1
|
Monnot C, Kalomoiri M, MacNicol E, Kim E, Mesquita M, Damberg P, Van Kampen JM, Kay DG, Turkheimer F, Robertson HA, Cash D, Svenningsson P. Early alterations of functional connectivity, regional brain volumes and astrocyte markers in the beta-sitosterol beta-d-glucoside (BSSG) rat model of parkinsonism. Exp Neurol 2025; 385:115118. [PMID: 39716587 DOI: 10.1016/j.expneurol.2024.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
The β-sitosterol-β-ᴅ-glucoside (BSSG) rat model of experimental parkinsonism develops pathological behaviour and motor changes that progress over time. The purpose of this study was to identify early changes in structure and function of the brain of rats treated with BSSG using both structural and resting-state functional MRI. BSSG and non-BSSG rats were fed five days a week for sixteen weeks, then underwent in vivo MRI scans and an assessment of motor performance 2 and 8 weeks later (18 and week 24 from BSSG). Groups of rats were killed at weeks 19 and 25, then imaged again with MR ex vivo, and immunostained for tyrosine hydroxylase (TH). Since BSSG may interfere with cholesterol metabolism in astrocytes, we also studied potential target engagement and measured levels of astrocyte markers GFAP and S100b. At both studied timepoints, functional connectivity (FC) between brain areas with intermediate connectivity was decreased, but brain volumes increased in the BSSG-treated rats. At week 18/19, fine movements were normal, whereas TH and GFAP were decreased in the striatum, but not in the substantia nigra. At week 24/25, fine movements were impaired, and TH was decreased both in the striatum and the substantia nigra and S100b was increased in the substantia nigra. Astrogliosis may contribute to the increased brain volume found after BSSG exposure. Using the BSSG model of parkinsonism, the results demonstrate early functional and structural alterations in MRI imaging that occur before the appearance of detectable motor symptoms.
Collapse
Affiliation(s)
- C Monnot
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Kalomoiri
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - E MacNicol
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - E Kim
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - M Mesquita
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - P Damberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J M Van Kampen
- Neurodyn Life Sciences Inc., Charlottetown, Prince Edward Island, Canada
| | - D G Kay
- Neurodyn Life Sciences Inc., Charlottetown, Prince Edward Island, Canada
| | - F Turkheimer
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK
| | - H A Robertson
- Neurodyn Life Sciences Inc., Charlottetown, Prince Edward Island, Canada
| | - D Cash
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, UK.
| | - P Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2025; 62:3040-3052. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
3
|
Wang Y, Liao B, Shan X, Ye H, Wen Y, Guo H, Xiao F, Zhu H. Revealing rutaecarpine's promise: A pathway to parkinson's disease relief through PPAR modulation. Int Immunopharmacol 2025; 147:114076. [PMID: 39809102 DOI: 10.1016/j.intimp.2025.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The pathological mechanisms of Parkinson's disease (PD) is complex, and no definitive cure currently exists. This study identified Rutaecarpine (Rut), an alkaloid extracted from natural plants, as a potential therapeutic agent for PD. To elucidate its mechanisms of action and specific effects in PD, network pharmacology, molecular docking, and experimental validation methods were employed. Our findings demonstrated the efficacy of Rut in ameliorating PD symptoms. Network pharmacology analysis indicated that Rut exerts its therapeutic effects through the PPAR signaling pathway and the lipid pathway. Molecular docking results revealed that Rut forms stable protein-ligand complexes with PPARα and PPARγ. Animal experiments showed that Rut improved motor function in PD mice, protected dopaminergic neurons, ameliorated lipid metabolism disorders, and reduced neuroinflammation. This study identified the critical molecular mechanisms and therapeutic targets of Rut in the treatment of PD, providing a theoretical foundation for future investigations into the pharmacodynamics of Rut as a potential anti-PD agent.
Collapse
Affiliation(s)
- Yeying Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Haonan Ye
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 Jiangxi, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006 Jiangxi, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006 Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang 330006 Jiangxi, China.
| |
Collapse
|
4
|
Pesini A, Barriocanal-Casado E, Compagnoni GM, Hidalgo-Gutierrez A, Yanez G, Bakkali M, Chhonker YS, Kleiner G, Larrea D, Tadesse S, Lopez LC, Murry DJ, Di Fonzo A, Area-Gomez E, Quinzii CM. Coenzyme Q 10 deficiency disrupts lipid metabolism by altering cholesterol homeostasis in neurons. Free Radic Biol Med 2025; 229:441-457. [PMID: 39788391 DOI: 10.1016/j.freeradbiomed.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Coenzyme Q10 (CoQ10) is a critical component of the mitochondrial respiratory chain. CoQ10 deficiencies cause a variety of clinical syndromes, often involving encephalopathies. The heterogeneity of clinical manifestations implies different pathomechanisms, reflecting CoQ10 involvement in several biological processes. One such process is cholesterol homeostasis, since CoQ10 is synthesized through the mevalonate pathway, which also produces cholesterol. To elucidate the role of lipid dysfunction in the pathogenesis of CoQ10 deficiency, we investigated lipid metabolism in human CoQ10 deficient iPSCs-derived neurons, and in SH-SY5Y neurons after pharmacological manipulation of the mevalonate pathway. We show that CoQ10 deficiency causes alterations in cholesterol homeostasis, fatty acids oxidation, phospholipids and sphingolipids synthesis in neurons. These alterations depend on the molecular defect, and on the residual CoQ10 levels. Our results imply that CoQ10 deficiencies can induce pathology by altering lipid homeostasis and the composition of cellular membranes. These findings provide further understanding of the mechanisms underlying CoQ10 deficiency and point to potential novel therapeutic targets.
Collapse
Affiliation(s)
- Alba Pesini
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | | | | | | | - Giussepe Yanez
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Fuentenueva S/N, 18002, Granada, Spain
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Luis Carlos Lopez
- Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada, 18100, Spain
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Estela Area-Gomez
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Zheng L, Ye ZY, Ma JJ. Effect of cholesterol metabolism on hepatolithiasis. World J Gastroenterol 2025; 31:99960. [PMID: 39777239 PMCID: PMC11684189 DOI: 10.3748/wjg.v31.i1.99960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
Surgical intervention is currently the primary treatment for hepatolithiasis; however, some patients still experience residual stones and high recurrence rates after surgery. Cholesterol metabolism seems to play an important role in hepatolithiasis pathogenesis. A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis. Therefore, regular diet and appropriate medical intervention are crucial measures to prevent hepatolithiasis and reduce recurrence rate after surgery. Reducing dietary cholesterol and drugs that increase cholesterol stone solubility are key therapeutic approaches in treating hepatolithiasis. This article discusses the cholesterol metabolic pathways related to the pathogenesis of hepatolithiasis, as well as food intake and targeted therapeutic drugs.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215 Heping West Road, Shijiazhuang 050000, Hebei Province, China
| | - Zi-Yu Ye
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215 Heping West Road, Shijiazhuang 050000, Hebei Province, China
| | - Jun-Ji Ma
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, No. 215 Heping West Road, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
7
|
Wang NQ, Sun PX, Shen QQ, Deng MY. Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets. Mol Neurobiol 2025:10.1007/s12035-024-04672-w. [PMID: 39775479 DOI: 10.1007/s12035-024-04672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS). In this review, we explore the synthesis, regulation, transport, and functional roles of cholesterol in the CNS. We discuss in detail the associations between cholesterol homeostasis imbalance and CNS diseases including AD, HD, and MS, highlighting the significant role of cholesterol metabolism abnormalities in the development of these diseases. Sterol regulatory element binding protein-2 (SREBP2) and liver X receptor (LXR) are two critical transcription factors that play central roles in cholesterol synthesis and reverse transport, respectively. Their cooperative interaction finely tunes the balance of brain cholesterol metabolism, presenting potential therapeutic value for preventing and treating CNS diseases. We particularly emphasize the alterations in SREBP2 and LXR under pathological conditions and their impacts on disease progression. This review summarizes current therapeutic agents targeting these two pathways, with the hope of broadening the perspectives of CNS drug developers and encouraging further study into SREBP2 and LXR-related therapies for CNS diseases.
Collapse
Affiliation(s)
- Ning-Qi Wang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Xiang Sun
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi-Qi Shen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Yilmaz A, Akyol S, Ashrafi N, Saiyed N, Turkoglu O, Graham SF. Lipidomics of Huntington's Disease: A Comprehensive Review of Current Status and Future Directions. Metabolites 2025; 15:10. [PMID: 39852353 PMCID: PMC11766911 DOI: 10.3390/metabo15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage. Lipidomics, a comprehensive analytical approach, has emerged as an indispensable tool for systematically characterizing lipid profiles and elucidating their role in disease pathology. METHOD A MedLine search was performed to identify studies that use lipidomics for the characterization of HD. Search terms included "Huntington disease"; "lipidomics"; "biomarker discovery"; "NMR"; and "Mass spectrometry". RESULTS This review highlights the significance of lipidomics in HD diagnosis and treatment, exploring changes in brain lipids and their functions. Recent breakthroughs in analytical techniques, particularly mass spectrometry and NMR spectroscopy, have revolutionized brain lipidomics research, enabling researchers to gain deeper insights into the complex lipidome of the brain. CONCLUSIONS A comprehensive understanding of the broad spectrum of lipidomics alterations in HD is vital for precise diagnostic evaluation and effective disease management. The integration of lipidomics with artificial intelligence and interdisciplinary collaboration holds promise for addressing the clinical variability of HD.
Collapse
Affiliation(s)
- Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Rd, Louisville, KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Nazia Saiyed
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| |
Collapse
|
9
|
Jing R, Mu L, Wang C, Liu L, Wang Y, Wang Y, Li X, Yin H, Hu Y. KaiXinSan improves learning and memory impairment by regulating cholesterol homeostasis in mice overloaded with 27-OHC. J Steroid Biochem Mol Biol 2025; 245:106622. [PMID: 39326716 DOI: 10.1016/j.jsbmb.2024.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Cholesterol and its oxidative products-oxysterols homeostasis- play a crucial role in maintaining cognitive function. Chinese medicine KaiXinSan (KXS) has demonstrated effectiveness in treating mental illness and regulating cognitive dysfunction of Alzheimer's disease (AD). The purpose of this article is to explore whether the KXS can enhance cognitive function by regulating cholesterol homeostasis. Employing the 27-hydroxy cholesterol (27-OHC) induced mice model of cognitive dysfunction and coculture model of assessment neurocyte damage, we investigated learning and memory abilities while concurrently addressing the reduction of neuronal cell damage through the regulation of cholesterol metabolism. 21 days of KXS treatment improved the learning and memory ability in mice 27-OHC-overloading by alleviating the exacerbated deposition of amyloid-β (Aβ), reducing inflammatory reactions, and mitigating synaptic plasticity damage. Additionally, it repaired myelin sheath function. More importantly, KXS significantly affects the metabolism of central cholesterol by substantially inhibiting the expression of liver X receptor (LXR), ATP-binding cassette transporter (ABCA1, ABCG1), apolipoprotein E (ApoE) and upregulated cytochrome P450 46A1(CYP46A1). Furthermore, KXS may alleviate 27-OHC-induced neuronal inflammation and apoptosis by promoting the conversion of cholesterol to 24-hydroxycholesterol (24-OHC) via CYP46A1 and suppressing cholesterol release from astrocyte cells. Altogether, our results demonstrate that KXS can prevent learning and memory impairments induced by 27-OHC loading. This effect may be related to its multitarget capability in promoting the conversion of excessive cholesterol to 24-OHC and maintaining a balance in cholesterol homeostasis and metabolism between neurons and astrocyte cells.
Collapse
Affiliation(s)
- Rui Jing
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lihua Mu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chaochen Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Lijun Liu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China; Graduate School of PLA General Hospital, Beijing 100853, China
| | - Yuanbo Wang
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xia Li
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Yin
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Gence L, Morello E, Rastegar S, Apalama ML, Meilhac O, Bascands JL, Diotel N. Gene expression patterns of the LDL receptor and its inhibitor Pcsk9 in the adult zebrafish brain suggest a possible role in neurogenesis. Eur J Neurosci 2025; 61:e16586. [PMID: 39551948 DOI: 10.1111/ejn.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
The low-density lipoprotein receptor (LDLr) is the first member of a closely related transmembrane protein family. It is known for its involvement in various physiological processes, mainly in the regulation of lipid metabolism, especially in the brains of mammals and zebrafish. In zebrafish, two ldlr genes (ldlra and b) have been identified and their distribution in the brain is not well documented. Recently, the roles of ldlr and its inhibitor pcsk9 in regenerative process after telencephalic brain injury have been discussed. In this study, we explored the expression patterns of these genes during zebrafish development. We found that ldlra expression was detected at the end of the pharyngula period (48 hpf) and increased during the larval stage. Conversely, ldlrb expression was observed from zygotic to larval stages. Using techniques like in situ hybridization and taking advantage of transgenic fish, we demonstrated the widespread distribution of ldlra, ldlrb and pcsk9 in the brain of adult zebrafish. Specifically, these genes were expressed in neurons and neural stem cells and also at lower levels in endothelial cells. As expected, intraperitoneal injection of fluorescent-labelled LDLs resulted in their uptake by cerebral endothelial cells in a homeostatic context, whereas they diffused within the brain parenchyma after telencephalic injury. However, after intracerebroventricular injections into animals, LDL particles were not taken up by neural stem cells. In conclusion, our results provide additional evidence for LDLr expression in the brain of adult zebrafish. These results raise the question of the role of LDLr in the cholesterol/lipid imbalance in cerebral complications.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Elena Morello
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marie Laurine Apalama
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| |
Collapse
|
11
|
Wang M, Zhang L, Novak SW, Yu J, Gallina IS, Xu LL, Lim CK, Fernandes S, Shokhirev MN, Williams AE, Saxena MD, Coorapati S, Parylak SL, Quintero C, Molina E, Andrade LR, Manor U, Gage FH. Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoid transplanted in mouse brain. Nat Biotechnol 2025; 43:52-62. [PMID: 38418648 PMCID: PMC11349933 DOI: 10.1038/s41587-024-02157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Iryna S Gallina
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lynne L Xu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christina K Lim
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monisha D Saxena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cristian Quintero
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elsa Molina
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2025; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
13
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
14
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
15
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
16
|
Pihlaja S, Jääskeläinen E, Heikkilä L, Hintsanen M. Associations of lipids in adolescence and adulthood with self- and other-directed compassion in adulthood. Scand J Psychol 2024; 65:1101-1112. [PMID: 39013837 DOI: 10.1111/sjop.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
Self- and other-directed compassion have been linked with better mental and physical health but research on factors contributing to their development is scarce. Previous studies indicate a possible causal relationship of lipids with personality and socioemotional functioning. As an extension to earlier research, in the present study we examine whether lipids assessed in adolescence and adulthood are associated with self-compassion and other-directed compassion in adulthood. The study utilizes data on lipids from two follow-ups in the Northern Finland Birth Cohort 1986 at ages 15-16 and 33-35. In the latter follow-up also self-compassion and other-directed compassion were assessed with the self-compassion scale - short form and the subscale for compassion in the dispositional positive emotions scale, respectively. The sample for the cross-sectional associations of lipids in adulthood with the compassion variables in adulthood includes 1,459 participants, whereas the sample for the longitudinal associations of lipids in adolescence and the compassion variables in adulthood consists of 1,509 participants. The associations were examined with hierarchical linear regression (lipids as continuous variables) and univariate general linear model (lipids as categorical variables). The results suggest that in women, high-density lipoprotein (HDL) cholesterol in adolescence is associated with high empathic concern (a component of other-directed compassion) in adulthood. The results show further that, in women, an HDL cholesterol level above 1.2 mmol/L in adulthood is associated with high other-directed compassion and empathic concern in adulthood. The present study provides tentative evidence that biological factors such as lipids might play a role in the development of empathic concern and other-directed compassion.
Collapse
Affiliation(s)
- Sofia Pihlaja
- Research Center of Psychology, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| | - Erika Jääskeläinen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Laura Heikkilä
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr, Oulu, Finland
| | - Mirka Hintsanen
- Research Center of Psychology, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Garcia BM, Melchinger P, Medeiros T, Hendrix S, Prabhu K, Corrado M, Kingma J, Gorbatenko A, Deshwal S, Veronese M, Scorrano L, Pearce E, Giavalisco P, Zelcer N, Pernas L. Glutamine sensing licenses cholesterol synthesis. EMBO J 2024; 43:5837-5856. [PMID: 39433901 PMCID: PMC11612431 DOI: 10.1038/s44318-024-00269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The mevalonate pathway produces essential lipid metabolites such as cholesterol. Although this pathway is negatively regulated by metabolic intermediates, little is known of the metabolites that positively regulate its activity. We found that the amino acid glutamine is required to activate the mevalonate pathway. Glutamine starvation inhibited cholesterol synthesis and blocked transcription of the mevalonate pathway-even in the presence of glutamine derivatives such as ammonia and α-ketoglutarate. We pinpointed this glutamine-dependent effect to a loss in the ER-to-Golgi trafficking of SCAP that licenses the activation of SREBP2, the major transcriptional regulator of cholesterol synthesis. Both enforced Golgi-to-ER retro-translocation and the expression of a nuclear SREBP2 rescued mevalonate pathway activity during glutamine starvation. In a cell model of impaired mitochondrial respiration in which glutamine uptake is enhanced, SREBP2 activation and cellular cholesterol were increased. Thus, the mevalonate pathway senses and is activated by glutamine at a previously uncharacterized step, and the modulation of glutamine synthesis may be a strategy to regulate cholesterol levels in pathophysiological conditions.
Collapse
Affiliation(s)
| | | | - Tania Medeiros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Kavan Prabhu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrej Gorbatenko
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Soni Deshwal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matteo Veronese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Erika Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Lena Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Jeong C, Jung JH, Oh DJ, Han K, Kim MK. Association between fluctuations in blood cholesterol levels and the risk of suicide death in the general population. J Psychosom Res 2024; 187:111956. [PMID: 39490294 DOI: 10.1016/j.jpsychores.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Suicide is a pressing global public health issue. While recent studies have explored the association between serum cholesterol levels and suicide risk, the association between cholesterol variability and suicide risk is not well characterized. METHODS This was a nationwide population-based cohort study using data from the Korean National Health Insurance Service database. A total of 1,983,701 patients with at least three measurements of TC between 2004 and 2009 were included. Participants were followed until death by suicide or the study's end in December 2021. Participants were categorized based on baseline TC or TC variability. TC variability was assessed using coefficient of variation (CV), variability independent of the mean (VIM), and average successive variability (ASV). RESULTS Over a median follow-up of 11 years, 5883 (0.3 %) patients died by suicide. Compared to subjects with TC <200 mg/dL, those with TC ≥240 mg/dL had a lower risk of suicide death (hazard ratio [HR]: 0.85, 95 % confidence interval [95 % CI]: 0.78-0.93). In the unadjusted model, the HR for suicide death in the highest quartile (Q4) compared to the lowest quartile (Q1) of TC variability was 1.36 (95 % CI: 1.26-1.46). After adjusting for potential confounders, high variability in TC levels was associated with a higher risk of suicide death (HR 1.27, 95 % CI: 1.18-1.37). When analyzed based on the combination of TC baseline and variability, the highest quartile of TC variability showed a higher rate of suicide death compared to the lowest quartile, regardless of baseline TC level. CONCLUSION High TC variability and low TC levels were associated with an increased risk of suicide.
Collapse
Affiliation(s)
- Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dae Jong Oh
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Medical Statistics, Soongsil University of Korea, Seoul, Republic of Korea.
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Hartz J. Low LDL-C: Is It all Good News? Curr Atheroscler Rep 2024; 26:673-681. [PMID: 39254830 DOI: 10.1007/s11883-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW This review presents the risks and benefits of very low LDL cholesterol and the safety of using lipid-lowering therapy to achieve these levels. RECENT FINDINGS A growing body of literature suggests that lower LDL cholesterol levels are associated with a reduced risk of cardiovascular disease. Further, achieving these levels with pharmaceuticals is remarkably safe. Although statins may slightly increase the risk of diabetes mellitus and hemorrhagic stroke, the benefits outweigh the risks. While recommendations from professional societies are increasingly aggressive, additional risk reduction could be achieved by setting more even ambitious LDL cholesterol goals.
Collapse
Affiliation(s)
- Jacob Hartz
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Zhu S, Wang Y, Li Y, Li N, Zheng Y, Li Q, Guo H, Sun J, Zhai Q, Zhu Y. TMAO is involved in sleep deprivation-induced cognitive dysfunction through regulating astrocytic cholesterol metabolism via SREBP2. Front Mol Neurosci 2024; 17:1499591. [PMID: 39669439 PMCID: PMC11634841 DOI: 10.3389/fnmol.2024.1499591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored. Trimethylamine N-oxide (TMAO), a product of liver flavin-containing monooxygenase-3 (FMO3), has been shown to be increased in the urine of sleep-deprived humans and implicated with peripheral cholesterol metabolism. Nevertheless, how TMAO affects brain cholesterol metabolism remains unclear. In our study, increased FMO3 and brain TMAO levels were observed in the SD mice, and elevated levels of TMAO were confirmed to lead to SD-induced cognitive dysfunction. In addition, we found that the expression of sterol regulatory element-binding protein 2 (SREBP2) is decreased in the brain of SD mice, resulting in the reduction in brain cholesterol content, which in turn causes synaptic damage. Moreover, we demonstrated that TMAO inhibits the expression of SREBP2. In contrast, FMO3 inhibitor 3,3'-diindolylmethane (DIM) alleviates SD-induced cognitive impairment by targeting the liver-brain axis. In conclusion, our study revealed that the TMAO pathway is involved in memory impairment in SD mice through deregulating astrocytic cholesterol metabolism.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yue Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaomin Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Zhou Y, Xu T, Zhou Y, Han W, Wu Z, Yang C, Chen X. A review focuses on a neglected and controversial component of SCI: myelin debris. Front Immunol 2024; 15:1436031. [PMID: 39650659 PMCID: PMC11621000 DOI: 10.3389/fimmu.2024.1436031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024] Open
Abstract
Myelin sheath, as the multilayer dense structure enclosing axons in humans and other higher organisms, may rupture due to various injury factors after spinal cord injury, thus producing myelin debris. The myelin debris contains a variety of myelin-associated inhibitors (MAIs) and lipid, all inhibiting the repair after spinal cord injury. Through summary and analysis, the present authors found that the inhibition of myelin debris can be mainly divided into two categories: firstly, the direct inhibition mediated by MAIs; secondly, the indirect inhibition mediated by lipid such as cholesterol. It is worth noting that phagocytes are required in the latter indirect inhibition, such as professional phagocytes (macrophages et al.) and non-professional phagocytes (astrocytes et al.). Moreover, complement and the immune system also participate in the phagocytosis of myelin debris, working together with phagocytes to aggravate spinal cord injury. In conclusion, this paper focuses on the direct and indirect effects of myelin debris on spinal cord injury, aiming to provide new inspiration and reflection for the basic research of spinal cord injury and the conception of related treatment.
Collapse
Affiliation(s)
- Yuchen Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tao Xu
- Medical School of Nantong University, Nantong, China
- Department of Orthopedics, Yancheng Dafeng People's Hospital, Yancheng, China
| | - Yiyan Zhou
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Wei Han
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Zhengchao Wu
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Changwei Yang
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Oh S, Kim JH, Cho KH, Kim MC, Sim DS, Hong YJ, Lee SW, Ahn Y, Jeong MH. Differential statin intensity and outcomes in patients following myocardial infarction with very low low-density lipoprotein cholesterol. Cardiol J 2024; 31:802-813. [PMID: 39564956 PMCID: PMC11706264 DOI: 10.5603/cj.99136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Despite increasing evidence on the benefits of statin therapy for acute myocardial infarction (AMI), differential outcomes in accordance with statin intensity have not been evaluated in patients with AMI and low-density lipoprotein cholesterol (LDL-C) levels < 55 mg/dL. Therefore, this study aimed to compare the clinical outcomes of high- and moderate-intensity statin therapy in this population. METHODS A total of 752 participants with AMI and LDL-C levels < 55 mg/dL from a Korean nationwide multicenter observational cohort (2016-2020) were included and categorized into two groups: high-intensity statin group (n = 384) and moderate-intensity statin group (n = 368). The primary outcome was 1-year major adverse cardiac and cerebrovascular events (MACCEs). Propensity score matching (PSM) and Cox models were used to determine whether statin intensity independently influenced the primary outcome. RESULTS Compared to the moderate-intensity statin group, the high-intensity statin group had a comparable risk of MACCE in all Cox models and PSM-adjusted analyses. The cumulative incidence of MACCE was comparable between the two groups. CONCLUSIONS Statin intensity appeared to have no significant impact on clinical outcomes in AMI patients with LDL-C levels < 55 mg/dL. These results underscore the need for further investigations aimed at refining treatment strategies for this specific patient cohort, potentially reducing treatment-related burdens without compromising clinical effectiveness.
Collapse
Affiliation(s)
- Seok Oh
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea.
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea.
| | - Kyung Hoon Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Doo Sun Sim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Won Lee
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
23
|
Li B, Wang S, Kerman B, Hugo C, Shwab EK, Shu C, Chiba-Falek O, Arvanitakis Z, Yassine H. Microglia States are Susceptible to Senescence and Cholesterol Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624141. [PMID: 39605544 PMCID: PMC11601396 DOI: 10.1101/2024.11.18.624141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cellular senescence is a major contributor to aging-related degenerative diseases, including Alzheimer's disease (AD) but much less is known on the key cell types and pathways driving mechanisms of senescence in the brain. We hypothesized that dysregulated cholesterol metabolism is central to cellular senescence in AD. We analyzed whole transcriptomic data and utilized single-cell RNA seq integration techniques to unveil the convoluted cell-type-specific and sub-cell-type-state-specific senescence pathologies in AD using both ROSMAP and Sea-AD datasets. We identified that microglia are central components to AD associated senescence phenotypes in ROSMAP snRNA-seq data (982,384 nuclei from postmortem prefrontal cortex of 239 AD and 188 non-AD) among non-neuron cell types. We identified that homeostatic, inflammatory, phagocytic, lipid processing and neuronal surveillance microglia states were associated with AD associated senescence in ROSMAP (152,459 microglia nuclei from six regions of brain tissue of 138 early AD, 79 late AD and 226 control subject) and in Sea-AD (82,486 microglia nuclei of 42 dementia, 42 no dementia and 5 reference subjects) via integrative analysis, which preserves the meaningful biological information of microglia cell states across the datasets. We assessed top senescence associated bioprocesses including mitochondrial, apoptosis, oxidative stress, ER stress, endosomes, and lysosomes systems. Specifically, we found that senescent microglia have altered cholesterol related bioprocesses and dysregulated cholesterol. We discovered three gene co-expression modules, which represent the specific cholesterol related senescence transcriptomic signatures in postmortem brains. To validate these findings, the activation of specific cholesterol associated senescence transcriptomic signatures was assessed using integrative analysis of snRNA-seq data from iMGs (microglia induced from iPSCs) exposed to myelin, Abeta, and synaptosomes (56,454 microglia across two replicates of untreated and four treated groups). In vivo cholesterol associated senescence transcriptomic signatures were preserved and altered after treatment with AD pathological substrates in iMGs. This study provides the first evidence that dysregulation of cholesterol metabolism in microglia is a major driver of senescence pathologies in AD. Targeting cholesterol pathways in senescent microglia is an attractive strategy to slow down AD progression.
Collapse
|
24
|
Wang W, Liu M, Liu F, Wang Z, Ye W, Li X. Causal associations of ischemic stroke, metabolic factors, and related medications with epilepsy: a Mendelian randomization study. Front Neurol 2024; 15:1464984. [PMID: 39606700 PMCID: PMC11598930 DOI: 10.3389/fneur.2024.1464984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Earlier researches have demonstrated that ischemic stroke, metabolic factors, and associated medications may influence the risk of epilepsy. Nevertheless, the causality between these elements and epilepsy remains inconclusive. This study aims to examine whether ischemic stroke, metabolic factors, and related medications affect the overall risk of epilepsy. Methods We used single nucleotide polymorphisms associated with ischemic stroke, hypothyroidism, hypertension, blood glucose levels, high cholesterol, serum 25-Hydroxyvitamin D levels, testosterone, HMG CoA reductase inhibitors, and beta-blocking agents as instrumental variables in a Mendelian randomization technique to investigate causality with epilepsy. Multiple sensitivity methods were performed to evaluate pleiotropy and heterogeneity. Results The IVW analysis revealed positive associations between ischemic stroke (OR = 1.29; p = 0.020), hypothyroidism (OR = 1.05; p = 0.048), high blood pressure (OR = 1.10; p = 0.028), high cholesterol (OR = 1.10; p = 0.024), HMG CoA reductase inhibitors (OR = 1.19; p = 0.003), beta-blocking agents (OR = 1.20; p = 0.006), and the risk of epilepsy. Conversely, blood glucose levels (OR = 0.79; p = 0.009), serum 25-Hydroxyvitamin D levels (OR = 0.75; p = 0.020), and testosterone (OR = 0.62; p = 0.019) exhibited negative associations with the risk of epilepsy. Sensitivity analyses confirmed the robustness of these findings (p > 0.05). Conclusion Our research suggests that ischemic stroke, hypothyroidism, high blood pressure, high cholesterol, HMG CoA reductase inhibitors, and beta-blockers may increase the risk of epilepsy, whereas serum 25-Hydroxyvitamin D levels and blood glucose levels may reduce the risk.
Collapse
|
25
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
26
|
Damiza-Detmer A, Pawełczyk M, Głąbiński A. Protective Role of High-Density Lipoprotein in Multiple Sclerosis. Antioxidants (Basel) 2024; 13:1276. [PMID: 39594418 PMCID: PMC11591269 DOI: 10.3390/antiox13111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood-brain barrier (BBB) also plays a key role. Recently, there has been growing interest in assessing lipid profile alterations in patients with MS. As a result of myelin destruction, there is an increase in the level of cholesterol released from cells, which in turn causes disruptions in lipid metabolism homeostasis both in the central nervous system (CNS) and peripheral tissues. Currently, there is a growing body of evidence suggesting a protective role of HDL in MS through its effect on the BBB by decreasing its permeability. This follows from the impact of HDL on the endothelium and its anti-inflammatory effect, mostly by interacting with adhesion molecules like vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin. HDL, through its action via sphingosine-1-phosphate, exerts an inhibitory effect on leukocyte migration, and its antioxidant properties contribute to the improvement of the BBB function. In this review, we want to summarize these studies and focus on HDL as a mediator of the anti-inflammatory response in MS.
Collapse
Affiliation(s)
- Agnieszka Damiza-Detmer
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (A.G.)
| | | | | |
Collapse
|
27
|
Ma DF, Zhang S, Xu SY, Huang Z, Tao Y, Chen F, Zhang S, Li D, Chen T, Liu C, Li M, Lu Y. Self-limiting multimerization of α-synuclein on membrane and its implication in Parkinson's diseases. SCIENCE ADVANCES 2024; 10:eado4893. [PMID: 39383232 PMCID: PMC11463274 DOI: 10.1126/sciadv.ado4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
α-Synuclein (α-syn), a crucial molecule in Parkinson's disease (PD), is known for its interaction with lipid membranes, which facilitates vesicle trafficking and modulates its pathological aggregation. Deciphering the complexity of the membrane-binding behavior of α-syn is crucial to understand its functions and the pathology of PD. Here, we used single-molecule imaging to show that α-syn forms multimers on lipid membranes with huge intermultimer distances. The multimers are characterized by self-limiting growth, manifesting in concentration-dependent exchanges of monomers, which are fast at micromolar concentrations and almost stop at nanomolar concentrations. We further uncovered movement patterns of α-syn's occasional trapping on membranes, which may be attributed to sparse lipid packing defects. Mutations such as E46K and E35K may disrupt the limit on the growth, resulting in larger multimers and accelerated amyloid fibril formation. This work emphasizes sophisticated regulation of α-syn multimerization on membranes as a critical underlying factor in the PD pathology.
Collapse
Affiliation(s)
- Dong-Fei Ma
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Yao Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zi Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Yuanxiao Tao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tongsheng Chen
- MOE & Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Lan Z, Lv S, Ge Z, Zhao B, Li L, Li C. Lactic acid regulates lipid droplet aggregation through a microglia-neuron axis in neuroinflammation. J Lipid Res 2024; 65:100629. [PMID: 39182605 PMCID: PMC11437955 DOI: 10.1016/j.jlr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Neuroinflammation, marked by the release of proinflammatory cytokines and resulting neuronal death, is a multifaceted process extending beyond traditional inflammatory pathways. Microglia, primary cells in the inflammatory response, rapidly activate during neuroinflammation and produce proinflammatory and cytotoxic factors that affect neuronal function. Recent evidence highlights the significant role of abnormal lipid droplet (LD) deposition in the pathogenesis of neuroinflammation. While microglia are known to influence LD aggregation during neuroinflammation, the regulatory mechanism within neurons is not well understood. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia.
Collapse
Affiliation(s)
- Zhuoqing Lan
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Shukai Lv
- Department of General Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ziyi Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Li
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Caixia Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Cioffi L, Diviccaro S, Chrostek G, Caruso D, Garcia-Segura LM, Melcangi RC, Giatti S. Neuroactive steroids fluctuate with regional specificity in the central and peripheral nervous system across the rat estrous cycle. J Steroid Biochem Mol Biol 2024; 243:106590. [PMID: 39053702 DOI: 10.1016/j.jsbmb.2024.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Neuroactive steroids (i.e., sex steroid hormones and neurosteroids) are important physiological regulators of nervous function and potential neuroprotective agents for neurodegenerative and psychiatric disorders. Sex is an important component of such effects. However, even if fluctuations in sex steroid hormone level during the menstrual cycle are associated with neuropathological events in some women, the neuroactive steroid pattern in the brain across the ovarian cycle has been poorly explored. Therefore, we assessed the levels of pregnenolone, progesterone, and its metabolites (i.e., dihydroprogesterone, allopregnanolone and isoallopregnanolone), dehydroepiandrosterone, testosterone and its metabolites (i.e., dihydrotestosterone, 3α-diol and 17β-estradiol) across the rat ovarian cycle to determine whether their plasma fluctuations are similar to those occurring in the central (i.e., hippocampus and cerebral cortex) and peripheral (i.e., sciatic nerve) nervous system. Data obtained indicate that the plasma pattern of these molecules generally does not fully reflect the events occurring in the nervous system. In addition, for some neuroactive steroid levels, the pattern is not identical between the two brain regions and between the brain and peripheral nerves. Indeed, with the exception of progesterone, all other neuroactive steroids assessed here showed peculiar regional differences in their pattern of fluctuation in the nervous system during the estrous cycle. These observations may have important diagnostic and therapeutic consequences for neuropathological events influenced by the menstrual cycle.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Gabriela Chrostek
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy.
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
30
|
Koh B, Kim YE, Park SB, Kim SS, Lee J, Jo JH, Lee K, Bae DH, Kim TY, Cho SH, Bae MA, Kang D, Kim KY. Unraveling the Molecular Landscape of SCN1A Gene Knockout in Cerebral Organoids: A Multiomics Approach Utilizing Proteomics, Lipidomics, and Transcriptomics. ACS OMEGA 2024; 9:39804-39816. [PMID: 39346820 PMCID: PMC11425820 DOI: 10.1021/acsomega.4c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
This study investigates the impact of sodium channel protein type 1 subunit alpha (SCN1A) gene knockout (SCN1A KO) on brain development and function using cerebral organoids coupled with a multiomics approach. From comprehensive omics analyses, we found that SCN1A KO organoids exhibit decreased growth, dysregulated neurotransmitter levels, and altered lipidomic, proteomic, and transcriptomic profiles compared to controls under matrix-free differentiation conditions. Neurochemical analysis reveals reduced levels of key neurotransmitters, and lipidomic analysis highlights changes in ether phospholipids and sphingomyelin. Furthermore, quantitative profiling of the SCN1A KO organoid proteome shows perturbations in cholesterol metabolism and sodium ion transportation, potentially affecting synaptic transmission. These findings suggest dysregulation of cholesterol metabolism and sodium ion transport, with implications for synaptic transmission. Overall, these insights shed light on the molecular mechanisms underlying SCN1A-associated disorders, such as Dravet syndrome, and offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Young Eun Kim
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Seong Soon Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jangjae Lee
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Hyeon Jo
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - KyungJin Lee
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
- ORGANOIDSCIENCES, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, 335 Pangyo-ro, Seongnam 13488, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sung-Hee Cho
- Chemical Platform Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dukjin Kang
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
31
|
Liu K, Fu H, Chen Y, Li B, Huang H, Liao X. Relationship between residual cholesterol and cognitive performance: a study based on NHANES. Front Nutr 2024; 11:1458970. [PMID: 39323568 PMCID: PMC11423777 DOI: 10.3389/fnut.2024.1458970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Background and aims Age-related cognitive impairment impacts a significant portion of the elderly population. Remnant cholesterol (RC) has attracted increased attention in relation to cardiovascular disease, diabetes, hypertension, and fatty liver disease. Nevertheless, its role in cognitive function is still enigmatic, prompting our exploration into the potential associations between them. Methods A total of 1,331 participants from the NHANES (2011-2014) database, all aged over 60, were included in this investigation. Cognitive function was assessed using four widely applied tests, including the Consortium to Establish a Registry for Alzheimer's Disease Word Learning (CERAD-WL), CERAD Delayed Recall (CERAD-DR), Animal Fluency Test (AFT), as well as Digit Symbol Substitution test (DSST). Z-score is calculated by scores from the above four tests. The association between RC, total cholesterol (TC) to RC and cognitive performance was assessed by logistic regression analyses. In addition, restricted cubic spline (RCS) regression was performed to assess non-linearity between RC and cognitive function. Subgroup analysis was performed to evaluate the robustness of the results in populations with relevant covariate variables. Results Those with Z-scores below the 25% quartile are defined as having cognitive impairment, totaling 498 individuals. Observationally, higher RC levels and a lower TC/RC were associated with an increased risk of cognitive impairment. After adjusting for confounding factors, the impact of RC levels on cognitive performance quartiles was consistent across various subgroups, except in individuals with trouble sleeping, no/unknown alcohol use, and no hypertension. Americans with high RC levels and trouble sleeping are more likely to develop cognitive impairment, with an odds ratio of 2.33 (95% CI: 1.18-4.59). Conclusion This study suggests that higher RC levels and lower levels of TC/RC are associated with an increased likelihood of cognitive impairment, suggesting that RC can serve as a novel and convenient indicator for predicting the risk of cognitive impairment in the US population.
Collapse
Affiliation(s)
- Kepeng Liu
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Haishou Fu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yong Chen
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Binfei Li
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Huaqing Huang
- Department of Pain Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaozu Liao
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
32
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
34
|
Wu M, Wang T, Ji N, Lu T, Yuan R, Wu L, Zhang J, Li M, Cao P, Zhao J, Li G, Li J, Li Y, Tang Y, Gao Z, Wang X, Cheng W, Ge M, Cui G, Li R, Wu A, You Y, Zhang W, Wang Q, Chen J. Multi-omics and pharmacological characterization of patient-derived glioma cell lines. Nat Commun 2024; 15:6740. [PMID: 39112531 PMCID: PMC11306361 DOI: 10.1038/s41467-024-51214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor and remains incurable. Primary GBM cultures are widely used tools for drug screening, but there is a lack of genomic and pharmacological characterization for these primary GBM cultures. Here, we collect 50 patient-derived glioma cell (PDGC) lines and characterize them by whole genome sequencing, RNA sequencing, and drug response screening. We identify three molecular subtypes among PDGCs: mesenchymal (MES), proneural (PN), and oxidative phosphorylation (OXPHOS). Drug response profiling reveals that PN subtype PDGCs are sensitive to tyrosine kinase inhibitors, whereas OXPHOS subtype PDGCs are sensitive to histone deacetylase inhibitors, oxidative phosphorylation inhibitors, and HMG-CoA reductase inhibitors. PN and OXPHOS subtype PDGCs stably form tumors in vivo upon intracranial transplantation into immunodeficient mice, whereas most MES subtype PDGCs fail to form tumors in vivo. In addition, PDGCs cultured by serum-free medium, especially long-passage PDGCs, carry MYC/MYCN amplification, which is rare in GBM patients. Our study provides a valuable resource for understanding primary glioma cell cultures and clinical translation and highlights the problems of serum-free PDGC culture systems that cannot be ignored.
Collapse
Affiliation(s)
- Min Wu
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ting Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Yuan
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Lingxiang Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyuan Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Penghui Cao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiarui Zhao
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Li
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Tang
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Department of Anesthesiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Li
- Department of Neurosurgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, Beijing, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jian Chen
- Chinese Institute for Brain Research, Beijing, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Atella TC, Medina JM, Atella GC, Allodi S, Kluck GEG. Neuroprotective Effects of Metformin Through AMPK Activation in a Neurotoxin-Based Model of Cerebellar Ataxia. Mol Neurobiol 2024; 61:5102-5116. [PMID: 38165584 DOI: 10.1007/s12035-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Cerebellar ataxia is a heterogeneous group of neural disorders clinically characterized by cerebellar dysfunction. The diagnosis of patients with progressive cerebellar ataxia is complex due to the direct correlation with other neuron diseases. Although there is still no cure for this pathological condition, some metabolic, hereditary, inflammatory, and immunological factors affecting cerebellar ataxia are being studied and may become therapeutic targets. Advances in studying the neuroanatomy, pathophysiology, and molecular biology of the cerebellum (CE) contribute to a better understanding of the mechanisms behind the development of this disorder. In this study, Wistar rats aged 30 to 35 days were injected intraperitoneally with 3-acetylpyridine (3-AP) and/or metformin (for AMP-activated protein kinase (AMPK) enzyme activation) and euthanized in 24 hours and 4 days after injection. We analyzed the neuromodulatory role of the AMPK on cerebellar ataxia induced by the neurotoxin 3-AP in the brain stem (BS) and CE, after pre-treatment for 7 and 15 days with metformin, a pharmacological indirect activator of AMPK. The results shown here suggest that AMPK activation in the BS and CE leads to a significant reduction in neuroinflammation in these regions. AMPK was able to restore the changes in fatty acid composition and pro-inflammatory cytokines caused by 3-AP, suggesting that the action of AMPK seems to result in a possible neuroprotection on the cerebellar ataxia model.
Collapse
Affiliation(s)
- Tainá C Atella
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George E G Kluck
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario, L8L 2X2, Canada.
| |
Collapse
|
36
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
37
|
Krieg S, Konrad M, Krieg A, Kostev K. What Is the Link between Attention-Deficit/Hyperactivity Disorder (ADHD) and Dyslipidemia in Adults? A German Retrospective Cohort Study. J Clin Med 2024; 13:4460. [PMID: 39124726 PMCID: PMC11312942 DOI: 10.3390/jcm13154460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Alterations in the serum lipid profile have been suspected in many psychiatric disorders, such as schizophrenia and depression. However, studies on lipid status in attention-deficit/hyperactivity disorder (ADHD) are sparse and inconsistent. Methods: Using the nationwide, population-based IQVIA Disease Analyzer database, this retrospective cohort study included 5367 outpatients from general practices in Germany aged ≥18 years with a documented first diagnosis of ADHD between January 2005 and December 2021 and 26,835 propensity score-matched individuals without ADHD. Study outcomes were the first diagnosis of lipid metabolism disorders as a function of ADHD within up to 10 years of the index date. The cumulative 10-year incidence was analyzed using Kaplan-Meier curves and compared using the log-rank test. In addition, univariate Cox regression analyses were performed. Results: In the regression analysis, there was no significant association between ADHD and subsequent lipid metabolism disorders in the total population (HR: 0.94; 95% CI: 0.83-1.08), among women (HR: 1.04; 95% CI: 0.84-1.28), and among men (HR: 0.89; 95% CI: 0.74-1.06). In addition, no significant association was observed in the disease-stratified analyses. Conclusions: The findings of this study indicate that ADHD does not exert an influence on lipid metabolism. However, further investigation is warranted, particularly with respect to pharmacological interventions.
Collapse
Affiliation(s)
- Sarah Krieg
- Department of Inclusive Medicine, University Hospital Ostwestfalen-Lippe, Bielefeld University, 33617 Bielefeld, Germany
| | - Marcel Konrad
- Health & Social, FOM University of Applied Sciences for Economics and Management, 60486 Frankfurt am Main, Germany;
| | - Andreas Krieg
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, University Hospital Herford, Medical Campus OWL, Ruhr University Bochum, 32049 Herford, Germany;
| | | |
Collapse
|
38
|
Shi R, Li Y, Zhu W, Xin H, Yang H, Feng X, Wang Z, Li S, Cong B, Shi W. The Regulation of Frontal Cortex Cholesterol Metabolism Abnormalities by NR3C1/NRIP1/NR1H2 Is Involved in the Occurrence of Stress-Induced Depression. Int J Mol Sci 2024; 25:8075. [PMID: 39125645 PMCID: PMC11311262 DOI: 10.3390/ijms25158075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Stress-induced alterations in central neuron metabolism and function are crucial contributors to depression onset. However, the metabolic dysfunctions of the neurons associated with depression and specific molecular mechanisms remain unclear. This study initially analyzed the relationship between cholesterol and depression using the NHANES database. We then induced depressive-like behaviors in mice via restraint stress. Applying bioinformatics, pathology, and molecular biology, we observed the pathological characteristics of brain cholesterol homeostasis and investigated the regulatory mechanisms of brain cholesterol metabolism disorders. Through the NHANES database, we initially confirmed a significant correlation between cholesterol metabolism abnormalities and depression. Furthermore, based on successful stress mouse model establishment, we discovered the number of cholesterol-related DEGs significantly increased in the brain due to stress, and exhibited regional heterogeneity. Further investigation of the frontal cortex, a brain region closely related to depression, revealed stress caused significant disruption to key genes related to cholesterol metabolism, including HMGCR, CYP46A1, ACAT1, APOE, ABCA1, and LDLR, leading to an increase in total cholesterol content and a significant decrease in synaptic proteins PSD-95 and SYN. This indicates cholesterol metabolism affects neuronal synaptic plasticity and is associated with stress-induced depressive-like behavior in mice. Adeno-associated virus interference with NR3C1 in the prefrontal cortex of mice subjected to short-term stress resulted in reduced protein levels of NRIP1, NR1H2, ABCA1, and total cholesterol content. At the same time, it increased synaptic proteins PSD95 and SYN, effectively alleviating depressive-like behavior. Therefore, these results suggest that short-term stress may induce cholesterol metabolism disorders by activating the NR3C1/NRIP1/NR1H2 signaling pathway. This impairs neuronal synaptic plasticity and consequently participates in depressive-like behavior in mice. These findings suggest that abnormal cholesterol metabolism in the brain induced by stress is a significant contributor to depression onset.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bin Cong
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.L.); (W.Z.); (H.X.); (H.Y.); (X.F.); (Z.W.); (S.L.)
| | - Weibo Shi
- Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.L.); (W.Z.); (H.X.); (H.Y.); (X.F.); (Z.W.); (S.L.)
| |
Collapse
|
39
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
40
|
Mistry H, Richardson CD, Higginbottom A, Ashford B, Ahamed SU, Moore Z, Matthews FE, Brayne C, Simpson JE, Wharton SB. Relationships of brain cholesterol and cholesterol biosynthetic enzymes to Alzheimer's pathology and dementia in the CFAS population-derived neuropathology cohort. Neurosci Res 2024; 204:22-33. [PMID: 38278219 PMCID: PMC11192635 DOI: 10.1016/j.neures.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Altered cholesterol metabolism is implicated in brain ageing and Alzheimer's disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer's disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status.
Collapse
Affiliation(s)
- Hemant Mistry
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | | | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Bridget Ashford
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Saif U Ahamed
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Zoe Moore
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | | | - Carol Brayne
- Cambridge Public Health, University of Cambridge, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, and the Neuroscience Institute, the University of Sheffield, UK.
| |
Collapse
|
41
|
Zhu W, Zhang H, Niu T, Liu K, Fareeduddin Mohammed Farooqui H, Sun R, Chen X, Yuan Y, Wang S. Microglial SCAP deficiency protects against diabetes-associated cognitive impairment through inhibiting NLRP3 inflammasome-mediated neuroinflammation. Brain Behav Immun 2024; 119:154-170. [PMID: 38570101 DOI: 10.1016/j.bbi.2024.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
Hyperglycemia-induced pathological microglial responses and subsequent neuronal damage are notable characteristics of diabetes-associated cognitive impairment (DACI). Cholesterol accumulation in the brain is a prevalent consequence of diabetes mellitus (DM), exacerbating pathological microglial responses. Regarding disordered glucose and lipid metabolism, the Sterol Regulatory Element-Binding Protein (SREBP) cleavage-activating protein (SCAP), a cholesterol sensor, exhibits increased expression and abnormal translocation from the endoplasmic reticulum to the Golgi, amplifying the inflammatory response. Therefore, we hypothesized that overexpression of microglia-SCAP and cholesterol accumulation in DM mice could induce pathological microglial responses associated with DACI. Our type 2 DM mice model presented an abnormal increase in microglial SCAP expression. The functional loss of microglia-specific SCAP in DM mice improved cognitive impairment, neuronal synaptic plasticity deficits, and abnormal microglial responses. Mechanistically, the accumulated SCAP directly bound to and enhanced the activation of the microglial-specific inflammatory amplifier, NLRP3 inflammasome, in Golgi, thereby increasing pathological microglial responses and promoting neuronal damage. These findings indicate an important regulatory axis of microglial responses from SCAP to the NLRP3 inflammasome pathway in microglia. These underscore the crosstalk between cholesterol disorders and pathological microglial responses, offering a promising avenue for pharmaceutical interventions in DACI.
Collapse
Affiliation(s)
- Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Haoqiang Zhang
- Department of Endocrinology, Center for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tong Niu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunyu Liu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Huzaifa Fareeduddin Mohammed Farooqui
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruoyu Sun
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiu Chen
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Yang Yuan
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China.
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
42
|
Pan Y, Liang J, Zhang W, Gao D, Li C, Xie W, Zheng F. Association between Age at Diagnosis of Hyperlipidemia and Subsequent Risk of Dementia. J Am Med Dir Assoc 2024; 25:104960. [PMID: 38453136 DOI: 10.1016/j.jamda.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES The relationship between age at diagnosis of hyperlipidemia and dementia remains unclear. We examined whether younger age at diagnosis of hyperlipidemia is associated with higher risk of subsequent dementia. DESIGN A longitudinal population-based study with a median follow-up of 12.8 years. SETTING AND PARTICIPANTS We analyzed data on a sample of 489,642 participants in the United Kingdom. METHODS This study was based on the UK Biobank. Information on hyperlipidemia and dementia diagnoses was collected at baseline (2006-2010) and follow-up [median = 12.8 years, interquartile range (IQR): 12.1-13.6 years]. Propensity score matching method and Cox proportional hazards models were used to assess the association between age at diagnosis of hyperlipidemia and dementia. RESULTS Among 489,642 participants (mean age: 56.9 ± 8.1 years; female: 54.7%), 114,112 (23.3%) were diagnosed with hyperlipidemia. Younger age at diagnosis of hyperlipidemia (per 10-year decrease) was significantly associated with higher risks of all-cause dementia [hazard ratio (HR), 1.12; 95% CI, 1.07-1.18; P < .001], Alzheimer's disease (AD) (HR, 1.22; 95% CI, 1.14-1.31; P < .001), and vascular dementia (VD) (HR, 1.16; 95% CI, 1.05-1.27; P < .001). After propensity score matching, patients with hyperlipidemia diagnosed before 50 years had the highest HR for all-cause dementia (HR, 1.46; 95% CI, 1.15-1.86; P = .002), followed by patients diagnosed between 50 and 69 years (HR, 1.21; 95% CI, 1.12-1.31; P < .001) and then patients diagnosed aged 70 years and older (HR, 0.94; 95% CI, 0.84-1.06; P = .302). Similar results were observed for AD and VD. CONCLUSIONS AND IMPLICATIONS A dose-response relationship between age at hyperlipidemia diagnosis and risk of dementia was found in the longitudinal cohort study, with younger age at diagnosis of hyperlipidemia being associated with higher subsequent risk.
Collapse
Affiliation(s)
- Yang Pan
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liang
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenya Zhang
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Darui Gao
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Chenglong Li
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Fanfan Zheng
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
44
|
Chacón CF, Parachú Marcó MV, Poletta GL, Siroski PA. Lipid metabolism in crocodilians: A field with promising applications in the field of ecotoxicology. ENVIRONMENTAL RESEARCH 2024; 252:119017. [PMID: 38704009 DOI: 10.1016/j.envres.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In the last years, lipid physiology has become an important research target for systems biology applied to the field of ecotoxicology. Lipids are not only essential components of biological membranes, but also participate in extra and intracellular signaling processes and as signal transducers and amplifiers of regulatory cascades. Particularly in sauropsids, lipids are the main source of energy for reproduction, growth, and embryonic development. In nature, organisms are exposed to different stressors, such as parasites, diseases and environmental contaminants, which interact with lipid signaling and metabolic pathways, disrupting lipid homeostasis. The system biology approach applied to ecotoxicological studies is crucial to evaluate metabolic regulation under environmental stress produced by xenobiotics. In this review, we cover information of molecular mechanisms that contribute to lipid metabolism homeostasis in sauropsids, specifically in crocodilian species. We focus on the role of lipid metabolism as a powerful source of energy and its importance during oocyte maturation, which has been increasingly recognized in many species, but information is still scarce in crocodiles. Finally, we highlight priorities for future research on the influence of environmental stressors on lipid metabolism, their potential effect on the reproductive system and thus on the offspring, and their implications on crocodilians conservation.
Collapse
Affiliation(s)
- C F Chacón
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina.
| | - M V Parachú Marcó
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| | - G L Poletta
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N, 3000, Santa Fe, Argentina
| | - P A Siroski
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| |
Collapse
|
45
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Rahman MM, Islam A, Mamun MA, Afroz MS, Nabi MM, Sakamoto T, Sato T, Kahyo T, Takahashi Y, Okino A, Setou M. Low-Temperature Plasma Pretreatment Enhanced Cholesterol Detection in Brain by Desorption Electrospray Ionization-Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1227-1236. [PMID: 38778699 DOI: 10.1021/jasms.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.
Collapse
Affiliation(s)
- Md Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mst Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md Mahamodun Nabi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Quantum Imaging Laboratory, International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
47
|
Mesa H, Zhang EY, Wang Y, Zhang Q. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. J Cell Physiol 2024; 239:e30999. [PMID: 36966431 DOI: 10.1002/jcp.30999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Elaine Y Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Brentwood High School, Brentwood, Tennessee, USA
| | - Yingcai Wang
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Qi Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
48
|
Tremolanti C, Angeloni E, Da Pozzo E, Germelli L, Giacomelli C, Scalzi E, Taliani S, Da Settimo F, Mensah-Nyagan AG, Martini C, Costa B. Human oligodendrocyte-like cell differentiation is promoted by TSPO-mediated endogenous steroidogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167174. [PMID: 38631406 DOI: 10.1016/j.bbadis.2024.167174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process. Here, we employed a human OL precursor cell line to investigate the role of de novo neurosteroidogenesis in the regulation of OLs differentiation, paying particular attention to the 18 kDa Translocator Protein (TSPO) which controls the rate-limiting step of the neurosteroidogenic process. Our results showed that, over the time of OL maturation, the availability of cholesterol, which is the neurosteroidogenesis initial substrate, and key members of the neurosteroidogenic machinery, including TSPO, were upregulated. In addition, OLs differentiation was impaired following neurosteroidogenesis inhibition and TSPO silencing. On the contrary, TSPO pharmacological stimulation promoted neurosteroidogenic function and positively impacted differentiation. Collectively, our results suggest that de novo neurosteroidogenesis is actively involved in the autocrine and paracrine regulation of human OL differentiation. Moreover, since TSPO was able to promote OL differentiation through a positive modulation of the neurosteroid biosynthetic process, it could be exploited as a promising target to tackle demyelinating diseases.
Collapse
Affiliation(s)
- Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Eduardo Scalzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Ayikoé-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| |
Collapse
|
49
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
50
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|