1
|
Shih YH, Hung FY, Lin PY, Chen JS, Cheng YS, Yang S, Wu K. Lysine acetylation regulates the subcellular localization and function of WRKY63. PLANT PHYSIOLOGY 2024; 196:2279-2282. [PMID: 39288171 PMCID: PMC11637992 DOI: 10.1093/plphys/kiae492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Affiliation(s)
- Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Pei-Yu Lin
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Sheng Chen
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Malladi N, Lahamge D, Somwanshi BS, Tiwari V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ, Banerjee SK. Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cell Signal 2024; 121:111299. [PMID: 39004324 DOI: 10.1016/j.cellsig.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1β, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Devidas Lahamge
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Balaji Sanjay Somwanshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Kajal Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Jagdish Kumar Balani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Samhita Chakraborty
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
3
|
Paiva I, Seguin J, Grgurina I, Singh AK, Cosquer B, Plassard D, Tzeplaeff L, Le Gras S, Cotellessa L, Decraene C, Gambi J, Alcala-Vida R, Eswaramoorthy M, Buée L, Cassel JC, Giacobini P, Blum D, Merienne K, Kundu TK, Boutillier AL. Dysregulated expression of cholesterol biosynthetic genes in Alzheimer's disease alters epigenomic signatures of hippocampal neurons. Neurobiol Dis 2024; 198:106538. [PMID: 38789057 DOI: 10.1016/j.nbd.2024.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease. At the epigenomic level, histone hyperacetylation was observed at neuronal enhancers associated with glutamatergic regulations only in the tauopathy. Lastly, a treatment of tau mice with the CSP-TTK21 epi-drug that restored expression of key cholesterol biosynthesis genes counteracted hyperacetylation at neuronal enhancers and restored object memory. As acetyl-CoA is the primary substrate of both pathways, these data suggest that the rate of the cholesterol biosynthesis in hippocampal neurons may trigger epigenetic-driven changes, that may compromise the functions of hippocampal neurons in pathological conditions.
Collapse
Affiliation(s)
- Isabel Paiva
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France.
| | - Jonathan Seguin
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Iris Grgurina
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Brigitte Cosquer
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Damien Plassard
- University of Strasbourg, CNRS UMR7104, Inserm U1258 - GenomEast Platform - IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67404 Illkirch, France
| | - Laura Tzeplaeff
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Stephanie Le Gras
- University of Strasbourg, CNRS UMR7104, Inserm U1258 - GenomEast Platform - IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67404 Illkirch, France
| | - Ludovica Cotellessa
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, 59000 Lille, France
| | - Charles Decraene
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Johanne Gambi
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Rafael Alcala-Vida
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Jean-Christophe Cassel
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, 59000 Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172 LilNCog - Lille Neuroscience & Cognition, Lille, France; Alzheimer and Tauopathies, LabEx DISTALZ, France
| | - Karine Merienne
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Anne-Laurence Boutillier
- University of Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France; CNRS, UMR7364 - Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg F-67000, France.
| |
Collapse
|
4
|
Nithun RV, Yao YM, Harel O, Habiballah S, Afek A, Jbara M. Site-Specific Acetylation of the Transcription Factor Protein Max Modulates Its DNA Binding Activity. ACS CENTRAL SCIENCE 2024; 10:1295-1303. [PMID: 38947213 PMCID: PMC11212134 DOI: 10.1021/acscentsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
Collapse
Affiliation(s)
- Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yumi Minyi Yao
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Omer Harel
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shaimaa Habiballah
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Ariel Afek
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
5
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Latorre J, de Vera N, Santalucía T, Balada R, Marazuela-Duque A, Vaquero A, Planas AM, Petegnief V. Lack of the Histone Deacetylase SIRT1 Leads to Protection against Endoplasmic Reticulum Stress through the Upregulation of Heat Shock Proteins. Int J Mol Sci 2024; 25:2856. [PMID: 38474102 DOI: 10.3390/ijms25052856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Histone deacetylase SIRT1 represses gene expression through the deacetylation of histones and transcription factors and is involved in the protective cell response to stress and aging. However, upon endoplasmic reticulum (ER) stress, SIRT1 impairs the IRE1α branch of the unfolded protein response (UPR) through the inhibition of the transcriptional activity of XBP-1 and SIRT1 deficiency is beneficial under these conditions. We hypothesized that SIRT1 deficiency may unlock the blockade of transcription factors unrelated to the UPR promoting the synthesis of chaperones and improving the stability of immature proteins or triggering the clearance of unfolded proteins. SIRT1+/+ and SIRT1-/- fibroblasts were exposed to the ER stress inducer tunicamycin and cell survival and expression of heat shock proteins were analyzed 24 h after the treatment. We observed that SIRT1 loss significantly reduced cell sensitivity to ER stress and showed that SIRT1-/- but not SIRT1+/+ cells constitutively expressed high levels of phospho-STAT3 and heat shock proteins. Hsp70 silencing in SIRT1-/- cells abolished the resistance to ER stress. Furthermore, accumulation of ubiquitinated proteins was lower in SIRT1-/- than in SIRT1+/+ cells. Our data showed that SIRT1 deficiency enabled chaperones upregulation and boosted the proteasome activity, two processes that are beneficial for coping with ER stress.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Nuria de Vera
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Tomàs Santalucía
- Department of Fundamental and Clinical Nursing, School of Nursing, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Rafel Balada
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Valérie Petegnief
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
7
|
Li HW, Zhang HH. The Protein Acetylation after Traumatic Spinal Cord Injury: Mechanisms and Therapeutic Opportunities. Int J Med Sci 2024; 21:725-731. [PMID: 38464830 PMCID: PMC10920853 DOI: 10.7150/ijms.92222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.
Collapse
Affiliation(s)
| | - Hai-hong Zhang
- Department of Spine Surgery, Lanzhou University Second Hospital; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
8
|
Ghare SS, Charpentier BT, Ghooray DT, Zhang J, Vadhanam MV, Reddy S, Joshi-Barve S, McClain CJ, Barve SS. Tributyrin Mitigates Ethanol-Induced Lysine Acetylation of Histone-H3 and p65-NFκB Downregulating CCL2 Expression and Consequent Liver Inflammation and Injury. Nutrients 2023; 15:4397. [PMID: 37892472 PMCID: PMC10610222 DOI: 10.3390/nu15204397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE Chemokine-driven leukocyte infiltration and sustained inflammation contribute to alcohol-associated liver disease (ALD). Elevated hepatic CCL2 expression, seen in ALD, is associated with disease severity. However, mechanisms of CCL2 regulation are not completely elucidated. Post-translational modifications (PTMs) of proteins, particularly acetylation, modulate gene expression. This study examined the acetylation changes of promoter-associated histone-H3 and key transcription factor-NFκB in regulating hepatic CCL2 expression and subsequent inflammation and injury. Further, the effect of therapeutic modulation of the acetylation state by tributyrin (TB), a butyrate prodrug, was assessed. METHODS Hepatic CCL2 expression was assessed in mice fed control (PF) or an ethanol-containing Lieber-DeCarli (5% v/v, EF) diet for 7 weeks with or without oral administration of tributyrin (TB, 2 g/kg, 5 days/week). A chromatin immunoprecipitation (ChIP) assay evaluated promoter-associated modifications. Nuclear association between SIRT1, p300, and NFκB-p65 and acetylation changes of p65 were determined using immunoprecipitation and Western blot analyses. A Student's t-test and one-way ANOVA determined the significance. RESULTS Ethanol significantly increased promoter-associated histone-H3-lysine-9 acetylation (H3K9Ac), reflecting a transcriptionally permissive state with a resultant increase in hepatic CCL2 mRNA and protein expression. Moreover, increased lysine-310-acetylation of nuclear RelA/p65 decreased its association with SIRT1, a class III HDAC, but concomitantly increased with p300, a histone acetyltransferase. This further led to enhanced recruitment of NF-κB/p65 and RNA polymerase-II to the CCL2 promoter. Oral TB administration prevented ethanol-associated acetylation changes, thus downregulating CCL2 expression, hepatic neutrophil infiltration, and inflammation/ injury. CONCLUSION The modulation of a protein acetylation state via ethanol or TB mechanistically regulates hepatic CCL2 upregulation in ALD.
Collapse
Affiliation(s)
- Smita S. Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Benjamin T. Charpentier
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- Department of Anatomical Science and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Dushan T. Ghooray
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Jingwen Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Manicka V. Vadhanam
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Sreelatha Reddy
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, KY 40202, USA
| | - Shirish S. Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- UofL Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- UofL Hepatobiology COBRE, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Kang D, Yang HR, Kim DH, Kim KK, Jeong B, Park BS, Park JW, Kim JG, Lee BJ. Sirtuin1-Mediated Deacetylation of Hypothalamic TTF-1 Contributes to the Energy Deficiency Response. Int J Mol Sci 2023; 24:12530. [PMID: 37569904 PMCID: PMC10419861 DOI: 10.3390/ijms241512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
TTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD+-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency. Energy deficiency leads to a twofold increase in the expression of both Sirt1 and TTF-1, leading to the deacetylation of TTF-1 through the interaction between the two proteins. The activation of Sirt1, induced by energy deficiency or resveratrol treatment, leads to a significant increase in the deacetylation of TTF-1 and promotes its nuclear translocation. Conversely, the inhibition of Sirt1 prevents these Sirt1 effects. Notably, a point mutation in a lysine residue of TTF-1 significantly disrupts its deacetylation and thus nearly completely hinders its ability to regulate AgRP and POMC gene expression. These findings highlight the importance of energy-deficiency-induced deacetylation of TTF-1 in the control of AgRP and POMC gene expression.
Collapse
Affiliation(s)
- Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (H.R.Y.); (B.S.P.)
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea; (D.K.); (D.H.K.); (K.K.K.); (B.J.); (J.W.P.)
| |
Collapse
|
11
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
12
|
Dong Z, He W, Lin G, Chen X, Cao S, Guan T, Sun Y, Zhang Y, Qi M, Guo B, Zhou Z, Zhuo R, Wu R, Liu M, Liu Y. Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6. J Biol Chem 2023; 299:103020. [PMID: 36791914 PMCID: PMC10011063 DOI: 10.1016/j.jbc.2023.103020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and post-translational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the evaluated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A, and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Xu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
13
|
Princová J, Salat-Canela C, Daněk P, Marešová A, de Cubas L, Bähler J, Ayté J, Hidalgo E, Převorovský M. Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress. PLoS Genet 2023; 19:e1010582. [PMID: 36626368 PMCID: PMC9870116 DOI: 10.1371/journal.pgen.1010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
Collapse
Affiliation(s)
- Jarmila Princová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Petr Daněk
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Marešová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Martin Převorovský
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
14
|
Wattacheril JJ, Raj S, Knowles DA, Greally JM. Using epigenomics to understand cellular responses to environmental influences in diseases. PLoS Genet 2023; 19:e1010567. [PMID: 36656803 PMCID: PMC9851565 DOI: 10.1371/journal.pgen.1010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It is a generally accepted model that environmental influences can exert their effects, at least in part, by changing the molecular regulators of transcription that are described as epigenetic. As there is biochemical evidence that some epigenetic regulators of transcription can maintain their states long term and through cell division, an epigenetic model encompasses the idea of maintenance of the effect of an exposure long after it is no longer present. The evidence supporting this model is mostly from the observation of alterations of molecular regulators of transcription following exposures. With the understanding that the interpretation of these associations is more complex than originally recognised, this model may be oversimplistic; therefore, adopting novel perspectives and experimental approaches when examining how environmental exposures are linked to phenotypes may prove worthwhile. In this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD), a common, complex human disease with strong environmental and genetic influences. We describe how epigenomic approaches combined with emerging functional genetic and single-cell genomic techniques are poised to generate new insights into the pathogenesis of environmentally influenced human disease phenotypes exemplified by NAFLD.
Collapse
Affiliation(s)
- Julia J. Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York, United States of America
| | - Srilakshmi Raj
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Knowles
- New York Genome Center, New York, New York, United States of America
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - John M. Greally
- Division of Genomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
15
|
Azam S, Kim IS, Choi DK. α-Synuclein upregulates bim-mediated apoptosis by negatively regulating endogenous GCN5. Aging (Albany NY) 2022; 14:8292-8301. [DOI: 10.18632/aging.204353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| |
Collapse
|
16
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
17
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
19
|
Gomathi K, Rohini M, Vairamani M, Selvamurugan N. Identification and characterization of TGF-β1-responsive Runx2 acetylation sites for matrix Metalloproteinase-13 expression in osteoblastic cells. Biochimie 2022; 201:1-6. [PMID: 35779648 DOI: 10.1016/j.biochi.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
In skeletal tissues, transforming growth factor-beta 1 (TGF-β1) serves a number of activities. For example, in osteoblastic cells, TGF-β1 stimulates the expression of matrix metalloproteinase-13 (MMP-13, a bone remodeling gene), which requires the bone transcription factor Runx2. Although TGF-β1 is known to stimulate Runx2 acetylation, the sites involved in MMP-13 gene activation remain unknown. Mass spectrometry analysis revealed that Runx2 was acetylated at one site (K134) and three sites (K24, K134, and K169) following control and TGF-β1-treatment, respectively, in osteoblastic cells. In addition, we mutated the lysine residues in the Runx2 construct into arginine and transfected the construct into mouse mesenchymal stem cells (C3H10T1/2). Wild-type Runx2 expression and acetylation were significantly increased by TGF-β1-treatment, whereas this effect was decreased in the presence of the Runx2 double mutant construct (K24 + K169) in C3H10T1/2 cells. TGF-β1 enhanced MMP-13 promoter activity in cells transfected with the wild-type Runx2 construct, but this effect was considerably reduced in cells transfected with the Runx2 double mutant construct (K24 + K169), according to a luciferase reporter test. Hence, the stability of Runx2 may be mediated by TGF-β1-induced acetylation at K24 and K169 and is required for MMP-13 expression in osteoblastic cells. These findings add to our knowledge of TGF-β1, Runx2, and MMP-13's physiological roles in bone metabolism.
Collapse
Affiliation(s)
- Kanagaraj Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Mariappan Vairamani
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
20
|
Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics 2022; 14:5. [PMID: 34996497 PMCID: PMC8742467 DOI: 10.1186/s13148-021-01223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Type II germ cell tumors (GCT) are the most common solid cancers in males of age 15 to 35 years. Treatment of these tumors includes cisplatin-based therapy achieving high cure rates, but also leading to late toxicities. As mainly young men are suffering from GCTs, late toxicities play a major role regarding life expectancy, and the development of therapy resistance emphasizes the need for alternative therapeutic options. GCTs are highly susceptible to interference with the epigenetic landscape; therefore, this study focuses on screening of drugs against epigenetic factors as a treatment option for GCTs.
Results We present seven different epigenetic inhibitors efficiently decreasing cell viability in GCT cell lines including cisplatin-resistant subclones at low concentrations by targeting epigenetic modifiers and interactors, like histone deacetylases (Quisinostat), histone demethylases (JIB-04), histone methyltransferases (Chaetocin), epigenetic readers (MZ-1, LP99) and polycomb-repressive complexes (PRT4165, GSK343). Mass spectrometry-based analyses of the histone modification landscape revealed effects beyond the expected mode-of-action of each drug, suggesting a wider spectrum of activity than initially assumed. Moreover, we characterized the effects of each drug on the transcriptome of GCT cells by RNA sequencing and found common deregulations in gene expression of ion transporters and DNA-binding factors. A kinase array revealed deregulations of signaling pathways, like cAMP, JAK-STAT and WNT. Conclusion Our study identified seven drugs against epigenetic modifiers to treat cisplatin-resistant GCTs. Further, we extensively analyzed off-target effects and modes-of-action, which are important for risk assessment of the individual drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01223-1.
Collapse
|
21
|
Duc Nguyen H, Hoang NMH, Jo WH, Ham JR, Lee MK, Kim MS. Associations among the TREM-1 Pathway, Tau Hyperphosphorylation, Prolactin Expression, and Metformin in Diabetes Mice. Neuroimmunomodulation 2022; 29:359-368. [PMID: 35130556 DOI: 10.1159/000521013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD). Increasing evidence indicates that the triggering receptor expressed on myeloid cells (TREM)-1 amplifies chronic inflammation, as well as the roles of prolactin (PRL) and metformin (MET) in tau hyperphosphorylation. However, the associations among TREM-1, tau hyperphosphorylation, PRL expression, and MET in DM remain unclear. METHODS Streptozotocin was used to induce experimental DM in C57BL/6N mice. MET was orally administered at a dose of 400 mg/kg body weight for 6 weeks prior to hippocampal collection in DM mice. Various parameters pertaining to the TREM-1 pathway, tau hyperphosphorylation, PRL, and related factors were analyzed. RESULTS Quantitative polymerase chain reaction and Western blot analysis demonstrated that the expression levels of TREM-1, DAP12, casp1, interleukin-1β, Cox2, inducible nitric oxide synthase, pituitary transcriptional factor-1 (Pit-1), and PRL were significantly increased in the hippocampus of DM mice; the expression levels of these pro-inflammatory mediators, PRL receptor (PRLR) short or long (PRLR-S and PRLR-L), and PRL regulatory element-binding (Preb) protein in DM mice treated with MET (DM + MET) were significantly decreased compared with those in control (CON) mice. The levels of p-Tau and glycogen synthase kinase-3 in the DM group were significantly higher than those in the CON group and significantly lower than those in the DM + MET group. CONCLUSION We confirmed the therapeutic potential of MET for both DM and neurodegeneration. Our findings shed new light on the effects of DM on the pathophysiology of AD via the TREM-1 pathway and PRL expression. Thus, an improved understanding of the TREM-1 pathway in hyperglycemic conditions, as well as PRL, Preb, Pit-1, PRLR-L, and PRLR-S gene expression in the liver, brain, and other sites, may help unravel the pathogenesis of insulin resistance and neurodegeneration.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, Republic of Korea
- Mokpo Marine Food-Industry Research Center, Mokpo, Jeonam, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, Republic of Korea
| | - Min Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| |
Collapse
|
22
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
23
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
24
|
Ren H, Hu F, Wang D, Kang X, Feng X, Zhang L, Zhou B, Liu S, Yuan G. Sirtuin 2 Prevents Liver Steatosis and Metabolic Disorders by Deacetylation of Hepatocyte Nuclear Factor 4α. Hepatology 2021; 74:723-740. [PMID: 33636024 PMCID: PMC8453713 DOI: 10.1002/hep.31773] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 2 (SIRT2), an NAD+ -dependent deacetylase, is involved in various cellular processes regulating metabolic homeostasis and inflammatory responses; however, its role in hepatic steatosis and related metabolic disorders is unknown. APPROACH AND RESULTS Integrating the published genomic data on NAFLD samples from humans and rodents available in the Gene Expression Omnibus, we found that SIRT2 was significantly down-regulated in livers from patients with advanced NAFLD and high-fat diet (HFD)-induced NAFLD mice. This study further revealed that SIRT2 was markedly decreased in obese (ob/ob) mice and in palmitate-treated HepG2 cells. Restoration of hepatic SIRT2 expression in ob/ob or HFD-fed mice largely alleviated insulin resistance, hepatic steatosis, and systematic inflammation, whereas SIRT2 liver-specific ablation exacerbated these metabolic dysfunctions in HFD-fed C57BL/6J mice. Mechanistically, SIRT2 stabilized the hepatocyte nuclear factor 4α (HNF4α) protein by binding to and deacetylating HNF4α on lysine 458. Furthermore, HNF4α was sufficient to mediate SIRT2 function, and SIRT2-HNF4α interaction was required for SIRT2 function both in vivo and in vitro. CONCLUSIONS Collectively, the present study provided evidence that SIRT2 functions as a crucial negative regulator in NAFLD and related metabolic disorders and that targeting the SIRT2-HNF4α pathway may be a promising strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Huihui Ren
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China.,Branch of National Clinical Research Center for Metabolic DiseaseHubeiP.R. China
| | - Fuqing Hu
- Gastrointestinal SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Dan Wang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Xiaonan Kang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Xiaohui Feng
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Lu Zhang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Bowen Zhou
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Siyue Liu
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Gang Yuan
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China.,Branch of National Clinical Research Center for Metabolic DiseaseHubeiP.R. China
| |
Collapse
|
25
|
Wang N, Peng YJ, Su X, Prabhakar NR, Nanduri J. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol 2021; 12:688322. [PMID: 34079475 PMCID: PMC8165245 DOI: 10.3389/fphys.2021.688322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA). Long term IH (LT-IH) triggers epigenetic reprogramming of the redox state involving DNA hypermethylation in the carotid body chemo reflex pathway resulting in persistent sympathetic activation and hypertension. Present study examined whether IH also activates epigenetic mechanism(s) other than DNA methylation. Histone modification by lysine acetylation is another major epigenetic mechanism associated with gene regulation. Equilibrium between the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) determine the level of lysine acetylation. Here we report that exposure of rat pheochromocytoma (PC)-12 cells to IH in vitro exhibited reduced HDAC enzyme activity due to proteasomal degradation of HDAC3 and HDAC5 proteins. Mechanistic investigations showed that IH-evoked decrease in HDAC activity increases lysine acetylation of α subunit of hypoxia inducible factor (HIF)-1α as well as Histone (H3) protein resulting in increased HIF-1 transcriptional activity. Trichostatin A (TSA), an inhibitor of HDACs, mimicked the effects of IH. Studies on rats treated with 10 days of IH or TSA showed reduced HDAC activity, HDAC5 protein, and increased HIF-1 dependent NADPH oxidase (NOX)-4 transcription in adrenal medullae (AM) resulting in elevated plasma catecholamines and blood pressure. Likewise, heme oxygenase (HO)-2 null mice, which exhibit IH because of high incidence of spontaneous apneas (apnea index 72 ± 1.2 apnea/h), also showed decreased HDAC activity and HDAC5 protein in the AM along with elevated circulating norepinephrine levels. These findings demonstrate that lysine acetylation of histone and non-histone proteins is an early epigenetic mechanism associated with sympathetic nerve activation and hypertension in rodent models of IH.
Collapse
Affiliation(s)
- Ning Wang
- Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States
| | - Ying-Jie Peng
- Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States
| | - Xiaoyu Su
- Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States
| | - Jayasri Nanduri
- Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Harachi M, Masui K, Cavenee WK, Mischel PS, Shibata N. Protein Acetylation at the Interface of Genetics, Epigenetics and Environment in Cancer. Metabolites 2021; 11:216. [PMID: 33916219 PMCID: PMC8066013 DOI: 10.3390/metabo11040216] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer and is driven by abnormalities of oncogenes and tumor suppressors. Accelerated metabolism causes cancer cell aggression through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. However, the mechanisms by which a shift in the metabolic landscape reshapes the intracellular signaling to promote the survival of cancer cells remain to be clarified. Recent high-resolution mass spectrometry-based proteomic analyses have spotlighted that, unexpectedly, lysine residues of numerous cytosolic as well as nuclear proteins are acetylated and that this modification modulates protein activity, sublocalization and stability, with profound impact on cellular function. More importantly, cancer cells exploit acetylation as a post-translational protein for microenvironmental adaptation, nominating it as a means for dynamic modulation of the phenotypes of cancer cells at the interface between genetics and environments. The objectives of this review were to describe the functional implications of protein lysine acetylation in cancer biology by examining recent evidence that implicates oncogenic signaling as a strong driver of protein acetylation, which might be exploitable for novel therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Mio Harachi
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (M.H.); (N.S.)
| | - Kenta Masui
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (M.H.); (N.S.)
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA;
| | - Paul S. Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Noriyuki Shibata
- Department of Pathology, Division of Pathological Neuroscience, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (M.H.); (N.S.)
| |
Collapse
|
27
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
|
28
|
Behl T, Kaur I, Sehgal A, Singh S, Zengin G, Negrut N, Nistor-Cseppento DC, Pavel FM, Corb Aron RA, Bungau S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int J Mol Sci 2021; 22:ijms22063179. [PMID: 33804729 PMCID: PMC8003860 DOI: 10.3390/ijms22063179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity or overweight are not superficial problems, constituting a pressing issue. The obesity index has almost tripled since 1975, which is an alarming state. Most of the individuals are currently becoming overweight or have inappropriate body mass index (BMI) conditions. Obesity is characterized by increased fat accumulation and thus poses a higher health risk. There is increased size and volume of fat cells in the body, which usually accounts for obesity. Many investigations have been carried out in this area, such as behavioral improvements, dietary changes, chemical involvements, etc., but presently no such goals are established to manage these health concerns. Based on previous literature reports and our interpretation, the current review indicates the involvement of various transcriptional and transporter functions in modifying the above-mentioned health conditions. Various transcriptional factors such as Forkhead box O1 (FoxO1) impart a significant effect on the physiology and pathology of metabolic dysfunction such as obesity. FoxO1 plays a dual role whether in the progression or suppression of metabolic processes depending on its targets. Thus, in the current study, will be discussed the dual role of FoxO1 in metabolic conditions (such as obesity), also summarizing the role of various other transcriptional factors involved in obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (N.N.); (D.C.N.-C.)
| | - Flavia Maria Pavel
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.P.); (R.A.C.A.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
29
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
30
|
Li J, Sun L, Li Y. Regulation of dimethylarginine dimethylaminohydrolase 2 expression by NF-κB acetylation. Exp Ther Med 2020; 21:114. [PMID: 33335577 PMCID: PMC7739820 DOI: 10.3892/etm.2020.9546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) serves a crucial role in the kidney and is synthesized by NO synthase (NOS). Asymmetrical dimethylarginine is an endogenous inhibitor of NOS that is metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To investigate the role of acetylation in DDAH2 expression, 293 cells were treated with trichostatin A (TSA), a deacetylase inhibitor and the mRNA and protein levels were assessed using quantitative PCR and western blotting respectively. Its promoter activity was detected using a luciferase assay. The effect of TSA on NF-κB acetylation was tested after immunoprecipitation. The binding of NF-κB to the DDAH2 promoter was analyzed using an electrophoretic mobility shift assay and chromatin immunoprecipitation. TSA upregulated DDAH2 expression and transcriptional activity of the DDAH2 promoter through a NF-κB responsive element, which is located at the -1582 to -1573 position of the DDAH2 promoter. Furthermore, TSA treatment promoted NF-κB acetylation, resulting in enhanced NF-κB binding affinity to its binding site both in vitro and in vivo. Taken together, the present study demonstrated that NF-κB acetylation upregulated DDAH2 expression by enhancing the binding ability of NF-κB to the DDAH2 promoter, resulting in increased promoter activity. The results provided a possible mechanism underlying the regulation of NO production in renal cells and a potential target for treating certain NO-associated renal disorders.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Medical Genetics, School of Life Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lu Sun
- Department of Medical Genetics, School of Life Science, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Clinical Genetics, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yinghui Li
- Department of Medical Genetics, School of Life Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
31
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Kim SY, Chae CW, Lee HJ, Jung YH, Choi GE, Kim JS, Lim JR, Lee JE, Cho JH, Park H, Park C, Han HJ. Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1. Cell Death Dis 2020; 11:469. [PMID: 32555166 PMCID: PMC7303181 DOI: 10.1038/s41419-020-2663-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022]
Abstract
The gut-brain axis is currently being studied as a therapeutic strategy for neurological diseases, especially Alzheimer's disease (AD). Obesity results in the gut microbiota dysbiosis, which includes butyrate-producing bacteria are reduced. Although sodium butyrate (NaB) has emerged as the potential therapeutic substance in AD, there is a lack of detailed results into what signaling pathways affect amyloidogenesis in AD induced by obesity. Thus, we investigated the regulatory role of NaB on amyloidogenesis in neuronal cells under high cholesterol. In our results, we verified that increased amyloid β peptide (Aβ) accumulation in the brain of obese mice and a reduction in butyrate-producing bacteria due to the gut microbiota dysbiosis induced by obesity. We showed that NaB decreased the expression levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and Aβ accumulation induced by high cholesterol in SK-N-MC cells. We demonstrated that NaB was absorbed in cells through sodium-coupled monocarboxylate transporter 1 (SMCT1) and then inhibited high cholesterol-induced Aβ accumulation. Subsequently, we also observed that reactive oxygen species (ROS) were overproduced because of increased NADPH oxidase 2 (NOX2) expression under high cholesterol. Meanwhile, NaB decreased NOX2 levels through a reduction of NF-κB activity, which ultimately inhibited Aβ accumulation caused by high cholesterol. We demonstrated that NaB increased the expression levels of p21 under high cholesterol, contributing to p21/NRF2 (Nuclear factor erythroid 2-related factor 2) colocalization, which leads to NRF2 stabilization. NRF2 stabilization causes NF-κB inactivation, followed by NOX2 suppression and superoxide dismutase 1 (SOD1) upregulation. Thus, NaB with SOD1 silencing under high cholesterol did not eliminate excessive ROS, and eventually resulted in Aβ accumulation. In conclusion, we demonstrated that NaB prevents excessive ROS through NOX2 suppression and SOD1 upregulation by p21/NRF2 pathway, which is critical for inhibiting BACE1-dependent amyloidogenesis in neuronal cells exposed to high cholesterol environment.
Collapse
Affiliation(s)
- Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, 28644, Chungbuk, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Eun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
- Genome and Company, Pangyo-ro 253, Bundang-gu. Seoungnam-si, Gyeonggi-do, 13486, Korea
| | - Changho Park
- Genome and Company, Pangyo-ro 253, Bundang-gu. Seoungnam-si, Gyeonggi-do, 13486, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Ganner A, Pfeiffer ZC, Wingendorf L, Kreis S, Klein M, Walz G, Neumann-Haefelin E. The acetyltransferase p300 regulates NRF2 stability and localization. Biochem Biophys Res Commun 2020; 524:895-902. [PMID: 32057361 DOI: 10.1016/j.bbrc.2020.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
The transcription factor NRF2 plays a key role in the protection against environmental stress and maintaining cellular homeostasis. The acetyltransferase p300 is a known component of the NRF2 transcriptional complex and promotes its transcriptional activity. In this study we describe a novel mechanism by which p300 facilitates NRF2 activity. p300 physically interacts with NRF2 and interferes with NRF2-KEAP1 complex formation. In particular, p300 increases NRF2 protein abundance and stability, thereby promoting NRF2 nuclear localization. Notably, the acetyltransferase activity of p300 was indispensable for the stabilizing effects towards NRF2. Furthermore, overexpression of p300 protected HEK293T cells from oxidative stress and increased viability. Together our study uncovers a link between p300 and control of NRF2-KEAP1 signaling via regulation of NRF2 stability and this may act as a novel checkpoint on the adaptation to oxidative stress.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Zazie-Charlotte Pfeiffer
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Laura Wingendorf
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Saskia Kreis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
34
|
Banerjee A, Percival-Smith A. Post-translational modifications of Drosophila melanogaster HOX protein, Sex combs reduced. PLoS One 2020; 15:e0227642. [PMID: 31931520 PMCID: PMC6957346 DOI: 10.1371/journal.pone.0227642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
Homeotic selector (HOX) transcription factors (TFs) regulate gene expression that determines the identity of Drosophila segments along the anterior-posterior (A-P) axis. The current challenge with HOX proteins is understanding how they achieve their functional specificity while sharing a highly conserved homeodomain (HD) that recognize the same DNA binding sites. One mechanism proposed to regulate HOX activity is differential post-translational modification (PTM). As a first step in investigating this hypothesis, the sites of PTM on a Sex combs reduced protein fused to a triple tag (SCRTT) extracted from developing embryos were identified by Tandem Mass Spectrometry (MS/MS). The PTMs identified include phosphorylation at S185, S201, T315, S316, T317 and T324, acetylation at K218, S223, S227, K309, K434 and K439, formylation at K218, K309, K325, K341, K369, K434 and K439, methylation at S19, S166, K168 and T364, carboxylation at D108, K298, W307, K309, E323, K325 and K369, and hydroxylation at P22, Y87, P107, D108, D111, P269, P306, R310, N321, K325, Y334, R366, P392 and Y398. Of the 44 modifications, 18 map to functionally important regions of SCR. Besides a highly conserved DNA-binding HD, HOX proteins also have functionally important, evolutionarily conserved small motifs, which may be Short Linear Motifs (SLiMs). SLiMs are proposed to be preferential sites of phosphorylation. Although 6 of 7 phosphosites map to regions of predicted SLiMs, we find no support for the hypothesis that the individual S, T and Y residues of predicted SLiMs are phosphorylated more frequently than S, T and Y residues outside of predicted SLiMs.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | | |
Collapse
|
35
|
Zhang L, Shan X, Chen Q, Xu D, Fan X, Yu M, Yan Q, Liu J. Downregulation of HDAC3 by ginsenoside Rg3 inhibits epithelial-mesenchymal transition of cutaneous squamous cell carcinoma through c-Jun acetylation. J Cell Physiol 2019; 234:22207-22219. [PMID: 31192452 DOI: 10.1002/jcp.28788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022]
Abstract
The metastatic rate of human cutaneous squamous cell carcinoma (CSCC) has increased in recent years. Despite the current advances in therapies, effective treatments remain lacking. Ginsenoside 20(R)-Rg3 is an effective antitumor monomer extracted from ginseng, but the role of Rg3 in CSCC remains unknown. It has been reported that aberrantly elevated histone deacetylase 3 (HDAC3) is involved in tumor malignancy in multiple malignant tumors. However, the effects of HDAC3 on the regulation of c-Jun acetylation in tumor epithelial-mesenchymal transition (EMT) and migration have not been clearly illuminated. In our research, the immunohistochemistry staining results of skin tissue microarrays showed that HDAC3 staining was increased in CSCC compared with the normal dermal tissue. Then, we found that Rg3 treatment (25 and 50 μg/ml) inhibited CSCC cell (A431 and SCC12 cells) EMT through increasing E-cadherin and decreasing N-cadherin, vimentin, and Snail expression. Wound-healing and transwell assays showed that Rg3 could inhibit migration. Meanwhile, Rg3 significantly downregulated the expression of HDAC3 in CSCC cells as detected by real-time quantitative PCR, western blot, and immunofluorescence. Importantly, c-Jun acetylation was increased by the downregulation of HDAC3 with HDAC3 shRNA, and the downregulation was associated with CSCC cell EMT inhibition. Collectively, our results showed that downregulation of HDAC3 by Rg3 or shHDAC3 treatment resulted in c-Jun acetylation, which in turn inhibited CSCC cell EMT. These results indicate that HDAC3 could potentially serve as a therapeutic target therapeutic target for CSCC. Rg3 is an attractive and efficient agent that has oncotherapeutic effects and requires further investigation.
Collapse
Affiliation(s)
- Li Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Xiu Shan
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qun Chen
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dayu Xu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinling Fan
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ming Yu
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning, China
| | - Jiwei Liu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
36
|
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019; 20:ijms20081885. [PMID: 30995792 PMCID: PMC6515121 DOI: 10.3390/ijms20081885] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
38
|
Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB. PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex. Nat Commun 2018; 9:4300. [PMID: 30327463 PMCID: PMC6191444 DOI: 10.1038/s41467-018-06665-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.
Collapse
Affiliation(s)
- Stephanie Link
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Ramona M M Spitzer
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Maryam Sana
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Moritz C Völker-Albert
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Eva C Keilhauer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Coriolis Pharma, Fraunhoferstr. 18B, 82152, Planegg, Germany
| | - Thomas Burgold
- Wellcome Trust - MRC Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sebastian Pünzeler
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Coparion GmbH & Co. KG, Charles-de-Gaulle-Platz 1d, 50679, Cologne, Germany
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Ida Lindström
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, 35043, Marburg, Germany
| | - Catherine Regnard
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps-University Marburg, 35043, Marburg, Germany
- Institute for Molecular Oncology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Brian Hendrich
- Wellcome Trust - MRC Stem Cell Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Axel Imhof
- Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), 81377, Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), 81377, Munich, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, 35392, Giessen, Germany.
- Center for Integrated Protein Science Munich (CIPSM), 81377, Munich, Germany.
| |
Collapse
|
39
|
van der Heijden CDCC, Noz MP, Joosten LAB, Netea MG, Riksen NP, Keating ST. Epigenetics and Trained Immunity. Antioxid Redox Signal 2018; 29:1023-1040. [PMID: 28978221 PMCID: PMC6121175 DOI: 10.1089/ars.2017.7310] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE A growing body of clinical and experimental evidence has challenged the traditional understanding that only the adaptive immune system can mount immunological memory. Recent findings describe the adaptive characteristics of the innate immune system, underscored by its ability to remember antecedent foreign encounters and respond in a nonspecific sensitized manner to reinfection. This has been termed trained innate immunity. Although beneficial in the context of recurrent infections, this might actually contribute to chronic immune-mediated diseases, such as atherosclerosis. Recent Advances: In line with its proposed role in sustaining cellular memories, epigenetic reprogramming has emerged as a critical determinant of trained immunity. Recent technological and computational advances that improve unbiased acquisition of epigenomic profiles have significantly enhanced our appreciation for the complexities of chromatin architecture in the contexts of diverse immunological challenges. CRITICAL ISSUES Key to resolving the distinct chromatin signatures of innate immune memory is a comprehensive understanding of the precise physiological targets of regulatory proteins that recognize, deposit, and remove chemical modifications from chromatin as well as other gene-regulating factors. Drawing from a rapidly expanding compendium of experimental and clinical studies, this review details a current perspective of the epigenetic pathways that support the adapted phenotypes of monocytes and macrophages. FUTURE DIRECTIONS We explore future strategies that are aimed at exploiting the mechanism of trained immunity to improve the prevention and treatment of infections and immune-mediated chronic disorders.
Collapse
Affiliation(s)
| | - Marlies P Noz
- 1 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Leo A B Joosten
- 1 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Mihai G Netea
- 1 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, The Netherlands .,2 Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn , Bonn, Germany
| | - Niels P Riksen
- 1 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Samuel T Keating
- 1 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, The Netherlands
| |
Collapse
|
40
|
Abstract
The differentiation of T helper cell subsets and their acquisition of effector functions are accompanied by changes in gene expression programmes, which in part are regulated and maintained by epigenetic processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key epigenetic regulators that function by mediating dynamic changes in the acetylation of histones at lysine residues. In addition, many non-histone proteins are also acetylated, and reversible acetylation affects their functional properties, demonstrating that HDACs mediate effects beyond the epigenetic regulation of gene expression. In this Review, we discuss studies revealing that HDACs are key regulators of CD4+ T cell-mediated immunity in mice and humans and that HDACs are promising targets in T cell-mediated immune diseases. Finally, we discuss unanswered questions and future research directions to promote the concept that isoform-selective HDAC inhibitors might broaden the clinical application of HDAC inhibitors beyond their current use in certain types of cancer.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Wan L, Xu K, Chen Z, Tang B, Jiang H. Roles of Post-translational Modifications in Spinocerebellar Ataxias. Front Cell Neurosci 2018; 12:290. [PMID: 30283301 PMCID: PMC6156280 DOI: 10.3389/fncel.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, SUMOylation, etc., of proteins can modulate protein properties such as intracellular distribution, activity, stability, aggregation, and interactions. Therefore, PTMs are vital regulatory mechanisms for multiple cellular processes. Spinocerebellar ataxias (SCAs) are hereditary, heterogeneous, neurodegenerative diseases for which the primary manifestation involves ataxia. Because the pathogenesis of most SCAs is correlated with mutant proteins directly or indirectly, the PTMs of disease-related proteins might functionally affect SCA development and represent potential therapeutic interventions. Here, we review multiple PTMs related to disease-causing proteins in SCAs pathogenesis and their effects. Furthermore, we discuss these PTMs as potential targets for treating SCAs and describe translational therapies targeting PTMs that have been published.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Department of Neurology, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
42
|
Wang T, Yao W, Shao Y, Zheng R, Huang F. PCAF fine-tunes hepatic metabolic syndrome, inflammatory disease, and cancer. J Cell Mol Med 2018; 22:5787-5800. [PMID: 30216660 PMCID: PMC6237576 DOI: 10.1111/jcmm.13877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The P300/CBP‐associating factor (PCAF), a histone acetyltransferase, is involved in metabolic and pathogenic diseases, particularly of the liver. The effects of PCAF on fine‐tuning liver diseases are extremely complex and vary according to different pathological conditions. This enzyme has dichotomous functions, depending on differently modified sites, which regulate the activities of various enzymes, metabolic functions, and gene expression. Here, we summarize the most recent findings on the functions and targets of PCAF in various metabolic and immunological processes in the liver and review these new discoveries and models of PCAF biology in three areas: hepatic metabolic syndrome, inflammatory disease, and cancer. Finally, we discuss the potential implications of these findings for therapeutic interventions in liver diseases.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruilong Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Park JM, Kim MY, Kim TH, Min DK, Yang GE, Ahn YH. Prolactin regulatory element-binding (PREB) protein regulates hepatic glucose homeostasis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2097-2107. [PMID: 29601978 DOI: 10.1016/j.bbadis.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 03/26/2018] [Indexed: 01/22/2023]
Abstract
Prolactin regulatory element-binding (PREB) protein is a transcription factor that regulates prolactin (PRL) gene expression. PRL, also known as luteotropic hormone or luteotropin, is well known for its role in producing milk. However, the role of PREB, in terms of hepatic glucose metabolism, is not well elucidated. Here, we observed expression of Preb in the mouse liver, in connection with glucose homeostasis. Morevoer, Preb was downregulated in db/db, ob/ob and high-fat diet-induced obese (DIO) mice, concurrent with upregulation of the liver genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase-1 (Pck). Administration of adenovirus-Preb (Ad-Preb) to db/db, ob/ob, and DIO mice diminished glucose, insulin, and pyruvate tolerance, which analogously, were impaired in normal (C57BL/6) mice knocked down for Preb, via infection with Ad-shPreb (anti-Preb RNA), indicating Preb to be a negative regulator of liver gluconeogenic genes. We further demonstrate that Preb negatively influences gluconeogenic gene expression, by directly binding to their promoters at a prolactin core-binding element (PCBE). A better understanding of Preb gene expression, during the pathogenesis of hepatic insulin resistance, could ultimately provide new avenues for therapies for metabolic syndrome, obesity, and type-2 diabetes mellitus, disorders whose worldwide incidences are increasing drastically.
Collapse
Affiliation(s)
- Joo-Man Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dong-Kook Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ga Eul Yang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
44
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
45
|
Massafra V, van Mil SWC. Farnesoid X receptor: A "homeostat" for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:45-59. [PMID: 28986309 DOI: 10.1016/j.bbadis.2017.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states. FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Tong Z, Xie Y, He M, Ma W, Zhou Y, Lai S, Meng Y, Liao Z. VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother 2017; 95:77-83. [PMID: 28826100 DOI: 10.1016/j.biopha.2017.08.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
We have recently demonstrated that Voltage-dependent anion channel 1 (VDAC1), a protein located in the mitochondrial outer membrane, is involved in the effects of resveratrol on the mitochondrial permeability transition pore (mPTP). However, the underlying mechanism of action remains to be elucidated. In the present study, we demonstrated that resveratrol promoted VDAC1 deacetylation in cardiomyocytes in response to anoxia/reoxygenation (A/R) injury. Moreover, silent information regulator of transcription 1 (SIRT1), a NAD+-dependent class III histone deacetylase, was up-regulated after pretreatment with resveratrol. Cells that were treated with Ex527, a specific inhibitor of SIRT1, showed a reduction in both SIRT1 expression and VDAC1 deacetylation, indicating that the deacetylation effect of resveratrol on VDAC1 is mediated by SIRT1. Furthermore, the ability deacetylated VDAC1 to bind to Bax was decreased after pretreatment with resveratrol, whereas Bcl-2 expression changed in the opposite direction. As a result, opening of the mPTP was restrained, the mitochondrial membrane potential was reserved, and cytochrome c release was inhibited, which subsequently decreased cardiomyocyte apoptosis. However, the cardioprotective effects observed after treatment of resveratrol could be abrogated by Ex527. In conclusion, resveratrol induces deacetylation of VDAC1 by SIRT1, thereby preventing mitochondria-mediated apoptosis in cardiomyocytes upon A/R injury.
Collapse
Affiliation(s)
- Zhihong Tong
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Yongyan Xie
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Wen Ma
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Yue Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
47
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|
48
|
Wu Y, Ma S, Xia Y, Lu Y, Xiao S, Cao Y, Zhuang S, Tan X, Fu Q, Xie L, Li Z, Yuan Z. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim. Cell Death Dis 2017; 8:e2570. [PMID: 28125090 PMCID: PMC5386373 DOI: 10.1038/cddis.2016.465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.
Collapse
Affiliation(s)
- Yanna Wu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shanshan Ma
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yong Xia
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yangpeng Lu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shiyin Xiao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yali Cao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Sidian Zhuang
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Xiangpeng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Qiang Fu
- Department of General Dentistry, 323 Hospital of the People's Liberation Army, Xi'an, China
| | - Longchang Xie
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Zhiming Li
- Department of Radiology, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongmin Yuan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
| |
Collapse
|