands. The nanoparticles were noticed to be globular, with an average size of 15–40 nm, according to the morphological analysis, and the impact of size quantification was also investigated using DLS. The photocatalytic activity of bare, commercial P-25 and biosynthesized TiO2 (G-TiO2) nanoparticles in aqueous solution of rhodamine B (RhB) dye was investigated under visible light irradiation at different time intervals. The biosynthesized TiO2 nanoparticles exhibited strong photocatalytic activity, degrading 96.59% of the RhB dye. Different kinetic representations were utilized to analyze equilibrium details. The pseudo-first-order reaction was best suited with equilibrium rate constant (K1) and regression coefficients (R2) values 3.72 × 10−4 and 0.99, respectively. The antimicrobial efficacy of the prepared nanoparticles was investigated using the disc diffusion technique. Further, biosynthesized TiO2 showed excellent antimicrobial activity against the selected gram-positive staining (B. subtilis, S. aureus) over gram-negative (P. aeruginosa, E. coli) pathogenic bacteria in comparison to bare TiO2.
Collapse
|
21
|
Vembu S, Vijayakumar S, Nilavukkarasi M, Vidhya E, Punitha V. Phytosynthesis of TiO2 nanoparticles in diverse applications: What is the exact mechanism of action? SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Wang Q, Mei S, Manivel P, Ma H, Chen X. Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Curr Res Food Sci 2022; 5:868-877. [PMID: 35647560 PMCID: PMC9133588 DOI: 10.1016/j.crfs.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Plant extracts have been widely used to green synthesize zinc oxide nanoparticles (ZnO NPs); however, how the combination of ultrasound and coffee leaf extract (CLE) affects the structure characteristics and the yield of ZnO NPs remains unknown. In this study, we used CLE to green synthesize ZnO NPs with the help of ultrasound. The highest yield (43.59 ± 0.13%) of ZnO NPs was obtained under the optimal processing conditions of pH = 8.0, mass ratio of coffee leaves to C4H6O4Zn•2H2O = 1.71, ultrasound time = 10 min, ultrasound frequency = 28/40 kHz, ultrasound power = 180 W, and synthesis temperature = 30 °C. The as-synthesized ZnO NPs were characterized by UV–Vis, SEM, EDX, TEM, FTIR, XRD, and zeta potential analyses. SEM and TEM analyses revealed that ZnO NPs synthesized using ultrasound-assisted method were spherical with an average particle size of 8.29 ± 1.38 nm, which was smaller than ZnO NPs synthesized without ultrasound treatment (10.48 ± 1.57 nm) and the chemically synthesized ZnO NPs (17.15 ± 2.84 nm). HPLC analysis showed that the phenolic compounds in coffee leaves, especially 5-CQA, were the main reductants and chelating agents for ZnO NPs synthesis. The synthesized ZnO NPs were used to load mangiferin, which was control released under pH 7.4 over 132 h. Our study provides an easy and eco-friendly method using CLE assisted with ultrasound for green synthesis of ZnO NPs which can be used as nanocarriers to control release of mangiferin. Ultrasound increased the yield of ZnO NPs synthesized using coffee leaf extract. Ultrasound reduced the particle size and increased the stability of ZnO NPs. 5-CQA was the main reductant for ZnO NPs synthesis. Caffeine and trigonelline were less potent reductants for ZnO NPs synthesis. Mangiferin loaded ZnO NPs can achieve long-term controlled release at pH 7.4.
Collapse
|
23
|
Yogesh Kumar K, Prashanth M, Alduaij O, Yousef TA, Abualnaja KM, Raghu M. Mentha arvensis mediated green synthesis of platinum doped TiO2 nanocomposite for enhanced anti-cancer and photocatalytic degradation activity: Insights from molecular docking and DFT studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Ilyas M, Waris A, Khan AU, Zamel D, Yar L, Baset A, Muhaymin A, Khan S, Ali A, Ahmad A. Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Ramasamy K, Dhavamani S, Natesan G, Sengodan K, Sengottayan SN, Tiwari M, Shivendra Vikram S, Perumal V. A potential role of green engineered TiO 2 nanocatalyst towards enhanced photocatalytic and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41207-41223. [PMID: 33782825 DOI: 10.1007/s11356-021-13530-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrates a simple protocol for phytofabrication of titanium dioxide nanoparticles (TiO2NPs) wrapped with bioactive molecules from Ludwigia octovalvis leaf extract and their characterization by UV-visible absorption spectroscopy, Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectrum (XPS), and diffuse reflectance spectrum (DRS). The bandgap energy of pure green engineered TiO2 nanoparticles was determined by DRS analysis. The XPS analysis confirmed the purity of the TiO2 nanoparticles. Results show that the synthesized TiO2NPs were spherical in shape with the size ranged from 36 to 81 nm. The green engineered titanium oxide nanocatalyst exhibited enhanced rate of photocatalytic degradation of important textile toxic dyes namely crystal violet (93.1%), followed by methylene blue (90.6%), methyl orange (76.7%), and alizarin red (72.4%) after 6-h exposure under sunlight irradiation. Besides, this study determines the antimicrobial efficiency of TiO2NPs (25 μl and 50 μl), leaf extract (25 μl), and antibiotic (25 μl) against clinically isolated human pathogenic bacterial strains namely Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus epidermidis, and Escherichia coli. Results show that maximum antibacterial activity with nanotitania treatment noticed was 21.6 and 18.3-mm inhibition in case of S. epidermis and P. aeruginosa, respectively. Enhanced rate of antibiofilm activity towards S. aureus and K. pneumoniae was also observed with TiO2NPs exposure. The biomolecule loaded TiO2NPs exhibited the fastest bacterial deactivation dynamics towards gram-negative bacteria (E. coli), with a complete bacterial inactivation within 105-min exposure. Interestingly, anticancer activity result indicates that percentage of human cervical carcinoma cell (HeLa) viability was negatively correlated with TiO2NPs doses used. The AO/EtBr fluorescent staining result exhibited the occurrence of more apoptosis (dead cells) of HeLa cells due to the exposure of TiO2NPs. Altogether, the present study clearly showed that biomolecules wrapped nanotitania could be used as effective and promising compound for enhanced photocatalytic and biomedical applications in the future.
Collapse
Affiliation(s)
- Kawsalya Ramasamy
- Department of Biotechnology, Periyar University, Salem, TN, 636011, India
| | | | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore, TN, 624 046, India
| | - Karthik Sengodan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Senthil-Nathan Sengottayan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, TN, 627 412, India
| | - Manish Tiwari
- CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahi Shivendra Vikram
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, 19104-4495, USA
| | | |
Collapse
|
27
|
Nabi G, Majid A, Riaz A, Alharbi T, Arshad Kamran M, Al-Habardi M. Green synthesis of spherical TiO2 nanoparticles using Citrus Limetta extract: Excellent photocatalytic water decontamination agent for RhB dye. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108618] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Breast Cancer Inhibition by Biosynthesized Titanium Dioxide Nanoparticles Is Comparable to Free Doxorubicin but Appeared Safer in BALB/c Mice. MATERIALS 2021; 14:ma14123155. [PMID: 34201266 PMCID: PMC8229371 DOI: 10.3390/ma14123155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a global health burden prompting affordable, target-oriented, and safe chemotherapeutic agents to reduce its incidence rate worldwide. In this study, a rapid, cost-effective, and green synthesis of titanium dioxide (TiO2) nanoparticles (NPs) has been carried out; Ex vivo and in vivoevaluation of their safety and anti-tumor efficacy compared to doxorubicin (DOX), a highly efficient breast anti-cancer agent but limited by severe cardiotoxicity in many patients.Thereby,TiO2 NPs were eco-friendly synthetized using aqueous leaf extract of the tropical medicinal shrub Zanthoxylum armatum as a reducing agent. Butanol was used as a unique template. TiO2 NPs were physically characterized by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) as routine state-of-the art techniques. The synthesized TiO2 NPs were then evaluated for their cytotoxicity (by MTT, FACS, and oxidative stress assays) in 4T1 breast tumor cells, and their hemocompatibility (by hemolysis assay). In vivo anti-tumor efficacy and safety of the TiO2 NPs were further assessed using subcutaneous 4T1 breast BALB/c mouse tumor model.The greenly prepared TiO2 NPs were small, spherical, and crystalline in nature. Interestingly, they were hemocompatible and elicited a strong DOX-like concentration-dependent cytotoxicity-induced apoptosis both ex vivo and in vivo (with a noticeable tumor volume reduction). The underlying molecular mechanism was, at least partially, mediated through reactive oxygen species (ROS) generation (lipid peroxidation). Unlike DOX (P < 0.05), it is important to mention that no cardiotoxicity or altered body weight were observed in both the TiO2 NPs-treated tumor-bearing mouse group and the PBS-treated mouse group (P > 0.05). Taken together, Z. armatum-derived TiO2 NPs are cost-effective, more efficient, and safer than DOX. The present findings shall prompt clinical trials using green TiO2 NPs, at least as a possible alternative modality to DOX for effective breast cancer therapy.
Collapse
|
29
|
Ikram M, Javed B, Hassan SWU, Satti SH, Sarwer A, Raja NI, Mashwani ZUR. Therapeutic potential of biogenic titanium dioxide nanoparticles: a review on mechanistic approaches. Nanomedicine (Lond) 2021; 16:1429-1446. [PMID: 34085534 DOI: 10.2217/nnm-2021-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biogenic titanium dioxide nanoparticles have unique size, shape and biochemical functional corona that embellish them with the potential to perform therapeutic actions such as anticancer, antimicrobial, antioxidant, larvicidal and photocatalysis by adopting various mechanistic or physiological approaches at the molecular level. We have provided a detailed overview of some of these physiological mechanisms, including disruption of the electron transport chain, DNA fragmentation, mitochondrial damage, induction of apoptosis, disorganization of the plasma membrane, inhibition of ATP synthase activity, suspension of cellular signaling pathways and inhibition of enzymatic activity. The biogenic synthesis of customized titanium dioxide nanoparticles has future application potentials to do breakthroughs in the pharmaceutical sectors to advance precision medicine and to better explain the disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Bilal Javed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Syed Wajeeh Ul Hassan
- Department of General Medicine, Faisalabad Medical University, Faisalabad, Punjab 38000, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Abdullah Sarwer
- Department of Internal Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab 50700, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab 46300, Pakistan
| |
Collapse
|
30
|
Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Gebreslassie YT, Gebretnsae HG. Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications. NANOSCALE RESEARCH LETTERS 2021; 16:97. [PMID: 34047873 PMCID: PMC8163898 DOI: 10.1186/s11671-021-03555-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
Nanotechnology has become the most promising area of research with its momentous application in all fields of science. In recent years, tin oxide has received tremendous attention due to its fascinating properties, which have been improved with the synthesis of this material in the nanometer range. Numerous physical and chemical methods are being used these days to produce tin oxide nanoparticles. However, these methods are expensive, require high energy, and also utilize various toxic chemicals during the synthesis. The increased concerns related to human health and environmental impact have led to the development of a cost-effective and environmentally benign process for its production. Recently, tin oxide nanoparticles have been successfully synthesized by green methods using different biological entities such as plant extract, bacteria, and natural biomolecules. However, industrial-scale production using green synthesis approaches remains a challenge due to the complexity of the biological substrates that poses a difficulty to the elucidations of the reactions and mechanism of formations that occur during the synthesis. Hence, the present review summarizes the different sources of biological entities and methodologies used for the green synthesis of tin oxide nanoparticles and the impact on their properties. This work also describes the advances in the understanding of the mechanism of formation reported in the literature and the different analytical techniques used for characterizing these nanoparticles.
Collapse
Affiliation(s)
- Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, P.O. Box 50, Adigrat, Ethiopia.
| | - Henok Gidey Gebretnsae
- African Chair in Nanoscience and Nanotechnology, College of Graduate Studies, UNESCO-UNISA, Muckleneuk ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network, Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
32
|
Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111978. [PMID: 33561774 DOI: 10.1016/j.ecoenv.2021.111978] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 05/20/2023]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100 Vehari, Pakistan
| | | |
Collapse
|
33
|
|
34
|
Bio-fabrication of titanium oxide nanoparticles from Ochradenus arabicus to obliterate biofilms of drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot infections. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01630-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
36
|
Manimaran K, Murugesan S, Ragavendran C, Balasubramani G, Natarajan D, Ganesan A, Seedevi P. Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01888-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Green Synthesis of Silver Nanoparticles from Caesalpinia pulcherrima Leaf Extract and Evaluation of Their Antimicrobial, Cytotoxic and Genotoxic Potential (3-in-1 System). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01532-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Kanniah P, Radhamani J, Chelliah P, Muthusamy N, Joshua Jebasingh Sathiya Balasingh E, Reeta Thangapandi J, Balakrishnan S, Shanmugam R. Green Synthesis of Multifaceted Silver Nanoparticles Using the Flower Extract of
Aerva lanata
and Evaluation of Its Biological and Environmental Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.201903228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paulkumar Kanniah
- Department of BiotechnologyManonmaniam Sundaranar University Tirunelveli, Tamil Nadu India
| | - Jila Radhamani
- Department of BiotechnologyManonmaniam Sundaranar University Tirunelveli, Tamil Nadu India
| | - Parvathiraja Chelliah
- Department of PhysicsManonmaniam Sundaranar University Tirunelveli, Tamil Nadu India
| | - Natarajan Muthusamy
- Department of BiotechnologyManonmaniam Sundaranar University Tirunelveli, Tamil Nadu India
| | | | - Jesi Reeta Thangapandi
- Department of BiotechnologyManonmaniam Sundaranar University Tirunelveli, Tamil Nadu India
| | | | - Rajeshkumar Shanmugam
- Department of PharmacologySaveetha Dental College and Hospitals, SIMATS Chennai 600077, Tamil Nadu India
| |
Collapse
|
39
|
Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111667. [DOI: 10.1016/j.jphotobiol.2019.111667] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
|
40
|
Rao TN, Riyazuddin, Babji P, Ahmad N, Khan RA, Hassan I, Shahzad SA, Husain FM. Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO 2) spherical nanoparticles: Assessment of its antimicrobial and anticancer activity. Saudi J Biol Sci 2019; 26:1385-1391. [PMID: 31866742 PMCID: PMC6904800 DOI: 10.1016/j.sjbs.2019.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Current exanimation reports, green fabrication of silver doped TiO2 nanoparticles (Ag/TiO2) using aqueous extract of Acacia nilotica as bio-reductant and assess its potential as antimicrobial and anticancer agent. The obtained spherical Ag/TiO2 were characterized by various analytical techniques including FTIR, (XRD), (FE-SEM EDS), and (TEM). Synthesized Ag/TiO2 demonstrated broad spectrum antibacterial and anticandidal activity. The order of antimicrobial activity was found to be E. coli > C. albicans > MRSA > P. aeruginosa. In addition, cytotoxicity and oxidative stress of Ag/TiO2 nanoparticles in (MCF-7) cells was also investigated. Outcomes of MTT assay showed concentration dependent reduction in cell viability. Further, synthesized NPs reduced the level of glutathione, induced ROS generation and lipid peroxidation in the treated cells. Therefore, it is envisaged that these spherical nanoparticles may be exploited in drug delivery, pharmaceutical, and food industry.
Collapse
Affiliation(s)
- Tentu Nageswara Rao
- Department of School of Material Science and Engineering, Changwon University, South Korea
| | - Riyazuddin
- Department of School of Material Science and Engineering, Changwon University, South Korea
| | - P. Babji
- Department of Physical, Nuclear Chemistry & Chemical Oceanography, Andhra University, India
| | - Naushad Ahmad
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Singh A, Hussain I, Singh NB, Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109410. [PMID: 31284122 DOI: 10.1016/j.ecoenv.2019.109410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 05/27/2023]
Abstract
Cerium oxide nanoparticles (nanoceria) were synthesized by a novel, simple green chemistry procedure using Elaeagnus angustifolia leaf extract as a reducing and capping agent. The crystalline nature of nanoceria was confirmed by XRD analysis. FTIR analysis revealed that phytochemicals are present on the surface of nanoceria. SEM and TEM images revealed that the nanoceria are well dispersed, spherical in shape with a particle size range in between 30 and 75 nm. Thereafter, the effects of various concentrations of cerium oxide (CeO2) and green synthesized nanoceria on growth and metabolism of Solanum lycopersicum (tomato) were investigated. The bio-accumulation of Ce in tomato seedlings was found to be dose dependent and the results showed that with the increase in exposure concentrations, the accumulation of Ce contents in both root and shoots augmented. However, unlike nanoceria treated seedlings, Ce contents in the roots with CeO2 treatments were negligible than that in the shoots at lower concentrations and this suggested the immobilization of Ce in CeO2 treatment at lower concentrations. Nanoceria at 500 and 1000 mg/L resulted in inhibitory effect on growth of test plant as compared to CeO2 component. The exposure of plants to nanoceria and CeO2 has resulted in significant reduction in pigment content, increased LP, EL and H2O2 content. The activities of antioxidant enzymes viz. SOD, CAT, APX and GPX were significantly up regulated on exposure of nanoceria and CeO2. It is concluded that plant exposure with nanoceria at concentrations of 20 and 100 mg/L were more beneficial for growth and metabolism of tomato plants than that of CeO2 at equivalent concentrations.
Collapse
Affiliation(s)
- Ajey Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, Uttar Pradesh, India
| | - Imtiyaz Hussain
- Department of Botany, Government Degree College, Kargil, 194103, Jammu and Kashmir, India.
| | - N B Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Allahabad, 211002, Uttar Pradesh, India.
| | - Himani Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, 225003, Uttar Pradesh, India
| |
Collapse
|
42
|
Green Synthesis of TiO2 Nanoparticle Using Cinnamon Powder Extract and the Study of Optical Properties. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01248-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Rafique M, Jahangir J, Amin BAZ, Bilal Tahir M, Nabi G, Isa Khan M, Khalid NR, Gillani SSA, Sadaf I. Investigation of Photocatalytic and Seed Germination Effects of TiO2 Nanoparticles Synthesized by Melia azedarach L. Leaf Extract. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01173-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Parangi T, Mishra MK. Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development. COMMENT INORG CHEM 2019. [DOI: 10.1080/02603594.2019.1592751] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tarun Parangi
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manish Kumar Mishra
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
45
|
Sidorova DE, Lipasova VA, Nadtochenko VA, Baranchikov AE, Astafiev AA, Svergunenko SL, Koksharova OA, Pliuta VA, Popova AA, Gulin AA, Khmel IA. Synthesis of Silver Nanoparticles with the use of Herbaceous Plant Extracts and Effect of Nanoparticles on Bacteria. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818080069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrobial Effects of Biogenic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1009. [PMID: 30563095 PMCID: PMC6315689 DOI: 10.3390/nano8121009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Abhroop Garg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - V R S S Mokkapati
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| |
Collapse
|
47
|
Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 2018; 102:6799-6814. [DOI: 10.1007/s00253-018-9146-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022]
|
48
|
Thandapani K, Kathiravan M, Namasivayam E, Padiksan IA, Natesan G, Tiwari M, Giovanni B, Perumal V. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO 2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10328-10339. [PMID: 28537028 DOI: 10.1007/s11356-017-9177-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Titanium dioxide nanoparticles are emerging as a biocompatible nanomaterial with multipurpose bioactivities. In this study, titanium dioxide (TiO2) nanoparticles were effectively synthesized using the aqueous leaf extracts of Parthenium hysterophorus prepared by microwave irradiation. TiO2 nanoparticles were fabricated by treating the P. hysterophorus leaf extracts with the TiO4 solution. Biologically active compounds such as alcohols, phenols, alkanes, and fluoroalkanes were involved in bioreduction of TiO4 into TiO2. The formation of green-engineered TiO2 nanoparticles was confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) spectroscopy and further characterized by X-ray diffraction (XRD) studies. UV-vis spectroscopy analysis showed maximum absorbance at 420 nm due to surface plasmon resonance of synthesized TiO2 NPs. FTIR spectrum of the engineered TiO2 NPs showed the presence of bioactive compounds in the leaf extract, which acted as capping and reducing agents. FESEM exhibited an average size of 20-50 nm and a spherical shape of TiO2 NPs. EDX analysis indicated the presence of TiO2 NPs by observing the peaks of titanium ions. XRD results pointed out the crystalline nature of engineered TiO2 NPs. The larvicidal activity of TiO2 NPs was studied on fourth instar larvae of dengue, Zika virus, and filariasis mosquito vectors Aedes aegypti and Culex quinquefasciatus. Antimicrobial efficacy of TiO2 NPs was assessed on clinically isolated pathogens Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and Staphylococcus epidermidis. Besides, we found that TiO2 NPs are able to quickly degrade the industrially harmful pigments methylene blue, methyl orange, crystal violet, and alizarin red dyes under sunlight illumination. Overall, this novel, simple, and eco-friendly approach can be of interest for the control of vector-borne diseases, as well as to formulate new bactericidal agents and to efficiently degrade dye solutions in the polluted areas.
Collapse
Affiliation(s)
- Keerthika Thandapani
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Manikandan Kathiravan
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Elangovan Namasivayam
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Indira Arulselvi Padiksan
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India
| | - Geetha Natesan
- Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manish Tiwari
- Department of Plant Systems Biology, VIB, Ghent University, 9000, Ghent, Belgium
| | - Benelli Giovanni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Venkatachalam Perumal
- Department of Biotechnology, School of Biosciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
49
|
Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0712-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
A Review on Novel Eco-Friendly Green Approach to Synthesis TiO2 Nanoparticles Using Different Extracts. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0812-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|